
End-to-End Latency Analyzer for
ProCom - EELAP

Release 0.3.0

Jiří Kunčar <jiri.kuncar@gmail.com>
Rafia Inam <rafia.inam@mdh.se>

Mikael Sjödin <mikael.sjodin@mdh.se>

March 05, 2013

CONTENTS

1 Introduction 3
1.1 End-to-End Delay Analysis . 3
1.2 Communication Strategies among ProCom Components 3
1.3 Contributions . 4

2 User’s Guide 5
2.1 Installation . 5
2.2 Quick start . 5

3 API Reference 7
3.1 API . 7

4 Additional Notes 19
4.1 Licence . 19

Bibliography 21

Index 23

i

ii

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

Abstract

This report presents an analysis tool End-to-End Latency Analyzer for ProCom (EELAP) devel-
oped to compute different end-to-end latency semantics for multi-rate components of real-time
embedded systems. ProCom component technology implements executable reusable real-time
components called Runnalbe Virtual Nodes (RVNs) and supports two different communication
strategies for inter-RVN communication. The tool is developed to evaluate the two communi-
cation strategies for multi-rate server-based components the ProCom component technology.

In this report we present a user guide for EELAP. We describe the formulas and correspond-
ing algorithms used to compute end-to-end latency semantics, and response-times of the tasks
executing in a two-level hierarchical scheduling framework. Further, we provide a detailed
description of API’s.

CONTENTS 1

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

Here we present a brief introduction to the terminologies required to understand the tool. We
first explain end-to-end delay analysis and then describe two communication strategies among
the ProCom components.

1.1 End-to-End Delay Analysis

In embedded systems, the realization of a piece of functionality can follow a flow through many
software components. Data may originate at one component (e.g. a sensor) and passes through
various other computational components, before terminating at the final component (e.g.an
actuator). Hence, the data follows a chain of components (C1, C2, . . . , Cn), each potentially
having its own periodicity and timing properties. The total time taken by the data/signal to
traverse the complete chain is called end-to-end latency [2]. For an embedded system with real-
time constraints, the end-to-end timing behavior is not only dependent on the timing properties
of its constituent components but also on the message-chains among those components. In
a communication chain, different executable components (or tasks) are activated at different
periods. Such system is called a multi-rate system [2].

1.2 Communication Strategies among ProCom Compo-
nents

In ProCom component model, the RVNs are implemented as servers (called RVN-server) and
the tasks are executed within the servers. This type of systems are called server-based sys-
tems or hierarchical systems [3]. The RVN-servers are executed within a two-level hierarchical
scheduling implementation [4]. To support communication between RVNs (also called inter-
RVN communication), two different strategies have been proposed [5]. The first strategy is
called a server-based communication, implemented using a communication server. The com-
munication code is embedded within the communication server, which is activated periodically.

Another interesting approach is to use a direct communication strategy, where RVNs commu-
nicate with each other directly without an intermediate server. Here the communication code is
encapsulated within the RVN to send and receive the data and/or messages. The details of both
communication strategies for ProCom component model can be found in [5].

3

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

Both communication strategies for the ProCom technology reveal the multi-rate systems. Ac-
cording to [2], all automotive embedded systems are multi-rate systems. A system comprising
the communication chains among RVN servers transposes to a multi-rate server-based system.
Four different end-to-end semantics are provided in [2] for multi-rate systems. We develop the
EELAP tool to compute these semantics for multi-rate server-based systems using (1) response
times of tasks executed within a server and (2) then end-to-end semantics.

1.3 Contributions

We implement a tool End-to-End Latency Analyzer for ProCom (EELAP) [6] to evaluate tim-
ing behavior of two communication strategies in a multi-rate server-based real-time embedded
components using end-to-end latencies (or delays). The tool computes end-to-end latencies
using the following two steps:

• First it calculates the response times of all tasks executing in a two-level hierarchical
scheduling framework by using methods/formulas provided in [1],

• And then it calculates different end-to-end latency semantics for both communication
strategies.

In this report, we present the descriptions of API’s of EELAP tool, the formulas and their
implementations in those API, and the algorithms for schedulability condition, possible paths,
path reachability, and generate paths for different latency semantics.

4 Chapter 1. Introduction

CHAPTER

TWO

USER’S GUIDE

2.1 Installation

This tool depends on two external libraries: the numpy and the argparse. These libraries are not
documented here. If you want to dive into their documentation, check out the following links:

• Numpy Documentation

• Argparse Documentation

Besides numpy and argparse, the lxml is recommended for full functionality. pip or easy_install
will install them for you if you do pip install git+git://github.com/jirikuncar/eelap.git. We
encourage you to use a virtualenv.

