
Generating Feature Usage Scenarios in
Client-side Web Applications

Josip Maras1, Maja Štula1, and Jan Carlson2

1 University of Split, Croatia,
josip.maras@fesb.hr, maja.stula@fesb.hr

2 Mälardalen University, Sweden,
jan.carlson@mdh.se

Abstract. Client-side web applications are highly-dynamic event-driven
GUI applications where the majority of code is executed as a response
to user-generated events. Many software engineering activities (e.g. test-
ing) require sequences of actions (i.e. usage scenarios) that execute the
application code with high coverage. Specifying these usage scenarios
is a difficult and time-consuming activity. This is especially true when
generating usage scenarios for a particular feature because it requires
in-depth knowledge of application behavior and understanding of the
underlying implementation. In this paper we present a method for au-
tomatic generation of feature usage scenarios. The method is based on
dynamic analysis and systematic exploration of the application’s event
and value space. We have evaluated the approach in a case study, and
the evaluation shows that the method is capable of identifying usage sce-
narios for a particular feature. We have also performed the evaluation on
a suite of web applications, and the results show that an increase in cov-
erage can be achieved, when compared to the initial coverage obtained
by loading the page and executing registered events.

Keywords: Web Applications, Symbolic Execution, GUI Testing

1 Introduction

The client-side of a web application is a highly dynamic, event-driven envi-
ronment where features manifest at runtime, triggered by sequences of user
events – usage scenarios. Specifying these usage scenarios is a difficult and time-
consuming activity and in the client-side web application domain, it is made even
more complicated due to the fact that the application is a result of interplay of
three conceptually different languages (HTML, CSS, and JavaScript), where the
most complex one – JavaScript is a highly dynamic scripting language. This
makes it difficult to understand feature behaviors and to specify usage scenarios
that capture the complete behavior of particular features.

Usage scenarios are most often used in web application testing. Current state
of practice is that developers create tests either manually, or with tools such as
Selenium1, which enable recording and replaying usage scenarios designed to

1 http://docs.seleniumhq.org/



2

test certain features. This is a time-consuming activity and automating it would
offer considerable benefits. Usage scenarios can also be used for reuse – in our
recent work [7] we have developed methods for identifying and extracting code
and resources of client-side features based on the dynamic analysis of execution
traces recorded while executing user-specified usage scenarios. This means that
the quality of the extracted feature is highly dependent on the quality of usage
scenarios. For this reason, automatic generation of high-coverage usage-scenarios
for particular features would be beneficial.

In this work we define a method for generating usage scenarios for a par-
ticular feature in a client-side web application. The user selects parts of the
page where the target feature manifests, and the process generates usage sce-
narios that achieve high coverage with respect to the selected parts of the page.
The method is based on dynamic analysis and systematic exploration of the ap-
plication’s event and value space. Initial scenarios are created based on events
registered during the initialization of the page, and new scenarios are added by
executing and dynamically analyzing the execution of already generated scenar-
ios. During scenario execution, all input parameters are symbolically tracked,
and all event registrations, as well as all data dependencies between code ex-
pressions are logged. New scenarios are generated by modifying event input
parameters, and by extending existing scenarios with registered events. Finally,
the executed usage scenarios are filtered to reduce their number, with the criteria
of still achieving high coverage.

We have evaluated the method on a case-study application, and the eval-
uation shows that the method is able to generate usage scenarios that target
particular application features. We have also run the evaluation on a suite of
web applications, and the evaluation shows that an increase in coverage, when
compared to the straight-forward approach of loading the page and executing all
registered events, is achieved by using systematic exploration of the application’s
event and value space.

This paper is organized as follows: Section 2 describes related work, while
Section 3 presents a conceptual model of client-side web applications that helps
us reason about the relationships between features and usage scenarios. Section 4
gives an overview of the feature usage scenario generation process, while Sections
5 and 6 go into more detail about generating and filtering usage scenarios. Section
7 describes the evaluation, while Section 8 presents the conclusion and possible
future work.

