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Abstract. One of the main objectives of developing component-based software 
systems is to enable efficient building of systems through the integration of 
components. All component models define some form of component interface 
standard that facilitates the programmatic integration of components, but they 
do not facilitate or provide theories for the prediction of the quality attributes of 
the component compositions. This decreases significantly the value of the com-
ponent-based approach to building dependable systems. If it is not possible to 
predict the value of a particular attribute of a system prior to integration and de-
ployment to the target environment the system must be subjected to other pro-
cedures, often costly, to determine this value empirically. For this reason one of 
the challenges of the component-based approach is to obtain means for the 
“composition” of quality attributes. This challenge poses a very difficult task 
because the diverse types of quality attributes do not have the same underlying 
conceptual characteristics, since many factors, in addition to component proper-
ties, influence the system properties. This paper analyses the relation between 
the quality attributes of components and those of their compositions. The types 
of relations are classified according to the possibility of predicting properties of 
compositions from the properties of the components and according to the influ-
ences of other factors such as software architecture or system environment. The 
classification is exemplified with particular cases of compositions of quality at-
tributes, and its relation to dependability is discussed. Such a classification can 
indicate the efforts that would be required to predict the system attributes which 
are essential for system dependability and in this way, the feasibility of the 
component-based approach in developing dependable systems. 

1   Introduction 

Component-based development (CBD) is of great interest to the software engineering 
community and has achieved considerable success in many engineering domains. 
CBD has been extensively used for several years in desktop environments, office 
applications, e-business and in general in Internet- and Web-based distributed applica-
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tions. The component technologies (for example COM/DCOM, CORBA, EJB and 
.NET) used in these domains originate from object-oriented (OO) technologies. The 
basic principles of the OO approach, such as encapsulation and class specification 
have been further extended. The importance of component interfaces has increased; a 
component interface is treated as a component specification and the component im-
plementation is treated as a black box [26]. A component interface is also the pro-
grammatic means of integrating the component in an assembly. Component technolo-
gies include the support of component deployment into a system through the compo-
nent interface. On the other hand, the management of the component quality attributes 
has not been supported by these technologies. This topic has instead been treated 
separately from the applied component-based technologies.  

In many other domains, for example dependable systems, CBD is utilized to a 
lesser degree for a number of different reasons [3]. One is the difficulty of implement-
ing the same component technologies because of various system constraints such as 
limited resources which is one typical characteristic of small embedded systems. 
Another reason is the unclear distinction between system components which include 
both hardware and software parts and software components which may be encapsu-
lated in system components or distributed through several system components. In this 
article, whenever we use the term “components” we assume “software components”. 
Finally an important reason is the inability of component-based technologies to deal 
with quality attributes as required in these domains. For dependable systems, a num-
ber of quality attributes are as important as the functions these systems provide, and 
the development effort related to realizing quality attribute requirements is most often 
greater than the effort related to the implementation of particular functions. In gen-
eral, the problem of CBD for dependable systems is that, if components are consid-
ered black boxes, it is difficult to obtain evidence that they behave according to their 
specifications. Moreover, depending on the deployment and usage context a compo-
nent’s behavior might change. Dependability arguments can be obtained only if the 
complete behavioral specification of a component is known beforehand. If the advan-
tages of component-based technologies are limited to the functional domain only and 
cannot be utilized in the domain of quality attributes, or, even worse, introduce diffi-
culties in the management of quality attributes, these technologies cannot be fully 
utilized.  

The component-based approach is closely related to software architecture. The use 
of a component-based technology decreases chances to get an architectural mismatch 
by standardizing certain architectural decisions. A software component model speci-
fies rules for component composition and interoperation and in this way simplifies the 
development process and similar to software architecture makes it possible to reason 
about quality properties largely independent of a particular application. The main 
difference between a software component-based approach and the software architec-
ture-oriented approach is that the former focuses on reusability of already existing 
components, whereas the latter focuses on a conceptual approach in identifying com-
ponents, their interconnections and evaluation of overall configuration.  

Some of the main advantages of CBD are reusability, higher abstraction level and 
separation of the system development process from the component development 
process [3,4]. These advantages have however implications on other aspects of soft-
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ware and system development. The final success of the utilization of CBD depends 
not only on its advantages but also on these implications – the degree to which they 
are positive and negative. Since for dependable systems, particular quality attributes 
are of the greatest importance, a question which arises is to what extent does CBD 
influence the achievement of these properties: CBD can introduce new difficulties, it 
can be irrelevant for those properties, or can have a positive effect. For this reason it 
is of interest to analyze the ability of CBD to cope with requirements related to qual-
ity attributes.  

Component-based software engineering (CBSE) faces two types of problems in 
dealing with quality attributes. The first, common to all software development, is the 
fact that the quality attributes are often imprecisely defined or difficult to estimate and 
measure. Further, values of certain properties may be different in different contexts. 
The second, specific to component-based systems, is the difficulty of relating system 
properties to component properties. In CBD one desired feature is that components 
can be selected and integrated in an automatic and efficient way. This goal is achieved 
for the functional part; components are selected and integrated through their inter-
faces. It is questionable if a similar approach can be applied to quality attributes.  

