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eduard.paul.enoiu@mdh.se, daniel.sundmark@mdh.se, paul.pettersson@mdh.se

†Swedish Institute of Computer Science, Västerås, Sweden
kivanc.doganay@sics.se, markus.bohlin@sics.se

Abstract—In this paper we present a new testing tool for safety
critical applications described in Function Block Diagram (FBD)
language aimed to support both a model and a search-based
approach. Many benefits emerge from this tool, including the
ability to automatically generate test suites from an FBD program
in order to comply to quality requirements such as component
testing and specific coverage measurements. Search-based testing
methods are used to generate test data based on executable code
rather than the FBD program, alleviating any problems that
may arise from the ambiguities that occur while creating FBD
programs. Test cases generated by both approaches are executed
and used as a way of cross validation. In the current work, we
describe the architecture of the tool, its workflow process, and a
case study in which the tool has been applied in a real industrial
setting to test a train control management system.

Index Terms—model-based software testing, search-based soft-
ware testing, timed automata, programmable logic controllers.

I. INTRODUCTION

Industrial safety-critical systems implemented in Pro-
grammable Logic Controllers (PLCs) are widely used in
avionics and the railway domain. One of the programming
languages defined by the International Electrotechnical Com-
mission (IEC) [1] for PLCs is the Function Block Diagram
(FBD), a standard widely used to implement safety-critical
software [2]. Programs developed in FBD are transformed
into program code, which is compiled into machine code
automatically by using specific engineering tools provided by
PLC vendors. Due to the fact that the program transformation
is implemented differently depending on the tool vendor, the
resulting code contains less, the same, or more instructions and
operations than the FBD program [3], [4]. Structural coverage
is used in safety-critical systems not only to satisfy the criteria
but also to identify missing functionality both in the code
and the FBD program. Hence, it is important to provide an
approach for testing FBDs from program level to code level
and to build knowledge on how this can influence the testing
activity.

Testing tools for FBDs have been under scientific study
for some time, and relies mostly on functional testing or
simulation methods [5], [6]. There has been no research on

applying model-based and search-based testing approaches for
FBD programs in an industrial setting.

In this paper search-based test generation focuses on satis-
fying particular coverage criteria at the FBD code level. Even
though it is code that is executed while testing, the semantics
of the FBD program under test is not preserved at code level.
Therefore, we use a model-based method of generating test
data for FBD programs before its transformation to executable
code that can ensure compliance to quality requirements
including unit testing and model coverage requirements.

MOS is a tool for model-based and search-based testing of
safety-critical systems implemented using the FBD language,
developed at Mälardalen University since 2012. As shown
in Fig. 1, it allows its users to automatically generate test
suites from FBD programs. The model-based testing approach
is based on behavior models and uses a model-checker to
automatically generate test suites. The output of the MOS tool
is used as test programs that can be used on the system under
test. The main features include:
• A framework for producing test suites for FBD programs

using the model checker’s ability to generate diagnostic
trace witnessing a submitted test property or coverage
criteria. This is achieved by using the UPPAAL [7] model
checker to perform symbolic reachability analysis of FBD
programs modeled as a network of timed automata.

• A set of coverage criteria, including decision coverage
and condition coverage are used to specify for which
requirement a test suite should be generated.

• Support for search-based test generation to maximize
modified condition/decision coverage (MC/DC) for as-
signments with logical expressions in the FBD program
code.

• Compatibility with the file format used for generating
FBD programs [8].

II. PRELIMINARIES

PLCs are used in control software systems from nuclear
power plants to traffic control systems. A PLC is an industrial
real-time system, containing a processor, a memory, connected
together by a bus. Software on a PLC runs in a loop, in
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which the iteration follows the “read-execute-write” seman-
tics. When a PLC reads all inputs, it executes the computation,
and then writes to its outputs without interruption. FBD, a PLC
programming language standardized by IEC 61131-3 [1], is
used in practice because of its graphical representation and its
data flow model of the computation. An example of an FBD
program depicting a Loadshed Contactor Control is
shown in Fig. 2. An FBD program is composed of Functional
Elements (FE) defined as Function Blocks (FB) and Functions
(FUNC). Independent of the PLC choice language for IEC
61131-3, FUNCs and FBs are the base for a structured and
hierarchical FBD program. They are supplied by the manu-
facturer, defined by the developer, or predefined in a library.