2 Related Work

Our approach is based on client-side web application testing, where the goal is
to create sequences of events that achieve high code coverage.

In [9], Mesbah et. al. describe their approach for automatic testing. The
method is based on a crawler [8] that infers a state-flow graph for all client-side
user interface states. New states and transitions are created by executing exist-
ing event handlers, analyzing the structure of the application and determining if



3

it is changed enough to warrant a new state. The crawling phase is directed ei-
ther with randomly generated input values or with user-specified values. Various
errors are detected (DOM validity, error messages, etc.) by analyzing possible
client-side user interface states.

Saxena et al. [10] present a method and a tool – Kudzu. The approach ex-
plores the application’s event space with GUI exploration (searches the space of
all event sequences with a random exploration strategy), and the application’s
value space by using dynamic symbolic execution. In the process, they have de-
veloped a string constraint solver capable of taking into account the specifics of
string constraints present in JavaScript programs.

Artemis [2] is an approach for feedback directed testing of JavaScript appli-
cations from which we have derived most insights when developing our approach.
The approach is based on dynamic analysis of web application execution – the
application execution is monitored and all event registrations logged. New test
cases are created by extending already existing tests with event registrations and
by generating variants of the event input parameters. For generating new event
input parameters they use randomly chosen values, and constants collected dur-
ing the dynamic execution. They also introduce prioritization functions which
influence the order in which generated test cases are analyzed.

None of the introduced client-side web application testing approaches enable
developers to target specific client-side features, nor do they enable the filtering of
generated scenarios in order to minimize the number of necessary usage scenarios.
Also, in order to improve coverage, we use the systematic exploration of the
application’s event-space (similar to [2]) and combine it with symbolic execution
(similar to [10]). On top of this, we track application dependencies by the means
of a dependency graph [7], which enables us to accurately capture dependencies
between different events, and to create event chains.

In the domain of testing server-side web applications, there exists the SWAT
tool [1], which uses search-based testing. In their approach, random inputs to the
web application are generated with additionally incorporated constant seeding
(gathered by statically analyzing the source code), and by dynamically mining
values from the execution. Although some parts of the approach could be adopted
to fit the domain of client-side applications, their method is specially developed
to deal with constraints inherent in server-side applications.

3 A Conceptual Model of the Client-side Application

In this section we present a conceptual model of client-side web applications
(Figure 1) that will be used to reason about generating usage scenarios for a
particular feature. A feature is an abstract notion representing a distinguishable
part of the system behavior that is manifested at runtime, when a user preforms
a certain sequence of actions, i.e. a usage scenario [3].

A client-side application can be viewed as a collection of visually and behav-
iorally distinct UI elements (or UI controls). A UI control is primarily defined
in terms of its structure, but it also includes the behavior on that structure. For



4

example, in the case study shown in Figure 3, Section 7, each marked section of
the page can be considered as a UI control.

Fig. 1. Client-side web application conceptual model

A client-side application offers a number of features. Since client-side web ap-
plications are UI applications to server-side applications, a feature is manifested
through a number of structural changes on the client-side and/or communica-
tions with the server-side. Because a UI control encapsulates structure and the
behavior on that structure, and since features can cross-cut between different
parts of the application, we define that a single feature is implemented by at
least one UI control (Figure 1). A UI control implements a feature by reacting
to user-generated events by modifying its structure, and/or communicating with
the server from that structure. We utilize this relationship between features and
UI controls – since features are abstract, and UI controls concrete, when gener-
ating usage scenarios for a particular feature, we are generating usage scenarios
for the implementing UI controls.

3.1 Terminology

An event e is defined as a tuple e = 〈h, t〉, where h is an object on which the event
occurs (e.g. an HTML node, or the global window or document objects), and
where t is an event type. At run-time, when an event is raised it is parametrized
with properties of three different types [2]: i) event properties – a map from
strings (property names) to numbers, booleans, strings and DOM nodes, ii)
form properties, which provide string values for HTML form fields, and iii) the
execution environment properties, which represent values for the browser’s state
that can be influenced by the user (e.g. window size). A parametrized event ep

consists of an event e and parameters p associated with that event.



