
Response-time Calculation and Priority Assignment with Integer Programming
Methods

Björn Lisper and Peter Mellgren
Dept. of Computer Engineering, M̈alardalen University, V̈aster̊as, SWEDEN

bjorn.lisper@mdh.se , pmn99002@student.mdh.se

Abstract

Exact response-time calculation for cyclical tasks with
fixed priorities requires that equations involving ceilings
are solved. These equations are usually solved iteratively.
For simple response-time problems with fixed priorities the
iterations are guaranteed to converge if there is a solu-
tion. For more complex cases, however, like scheduling of
real-time tasks in distributed systems, the iterative method
does not always provide the best solution, in particular
if the combined response-time/optimal priority assignment
problem is considered. We show how to reformulate equa-
tions with ceilings into integer linear programming prob-
lems, which can be solved with known optimization meth-
ods. This reformulation is directly applicable to classical
exact response-time calculation. We also show how optimal
assignment of priorities can be incorporated in the model,
which turns the optimization problem into a bilinear integer
programming problem. A possible application is holistic
scheduling with optimal priority assignments in distributed
real-time systems.

1. Introduction

Fixed priority scheduling was introduced by Liu and
Layland [7]. Exact response-time calculation for cyclical,
independent tasks with fixed priorities was first formulated
by Joseph and Pandya [5]. Since then, the model has been
extended with task dependencies like blocking from tasks
with lower priorities and release jitter. For instance, Auds-
ley et. al. [2] have shown that in a uniprocessor system with
fixed-priority tasks affected by blocking and jitter, the max-
imal response-timeRi for taski is given by

wi = Ci +Bi +
∑
j∈hp(i)d

wi+Jj
Tj
eCj

Ri = wi + Jmax
i

(1)

Here, for taski, Ti is the period,Ci is the maximal ex-
ecution time,Bi is a blocking factor accounting for pos-

sible interference from tasks with lower priority,Ji =
Jmax
i − Jmin

i is the release jitter, andJmax
i (Jmin

i ) is the
largest (smallest) delay from period start+ release time un-
til the task becomes ready.hp(i) is the set of tasks with
higher priorities than taski. Traditionally, these equations
are solved iteratively. The procedure is guaranteed to con-
verge if a solutions exists, although there is no upper bound
for the time to converge.

The iterative method works when priorities are fixed.
For simple systems of tasks there are methods to de-
cide an optimal priority assignment without performing an
exact response-time calculation, like rate-monotonic [7],
deadline-monotonic [6] and for tasks with offsets (but no
blocking factors) [1]. But there are cases where no good
method for priority assignment is known. One such case
is scheduling of tasks in distributed systems with net-
works with fixed-priority messages, sometimes calledholis-
tic scheduling[9].

This suggests that it might be worth looking for other
methods to solve the equations arising in exact response-
time calculation, in particular if they can be combined with
a method to select priorities. We are investigating the possi-
bility to use integer programming methods for this purpose.
Here, we show how to reformulate the classical response-
time calculation problem with fixed priorities into an inte-
ger linear programming (ILP) problem. The extended case,
where priorities are not fixed, can be dealt with by express-
ing priorities through0/1-variables. The priority setting can
be optimized together with the response-time calculation, as
an integer programming problem where the objective func-
tion is quadratic.

2. Reformulating Almost-Linear Equations
with Ceilings

(1) is an instance of the following equation:

x =
n∑
i=1

dx+ di
ai
eci + b (2)

1



We now reformulate (2) into an ILP problem. Theleast
solution of (1) gives the exact response-time. Thus, the task
is to minimizex when (2) holds. Now, set

ei = dx+ di
ai
e, i = 1, . . . , n

Eachei must be an integer. Therefore,

ei =
x+ di
ai

+ ri, i = 1, . . . , n (3)

where
0 ≤ ri < 1, i = 1, . . . , n (4)

From (3) we obtain

x = ai(ei − ri)− di, i = 1, . . . , n (5)

and from (2)

x =
n∑
i=1

eici + b (6)

We now use (5) and (6) to eliminatex, which yields

n∑
j=1

ejcj + b = ai(ei − ri)− di, i = 1, . . . , n

Solving this forri, and substituting into (4), gives

0 ≤ aiei −
n∑
j=1

ejcj − b− di < ai, i = 1, . . . , n (7)

Sincex =
∑n
j=1 ejcj + b we can now reformulate the task

to find the least solution to (2) as “minimize
∑n
j=1 ejcj un-

der the constraints in (7)”. This is an ILP problem in then
integer variablese1, . . . , en.