Basically, the model elements are equivalent to predicates
and instrumentation points shown in a circuit diagram fashion.
For instance in Fig. 2 the system consists of some basic
logic, timer, state functions such as AND, and function blocks
as FAULTDLY and RS (Reset-Set Latch). A FUNC does not
have any internal state and its output is determined only by
the current inputs. In Fig. 2, AND is a FUNC. Differently,
FAULTDLY and RS are FBs because they both maintain an
internal state and are producing outputs based on this state
and inputs. The IEC 61131-3 standard proposes a hierarchical

software architecture for structuring and running any FBD
program. This architecture specifies the syntax and semantics
of a unified control software based on a PLC configuration,
resource allocation, task control, program definition, function
and function block repository, and program code [2], [9], [10].
The program code is generated from the FBD program used
on a specific PLC by utilizing a model-to-code transformation.

III. TOOL OVERVIEW

In this section, we describe the MOS tool architecture
focusing on the search-based and model-based capabilities.
The workflow of the tool and the architecture is shown
in Fig. 1. The user creates an FBD Program and a Test
Requirement. The FBD Program is handled by both Search-
Based Test Generation and the Model-Based Test Generation.
To specify the coverage information we use a Test Requirement
query file to be used in the MOS tool. The tool currently
supports: (i) search-based test case generation, (ii) model-
based test generation, and (iii) simulation of the test platform
using a Train Control and Management System Simulation
(SoftTCMS Environment)1. The tool is developed with the
purpose to automate and improve the FBD program testing
process. Faults found automatically in this process can be
fixed as the developer is getting feedback from the tests
immediately. FBD program testing has a direct impact on the
final implementation, with respect to functional, performance,
and other quality attributes. Therefore, guaranteeing that FBD
programs meet the specified requirements is beneficial for
detecting faults early in the testing process.

A. Model-Based Test Generation for FBDs

The modeling language used by MOS is based on the timed
automata (TA) model. In MOS, FBD programs are built from
interconnected components with well-defined interfaces and
transformed to TA models. MOS is based on functional and
timing behavior models and uses a verifier to parse the model
language. The model-based test generation is tailored for FBD

1SoftTCMS Environment is a software simulation of the entire train.
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programs with both safe and timed behavior. We provide a
generator for producing test suites for FBD programs using
a model checker’s ability to generate a diagnostic trace wit-
nessing a submitted test property or coverage criteria from the
Test Requirement file. This is achieved by using the UPPAAL
[7] model checker to perform symbolic reachability analysis
of FBD programs modeled as a network of TA. Basically,
the reachability algorithm explores the symbolic state space
of a TA model and generates time-optimal traces based on
a variation of the A*-algorithm [11]. UPPAAL is a model-
checker using TA as a modeling language 2. It supports real-
valued clocks and different data types like bounded integers
and arrays. The verification language supports properties such
as safety, liveness, and reachability.

1) Timed Automata: The TA model was introduced by Alur
and Dill [12] and has gained a lot of attention as a modeling
language for timed systems. We give here a short description
for readers unfamiliar with this model.

Let X be a finite real-valued variables called clocks and
B(X) the set of guards, which are finite conjunctions of
constraints of the form x ./ n, where x ∈ X , n ∈ N, and
./ ∈ {<,≤,=,≥,>}. A timed automaton (TA) over clocks X
and actions Act is a tuple 〈L, l0,E, I〉 where L is a finite set of
locations, l0 is the initial location, E ⊆L×B(X)×Act×L is the
set of edges and I : L→ B(X) assigns invariants to locations.
In the case of and edge 〈l,g,a,r, l′〉 ∈ E, we write l

g,a,r−−→ l′

where the label g is a guard of the edge, r is the data- or
clock reset assignments of the edge, and a is the action of the
edge.

A network of TA T1 ‖ ... ‖ Tn is a parallel composition
of n TA over X and Act, synchronized actions (i.e., a! is

2The UPPAAL tool is available at www.uppaal.org.
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complementary with a?) and shared variables. We refer the
reader to [13] for more information on the theory of TA.