5

The goal of the process is to compute a set U of usage scenarios: U =
{u0, u1, ..., un} that achieves high coverage of a given feature. A usage scenario
ui is defined as a sequence of parametrized events ui = 〈ep0, ep1, ..., epm〉. A
scenario ui exercises the behavior of a given feature if every parametrized event
epi ∈ 〈ep0, ep1, ..., epm〉 is related to at least one UI control that implements the
feature. A parametrized event is related to a UI control if: i) it is called on an
html node that is a part of the UI control; ii) it modifies the structure of the UI
control; iii) in the case of ajax events, if there is a data dependency from the
request to the structure of the UI control, iv) it influences the execution of an
event related to a UI control.

4 Overview of the Usage Scenario Generation Process

Client-side applications are highly dynamic and event-driven, and the appropri-
ate way of reasoning about their control-flow is through dynamic analysis. As
input the process receives the source code of the application, and a set of UI
control selectors (e.g. css selectors, xPath expressions) that specify the UI con-
trols that implement the feature of interest. The process consists of two phases:
i) generating usage scenarios, and ii) filtering usage scenarios (Figure 2).

Fig. 2. The process of generating feature usage scenarios

The phase of usage scenario generation starts by initializing the web page –
a stage of the execution not dependent on user input. During page initialization,
a number of events can be registered, and these events are the basis for the
creation of initial usage scenarios. For each event registered in the initialization
phase, a new usage scenario, with default event parameter values is created.
Our approach then proceeds by selecting a usage scenarios, executing it, and
dynamically analyzing the execution. New usage scenarios are created in two



6

different ways: i) by modifying the usage scenario event input parameters – we
track how the event input parameters influence the control-flow, and new usage
scenarios are generated by modifying those inputs; ii) by extending event chains,
either with new instances of previously executed events whose execution depends
on the variables and objects modified during the execution of the scenario, or
with newly registered events with default parameter values. New usage scenarios
are created and analyzed until a certain coverage is achieved, a given time-budget
expended, or a target number of scenarios have been generated.

In the second phase – usage scenario filtering – execution traces of all exe-
cuted usage scenarios are analyzed, and the computed set of usage scenarios is
filtered by removing scenarios that do not contribute to the feature behavior,
and scenarios whose removal does not lower the overall coverage.

5 Generating Usage Scenarios

In this section we give a detailed description of how new usage scenarios are
created, and for this we will use the example shown in Listing 1.1.

The example application has two features: Feature 1, implemented with the
UI control defined by the first square (node with id fc, line 7), which consists
of two behaviors: i) when the user clicks on the square with the left mouse
button, the application subscribes to the mouse move events which change the
color of the first square background depending on the position of the mouse,
ii) counts the number of middle mouse button clicks on the first square, and
outputs whether this number is even or odd; and Feature 2, implemented with
the UI control defined by the second square (node with id sc, line 7), with a
behavior: i) when the user clicks on the second square it outputs the current
mouse position. This is an example of an event-driven application where code
coverage depends both on the events raised by the user, and the properties of the
raised events (e.g. which mouse button was clicked). Throughout this section we
will show how the process generates usage scenarios that target the first feature.

5.1 Generating initial usage scenarios

The start of the whole process is the execution of the page loading phase with
the goal of obtaining registered events which will be used as a basis for defining
initial usage scenarios (Algorithm 1).

For each event registered at the end of the loading phase, the process assigns
default parameters to the event (e.g. for mouse clicks this means setting the
pressed button to the left mouse button, the position of the mouse to the middle
of the clicked on element; setting empty strings for HTML input elements, etc.),
and creates a usage scenario (u) with that parametrized event.