2.2 Quick start

Eager to get started? This page gives a good introduction how the End-to-End Latency Analysis
for ProCom works and how you can benefit from it. It assumes you already have it installed. If
you do not, head over to the Installation section.

2.2.1 Finding possible execution paths

The whole simulation is dependant on quick and effective algorithm for finding possible exe-
cution paths of tasks in all system components. All latency types are calculated on specified
data flow path that contains identifiers of tasks in analyzed system.

Our generator generate_paths() returns tuples with activation indexes of tasks accord-
ingly to the analyzed execution path. The algorithm starts with finding closest activation in-
dexes of the first task in path for defined interval. Following pseudo-code shows simplified
version of our algorithm using methods alpha() and ialpha() defined on Task.

1 function generate_paths(start, stop, tasks_in_path):
2 paths <- list()
3 task <- tasks_in_path.pop(0) # assign and remove first task from the path
4 loop i from task.ialpha(start) to task.ialpha(stop):

5

http://docs.scipy.org/doc/
http://docs.python.org/dev/library/argparse.html
http://docs.scipy.org/doc/
http://docs.python.org/dev/library/argparse.html
http://docs.scipy.org/doc/
http://docs.python.org/dev/library/argparse.html
http://www.virtualenv.org/en/latest/

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

5 # find a time range for next task
6 if length(tasks_in_path) > 0:
7 time <- task.alpha(i)
8 next_task <- tasks_in_path[0] # next task in path
9 j <- next_task.ialpha(time) # closest activation index

10 new_start <- next_tasks.alpha(j) # closest activation time
11 # find possible paths for next task in path from new start.
12 for all path in generate_paths(new_start, stop, tasks_in_path):
13 # join current activation index with found tuple
14 paths.append(path.prepend(i))
15 end for
16 else:
17 paths.append(list(i)) # list with only one index
18 end if
19 end loop
20 return paths
21 end function

6 Chapter 2. User’s Guide

CHAPTER

THREE

API REFERENCE

If you are looking for information on a specific function, class or method, this part of the
documentation is for you.

3.1 API

This part of the documentation covers all the interfaces of End-to-End Analyzer for ProCom.

3.1.1 Task

class eelap.Task(name, period, priority, exetime)
System task.

C
Alias for task ti execution time (Ci).

HB
Set of tasks belonging to same Component C with priorities higher than itself one.

HB(s) = {Tk ∈ C | P (k) > P (s)}

P
Alias for task ti period (P (i)).

static alpha(i)
Calculate time of i-th activation.

αr(i) = rstart + i ∗ P (r)

Parameters i – Activation number.

Returns Activation time.

blocking_time
Task deadline (bi).

7

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

Warning: Currently always returns 0.

deadline
Task deadline.

Note: Currently deadline==period.

static delta(i)
Calculate response time of i-th activation.

Parameters i – Activation number.

Returns Response time of i-th activation.

Note: In our case we always return task response time.

See Also:

response_time()

freq
Task frequency f(ti) = 1/P (ti).

static ialpha(t)
Calculate previous activation for given time.

α−1r (t) = bt− rstart
P (r)

c

Parameters t – Current time.

Returns int – activation number.

p
Alias for task ti priority (p(i)).

plan(time)
Returns True if the task should be scheduled at given time.

static rbf(t)
The request bound function.

It computes the maximum cumulative execution requests that could be generated
from the time that task is released up to time t.

rbfi(t) = Ci + bi +
∑

τk∈HP (i)

t

Tk
∗ Ck

Parameters t – Time limit for execution requests.

See Also:

[1] formula (2).

8 Chapter 3. API Reference

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

response_time
Task response time.

RS(i) = t | ∃t : 0 < t <= Di, rbfi(t) <= sbfC(t)

status(time)
Returns textual representation of task status at given time.

utilization
Calculates utilization.

3.1.2 Component (Subsystem)

class eelap.Component(name, period, priority, budget, scheduler=’EDF’, pay-
back=False)

System servers / components.

Bl
The maximum blocking imposed to a this subsystem.

Bl(s) = max{X(k) | Sk ∈ LPS(s)}

See Also:

[1] formula (10).

HPS
Set of subsystems of System S with priority higher than itself (Ss).

HSP (s) = {Sk ∈ S | P (k) > P (s)}

See Also:

Used in formula (9) in [1].