2) Transforming FBDs to Timed Automata: To support
model-checking, MOS enables the transformation of FBD
programs into TA models, being one step away from test
suite generation with the UPPAAL tool. The transformation
maps all the interface elements alongside the existing timing
annotations within the FBD program into a TA model. MOS
performs an automatic transformation of the FBD program to
a TA model that obeys the read-execute-write semantics. As
a result of the transformation local automata are composed in
parallel into a TA network. The purpose of the transformation
is to construct a target model by associating the TA with a
corresponding behavior. For example, a rather straightforward
model of the TON function block is shown as a TA model
in Fig. 3. The FBD program interacts with other TA via
execute? action. TON is modeled by a standard time on
timer that sets the output TON1 to true if Out input variable
is true at least as long as the time P1T .

In the context of testing an FBD program we assume that the
test specification is given as a closed network of TA as shown
in Fig. 4. This model can be seen as two sub-networks, one
modeling the FBD Program and the other one modeling its
PLC Cycle Scan. This TA model is executed in a cycle loop,
in which the the iteration of the FBD program follows the run-
to completion semantics. The program operates in a specific
environment, which obviously can be considered completely
unconstrained containing all possible interactions between the
TA network elements.

3) Test Generation for FBD Programs: Generation of test
suites for an FBD program starts by manually formulating a
set of informal test properties and continues with formalization
of these such that the model is used for each test property.
In this context, a test requirement is a specific test property
that the tester would like to formulate. Properties of TA can
be expressed as logical formulae in the Timed Computational



Tree Logic (TCTL) [14]. In this paper we focus on properties
of the form ∃ ♦ p, called reachability properties, where ∃ is
the existential quantifier, and ♦ is the temporal operator. A
reachability property states that there is a path in which the p
location in the TA is reached.

For using the test generation capability of the UPPAAL
model-checker, the test property must be formulated using the
TCTL logics and checked by the TA model. Often we are
interested in a test suite that ensures that the FBD program
is covered in several ways. This ensures that a certain level
of thoroughness has been achieved during the test generation
process. Hessel et al. [15] already proposed a way to apply
coverage criteria to TA models. In addition, we propose the
usage of coverage analysis directly on the FBD program. For
example, for decision coverage we analyze every decision
points in the FBD program. Full decision coverage indicates
that each decision in the FBD program has taken every
outcome at least once. We implement a mechanism to facilitate
this by specifying a set of decision parameters. We annotate
the TA model with an auxiliary boolean variable vi for each
decision di to be covered. For every edge with destination
di : l

g,a,r−−→ di, vi is added to r assignment. The reachability
property for full decision coverage will require that all vi to
be true.

B. Search-Based Software Testing for FBDs

Unlike the model-based approach, search-based test gener-
ation needs to execute the software under test. However, the
FBD implementations are not directly executable on the target
hardware. Instead, it is converted to C code using a proprietary
FBD-to-C compiler, and then compiled with a C compiler
(such as gcc) to be run on the target system. The generated
code is not a special dialect of C, unlike what is common in
the embedded domain (e.g., Embedded C and DSP-C), but is
C99 compliant. Therefore, it is possible to compile it to run
on a regular (non-embedded) computer. However, the C code
uses a set of special libraries related to the actual hardware
devices on a train. The SoftTCMS platform, developed by
CrossControl, implements mock libraries and simulates most
of the important peripheral devices on the train, such as the I/O
Bus. Simply switching to SoftTCMS libraries allows us to run
the same unit or component level test cases on the simulated
environment, without the need to change the code under test.

Even though the C code generated from the FBD imple-
mentation is C99 compliant, it has some special properties
that are not typically seen in software in other domains, due
to the underlying FBD semantics. Each FBD program becomes
a C function that do not use any static variable to access
any global variable. So syntactically, functions appear to be
stateless, which is actually not the case. The scheduler that
periodically calls each FBD program is responsible for passing
the same global data as an argument, which can be used by the
FBD to preserve state. As an example, consider the following
C code that implements a simple function block R_TRIG,
which is one of the standard blocks in the FBD language:

void R_TRIG(struct_R_TRIG *data)
{
data->Q = data->CLK & !data->M;
data->M = data->CLK;

}

R_TRIG implements the rising edge detector, which outputs
1 only if the input at the previous execution cycle was 0, and
it is 1 in the current execution cycle. The caller is responsible
for preserving the integrity of the data variable instance of
appropriate structure type, and call the R_TRIG function with
the same input variable at each execution cycle. The input data
element CLK is marked as an input variable, and Q as an output
variable, while M is unmarked. This implies that a valid test
case should be manipulating only the value of CLK, but not the
non-input variables. However, this information is not visible
at the C level, but only in the original FBD implementation.