Example. In the example from Listing 1.1 this means the creation of two usage
scenarios with one event, based on the onmousedown event registration from line
13, Listing 1.1 – u0 = 〈〈#fc, onmousedown〉 , {which : 1}〉 (left mouse button is
the default button in mouse events, represented by the value 1 of the which



7

1 <html ><head >

2 <style >

3 .c{ width: 100px; height: 100px;}

4 #fc{background:rgb(255 ,0,0);} #sc{background:rgb(0,0 ,255);}

5 </style ></head >

6 <body >

7 <div id="fc" class="c" ></div ><div id="sc" class="c" ></div >

8 <script >

9 var fc = document.getElementById("fc");

10 var sc = document.getElementById("sc");

11 var fs = document.getElementById("fs");

12 var clicks = 0;

13 fc.onmousedown = function(e) {

14 if(e.which == 1)

15 fc.onmousemove = function(e) {

16 var val = e.pageX % 256;

17 this.style.background="rgb("+val+","+val+","+val+")";

18 }

19 else if(e.which == 2)

20 if(++ clicks % 2 == 0)

21 this.textContent = "Even";

22 else

23 this.textContent = "Odd";

24 }

25 sc.onclick = function(e) {

26 this.textContent = e.pageX + ";" + e.pageY;

27 }

28 </script ></body ></html >

Listing 1.1. Example application

Algorithm 1 generateInitialScenarios(webAppCode)

1: executionInfo ← loadPage(webAppCode)
2: U ← empty
3: for all e : getEventRegs(executionInfo) do
4: ep ← parametrizeWithDefaults(e)
5: u ← createEmptyScenario()
6: u ← appendEventToScenario(u, ep)
7: U ← appendScenario(U , u)
8: end for

property), and based on the onclick mouse registration from line 25, Listing 1.1
– u1 = 〈〈#sc, onclick〉 , {pageX : 50, pageY : 150}〉 (the click is initially executed
in the middle of the element).



8

5.2 Generating Scenarios by exploring the value space

In order to generate scenarios by exploring the value space, we modify event
parameters by using concolic testing [4,11]. The main idea is to execute the usage
scenario both with concrete (e.g. default values for the initially created usage
scenarios) and symbolic values for event input parameters. During the execution
all encountered control-flow branches (e.g. if statements, conditional expressions,
etc.) whose branching conditions are expressions that contain symbolic variables
are added to the so called path-constraint, which carries information about how
the control-flow of the execution depends on the input parameters. In order to
build a scenario that exercises another path through the application we have to
modify the input parameters based on the path constraint. This is usually done
by systematically negating the constraints that compose the path-constraint,
and in our approach we use generational search [5]. Constraints obtained in this
way are solved with a constraint solver, which gives new event input parameter
values that exercise different execution paths. Currently we are using Choco [6]
– an of the shelf constraint solver.

Algorithm 2 createByModifyingPathConstraint(u, U , executionInfo)

1: for all invertedFormula : getInvertedFormulas(getPathConstraint(executionInfo))
do

2: result ← solveFormula(invertedFormula)
3: if result 6= null then
4: 〈e0, e1, ..., en〉 ← getAffectedEvents(u, result)
5: 〈ep0, ep1, ..., epn〉 ← parametrizeEvents(〈e0, e1, ..., en〉, result)
6: U ← appendScenario(U , createScenario(〈ep0, ep1, ..., epn〉))
7: end if
8: end for

Determining default parameter domains – In addition to the constraints gath-
ered during concolic execution, some of the event parameters always fall into a
certain domain (e.g. the which property of the mouse event handler can have
only three values: 1, 2, or 3; or the mouse position parameters, such as pageX and
pageY, are constrained by the position of the element the event occurs upon).
For this reason, when constructing the constraint that will be sent to the solver,
a constraint that captures this domain of each parameter is also added.

