
Mode-Change Mechanisms support for
Hierarchical FreeRTOS Implementation

Rafia Inam∗, Mikael Sjödin∗, Reinder J. Bril†
∗ Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

† Technische Universiteit Eindhoven (TU/e), Eindhoven, The Netherlands
rafia.inam@mdh.se, mikael.sjodin@mdh.se, r.j.bril@tue.nl

Abstract—Multi-mode embedded real-time systems exhibit a
specific behaviour for each mode, and upon a mode-change
request the task-set and timing interfaces of the system need to
be changed. This paper presents the implementation of a Multi-
Mode Adaptive Hierarchical Scheduling Framework (MMAHSF)
and provides a generic skeleton (framework) for a two-level
adaptive hierarchical scheduling supporting multiple modes and
multiple mode-change mechanisms on an open source real-time
operating system (FreeRTOS). The MMAHSF enable application-
specific implementations of mode-change protocols using a set of
predefined mode-change mechanisms.

The paper addresses different mode-change mechanisms at
both global and local scheduling levels. It presents examples of
mode-change protocols that are developed by composing together
these mechanisms in multiple ways and provide the initial results
of executing these protocols in the MMAHSF implementation on
an AVR 32-bit board EVK1100.

Keywords-real-time systems; hierarchical scheduling; multi-
mode systems; mode change protocols

I. INTRODUCTION

Real-time embedded systems often have to support very
different and changing application scenarios. A multi-mode
system (MMS) is said to operate in multiple system modes,
where each mode corresponds to a specific application sce-
nario. A mode is typically represented as a unique set of
tasks with its specific functional and non-functional properties.
The system changes from one mode to another upon some
condition at runtime, and at a specific time it can be in one
of the predefined modes. The transition from one mode to
another is done using a mode-change protocol. The mode-
change protocol will, in turn, use a set of mode-change
mechanisms to effectuate the mode-change. In this paper
we present a set of mode-change mechanisms that can be
composed to application-specific mode-change protocols. We
also demonstrate for some examples how such protocols are
constructed using the mechanisms.

Our work is performed in the context of the hierarchical
scheduling framework (HSF) [1], which is a known technique
used to partition a system into a set of subsystems, each con-
sisting of its own set of tasks and to provide temporal isolation
by executing multiple applications in the subsystems. In the
HSF, the servers’ reservation parameters may need to change
from mode to mode at runtime. Numerous studies are found on
adaptive reservation techniques for server-based multi-mode
systems from a scientific perspective [2], [3], [4], [5], however

to the best of our knowledge, no work is done from an
implementation perspective. We focus on implementing the
resource reservations for a two-level hierarchical scheduling
to adapt modes at runtime and call it a multi-mode adaptive
hierarchical scheduling framework (MMAHSF).

An application may not only need to execute in multiple
modes but also require multiple mode change protocols to
respond to changes in the environment. For example, consider
an application that can be in normal execution, emergency, and
shutdown modes. The mode change during normal execution
can suspend old mode’s tasks execution and resume tasks
of the new mode. Sometimes it is required to complete
the execution of some important tasks before changing the
mode during the normal situation. The mode change from
normal to shutdown can allow all the tasks to be completed
before the mode is changed, while changing a mode from
normal to emergency situation may require aborting all the
tasks instantly. Similarly consider the example of downloading
a file, where downloading suspends for some time due to
the decrease in bandwidth. Later the user likes to resume
downloading process from where it stopped earlier rather than
restarting it. In some other situation, an application may need
to reset itself by restarting all of its tasks. To address this issue,
we implement a generic MMAHSF that can support multiple
mode-change semantics for a hierarchical system along with
multiple operational modes. The mode-change mechanisms
can be combined at the server and task levels in multiple ways
to build different mode change-protocols.

Contributions: The main contributions are as follows:
• We provide multi-mode system support for two-level

hierarchical scheduling using the FreeRTOS operating
system. Our HSF implementation is based on idling pe-
riodic servers, using fixed-priority preemptive scheduling
at both (global and local) levels of hierarchy. For the ex-
tension with multi-mode support, our main considerations
are to minimize the changes in the FreeRTOS kernel and
to keep the original API semantics.

• We illustrate the multi-mode semantics for three mode-
change mechanisms, i.e. suspend-resume, complete, and
abort mechanisms, and describe their practical implemen-
tation issues.

• We apply these mode change mechanisms to develop
different mode-change protocol examples; e.g. suspend-
resume protocol, reset protocol, etc.



• We illustrate the resulting behavior of mode-change
protocols through a set of experiments. The experiments
are performed on an AVR 32-bit board EVK1100 [6]. We
also measure the overheads of some protocols.

The MMAHSF discussed in this paper is an extension of
our previous work [7]: both papers are based on the idea
of a generic framework for a multi-mode system using a
hierarchical system. The work described in this paper is the
actual implementation of the framework. The previous work,
on the other hand, focused on just the presentation of the
general idea of MMAHSF at a high level of abstraction and
described system’s main goals and challenges. It lacked the
mode-change mechanisms, and a practical implementation and
the behaviour evaluation of the system. Another significant
extension in this paper is the description and implementation
of different mode-change protocols. Further, we also provide
the results of our evaluations of the MMASHF implementation
using different protocols.

Paper Outline: Section II provides an overview of the
HSF and its implementation on FreeRTOS that our work
uses and presents the related work on multi-mode systems.
Section III describes the support for MMS inclusion into the
HSF implementation, system model and assumptions. It also
explains the system’s design and functionality. We explain the
semantics of three mode-change mechanisms in section IV.
In section V we present exemplar mode-change protocols
that are developed using these mechanisms. In section VI we
explain some important implementation details of MMAHSF.
We develop different mode-change protocols, test the system
behaviour in different modes, and measure the execution
overhead of these protocols. In section VII we conclude the
paper with a description of future work. We provide the API
of our implementation in the Appendix.