LPS
Set of subsystems of System S with priority lower than itself (Ss).

LSP (s) = {Sk ∈ S | P (k) < P (s)}

See Also:

Used in formula (10) in [1].

P
Alias for Component period.

Q
Alias for Component budget.

3.1. API 9

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

RBF(t)
Request Bound Function

See Also:

[1] formula (9) and (11).

X
The maximum execution-time that any subsystem-internal task may lock a shared
global resource.

Warning: Currently always returns 0.

deadline
The function returns Component deadline.

Currently the self.deadline==self.period.

f1(t)
Implementation of helper formula f1.

Parameters t – time

See Also:

[1] formula (5).

f2(t)
Implementation of helper formula f2.

Parameters t – time

See Also:

[1] formula (6).

freq
The function calculates Component frequency.

static sbf(t)
Supply Bound Function.

If payback is True then this method depends on f1() and f2():

return max(min(f1(t), f2(t)), 0)

Parameters t – time

See Also:

[1] formula (3) and (4).

schedulability
Component schedulability condition.

10 Chapter 3. API Reference

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

for t in C_{tasks}:
schedulable <- False
for i in [1..P(t)]:

if rbf_t(i) <= sbf_C(i):
schedulable <- True
break

end if
end for
if not schedulable:

return False
end if

end for
return True

See Also:

[1] formula (13).

utilization
Returns Component utilization as product of its frequency and budget.

3.1.3 System

class eelap.System(scheduler=’FPS’, resolution=1000, components=None)
Models a physical system with instances of Component.

B(t)
Blocking time left at given time.

Warning: Currently always returns 0.

static TP_first(possible_paths)
Set of all non-duplicate, reachable timed paths, for which no timed path exists that
shares the same start instance of the first task and has an earlier end instance of the
last task.

TPfirst = {~tp ∈ TPreach | ¬∃~tp′ ∈ TPreach : tp′1 = tp1 ∧ tp′n < tpn}

function earlier(tp, tp’):
index -1 gets last element in array
return tp’[0] == tp[0] and tp’[-1] < tp[-1]

end function

out <- list()
TP_reach_paths <- TP_reach(possible_paths)
for tp in TP_reach_paths:

if not any(map(partial(earlier, tp), TP_reach_paths))):
out.append(tp)

3.1. API 11

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

end if
end for
return out

See Also:

[2] formula (11).

static TP_reach(possible_paths)
It obtains the set of all paths and returns only all reachable timed path (TPreach).

out <- list()
for all path in possible_paths:

if reach_path(path):
out.append(path)

end if
end for
return out

See Also:

[2] formula (9).

addComponent(component)
Adds new Component instance to the system.

It stores reference of the system to added component.

Parameters component (Component) – New system subsystem.

static att(w, i, r, j)
It returns True if “activation time travel” occurs (att(tw(i)→ tr(j))).

The activation time travel occurs when the reader is activated before the writer
(αr(i) is equivalent to alpha() on t()).

att(tw(i)→ tr(j)) = αr(j) < αw(i)

Parameters

• w – Index of writer task in data path.

• i – Activation index of writer task.

• r – Index of reader task in data path.

• j – Activation index of reader task.

See Also:

[2] formula (3)

static crit(w, i, r, j)
The “critical function” determines if writer and reader overlap in execution even in

12 Chapter 3. API Reference

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

case of non-activation time travel (crit(tw(i)→ tr(j))).

crit(tw(i)→ tr(j)) = αr(j) < αw(i) + δw(i)

Parameters

• w – Index of writer task in data path.

• i – Activation index of writer task.

• r – Index of reader task in data path.

• j – Activation index of reader task.

See Also:

[2] formula (4)

delta_FF(ls)
Find maximum of First-to-First path delays.

See Also:

[2] formula (17).

delta_FF_path(path, tp_reach)
Calculate First-to-First path delay.

∆FF (~tp) = ∆LF (~tp) + α1(tp1)− α1(pred(~(tp)))

Parameters

• path – Array with task activation numbers.

• tp_reach – List of reachable paths.

Fixme remove dependency on tp_reach parameter.

See Also:

[2] formula (16).

delta_FL(ls)
Find maximum of First-to-Last path delays.

See Also:

[2] formula (15).

delta_FL_path(path, tp_reach)
Calculate First-to-Last path delay (uses pred()).

∆FL(~tp) = ∆LL(~tp) + α1(tp1)− α1(pred(~(tp)))

Parameters

3.1. API 13

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

• path – Array with task activation numbers.