Example. After the execution of the first usage scenario, we study its path
constraint obtained from executing the if statement from Line 14, Listing 1.1:
which = 1. In order to cover another execution path through the application we
invert that constraint and obtain (which 6= 1) and add the constraints inherent
to the which property: which = 1 ∨ which = 2 ∨ which = 3. For these con-
straints the constraint solver obtains the result which = 3, and the new scenario
u2 = 〈〈#fc, onmousedown〉 , {which : 3}〉 is generated. When we execute the us-
age scenario u2 the resulting path constraint is which 6= 1 ∧ which 6= 2, because



9

both the condition of the if statement in Line 14, and the condition of the if state-
ment in line 19 were evaluated to false. By inverting these constraints we obtain
two constraints: which 6= 1∧which = 2; and which = 1, and using the constraint
solver we get two solutions: which = 2 and which = 1. The solution which = 1 is
discarded since the scenario with the exact parameters already exists, and out
of which = 2 we obtain a new scenario u3 = 〈〈#fc, onmousedown〉 , {which : 2}〉.

5.3 Generating Scenarios by exploring the event-space

When generating scenarios by exploring the event-space the goal is to extend
event chains, either with events newly registered during the execution of a sce-
nario, or with already executed events that are still registered at the end of
scenario execution. Algorithm 3 gives more detail about the whole process.

Algorithm 3 createByExtendingEvents(u, U , executionInfo)

1: for all e : getEventRegs(executionInfo) do
2: if wasInstanceExecuted(e, U) then
3: for all ep : getPreviousParametrizations(e, U) do
4: if connectionExists(executionInfo, ep) then
5: un ← createCopy(u)
6: un ← appendEventToScenario(un, ep)
7: U ← appendScenario(U , un)
8: end if
9: end for

10: else
11: un ← createCopy(u)
12: un ← appendEventToScenario(un, parametrizeWithDefaults(e))
13: U ← appendScenario(U , un)
14: end if
15: end for

After the execution of a scenario the process traverses all events that are still
registered at the end of the execution. If the event has already been executed
(at least one parametrization of that event already exists in previously executed
scenarios) then all execution logs of those events parametrizations are traversed.
During the execution of each scenario we build a dependency graph [7] which
captures the dependencies between code constructs that exist in a scenario. The
insight that we use here is: there is a potential connection between an event
and a scenario if the scenario modifies variables and/or objects on which the
control-flow of the event, either directly, or indirectly, depends on (influences
the branching conditions). If a connection exists between the execution info of
the parametrized event and the execution info of the current scenario, then a
new scenario is created by appending the parametrized event to the parametrized
events from the current scenario. If the event has not yet been executed, then the
process is similar to the process of generating initial usage scenarios – the newly



10

registered event is parametrized with default parameters, and a new scenario
is created by appending the parametrized event to the events from the current
scenario.

Example. When analyzing the execution of the u0 scenario, a new event,
which has not been executed so far, is registered in Line 15, Listing 1.1 –
〈#fc, onmousemove〉. This leads to the creation of a new usage scenario: u4 = 〈〈
#fc, onmousedown, {which: 1}〉; 〈#fc, onmousemove, {pageX : 50, pageY : 50}〉〉.
If we also study the process after the execution of u2 = 〈〈 #fc, onmousedown,
{which: 2}〉〉 scenario, we can see that the event 〈#fc, onmousedown〉, {which:
2} writes to the variable clicks, created outside of the event context, at line 20,
Listing 1.1. That same variable influences the control flow of the event (there
exists a data dependency from the variable clicks to the if statement condition)
– u2 is dependent on itself – a new scenario u5 is created: u5 = 〈〈 #container,
onmousedown, {which: 2}〉; 〈#container, onmousedown, {which: 2}〉.

5.4 Prioritizing Scenarios

The algorithms described in the previous sections create new usage scenarios by
systematically exploring the event and value space of the application. This means
that the number of generated scenarios considerably grows with application com-
plexity. For this reason we determine the next scenario that will be executed and
analyzed based on the following procedure: if there is a non-analyzed scenario
created by exploring the value space, or a scenario whose last event has not
so far been executed, the process selects it. If there are no such scenarios, i.e.
only the scenarios created by extending the event chain with already executed
events are available, then select the next scenario randomly with the following
prioritization function:

P = 1−

m∑
i=0

cov(ei)

m + 1

The formula is based on the intuition that executing scenarios with events
that have already achieved high code coverage is likely to be less useful than
executing scenarios with events with low coverage [2]. After the execution of
every scenario, for every function visited during the evaluation of each event e,
we recalculate the branch coverage achieved so far. We then use the prioritiza-
tion function to guide the random selection of the next usage scenario that will
be executed and analyzed. In the prioritization function: cov represents event
branch coverage achieved so far.