II. BACKGROUND AND RELATED WORK

This section presents an overview of the Hierarchical
Scheduling Framework implementation in FreeRTOS, fol-
lowed by related work on multi-mode systems.

A. HSF and its implementation

Our implementation of MMS is based on a two-level
HSF implementation for the FreeRTOS operating system [8]
that follows the periodic resource model [9]. In a two-level
HSF, the CPU time is partitioned among many subsystems
(or servers), that are scheduled by a global (system-level)
scheduler. Each server contains its own internal set of tasks
that are scheduled by a local (subsystem-level) scheduler as
depicted in Figure 2. FreeRTOS is a portable, open source
(licensed under a modified GPL), mini real-time operating
system that is ported to 23 hardware architectures ranging
from 8-bit to 32-bit micro-controllers, and supports many
development tools [10]. Its main advantages are portability,
scalability and simplicity. The core kernel is simple and small,
with a binary image between 4 to 9KB. Since most of the
source code is in C language, it is readable, portable, and
easily expandable and maintainable.

The official release of FreeRTOS only supports single
level fixed-priority preemptive scheduling. However, we have
implemented a two-level hierarchical scheduling framework
for FreeRTOS [8] with associated primitives for hard real-time
sharing of resources both within and between servers [11]. The
HSF implementation uses fixed-priority preemptive scheduling
policy at both global and local levels for two kinds of
servers: idling periodic [12]; and deferrable servers [13]. The
Stack Resource Policy (SRP) [14] is implemented for local
resource-sharing (within a server), and the Hierarchical Stack
Resource Policy (HSRP) protocol [15] is implemented for
global resource-sharing (between servers) with three different
overrun mechanisms (without payback, with payback, and
enhanced overrun) to deal with the server budget expiration
within the critical section [16]. The HSF supports reservations
by associating a tuple 〈Q,P 〉 to each server where P is the
server period and Q (0 < Q ≤ P ) is the allocated portion of
P . Given Q, P , and information on resource holding times,
the schedulability of a server and/or a whole system can be
calculated with the methods presented in [9] and the overheads
of servers execution are added in [11]. The implementation has
been tested and experimental evaluations have been performed
on a 32-bit AVR-based micro-controller board EVK1100 [6].

B. Multi-Mode systems

The scheduling theory for multi-mode real-time systems
and for component-based multi-mode systems has been in-
tensively investigated. Sha et al. [17] provided a simple
mode-change protocol for a prioritized preemptive scheduling
environment. A survey on mode-change protocols for fixed-
priority preemptive scheduling (FPPS) using a single pro-
cessor is presented in [18] and along with proposed several
new protocols. Mode switch problem for dynamic scheduling
using Earliest Deadline First (EDF) is considered in [19],
[20]. Multi-mode real-time schedulability analysis for different
assumptions and models is presented in [21], [22], [4], and
added to the compositional system using Real-Time Calculus
(RTC) in [3]. Some frameworks and programming languages
support multi-mode systems, including [23], [24] and [25],
[26], [27] respectively. Hang et al. [28] provides the details
of mode switch logic algorithms to handle mode mapping for
component-based systems.

Static resource reservations for servers [29], [12], [13]
are not suitable for multi-mode server-based systems where
resource reservations vary with the change of mode. Hence
reconfigurable (adaptive) servers are suggested for dynamic
reservations by Abeni et al. [30], [31], where [31] provides
adaptive reservations using feedback scheduling. Dynamic
reconfiguration of servers for multi-mode system is addressed
in [2], [32]. Stoimenov et al. [32] provides guaranteed resource
provisioning during mode changes by using TDMA servers.
Santinelli et al. [2] addresses the problem of timing analysis
during the reconfiguration process.

A mode-change protocol is implemented for reallocating
the memory among tasks in [33] but no work has been done
to reallocate the CPU time. To the best of our knowledge, no



work has been found with respect to the MMS implementation
using hierarchical scheduling.

III. MULTI-MODE ADAPTIVE HIERARCHICAL
SCHEDULING FRAMEWORK

This section describes a generic framework for the imple-
mentation of multi-mode system for hierarchical scheduling.
The purpose is to develop a basic skeleton that is capable
of incorporating multiple mode-change protocols to change
the system mode. This section starts with the introduction of
the multi-mode adaptive hierarchical scheduling framework
followed by the system model, basic assumptions of the
implementation, design details and the system’s functionality.

HSF becomes adaptive in nature by incorporating different
modes of the system and using a mode change protocol to
change the system-mode at run-time. Normally, a different
piece of software is executed for each mode, i.e. a differ-
ent task set, implementing a different functional and non-
functional characteristics, is executed. As a consequence of a
changed task set execution within a the server for each mode,
the server’s timing interfaces are modified for each mode. The
system can be viewed as a set of hierarchically organized
subsystems, each subsystem consisting of its own set of tasks.

20120417 

SubSystem 1 SubSystem2 

Mode M0 

SubSystem 1 
(Is1,m0) 

SubSystem2 
(Is2,m0) 

Mode M1 

SubSystem 1 
(Is1,m1) 

SubSystem2 
(Is2,m1) 

T1,1 T2,1 T3,1 T1,2 T2,2 

T2,1 T3,1 T1,2 T2,2 T2,2 T1,1 T3,1 

Fig. 1. An example of a Multi-Mode Hierarchical System

For example in Figure 1, a multi-mode hierarchical system
consists of two subsystems S1 and S2; which in tern consists
of task sets T1 = {τ1,1, τ2,1, τ3,1}, and T2 = {τ1,2, τ2,2}
respectively. The system supports two different modes M0 and
M1, both having different timing properties. Both subsystems
are active in both modes while the tasks can be active or
inactive in a particular mode. The task τ1,1 is inactive in mode
M0, tasks τ2,1 and τ1,2 are inactive in M1, while tasks τ3,1
and τ2,2 are active in both modes. In the rest of this paper, we
use the term subsystem and server interchangeably.