Exact response-time calculation forn tasks with priori-
ties can now be reformulated inton independent ILP prob-
lems of the form (7), with the proviso that only the task
itself and those with higher priorities will contribute with
integer variablesej . Thus, the exact response-time for the
task with priorityi can be calculated as the optimum of an
ILP problem withi variables and2i linear constraints.

3. Initial Experiments

We performed some initial experiments to see whether
the ILP approach could compete with the traditional, it-
erative solution method for solving straightforward exact
response-time calculation problems of the form (1). We
used the ILP solver in the TOMLAB optimization environ-
ment [4]. This is a general purpose branch-and-bound ILP
solver coded in Fortran. TOMLAB is a Matlab environ-
ment, with an interface to the solver. The iterative solver

was also coded in Matlab. The experiments were run on a
350 MHz PII with 128 Mbyte memory under Windows NT
4.0, in Matlab 5.3. The results were however discouraging.
For systems ranging from 6 to 25 tasks, the ILP solver was
slower than the iterative solver with a factor roughly be-
tween 8 and 130, growing with the number of tasks. There-
fore, although the ILP solution method clearly can be im-
proved by using a specialized solver, we deemed it unin-
teresting to continue to work in this direction. Rather, we
decided to look into how to extend response-time calcula-
tion by ILP into a method for optimal priority assignment.

4. Optimal Priority Assignment

We now describe how the ILP problem for finding re-
sponse times for fixed-priority systems of tasks can be ex-
tended to an optimization problem where also the priorities
are selected as part of the process.

Reconsider (2). For a system ofn tasks with priori-
ties, the exact response-time of taskk will be decided by
an equation of form

xk =
∑

i∈hp(k)

dxk + di
ai

eci + bk, k = 1, . . . , n (8)

Rather than a sethp(k) of tasks with higher priority than
taskk, we can express the priority relation withn2 0/1-
variablespki, wherepki equals1 exactly wheni ∈ hp(k).
(8) can then be rewritten as

xk =
n∑
i=1

pkid
xk + di
ai

eci + bk, k = 1, . . . , n (9)

Furthermore,bk may in general vary with the setting of pri-
orities, since it, according to (1), typically includes blocking
factors from less prioritized tasks. Here, we assume1 it is a
sum of possible blocking factorsbik from tasksi with lower
priorities than taskk. Thus,bk =

∑n
i=1 pikbik.

We can now repeat the reformulation of (2) in Section 2.
Introduce

eki = dxk + di
ai

e, i, k = 1, . . . , n

These aren2 nonnegative integer variables. As in Section 2,
we obtain2n2 inequalities, for1 ≤ i, k ≤ n:

0 ≤ aieki −
n∑
j=1

pkjekjcj −
n∑
i=1

pikbik − di < ai (10)

1This assumption is somewhat unrealistic. For the priority ceiling
and immediate inheritance semaphore protocols, the blocking factor is the
maximum rather than the sum.



These inequalities are bilinear in the variablespkj and
ekj , however restricted in that one factor always is a0/1-
variable.

The priority variablespki are not independent: either
task k has higher priority than taski, or the other way
around. This is easiest expressed using boolean variables
Pki, wherePki is true iff pki = 1. The following should
hold, for all i, j, k:

Pii = 0 (irreflexivity)
Pij XOR Pji, i 6= j (total ordering)
Pij ∧ Pjk =⇒ Pik (transitivity)

We reformulate the transitivity constraint as follows, in or-
der to obtain linear constraints on the corresponding0/1-
variables (see below):