6 Filtering Scenarios

In order to achieve high coverage, the process generates a number of scenarios.
However, we are typically interested in obtaining a minimal number of scenarios
that still achieve the same coverage. The main idea of this part of the process
is to remove events that are not related to the UI controls that implement the



11

feature (see Section 3.1), and to reduce the number of scenarios based on scenario
coverage.

Algorithm 4 filterUsageScenarios(U , selectors)

1: for all ui ∈ U do
2: if notRelatedToFeature(ui, selectors) then
3: U ← removeScenario(U, ui)
4: end if
5: end for
6: jointCoverage ← getJointCoverage(U)
7: for all u ∈ sortDescendingByNoOfEvents(U) do
8: if canScenarioBeRemoved(u, jointCoverage) then
9: jointCoverage ← removeScenarioCoverage(jointCoverage, u))

10: U ← removeScenario(U, u)
11: end if
12: end for

For every executed scenario, the process checks whether the scenario is related
to the specified UI controls (Section 3.1) – if it is not, the scenario is filtered away.
The process then calculates joint scenario coverage, which is a map that shows,
for each code expression, how many scenarios have executed that expression.
Then, all scenarios are traversed in descending order, starting from the scenario
with the longest event chain. For each scenario, the algorithm checks whether the
joint coverage would remain the same if the expressions executed by the scenario
would be removed. If so, the scenario is removed from the set of scenarios, and
its coverage from jointCoverage.

Example. In the example application, the scenario generation phase has gen-
erated the following six scenarios:

– u0 = 〈〈#fc, onmousedown〉 , {which : 1}〉; cov0 = {9− 15, 25}
– u1 = 〈〈#sc, onclick〉 , {pageX : 50, pageY : 150}〉; cov1 = {9− 13, 25, 26}
– u2 = 〈〈#fc, onmousedown〉 , {which : 3}〉; cov2 = {9− 14, 19, 25}
– u3 = 〈〈 #fc, onmousedown, {which: 2}〉〉; cov3 = {9− 14, 19, 20, 21, 25}
– u4 = 〈〈 #fc, onmousedown, {which: 1}〉; 〈#fc, onmousemove, {pageX : 50,

pageY : 50}〉〉; cov4 = {9− 17, 25}
– u5 = 〈〈 #fc, onmousedown, {which: 2}〉; 〈#fc, onmousedown, {which: 2}〉;

cov5 = {9− 14, 19, 20, 21, 23, 25}

First all scenarios are traversed in order to remove the ones that do not
contribute to the feature. In this case, this means the removal of scenario u1

because it neither occurs on, nor does it modify the selected UI control (#fc).
Next, a joint coverage for the remaining scenarios is calculated. Here, we will
discuss in terms of code lines, but the algorithm in general works on AST nodes.
Joint coverage, from the perspective of executed lines, for the remaining scenarios
u0, u2, u3, u4, u5 is: 9-14→5, 15→2, 16-17→1, 19→3, 20→2, 21→2, 23→1, 25→5.



12

First we process the scenario u5, which can not be removed from the set because
it is the only scenario that executes line 23. Similarly, u4 can not be removed
because no other scenario executes lines 16 and 17. Scenario u3 can be removed,
because all of its lines are executed by at least one other scenario. After the
removal of u3 the joint coverage is: 9-14→4, 15→2, 16-17→1, 19→2, 20→1,
21→1, 23→1, 25→4. Similarly, u2 and u0 can also be removed.

7 Evaluation

We have performed two types of evaluation: i) on a case study application, where
we study how the process is able to generate feature usage scenarios, and ii) on
a suite of web applications, where we study the coverage the process was able to
achieve when generating test cases. All results were obtained with the Firecrow
tool1 which implements the algorithms described in this paper.