A. Terminology

The following terms are used in this paper:
• Active/Inactive tasks: Those tasks that belong to the

currently executing mode are called active, while the
tasks that do not belong to the currently executing mode
are called inactive or deactivated tasks. The deactivated
tasks can start execution only when their mode starts
execution later.

• Old/New mode: Upon a mode change request, the system
switches from the currently executed or old mode to the
newly requested or new mode.

• Steady state: System executing within an individual
mode is said to be in a steady or stable state, e.g. the
system executing in the old mode or in the new mode is
in the steady state.

• Transition state: The time interval [treq, tend] during
which a mode-change protocol executes to change system
mode from old to new. treq denotes the time instant at
which the mode change is requested, and tend is the time
instant at which the mode change is completed and the
system starts it execution in the new mode. The servers
change their task sets and interfaces during this interval,
and the overall system is neither in the old nor in the new
mode.

• Mode change requesting task: A mode change request
is raised by an executing task called the mode change
requesting task.

• Mode change requesting server: A server during whose
execution a mode change request is raised is called a
mode change requesting server. The resource provision-
ing of the server is aborted any time during the mode
transition interval [treq, tend] depending on the mode
change protocol.

B. Mode Change Request Controller

The mode change protocol is performed within a Mode
Change Request Controller (MCRC). The paper addresses
system modes and system-mode changes, hence to change
the mode of the whole system in hierarchical scheduling, the
mode-change has to be done at both global and local levels.
Therefore, we use a global MCRC and a local MCRC as shown
in Figure 2. Any mode-change involving only a (single) local
mode-change is therefore out-of-scope. The global MCRC is
responsible for changing the mode of the whole system upon a
mode-change request, and calls the local MCRCs to change the
mode of each subsystem (i.e. change the task set). The local
MCRC is responsible for handling the mode-change locally;
hence change the mode of the subsystem.

Figure 3 depicts a mode change for the system described
in Figure 1. The system mode is changed from the old mode
M0 to the new mode M1, each exhibiting a unique behaviour.
A mode change happens during the mode transition interval
[treq, tend]. It is shown in Figure 3 that each subsystem
exhibits a unique timing interface for each mode and during
the transition state these interfaces are changed. A particular
mode change protocol is executed during the transition state
depending on the system’s changing conditions.

C. System model

We consider a two-level MMAHSF, in which a global
scheduler schedules a system that consists of a set of sub-
systems S and a set of modes M = {M0, . . . ,Mn−1}
where n is the total number of modes in the system, and



For Poster

Multi-Mode Adaptive Hierarchical 
Scheduling Framework

Global 
Scheduler

. . .

Global 
MCRC

SubSystem n

Task Set

SubSystem 1

Task Set

Local 
Scheduler

Local 
Scheduler

Local 
MCRC

Local 
MCRC

Fig. 2. Multi-mode adaptive hierarchical scheduling framework

20130417 

time 

Old Mode M0 

SubSystem 1 
(Is1,m0) 

SubSystem 2 
(Is2,m0) 

New Mode M1 

SubSystem 1 
(Is1,m1) 

SubSystem 2 
(Is2,m1) 

Transition state 

tend treq 

Steady state Steady state 

Fig. 3. A mode change from the old- to the new-mode

a global MCRC to change the system’s mode. Each sub-
system Ss consists of a local scheduler along with a set
of tasks Ts and a local MCRC. Fixed-priority preemptive
scheduling is used at both levels of schedulers. For each mode
Mm, each subsystem Ss is specified by a different timing
interface Is,m = 〈Ps,m, Qs,m, ps,m〉 and a subset of tasks
Ts,m = {τ1,s,m, . . . , τn,s,m}, where Ps,m is the period for
that subsystem (Ps,m > 0), Qs,m is the capacity allocated
periodically to the subsystem (0 < Qs,m ≤ Ps,m), a unique
priority ps,m in mode Mm, and Ts,m ⊆ Ts .

MMAHSF contains a set of mode change mechanisms C =
{C0, . . . , Ci−1} where i is the total number of mode change
mechanisms implemented in the system.

D. Assumptions

The following assumptions are made for the initial design:
• The set of subsystems (S) is fixed in the system. A

subsystem without any active task (in a particular mode)
can be considered as inactive and the interface of an
inactive subsystem is set as Qs,m = 0. Similarly, a
subsystem with at least one active task is considered
active.

• The number of modes (M) is fixed in the system and
new modes are not allowed to be added at run-time. The
interfaces of all subsystems for all modes are defined
statically.

• Tasks can be active or inactive in a mode. The timing
behaviour of a task remains the same in all modes. Ts
is fixed hence dynamic creation and destruction of tasks
are not allowed.

• Only intra-subsystem intra-mode resource sharing is as-
sumed. It means that resources that are shared among
the tasks of the same subsystem are mode-specific; e.g.
resources shared in mode M1 are not shared with the
tasks of mode M2.

• The interrupt handlers are mode specific and the interrupt
handling only works for the current mode. Interrupts that
have no attached handlers (e.g. during mode changes) are
ignored.

E. The design of the scheduling hierarchy

To get minimal changes and better utilization of the system,
we have matched the design of the MMAHSF implementation
with the underlying FreeRTOS operating system. This includes
consistency from the naming conventions to API, data struc-
tures and coding style. It will also increase the usability and
understandability of our implementation for FreeRTOS users.

Each subsystem Ss is reflected by its interface. The server
type is idling periodic here and we are using fixed-priority
preemptive scheduling with the FIFO (to break ties be-
tween equal priorities) at both levels. The system stores the
current mode of the system, and a total number of
modes i.e. n in the system. During execution, the system
can be in one of these predefined modes M0, . . . ,Mn−1.
We also store current mode change protocol, and
a total number of mode change protocols.