Another property of FBDs that is lost at C code level, is the
variables with fixed values, or the so called parameters. An
FBD can have input values that are actually constant values
through the system execution. An initialization procedure at
the boot time of the system sets these parameters to their
respective values, after which they are not altered. These
values are passed to FBD function as part of the input data
structure without any distinction that indicates the difference
from other non-input variables.

Even though we create test input by executing the C code,
it also needs to conform to the FBD semantics. Therefore,
we parse the above mentioned semantic information from the
FBD implementation, and create test inputs accordingly. The
exact form of the C code is dependent on the particular FBD-
to-C compiler that is used. However, there is a mismatch
between what is visible in the C code and the actual FBD
semantics, regardless of the compiler, making it necessary
to parse the relevant information from the underlying FBD
implementation.

1) Search Algorithm: The current implementation uses a
slightly modified hill climbing algorithm to generate test data
that satisfies MC/DC coverage for logical predicate assign-
ments. As an example, consider an AND gate with three
inputs. This FBD element gets compiled into a single C
assignment in the form of P = x & y & z; where x, y and z
are boolean variables, possibly computed by other functional
elements. In order to have full MC/DC coverage, three distinct
values are required for the (x,y,z) tuple. The goal set GP
consisting of the required tuples is:

GP = {(1,1,1),(0,1,1),(1,0,1),(1,1,0)}

The hill climbing algorithm uses the minimum of the Eu-
clidean distances from the current observed values to the ele-
ments of GP, as an heuristic function, which can be formalized
as below.

f itness = Minimum(|tobs− ti|, ti ∈ GP)

Where tobs is the observed values for the (x,y,z) tuple during
the execution of the current search node in the input space.
Once a target tuple is observed (i.e., f itness = 0) it is removed
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from the goal set GP, so that the search can continue in order
to find other tuples. This heuristic drives the search towards the
nearest element of the goal set, which is a slight improvement
over the approach where the elements are separately targeted
in a fixed order.

2) Search Space: The obvious choice of search space for
the algorithm is the input space, representing possible inputs to
the FBD program under test. However, if the FBD program has
elements that are stateful, such as the function blocks explained
in section II, it may not be possible to set an internal variable
to the needed value in a single function call. Therefore, we
represent a node in the search space as a sequence of input
vectors. Subsequently, the fitness of an input sequence is the
minimum among the fitness values of the function calls that
are part of the sequence.

IV. CASE STUDY

MOS has so far been applied on a real world case study in
cooperation with Bombardier Transportation AB. We present
here how the tool is applied to test a MITRAC Train Control
and Management System (TCMS) provided within the ATAC
research project [16]. TCMS is a distributed system, built on
open standard IP-technology that allows easy integration of
control and communication functions for high speed trains.
The TCMS system consists of many different kinds of hard-
ware and software units as shown in Fig. 5. The TCMS
Software Platform Configuration is a major part of TCMS.
Just like the TCMS Application refers to the distributed train
control system, the TCMS Software Platform Configuration
refers to the configuration of all configurable software items
of TCMS. The Central Computing Units (CCUs) contain all
FBD programs controlling the train. The PLC development
tools used for developing these programs are based on the
MULTIPROG software. The FBD code is generated using PLC
development tools used specifically for TCMS.

The MOS tool aims to support testers and developers
when testing FBDs at both program and code level. TCMS
contains the software-based components of the train control

system and is in charge of the operation-critical safety-related
functionality of the train. Testing must therefore be focused
on the most important functionality as exhaustive tests are
practically unfeasible. The focus of testing must be considered
in the context of the integrated train control system which
controls all train operations, including propulsion, line voltage
and passenger comfort systems. The goals of using MOS on
TCMS component testing are to:
• Systematically find faults in TCMS components.
• Aid the TCMS tester and developer in his ongoing work.
• Automatically improve test coverage for each TCMS

component.