7.1 Generating Feature Usage Scenarios – a case study

Consider the example application shown in Figure 3 which represents a tourist
information application that enables the user to: i) toggle between different
types of accommodation (by using the select menu marked with 1, or by pressing
keyboard keys: e.g. A – Apartments, or H – hotels), ii) to select map locations
(marked with 2) with mouse clicks which will change the information and photos
displayed in the photos section (marked with 3); iii) to toggle between different
photos (marked with 3) by clicking on buttons, or by pressing keyboard buttons
(e.g. 1 for the first photo, 2 for the second photo); iv) to toggle between different
county map zoom levels (marked with 4) by clicking on the county map; v) to
automatically cycle between different event information (marked with 5).

The example application has three distinct high-level features: i) selecting
the map location and viewing its information (sections marked with 1, 2, and
3); ii) toggling between different county map zoom levels (marked with 4); and
iii) viewing event information (marked with 5). Even in the case of these rela-
tively simple features, specifying usage scenarios with high coverage is a time-
consuming activity that requires in-depth knowledge of application behavior and
the understanding of the underlying implementation. For example, a developer
who wants to specify a usage scenario that exercises the complete behavior of
the first feature has to be aware of different ways the location can be selected
(by mouse clicking on the location point in the map, by changing the type of
displayed locations through the select box, or by pressing keyboard keys), and
of different ways the photos (marked with 3) can be toggled (either with mouse
clicks on different buttons, or with keyboard presses).

We have initialized the process for each of the features with the results shown
in Table 1. For each feature, the process was able to achieve full coverage (in gen-
eral this does not have to be the case), and it was successful in generating usage

1 https://github.com/jomaras/Firecrow



13

Fig. 3. Case study application

Table 1. A case study of generating feature usage scenarios

Feature All Scenarios Kept Scenarios Gen. events User events

Feature 1 25 12 12 12

Feature 2 25 1 2 2

Feature 3 25 1 1 1

scenarios that target specific UI controls. The table shows how many scenarios
the process generated in order to achieve full coverage (column All Scenarios),
how many scenarios were kept after the filtering process (Kept Scenarios), and
how many events in total the filtered scenarios have (Gen. events). The table
also shows the minimum number of events, we were able to find, to achieve full
coverage. In this application, the process was able to generate feature scenarios
which in total have the minimal number of events we were able to determine
by studying the application code. In general, since scenarios can be picked ran-
domly from the set of generated scenarios, the generated sequences of events in
all analyzed scenarios are not necessarily minimal.

7.2 Generating usage scenarios for the whole page

For this experiment we have evaluated the approach by generating 100 tests for
a suite of web applications, most of them obtained from 10k and 1k JavaScript
challenges1. The code of all applications, and the generated scenarios can be ob-

1 http://10k.aneventapart.com/ and http://js1k.com/



14

tained from: www.fesb.hr/∼jomaras/download/usageScenarioGenerator.zip. Ta-
ble 2 shows the results. For each application it shows the lines of code (LOC),
statement coverage that can be achieved just by loading the page (L-Cov), cov-
erage that can be achieved by executing the initially registered events with de-
fault parameters (I-Cov), coverage the process was able to achieve (A-Cov), and
statement coverage that we were able to achieve by constructing event chains
manually (M-Cov). The table also shows how many scenarios were kept after the
filtering phase (Kept), and how many events have the final generated scenarios
together. On average, the process is able to achieve additional 17,6% coverage
when compared to the coverage achieved by loading the page and executing all
registered events.