For each server, the interface Is,m and lists for tasks T
of each mode Mm are stored in a subsystem control block
subSCB. Since a server may have different timing interfaces
(periods, budgets, and priorities) in different modes, these
three properties are stored in an array in the system. Each
server also maintains a currently running task and two lists
to schedule its tasks: a ready-task list, and a delayed-task list
for each mode. Some tasks of a server will be active in one
mode but inactive in another mode. The deactivated tasks of
a server in a mode should not interfere with the execution of
active tasks of the server in another mode for better system
performance. Therefore, separate ready-task and delayed-task
lists per mode are used to keep track of ready and delayed tasks
respectively. Moreover during system execution, only the lists
of the currently executing mode will be active in the system,
and the lists of all the other modes are inactive (means not
accessed). Since the total number of modes are fixed in the
system, lists for each mode are stored within an array, where
the array index specifies a unique mode. A detailed design
with diagrams and design considerations is presented in [7].

F. System functionality

An event-triggered mode-change request initiates the pro-
cess of mode-change. The request could be triggered either
internally (e.g. deadline misses of tasks or too long execution
of the idle task) or by external user request (we assume that
the triggers are handled by tasks). Global MCRC is called
upon a mode-change request to change the system’s mode.

The global MCRC is called from the system tick-handler
upon a mode-change request. It executes a mode-change mech-



anism and changes the old-mode to the new-mode using the
current mode change protocol. It changes the timing interfaces
for all the servers from the old-mode to the new-mode. The
local MCRC is responsible for activating the lists belonging
to the new-mode and for deactivating the lists belonging the
old-mode. The active lists of the servers only include all those
tasks that belong to the new-mode of the system. Tasks that
belong (or are active) in both the old and new mode are copied
to lists of the new mode. In the end, the system’s current
mode is changed to the new-mode.

IV. MODE-CHANGE MECHANISMS

The system is able to switch from one mode to an-
other by making a Mode-Change Request (MCR). The
MCR initiates the process of mode-change using the API
vTaskSwitchMode(sNewMode), by changing the sys-
tem’s current (old) mode to the new mode.

The transition from the old to the new mode is handled by
the mode-change protocol executed during the transition state.
A mode change request is raised by a currently executing task
of the currently executing (mode changing) subsystem which
aborts the resource provisioning of its server any time during
the transition interval [treq, tend]. All other non-executing
subsystems will change instantaneously to the new mode.

We have implemented three different basic mode change
mechanisms at both global (servers) and local (tasks) levels
which are subsequently applied to develop different mode
change protocols. These mechanisms are Suspend-Resume
mechanism (SRM); Complete mechanism (CM); and Abort
mechanism (AM). The servers and tasks behaviour during the
transition state and in the new mode depends on the mode
change mechanisms.

The three mechanisms and their effect on the execution of
servers and their tasks are described in this section. Mode-
change mechanisms for local and global levels during the
transition state are depicted in Figure 4.

A. Suspend-Resume mechanism (SRM)

For a suspend-resume mechanism, the state of servers
(running, ready, or suspended), the state of tasks (running,
ready, waiting or suspended), and the structures of servers
and tasks (data, objects and resources, server control block,
and task control block) are stored when they are suspended.
Later they are resumed from the same stored point.

1) At the global level: The resource provisioning of servers
is stopped as shown in Figure 4(a). The timing interface of
servers including their remaining budget of the server for the
old mode is stored in the system at the time of suspension. In
the new mode, servers are resumed from their stores states with
the remaining budget at which they were previously suspended
in this mode.

2) At the local level: All tasks of the new mode are
suspended and their states are stored, e.g, task τ2 is suspended
in Figure 4(a). It is possible since separate ready-task and
delayed-task lists per mode are used to store tasks’ states per
mode. All suspended tasks (of the new mode) are resumed

20130422 

time 

Old Mode New 
Mode 

tend treq 

CM 

Mode 
changing 
server 

time tend treq 

SRM 

Mode 
changing 
server 

τ1 

τ2 

τ1 

τ2 

Old Mode New 
Mode 

(a) Transition using Suspend-Resume mechanism

20130422 

time 

Old Mode New 
Mode 

tend treq 

CM 

Mode 
changing 
server 

time tend treq 

SRM 

Mode 
changing 
server 

τ1 

τ2 

τ1 

τ2 

Old Mode New 
Mode 

(b) Transition using Complete mechanism

Fig. 4. Mode-change mechanisms at local and global levels.

from their stored states. All the events that occurred during the
deactivated state of the tasks are delayed to be handled until
their corresponding mode become active and start execution.

B. Complete mechanism (CM)

For a CM at the global level, the currently executing server
(of old mode) keeps on providing its service. At the local levels
the old-mode tasks in ready queue are allowed to execute their
current activations during the transition state until either these
tasks are completed or the server is depleted. As shown in
Figure 4(b) task τ2 is allowed to complete. The replenishment
of server budget is not allowed during the transition state.

In the new mode at the global level, the server replenishes
with the full budget. At the local level, if tasks have completed
their execution then they are restarted, otherwise in case of
server depletion they are resumed in the new mode.

C. Abort mechanism (AM)

For AM, the execution of servers at global level and their
task sets at local level are aborted and their mode is changed
immediately. Note that the servers and tasks are not suspended
as in SRM; rather they are aborted, which means that their
internal states are not stored in the system. In the new mode,
the servers and tasks are restarted at global and local levels
respectively.

V. EXEMPLAR PROTOCOLS

Using the composition of mode-change semantics for
servers and tasks, different mode-change protocols can be
developed and applied to a system. Different subsystems may
have different mechanisms, e.g. one subsystem could use
CM while others could use SRM etc. For these protocols,
the mechanisms used for a server and tasks of the server



remain the same. In this sections we present exemplar mode-
change protocols in a hierarchical mode-changing system. The
behaviour of servers in the new mode using these protocols
are depicted in Figure 6.