¬Pik =⇒ ¬Pij ∨ ¬Pjk

These boolean conditions can be translated into linear con-
straints on the0/1-variables. There is a general translation
from certain propositional formulae to constraints on the
corresponding0/1-variables (X, Y are boolean variables,
andx, y are the corresponding0/1-variables):

X ∨ Y → x+ y

X XOR Y → x+ y = 1
¬X → 1− x

X =⇒ Y → x ≤ y

We can thus translate the conditions onPij into constraints
onpij (for 1 ≤ i, j, k ≤ n, i 6= j 6= k):

pij + pji = 1 (11)

1− pik ≤ (1− pij) + (1− pjk) (12)

Summarizing, we have an optimization problem inn2 non-
negative integer variables and(n−1)2 0/1-variables (elim-
inating thepii), with 2n2 bilinear inequalities (10) and
n(n − 1) + n(n − 1)(n − 2) linear inequalities from (11)
and (12). Half the0/1-variables can be eliminated using
(11), and thus also thesen(n − 1) linear constraints. The
n(n−1)(n−2) inequalities (12) are highly regular and can
be generated on-the-fly as needed. Note, finally, that we can
prescribe that taskj must have higher priority than taski by
settingpij = 1.

What are we optimizing? The response time calculations
are now coupled through the linear constraints on the de-
pendent priority variables. Thus, response times for indi-
vidual tasks are not calculated in isolation anymore. One
possibility is to minimize a weighted sum of the response
times. This yields an optimization problem with a bilinear
objective function. More interesting, perhaps, is to define a

feasability test relative a deadline for each task. This leads
to n more bilinear constraints of the form

n∑
j=1

pkjekjcj +
n∑
i=1

pikbik ≤ Dk, 1 ≤ k ≤ n (13)

The problem is then to decide whether there are any feasible
solutions. This can be done by an optimization algorithm
for integer programming with bilinear constraints. Such al-
gorithms exist and commercial solvers are available [3].

5. Optimal Priority Assignment in Distributed
Systems

We now show how our optimal priority assignment
method can be extended to distributed real-time systems
with cyclic tasks with priorities. We will restrict our at-
tention to distributed systems with networks that have fixed
priority messages, like CAN. For such networks, exact
response-time calculations for messages become very sim-
ilar to response-time calculations for cyclic tasks with pri-
orities [8, 10, 11]. We use the following equations for the
maximal response-timeRi of CAN messagei:

wi = Bi +
∑
i∈hp(i)d

wi+Jj+τbit

Tj
eCj

Ri = wi + Jmax
i + Ci

(14)

Here,τbit is the time to transfer one bit on the CAN bus.
Otherwise the notation is as in (1).

Now consider the following scenario. We have a system
with processors connected through CAN buses. Tasks can
communicate with tasks on other nodes, having the same
time period, through CAN messages. During a single pe-
riod, we allow finite acyclic chains of task-message com-
munications. However, we allow a task to only receive and
send a single message, respectively, per invocation.

We use the following notation. Messages are considered
a special kind of tasks. All tasks (including messages) are
globally numbered from 1 ton. Every processor and CAN
bus is considered aunit. A priority variablepjk is defined
only when the tasksj andk share the same unit. If taski
precedes taskj, either by sendingj as a message or by being
a message received byj, then we defineprec(j) = i. We
also define powers ofprec through function composition in
the standard way.

The major complication in the analysis, compared with
the uniprocessor case, is that the jitter termsJi become de-
pendent on the the maximal response-timeRprec(i) of the
preceding task, if any. We assume the following:

Jmax
i = Rprec(i) + Jmax local

i (15)

Jmin
i = Rmin

prec(i) + Jmin local
i (16)

Ji = Jmax
i − Jmin

i (17)



Here,Rprec(i) = Rmin
prec(i) = 0 if task i has no preced-

ing task. We also assume thatJmax local
i , Jmin local

i , and
Rmin

prec(i) are independent of the maximal response times.
We now derive a system of bilinear constraints, as in in

Section 2. We have the following version of (5):

wi+Jj+τi = Tj(eij−rij), 1 ≤ i ≤ n, j ∈ hp(i) (18)

where0 ≤ rij < 1, andτi = τbit if i is a message and
τi = 0 otherwise. We also have this version of (6):

wi =
∑

j∈hp(i)

eijCj + bi (19)