A. Results

In the case study, we used MOS to produce test suites for
ensuring that an FBD program is covered in several ways
and that a certain level of thoroughness is achieved in the
test generation process before the actual FBD program-to-
code transformation. The FBD programs were transformed
and modeled using MOS tool. Based on the TA model of
the FBD program we used coverage analysis directly on the
FBD programs based on the following criteria: (i) decision
coverage, (ii) condition coverage, and (iii) decision-condition
coverage. To perform the actual testing process, a complete
test interface was built that supports automated generation of
tests. MOS takes as input the FBD program together with a
test goal, and generates ready-to-use test suites. The generation
time for goals expressed as reachability properties is between
0.15 and 0.53 seconds 3 with 5 MB memory usage. Obviously,
the environment model can pose restrictions to our results
potentially obtaining more expensive test suites with regard to
consumed resources. Still, for FBD programs in TCMS, MOS
model-based test generation scales up for different models and
coverage criteria. We refer the reader to [17] for more results
on model-based test suite generation for FBD programs.

From our ongoing experiments and experiences with the
MOS tool, the TCMS component test process is based on
the actual FBD programs rather than requirements making it
a perfect candidate for using both model-based and search-
based testing. In this case, MOS assists the tester to identify
automatically test cases, which can be scripted and executed
by the developers. Testing TCMS components with MOS is
done in isolation from the rest of the TCMS software in a
controlled simulated environment, making the component tests
a good target for coverage-based test generation and therefore
a potential benefit to automatic evaluation of test cases.

Furthermore, we used MOS to generate test cases at the
TCMS code level using the search-based testing approach.
To ensure compliance to code coverage requirements, we
generated test data that maximizes the MC/DC coverage of
the C code generated from the FBD programs, which is the
actual artifact to be eventually executed during operation. We
also compared the performance of the current search algorithm

3Experiments were executed on a machine with 2.4 Ghz Intel Core i5 and
8 GB 1333 Mhz DDR2.



(a slightly modified version of hill climbing) against random
testing on around 300 different FBD programs. Results show
that most FBD programs have many easy to cover structures
that allow random testing to perform surprisingly well against
the more informed search algorithm. However, while trying to
find test data for MC/DC coverage for more complex structures
(e.g., predicates consisting of many clauses), hill climbing
outperforms random testing. We discuss the details of this
study (search-based vs. random testing) in [18].

Both model-based and search-based approaches are suitable
for incremental testing. As new functionality is added to
TCMS, new test cases can be added automatically to the
component test specification by using both approaches, which
is suitable for testing efforts early in the development process.

B. Implications

In this section we describe implications of our combined
model-based and search-based test generation approach for
research and practice.

Using the search-based test generation capability of the
MOS tool it is possible to define the goal set differently in
order to generate input data that achieves different types of
testing goals. This is trivial for logical coverage (e.g., condition
coverage), but if the testing goal is complex and structured
differently it may not be possible. For example, it is not
obvious how to translate an arbitrary TCTL formula into a
set of concrete values, as in the MC/DC example. Such goals
can be fulfilled by using MOS to formally verify temporal
properties of the TA model and generate test cases.

An important fundamental limitation of the search-based
approach is that, if the algorithm can not find an input data that
satisfies a particular testing goal, it is not possible to deduce
that the goal is infeasible. In this case the model-based test
generation capability can be used to formally reason if the
goal is reachable in the model. On the other hand, custom
built functional elements that may be difficult to reason about
(e.g. due to complicated or ambiguous specifications) do not
affect the applicability of search algorithms.

V. CONCLUSIONS

The MOS tool has been applied in a real world case study
in cooperation with Bombardier Transportation AB, where a
train control and management system has been tested. The
software developed using the FBD language was modeled in
detail using TA framework. In the case study, we used MOS to
produce test suites based on model coverage criteria. We also
implemented search-based testing algorithms for FBD code
in order to produce meaningful tests. As a proof-of-concept,
the MOS tool was used to generate test input for train control
software developed by Bombardier Transportation AB. Results
from this ongoing research clearly indicate that MOS can be

used for automating and systematically test complex safety-
critical systems.
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