20130410 

time 

Old Mode M0 
New Mode 

M1 

tend treq 

Transition 
state 

S1 
(Mode 
changing 
server) 

S2 

time tend treq 

Old Mode Mode M0 

α 

SRM 

S2 

S1 

time tend treq 

Old Mode New Mode M0 AM 

S2 

S1 

Fig. 5. Servers before the mode change request

Figure 5 presents a hierarchical system before a mode
change. The system consists of two servers S1 and S2 where
S1 has a higher priority than S2. For simplicity we are not
displaying tasks here. The system is in mode M0 and at time
treq a mode change request is made. At treq , the server S1 is
executing, while S2 has expired its budget and is waiting for
its next activation.

The tasks can be either active or inactive in the new mode;
therefore, their behaviour in the new mode depends upon the
mode-changing mechanism executed during the transition state
and on whether they are active or inactive in the new mode.
The behaviour of tasks is described in the exemplar protocols.

A. Suspend-Resume Protocol using SRM

Using suspend-resume protocol, all old-mode (executing
and non-executing) servers and their tasks are suspended
(deactivated), and all new-mode servers and tasks are re-
sumed (activated). We depict an example of suspend-resume
protocol using SRM at the global level in Figure 6(a). For
better understanding we consider that the system presented in
Figure 5 is suspended during the transition state using SRM
for both servers and their tasks. The system is resumed to
mode M0 again later in time as depicted in Figure 6(a) where
both servers S1 and S2 are resumed. S1 starts its execution
according to its saved remaining budget of mode M1. The
behaviour of tasks is summarized as follows:

• Tasks that are inactive in the new mode are suspended
during the transition state.

• Tasks that are active in the new mode are resumed during
the transition state and will execute in the new mode.

• Tasks that are active in both the old and new modes will
remain active in the new mode. They are copied to the
lists of the new mode. The currently executing and ready
tasks of the old mode will be copied to the ready list
of the new mode, while the delayed tasks of the old
mode will be copied to the delayed list of the new mode.
The currently executing task is allowed to continue its
execution in the new mode according to the priorities

of the ready tasks of the new mode. The list items are
pointers, so copying the pointers is efficient.

B. Reset Protocol using AM

Similarly, a reset or abort protocol is developed using AM
at both levels for all servers and for all tasks in the system. The
system in Figure 5 is aborted during the transition state using
AM and after the transition at time [tend] the whole system
(including its servers and tasks) is restarted as described in
Figure 6(b). Since the servers and tasks are aborted, therefore,
in the new mode, all servers are replenished with their full
budgets and periods, and their tasks are restarted (not resumed
as in other protocols). The behaviour of tasks is as follows:

• All tasks regardless they are active or inactive in the new
mode are aborted during the transition state and moved
to the ready lists.

• All tasks that are active in the new mode will be restarted
in the new mode.

C. A Protocol using a combination of CM and SRM

A complete protocol can be made using CM during the
transition state where server and its tasks have completed their
execution. At the global level, the server is replenished with its
full budget in the new mode. Similarly at the local level, since
tasks have completed their execution, they are restarted in the
new mode. We present an example in Figure 6(c) where the
server S1 (including its tasks) is executing CM while server S2

and its tasks execute SRM. In the new mode, S1 replenishes
with its full budget and its tasks restart their execution, while
S2 and its tasks are resumed.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The multi-mode hierarchical system can be executed by
setting a macro configMULTI_MODE as 1 in the configuration
file FreeRTOSConfig.h of the FreeRTOS. Since we have
kept the original FreeRTOS API intact and the design of
MMAHSF implementation is compatible with the underlying
operating system, it is possible to execute the original FreeR-
TOS scheduler by setting the macro to 0. The total number of
modes N_MODES in the system, an initial executing mode, and
mode-change mechanisms are defined in the configuration file.
It provides a freedom to the developer/user to create and add
new mode-change mechanisms in the system. An initial mode-
change mechanism can also be set (by default suspend-resume
is used for all servers and tasks in the system).

The xServerCreate() and xServerTaskGenericCreate()

APIs create server and tasks in a server respectively, and
are modified to incorporate multiple modes and the timing
parameters for each mode for servers and tasks respectively.
vTaskStartModeScheduler(defaultMode) API initializes all
variables and fields related to modes. It initializes the system
to the initial mode and the initial mode-change mechanism for
both global and local levels. A detailed list of all modified and
new APIs and macros are provided in the Appendix.

The scheduler is started by calling vTaskStartScheduler()

(typically at the end of the main() function), which



20130422 

time 

Old Mode M0 Mode M0 

tend treq 

CM 

S1 

tα 

S2 

time tend treq 

Old Mode Mode M0 SRM 

S2 

S1 

time tend treq 

Old Mode New Mode M0 AM 

S2 

S1 

SRM 

(a) Suspend-Resume protocol at global level

20130410 

time 

Old Mode M0 
New Mode 

M1 

tend treq 

Transition 
state 

S1 
(Mode 
changing 
server) 

α 

tα 

S2 

time tend treq 

Old Mode Mode M0 

α 

SRM 

S2 

S1 

time tend treq 

Old Mode New Mode M0 AM 

S2 

S1 

(b) Reset protocol at global level

20130422 

time 

Old Mode M0 Mode M0 

tend treq 

CM 

S1 

S2 

time tend treq 

Old Mode Mode M0 

α 

SRM 

S2 

S1 

time tend treq 

Old Mode New Mode M0 AM 

S2 

S1 

SRM 

(c) A Protocol using combination of CM and SRM

Fig. 6. The semantics of servers using different mode-change protocols.

is a non-returning function. Depending on the value of
the configMULTI_MODE macro, either the original FreeR-
TOS scheduler or MMAHSF scheduler will start execution.
vTaskStartScheduler() initializes the system-time to 0 by
setting up the timer in hardware.

The mode-change mechanism of the system can be changed
at runtime by calling vTaskChangeProtocol(sNewProtocol)

API. As described earlier, a task can be active or inactive in
a particular mode and it is set in the xBehaviorTaskMatrix

within the tskTCB structure when the task is cre-
ated. xTaskChangeTaskModeBehavior(mode, xBehavior) API
modifies the task’s behaviour (i.e. active or inactive) in a
particular mode.