Here,bi = Ci +Bi if i is an ordinary task andbi = Bi if it
is a message. From (15) - (17) we obtain

Ji = Rprec(i) + Jmax local
i −Rmin

prec(i) − J
min local
i (20)

From (1) and (14) we get

Ri = wi + Jmax
i + C ′i (21)

whereC ′i = Ci if task i is a message andC ′i = 0 oth-
erwise. Now assume that taski hasN preceding tasks
prec(i), . . . , precN (i) in its communication chain. Expand-
ing (21) in (20), and then (15) and (21)N times, we obtain

Ji =
N∑
j=1

wprecj(i) +Ki (22)

whereKi is a constant. Substituting forJi in (18) yields

N∑
j=0

wprecj(i) +K ′i = Tj(eij−rij), 1 ≤ i ≤ n, j ∈ hp(i)

(23)
We now eliminate eachwprecj(i) in (23) by substituting the
right-hand side of its instance of (19). This yields

N∑
j=0

(
∑

k∈hp(j)

eprecj(i)kCk + bprecj(i)) +K ′i = Tj(eij − rij)

(24)
for 1 ≤ i ≤ n and j ∈ hp(i). Finally, we add priority
variablespjk, solve forrij , and substitute into the linear
inequalities forrij . This yields a system of bilinear con-
straints in the same way as before.

6. Conclusions and Further Research

We have presented how to formulate exact response-time
calculation and optimal priority assignment as a bilinear op-
timization problem. The approach works in theory also for
optimal priority assignment in distributed real-time systems

with fixed priority networks like CAN. What remains to do
is experiments to verify that the approach is feasible also in
practice.

A weakness in the current theory is the treatment of
blocking factors. For common semaphore protocols the
blocking factor is the maximum of the possible blockings
from the tasks with lower priority. It is possible to refor-
mulate maximum on a case-by-case basis, which leads to
a number of bilinear systems to solve. Alas, the number of
systems isO(un2) whereu is the number of units in the sys-
tem andn is the maximal number of tasks on a unit. Some
other way must thus be found to deal with blocking factors
of this kind.

7. Acknowledgments

We want to thank Kenneth Holmström for discussions on
optimization methods and access to software for optimiza-
tion, and Hans Hansson and Gerhard Fohler for discussions
regarding task scheduling and priority assignment.

References

[1] N. Audsley. Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times. Technical Re-
port YCS-164, Dept. of Computer Science, University of
York, England, Nov. 1991.

[2] N. Audsley, A. Burns, K. Tindell, M. Richardson, and
A. Wellings. Applying new scheduling theory to static prior-
ity pre-emptive scheduling.Software Engineering Journal,
8(5):226–292, 1993.

[3] K. Holmström. Personal communication.
[4] K. Holmström. The TOMLAB Optimization Environment

in Matlab. Advanced Modeling and Optimization, 1(1):47–
69, 1999.

[5] M. Joseph and P. Pandya. Finding response times in a real-
time system.The Computer Journal, 29(5):390–395, 1986.

[6] J. Y. T. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic, real-time tasks.Performance
Evaluation, 2(4):237–250, Dec. 1982.

[7] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment.J. Assoc. Com-
put. Mach., 20(1):46–61, 1973.

[8] S. Punnekkat, H. Hansson, and C. Norström. Response Time
Analysis under Errors for CAN. Proc. IEEE Real-Time
Technology and Applications Symposium (RTAS), pages
258–265, June 2000.

[9] K. Tindell and J. Clark. Holistic Schedulability Analysis for
Distributed Hard Real-Time Systems.Microprocessing and
Microprogramming, 40(2/3):117–134, Apr. 1994.

[10] K. W. Tindell, A. Burns, and A. J. Wellings. Calculating
Controller Area Network (CAN) Message Response Times.
Control Engineering Practice, 3(8):1163–1169, 1995.

[11] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing
Real-Time Communications: Controller Area Network
(CAN). Proc. 15th IEEE Real-Time Systems Symposium,
pages 259–265, December 1994.