• tp_reach – List of reachable paths.

Fixme remove dependency on tp_reach parameter.

See Also:

[2] formula (14).

static delta_LF(ls)
The maximum “Last-to-First” timed path delay.

∆LF (p) = max{∆(~(tp)) |~(tp) ∈ TPfirst}

See Also:

[2] formula (12).

static delta_LL(possible_paths)
Returns maximum latency over all reachable paths (TP_reach()).

∆LL(possiblepaths) = max{∆(path) | path ∈ TPreach}

map .. calls function for each element in list
max .. returns maximal element from list
return max(map(delta_path, TP_reach(possible_paths)))

See Also:

[2] formula (10).

delta_LL_path(path)
Calculate Last-to-Last path delay using delta_path().

delta_path(path)
Calculate end-to-end path delay.

∆(path) = αn(pathn) + δn(pathn)− α1(path1)

See Also:

[2] formula (2).

static forw(w, i, r, j)
It determines the forward reachability of the two task instances tw and tr.

forw(tw(i)→ tr(j)) = ¬att(tw(i)→ tr(j)) ∧ (¬crit(tw(i)→ tr(j)) ∨ wait(tw(i)→ tr(j)))

Parameters

14 Chapter 3. API Reference

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

• w – Index of writer task in data path.

• i – Activation index of writer task.

• r – Index of reader task in data path.

• j – Activation index of reader task.

See Also:

[2] formula (6)

generate_paths(index, start, stop)
Generator of possible paths for given task in path.

It yields tuples with task activation index starting from ‘index‘th task in defined
path.

paths <- list()
task <- tasks_in_path.pop(0) # assign and remove first task from the path
loop i from task.ialpha(start) to task.ialpha(stop):

find a time range for next task
if length(tasks_in_path) > 0:

time <- task.alpha(i)
next_task <- tasks_in_path[0] # next task in path
j <- next_task.ialpha(time) # closest activation index
new_start <- next_tasks.alpha(j) # closest activation time
find possible paths for next task in path from new start.
for all path in generate_paths(new_start, stop, tasks_in_path):

join current activation index with found tuple
paths.append(path.prepend(i))

end for
else:

paths.append(list(i)) # list with only one index
end if

end loop
return paths

pred(path, tp_reach)
Temporal distance to the start of the latest previous “last-to-x” path.

See Also:

[2] formula (13).

static reach(w, i, r, j)
The output of an instance tw(i) is overwritten by instance tw(i + 1) when both
instances can forward reach the same reading task instance tr(j). In other words,
tw(i) can reach tr(j) if and only if the following function returns True:

reach(tw(i)→ tr(j)) = (forw(tw(i)− > tr(j)) ∧ ¬forw(tw(i+ 1)− > tr(j)))

Parameters

• w – Index of writer task in data path.

3.1. API 15

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

• i – Activation index of writer task.

• r – Index of reader task in data path.

• j – Activation index of reader task.

See Also:

[2] formula (7).

static reach_path(path)
Check path reachability.

path_length <- length(path)
for i in [0..path_length-1):

tp_i <- path[i]
tp_i1 <- path[i+1]
if reach(t_w(tpi) -> t_{w+1}(tp_i1)):

return False
end if

end for
return True

See Also:

[2] formula (8).

schedulability
This method checks the global schedulability condition.

for C in components:
P(C) .. period of component C
schedulable <- False
for t in [0..P(C)]:

if RBF(C, t) <= t:
schedulable <- True
break

end if
end for
if not schedulable:

return False
end if

end for
return True

See Also:

[1] formula (8).

t(i)
Get i-th Task instance (ti).

Parameters i – The index of system task starting from 0.

Returns Instance of Task.

16 Chapter 3. API Reference

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

tasks
All system tasks.

tasks_in_path
List of tasks in data path.

utilization
Returns system utilization calculated as sum of component utilizations.

static wait(w, i, r, j)
It determines if the writer finishes first, because the reader has to wait due to its pri-
ority in case of overlapped but not time-traveling execution (wait(tw(i)→ tr(j))).

wait(tw(i)→ tr(j)) = p(tr) < p(tw)

Parameters

• w – Index of writer task in data path.

• i – Activation index of writer task.

• r – Index of reader task in data path.

• j – Activation index of reader task.

See Also:

[2] formula (5)

3.1. API 17

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

18 Chapter 3. API Reference

CHAPTER

FOUR

ADDITIONAL NOTES

Design notes, legal information and changelog are here for the interested.