The system’s mode is changed from current mode to
the new mode using vTaskSwitchMode(sNewMode) API.
The system first changes the mode of servers at the
global level by removing servers from old mode’s queue
using vTaskChangeServerModeBehavior(mode, xBehavior)

API, changes the sCurrentMode value to the sNewMode,
and finally reallocates servers to the new mode’s queues de-
pending in the mode-change mechanism. For AM, all servers
remaining budget is set to the full budget and are moved to the
ready queue of the new mode. For SRM, all servers with a re-
maining budget greater than zero are moved to the ready queue
while other servers are moved to the delay queue of the new
mode. For CM, prvMoveCurrentServerCompleteProtocol()

function allows the execution of tasks until completion or
until server depletion. The server is then moved to the de-
lay queue of the new mode. Similarly, at the local level,
prvMoveTaskToNewMode() function is called from within the
vTaskSwitchMode() and moves all tasks of the server to the
task queues of the new mode.

A. Experimental setup

Now we present the experiments to test the behaviour
and performance of our MMAHSF implementation. For this
purpose, we develop some examples of mode-change proto-
cols using different mode-change mechanisms for tasks and
servers. The examples are executed and all measurements
are performed on the target platform EVK1100 [6]. The
AVR32UC3A0512 micro-controller runs at the frequency of
12MHz and its tick interrupt handler at 1ms.

B. Behavior testing

Here we illustrate and evaluate mode-change protocols by
means of specific combinations of mode-change mechanisms
for servers and tasks. This test is performed to observe the
behavior of servers in different modes using different mode-
change protocols.

We perform three experiments to test the behavior of our
MMAHSF implementation by executing idling periodic server
and demonstrate our results by means of a trace of the
execution. Two servers S1 and S2 are used in the system
having two modes M0 and M1, where S1 has higher priority
than S2. The servers in both modes used to test the system
are given in Table I.

Servers S1 S2

Modes M0 M1 M0 M1

Priority 2 2 1 1
Period 34 34 30 30
Budget 15 14 8 9

TABLE I
SERVERS INTERFACE TO TEST SYSTEM BEHAVIOUR.

Servers S2 S1

Modes M0 M1 M0 M1

Tasks τ1,2,0 τ1,2,1 τ1,1,0 τ1,1,1
Priority 1 1 2 2
Period 30 40 40 40

Execution Time (in ticks) 9 3 2 2

TABLE II
TASKS IN BOTH SERVERS FOR BOTH MODES.

Task properties and their assignments to the servers is given
in Table II. The visualization of the execution of servers
and mode changes using different protocols is presented in
Figure 7. To ease the understanding of the behavior, we are
only presenting servers in these diagrams. In the diagram, the
horizontal axis represents the execution time starting from 0.
The numbers along the vertical axis are the server’s capacity,
the diagonal line represents the server execution while the
horizontal line represents either the waiting time for the next
activation (when budget has depleted) or the waiting for its
turn to execute (when some other server is executing).



(a) Mode change during normal execution using
Suspend-resume protocol

(b) Mode change from normal to emergency
using Reset/Abort protocol

(c) Reset protocol execution using AM

Fig. 7. Testing behaviour of different mode-change protocols.

Figure 7(a) presents the server execution and mode changes
using suspend-resume protocol during normal execution in
which all tasks and servers are using SRM. The first MCR is
raised at time 40 to change system mode from M0 to M1, both
servers (and their tasks) are suspended and system mode is
changed. Later at time 82 another MCR is raised that changes
the system mode back to M0. It is obvious from Figure 7(a)
that both servers resume their their execution from where they
have previously suspended in mode M0.

Figures 7(b), and 7(c) present reset (abort) protocol using
AM in two different ways. Figures 7(b) describes an example
of a mode-change from normal to emergency situation where
old modes servers and tasks are aborted and the system starts
in a new mode (all servers and tasks are restarted in the
new mode). Figures 7(c) describes a reset protocol where the
system restarts itself in the same mode (all servers and tasks
are restarted in the same mode).

C. Performance assessments

Here we present the results of the overhead measurements
for transition for the three mechanisms: suspend-resume, abort
and complete. It is the time that system spends within the
transition state for the mode-switching procedure, i.e. the time
spent in changing the current server mode and to update the
others servers’ and tasks’ time values. Complete protocol is
notorious for its long mode-change latency due to execution
of tasks during transition state. To evaluate these measures,
Complete Protocol column is added in the tables. These tests
have been done for several scenarios, varying the number of
tasks and the number of servers. For each value, 100 measures
are performed and then average, minimum and maximum of
these measured values are presented in Tables III and IV. All
measures are in micro-seconds (µs).

Table III provides the overhead measures for different pro-
tocols having one server in the system. This test is performed
to check the effect of increasing the number of tasks in the
server where all tasks are active in all modes. It is clear from
measures of Table III that the transition time is increased
(roughly linearly) by increasing the number of tasks in a server.
It is also obvious that measures for Complete protocol are very
high due to the tasks executions during the transition state.

Table IV presents the measurements using more than one
servers and tasks in those servers. These results reveal that the
execution overhead grows faster by increasing the number of
servers than increasing the number of tasks in the system.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the first implementation of a
generic framework for multi-mode adaptation of hierarchical
scheduling using the FreeRTOS operating system, supporting
multiple modes and multiple mode-change semantics. The
framework can be instantiated for a particular mode-change
mechanism and can change the mode-change mechanism at
runtime. We have developed three basic mechanisms for
mode-change semantics for servers as well as for tasks:
suspend-resume; complete; and abort. Our setup provides
general guidelines and characteristics to develop multiple
mode-change protocols. We have illustrate examples to de-
velop different mode-change protocols by composing these
mechanisms together and have evaluated these examples by
executing the implementation on an EVK1100 board using a
32-bit micro-controller.