Table 2. Experiment results for generating 100 usage scenarios that target whole pages:
LOC - Lines of Code, L-Cov – statement coverage on page load, I-Cov – statement
coverage on executing initially registered events, A-Cov – Achieved Coverage, M-Cov
– Maximum coverage we were manually able to achieve, Kept – Number of remaining
scenarios after filtering, Gen. Events - total number of generated events

App LOC L-Cov I-Cov A-Cov M-Cov Kept Gen. Events

Snake 223 57,5% 63,7% 90% 98,36% 3 14

Prism 401 56,5% 70,5% 82,5% 94% 7 17

Jump 313 63,2% 65,8% 70,32% 98,23% 2 11

Agency 303 35,1% 57,4% 100% 100% 12 12

Slider 128 45,6% 71,7% 77,17% 86,41% 3 9

Minesweeper 175 59,1% 85,2% 93,91% 95,97% 6 7

3DMaker 385 18,9% 31% 42,59% 94,2% 2 8

floatwar 457 17,1% 45% 64,47% 93,7% 2 9

snowpar 352 19% 61,8% 81,5% 88,42% 19 22

3DModel 2567 17,8% 55,6% 81,8% 81,8% 24 24

8 Conclusion

Usage scenarios that execute application features with high coverage are used in
many software engineering activities, such as testing, or reuse. Manually spec-
ifying these usage scenarios is a time-consuming activity, and automating it
would bring considerable benefits. In this paper we have presented an automatic
method for generating feature usage scenarios. The method works by systemat-
ically exploring the event and value space of the application. In order to create
high-coverage scenarios we utilize techniques such as symbolic execution, and
dependency tracking. In order to reduce the number of generated scenarios, we
analyze the relationships between the scenarios and features, and remove all non-
related scenarios. We also subsume scenarios based on their coverage. We have
evaluated the method on a case study application, and the evaluation shows
that the method is able to generate scenarios that target certain application



15

features. We have also performed the evaluation on a suite of web applications,
and the results show that an increase of code coverage, when compared to the
initial coverage achieved simply by loading the page and executing all registered
events, can be achieved.

For future work we plan to expand the usage scenario process to generate tests
which take into account the server-side code, and we plan to perform the eval-
uation on a larger set of web applications. Since one motivation for developing
this approach was to support the identification of feature code by automatically
generating high-coverage usage scenarios, we plan to utilize this method in the
development of an automatic feature identification process (by extending [7]).

References

1. N. Alshahwan and M. Harman. Automated web application testing using search
based software engineering. In Automated Software Engineering, ASE’11. 26th
International Conference on, pages 3–12. IEEE Computer Society, 2011.

2. S. Artzi, J. Dolby, S.H. Jensen, A. Møller, and F. Tip. A framework for automated
testing of javascript web applications. In Software Engineering, ICSE 2011, 33rd
International Conference on, pages 571–580. ACM, 2011.

3. T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source code. Soft-
ware Engineering, IEEE Transactions on, 29(3):210–224, 2003.

4. P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random testing.
In ACM Sigplan Notices, volume 40, pages 213–223. ACM, 2005.

5. P. Godefroid, M. Y. Levin, D. Molnar, et al. Automated whitebox fuzz testing.
NDSS, 2008.

6. N. Jussien, G. Rochart, and X. Lorca. The choco constraint programming solver. In
Open-Source Software for Integer and Contraint Programming, CPAIOR08 work-
shop on, 2008.

7. J. Maras, J. Carlson, and I. Crnkovic. Extracting client-side web application code.
In World Wide Web, WWW’12, 21st international conference on, pages 819–828.
ACM, 2012.

8. A. Mesbah, E. Bozdag, and A. van Deursen. Crawling ajax by inferring user
interface state changes. In Web Engineering, 2008. ICWE’08. Eighth International
Conference on, pages 122–134. IEEE, 2008.

9. A. Mesbah, A. van Deursen, and D. Roest. Invariant-based automatic testing of
modern web applications. Software Engineering, IEEE Transactions on, 38(1):35–
53, 2012.

10. P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A symbolic
execution framework for javascript. In Security and Privacy (SP), 2010 IEEE
Symposium on, pages 513–528. IEEE, 2010.

11. K. Sen, D .Marinov, and G. Agha. CUTE: a concolic unit testing engine for C,
volume 30. ACM, 2005.