4.1 Licence

Source code is distributed under following GNU/GPLv2 licence.

End-to-End Latency Analyzer for ProCom (EELAP) is free software;
you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

EELAP is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with Invenio; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

19

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

20 Chapter 4. Additional Notes

BIBLIOGRAPHY

[1] R. Inam, J. Mäki-Turja, M. Sjödin, and M. Behnam. Hard Real-time Support for Hierar-
chical Scheduling in FreeRTOS. In 7th Annual Workshop on Operating Systems Platforms
for Embedded Real-Time Applications (OSPERT’ 11), 51–60. Porto, Portugal, July 2011.

[2] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. A Compositional Framework for
End-to-End Path Delay Calculation of Automotive Systems under Different Path Seman-
tics. In Workshop on Compositional Theory and Technology for Real-Time Embedded Sys-
tems (CRTS‘08). 2008.

[3] R. Inam, J. Mäki-Turja, M. Sjödin, and J. Kuncar. Real-Time Component Integration using
Runnable Virtual Nodes. In 38th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA’ 12). Izmir, Turkey, September 2012. IEEE Computer Society.

[4] R. Inam, J. Mäki-Turja, M. Sjödin, S. M. H. Ashjaei,, and S. Afshar. Support for Hierarchi-
cal Scheduling in FreeRTOS. In IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA’ 11). Tolouse, France, September 2011. IEEE Computer
Society.

[5] R. Inam and M. Sjödin. Implementing and Evaluating Communication- Strategies in the
ProCom Component Technology. In 24th Euromicro Conference on Real-Time Systems
(ECRTS 2012), WiP. ACM SIGBED Review, July 2012.

[6] J. Kunčar. End-to-End Latency Analyzer for ProCom (EELAP),
https://github.com/jirikuncar/eelap/. 2013.

21

https://github.com/jirikuncar/eelap/

End-to-End Latency Analyzer for ProCom - EELAP, Release 0.3.0

22 Bibliography

INDEX

addComponent() (eelap.System method), 12
alpha() (eelap.Task static method), 7
att() (eelap.System static method), 12

B() (eelap.System method), 11
Bl (eelap.Component attribute), 9
blocking_time (eelap.Task attribute), 7

C (eelap.Task attribute), 7
Component (class in eelap), 9
crit() (eelap.System static method), 12

deadline (eelap.Component attribute), 10
deadline (eelap.Task attribute), 8
delta() (eelap.Task static method), 8
delta_FF() (eelap.System method), 13
delta_FF_path() (eelap.System method), 13
delta_FL() (eelap.System method), 13
delta_FL_path() (eelap.System method), 13
delta_LF() (eelap.System static method), 14
delta_LL() (eelap.System static method), 14
delta_LL_path() (eelap.System method), 14
delta_path() (eelap.System method), 14

f1() (eelap.Component method), 10
f2() (eelap.Component method), 10
forw() (eelap.System static method), 14
freq (eelap.Component attribute), 10
freq (eelap.Task attribute), 8

generate_paths() (eelap.System method), 15

HB (eelap.Task attribute), 7
HPS (eelap.Component attribute), 9

ialpha() (eelap.Task static method), 8

LPS (eelap.Component attribute), 9

P (eelap.Component attribute), 9
P (eelap.Task attribute), 7

p (eelap.Task attribute), 8
plan() (eelap.Task method), 8
pred() (eelap.System method), 15

Q (eelap.Component attribute), 9

RBF() (eelap.Component method), 10
rbf() (eelap.Task static method), 8
reach() (eelap.System static method), 15
reach_path() (eelap.System static method), 16
response_time (eelap.Task attribute), 8

sbf() (eelap.Component static method), 10
schedulability (eelap.Component attribute), 10
schedulability (eelap.System attribute), 16
status() (eelap.Task method), 9
System (class in eelap), 11

t() (eelap.System method), 16
Task (class in eelap), 7
tasks (eelap.System attribute), 16
tasks_in_path (eelap.System attribute), 17
TP_first() (eelap.System static method), 11
TP_reach() (eelap.System static method), 12

utilization (eelap.Component attribute), 11
utilization (eelap.System attribute), 17
utilization (eelap.Task attribute), 9

wait() (eelap.System static method), 17

X (eelap.Component attribute), 10

23

	Introduction
	End-to-End Delay Analysis
	Communication Strategies among ProCom Components
	Contributions

	User's Guide
	Installation
	Quick start

	API Reference
	API

	Additional Notes
	Licence

	Bibliography
	Index