The behavioural tests show that the system behaves as
expected/specified. The overhead measurements reveal that the
execution overhead grows faster by increasing the number of
servers in the system as compared with increasing the number
of tasks within servers. Since it is the first implementation
to support multiple modes in a hierarchical framework, there
does not exist any other implementation to compare our results
with.

In future we plan to provide schedulability analysis for the
protocols. We also plan to make the assumptions more flexible
in future, like adding new modes in the system dynamically,
providing resource sharing among the tasks of different modes
in MMAHSF, etc. Our implementation can be easily incor-
porated within the ProCom, a component model developed
for embedded control systems. The executable components of
the ProCom called Runnable Virtual Node [34], executes as
periodic server. The user can provide the number of modes,
the initial mode change protocol at the modeling level and at
the execution level our MMAHSF implementation can be used
instead of simple HSF. Hence making ProCom a multi-mode
component model.



No. of Suspend-Resume Abort Complete Complete Protocol
Tasks Avg. Min. Max Avg. Min. Max Avg. Min. Max Avg. Min. Max
1 173.6 170 181 181.99 181 192 132 128 138 314.06 309 320
2 197.8 192 202 208.49 202 213 159.4 149 160 2535.4 330 9482
4 247.7 245 256 263.6 256 266 229.2 202 256 13634.6 11285 15882

TABLE III
THE OVERHEAD MEASURES FOR DIFFERENT PROTOCOLS HAVING ONE SERVER IN THE SYSTEM.

No. of No. of Suspend-Resume Abort Complete Complete Protocol
Servers Tasks Avg. Min. Max Avg. Min. Max Avg. Min. Max Avg. Min. Max

2 1 246.87 245 256 271.5 266 277 161.3 160 170 426.86 426 512
4 1 420.2 416 426 455.4 448 458 219.4 213 234 646.75 640 661
3 3 478.99 458 512 508.75 490 533 226.2 234 288 3706.49 661 5856

TABLE IV
THE OVERHEAD MEASURES FOR DIFFERENT PROTOCOLS FOR MULTIPLE SERVERS IN THE SYSTEM.

REFERENCES

[1] Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open
environment. In Proc. 18th IEEE Real-Time Systems Symposium (RTSS’
97), 1997.

[2] Luca Santinelli, Giorgio C. Buttazzo, and Enrico Bini. Multi-moded
resource reservations. In Proc. 17th IEEE Real-Time Technology and
Applications Symposium (RTAS’ 11), pages 37–46, 2011.

[3] L. T. X. Phan, I. Lee, and O. Sokolsky. Compositional analysis of
multimode systems. In Proc. of the 22nd Euromicro Conference on
Real-Time Systems (ECRTS’ 10), 2010.

[4] V. Nelis, B. Andersson, J. Marinho, and S. M. Petters. Global-
EDF scheduling of multimode real-time systems considering mode
independent tasks. In Proc. of the 23rd Euromicro Conference on Real-
Time Systems (ECRTS’ 11), 2011.

[5] N. Fisher and M. Ahmed. Tractable real-time schedulability analysis
for mode changes under temporal isolation. In 9th IEEE Symposium on
Embedded Systems for Real-Time Multimedia (ESTIMedia’ 11), pages
130–139, 2011.

[6] ATMEL EVK1100 product page. [Online]. Available:
http://www.atmel.com/dyn/Products/.

[7] Rafia Inam, Mikael Sjödin, and Reinder J. Bril. Implementing hierarchi-
cal scheduling to support multi-mode system. In 7th IEEE International
Symposium on Industrial Embedded Systems (SIES’12), WiP, June 2012.

[8] R. Inam, J. Mäki-Turja, M. Sjödin, S. M. H. Ashjaei, and S. Afshar.
Support for hierarchical scheduling in FreeRTOS. In 16th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA’ 11), Tolouse, France, September 2011.

[9] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proc. 24th IEEE Real-Time Systems Symposium (RTSS’
03), pages 2–13, 2003.

[10] FreeRTOS web-site. [Online]. Available: http://www.freertos.org/.
[11] R. Inam, J. Mäki-Turja, M. Sjödin, and M. Behnam. Hard real-

time support for hierarchical scheduling in FreeRTOS. In 7th Annual
Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT’ 11), pages 51–60, Porto, Portugal, 2011.

[12] L. Sha, J.P. Lehoczky, and R. Rajkumar. Solutions for some practical
problems in prioritised preemptive scheduling. In Proc. 7th IEEE Real-
Time Systems Symposium (RTSS’ 86), pages 181–191, 1986.

[13] J.K. Strosnider, J.P. Lehoczky, and L. Sha. The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-time envi-
ronments. IEEE Transactions on Computers, 44(1):73–91, 1995.

[14] T. Baker. Stack-based scheduling of real-time processes. Journal of
Real-Time Systems, 3(1):67–99, 1991.

[15] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed priority
pre-emptive systems. In Proc. 27th IEEE Real-Time Systems Symposium
(RTSS’ 06), pages 389–398, 2006.

[16] M. Behnam, T. Nolte, M. Sjödin, and I. Shin. Overrun Methods
and Resource Holding Times for Hierarchical Scheduling of Semi-
Independent Real-Time Systems. IEEE Transactions on Industrial
Informatics, 6(1):93–104, 2010.

[17] Kim Larsen, Paul Pettersson, and Wang Yi. Mode change protocols for
priority-driven preemptive scheduling. Real-Time Systems, 1:243–264,
1988.

[18] J. Real and A. Crespo. Mode change protocols for real-time systems: A
survey and a new proposal. Real-Time Systems, 26(2):161–197, 2004.

[19] Q. Guangming. An earlist time for inserting and/or accelerating tasks.
Real-Time Systems, 41(3):181–194, April 2009.

[20] N. Stoimenov, S. Perathoner, and L. Thiele. Reliable mode changes in
real-time systems with fixed priority or EDF scheduling. In Conference
on Design, Automation and Test in Wurope (DATE’09), pages 99–104,
2009.

[21] K. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority pre-
emptively scheduled systems. In Proc. 13th IEEE Real-Time Systems
Symposium (RTSS’ 92), 1992.

[22] P. Pedro and A. Burns. Schedulability analysis for mode changes in
flexible real-time systems. In 10th Euromicro Conference on Real-Time
Systems (ECRTS’ 98), 1998.

[23] X. Ke, K. Sierszecki, and C. Angelov. COMDES-II: A component-based
framework for generative development of distributed real-time control
systems. In 13th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA’ 07), 2007.

[24] E. Borde, G. Haik, and L. Pautet. Mode-based reconfiguration of critical
software component architectures. In Conference on Design, Automation
and Test in Europe (DATE’ 09), pages 1160–1165, 2009.

[25] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The architecture analysis and
design language (AADL): An introduction. Technical Report, CMU/SEI-
2006-TN-011, 2006.

[26] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A timetrig-
gered language for embedded programming. Proceedings of the IEEE,
91(1):166–184, 2003.

[27] J. Templ. TDL specification and report. Technical Report, Univ. of
Salzburg, 2003.

[28] Hang Yin and Hans Hansson. Timing analysis for mode switch in
component-based multi-mode systems. In 24th Euromicro Conference
on Real-Time Systems (ECRTS’ 12), pages 255–264, July 2012.

[29] X. Feng and A. Mok. A model of hierarchical real-time virtual resources.
In Proc. 23rd IEEE Real-Time Systems Symposium (RTSS’ 02), pages
26–35, 2002.

[30] Luca Abeni and Giorgio Buttazzo. Adaptive bandwidth reservation for
multimedia computing. In 7th IEEE Real Time Computing Systems and
Applications (RTCSA’ 99), pages 70–77, 1999.

[31] Luca Abeni and Giorgio Buttazzo. Hierarchical QoS management for
time sensitive applications. In 7th IEEE Real-Time Technology and
Applications Symposium (RTAS’ 01), pages 63–72, 2001.

[32] N. Stoimenov, L. Thiele, L. Santinelli, and G. Buttazzo. Resource
adaptations with servers for hard real-time systems. In 10th International
conference on Embedded Software (EMSOFT’10), pages 269–278, 2010.

[33] M. Holenderski, R. J. Bril, and J. J. Lukkien. Swift mode changes in
memory constrained real-time systems. In International Conference on
Computational Science and Engineering, 2009.

[34] Rafia Inam. Towards a Predictable Component-Based Run-Time System.
Number 145 in Mlardalen University Press Licentiate Theses. Licentiate
thesis, Mälardalen University Press, Västerås, Sweden, January 2012.



APPENDIX

A synopsis of the application program interface of
MMAHSF implementation is presented below. The names of
these API and macros are self-explanatory.
The newly added user API and macro are the following:

1) void vTaskStartModeScheduler(short
defaultMode);

2) void vTaskChangeProtocol(short sNewProtocol);
3) void vTaskSwitchMode(short sNewMode);
4) short sTaskGetCurrentSystemMode(void);
5) portBASE_TYPE xTaskIsCompleteInCourse(void);
6) short prsReturnTaskArrayIndex(tskTCB *pxTCB);
7) short prsReturnServersArrayIndex(subSCB

*pxServer);
8) unsigned portBASE_TYPE

vTaskChangeServerModeBehavior (mode,
xBehavior);

9) unsigned portBASE_TYPE
xTaskChangeTaskModeBehavior (short
mode,unsigned portBASE_TYPE xBehavior);

The newly added private functions and macros are as follows:
1) void prvMoveTasksToNewMode (short sNewMode,

subSCB *pxTempServer);
2) void prvMoveCurrentServerAbortProtocol (short

sNewMode);
3) unsigned portBASE_TYPE

prvMoveCurrentServerCompleteProtocol (short
sNewMode);

We adopted the following user APIs to incorporate
MMAHSF implementation. The original semantics of these
API is kept and used when the user run the original FreeRTOS
by setting configMULTI_MODE macro to 0.

1) void vTaskStartScheduler (void);

2) portBASE_TYPE xServerCreate(*xServerParameters,
*xServerHandle, unsigned portBASE_TYPE
*xServerBehaviorMatrix);

3) signed portBASE_TYPE xTaskGenericCreate
(pxTaskCode, pcName, usStackDepth,
*pvParameters, uxPriority, *pxCreatedTask,
*puxStackBuffer, xRegions );

4) void vTaskDelete (xTaskHandle);
5) void vTaskDelay (xTicksToDelay);
6) void vTaskDelayUntil (*pxPreviousWakeTime,

xTimeIncrement);
7) void vTaskPrioritySet (xTaskHandle,

*uxNewPriority);
8) unsigned portBASE_TYPE uxTaskPriorityGet

(xTaskHandle pxTask);
9) void vTaskResume (xTaskHandle pxTaskToResume);

10) portBASE_TYPE xTaskResumeFromISR (xTaskHandle
pxTaskToResume);

11) signed portBASE_TYPE xTaskResumeAll (void);

and adopted private functions and macros:
1) void vTaskIncrementTick (void);
2) void vTaskSwitchContext (void);
3) void prvScheduleServers (void);
4) signed portBASE_TYPE prxServerInit (*subSCB);
5) signed portBASE_TYPE prxRegisterTasktoServer

(*tskTCB, *subSCB);
6) void prvInitialiseGlobalLists (void);
7) void prvInitialiseServerTaskLists (*subSCB);
8) void prvInitialiseTCBVariables (*tskTCB,

*pcName, *uxPriority, *xRegions, usStackDepth);
9) void prvAdjustServerNextReadyTime (*subSCB);

10) #define prvAddTaskToReadyQueue (pxTCB);
11) #define prvAddServerToReadyQueue (*pxSCB);
12) #define prvAddServerToReleaseQueue (*pxSCB);
13) #define prvAddTaskToReadyQueue (*pxTCB);
14) #define prvChooseNextIdlingServer();
15) #define prvCheckDelayedTasks (*pxServer);