For component-based systems crucial questions in relation to quality attributes are 
the following: 

− Given the system quality attributes required, which attributes are required of 
the components concerned and which attributes are required from the compo-
nent design- and runtime infrastructure? 

− Given a set of component attributes, which system attributes are determined? 
− How can the quality attributes of a system be accurately predicted, from the 

quality attributes of components which are determined with a certain accuracy.   
− To which extent, and under which constraints are the emerging system attrib-

utes determined by the component attributes? 

These and similar questions have been addressed at a series of CBSE symposia [4], 
and particular models of certain properties have been analyzed [14], but so far very 
little work has been done in the systematization and classification of quality attributes 
in accordance with the questions above. Although there are other classifications of 
quality attributes such as [6,7,17,23], these have not considered the predictability  and 
composability aspects of the quality attributes.  

Some system quality attributes can be derived directly from the component attrib-
utes; others might require a complex calculation model, related to the component 
model and the system architecture. Some system attributes, such as safety, do not 
exist on the component level and are the result of a complex combination of the sys-
tem interaction with its environment, system architecture and different attributes of 
components involved.  

In this paper, our intention is to demonstrate the diversity of quality attributes and 
the different methods which can be used for predicting system properties from the 
properties of the components involved. The quality attributes can be classified accord-
ing to our ability to accurately calculate their compositions, i.e. the ability to predict 
the properties of component compositions. Such a classification indicates the feasibil-
ity of the component-based approach for building dependable systems. 
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 The paper is organized as follows: Section 2 provides basic definitions needed for 
a classification and a classification framework which is used in our CBD-specific 
classification. Section 3 identifies the types of properties according to the principles 
for predicting the properties of component assemblies. Section 4 discusses the pro-
posed classification with respect to a possibility of combining the types identified in 
the previous section, and with respect to recursive composition. Section 5 analyzes 
composability of properties of dependable systems and discusses possible benefits for 
dependable models of utilizing CBD and Section 6 concludes the paper.  

2   Composability of Quality Attributes 

In this section we will take a more fundamental look at what quality attributes or 
properties are and what they are good for. We then investigate the various notions of 
property decompositions, so that we can properly position our empirical and composi-
tion-oriented classification of properties. 

2.1   What Are Properties? 

The discussion in this paper is not primarily concerned with the theories behind indi-
vidual types of properties (such as what is green, or what is having a latency of, or 
what is security). It is rather concerned with how we can generalize our understanding 
of the notion of property or its synonyms to a level where we can suggest a principled 
manner to conceptualize them in the context of software systems and software com-
ponents where we can suggest a principled manner to reason about them in a decom-
positional way.  

2.2   The Philosophical View on Properties – What Are Properties Good for? 

Coming to grips with properties is pervasive in philosophy. Plato’s theory of Forms 
([19], p. 93) (where Form is said to be Plato’s term for property,) seems to be one of 
the earliest accounts on what is today called properties. The term property includes 
attributes, qualities, features, or characteristics of things. It even encompasses rela-
tions such as being faster than.  

The need for properties is motivated by their explanatory roles they have to fill. 
They came into being to describe phenomena of interest (like when we say: the sys-
tem response is very fast). Because a stakeholder is a role that represents groups of 
people who have similar interests in the same phenomenon, the choice of properties 
and their importance is clearly related to certain stakeholders or stakeholder classes.  

From an ontological viewpoint, the existence of properties is determined empiri-
cally. As a first important rule this means that properties and their definitions are 
conceived by humans and there is no a priori, logical or conceptual method to deter-
mine which properties exist [24]! This also means that the notion of a property and 
every type of property is an abstract concept only. As with any concept, humans de-
fine its name as well as its definition and its related theories. We therefore do not have 



 Concerning Predictability in Dependable Component-Based Systems 261 

 

to argue about the universal truth behind or correctness of a property as long as its 
definition and purposeful theory fulfills our goals. 

From a natural language viewpoint, there is no single idiom to talk about and use 
properties. In other words, properties are distinct from their representations and the 
same property may have different representations. In the English language for exam-
ple, properties can appear as single terms with any of the many suffixes such as ‘-ity‘, 
‘-ness’, ‘-hood’, ‘-kind’, ‘-ship’, etc. (e.g. as in ‘safety’), or as predicative expressions 
in multiple ways (e.g., ‘executes safely’, ‘is safe’). Hence, since properties are con-
ceived by humans, not only their meaning need to be defined but also their possibly 
numerous, not only natural language-based, representations.  

As with any concept (i.e. purely knowledge-related construct), humans tend to 
categorize also properties, i.e. we describe properties by means of inherent character-
istics of certain categories. Two such inherent characteristics that are very important 
in the discourse of “quality attribute compositions”: complexity, and specificity. 

Complexity refers to the fact that properties can be simple or compound/complex. 
A complex property is some form of a logical structure or combination of properties. 
This combination must of course be defined to understand a complex property. As an 
example for a complex property consider ‘being my grandfather’. It implies that the 
person this property is ascribed to is ‘male and older than I am’. Or ‘being CMM 
Level 3 certified’ implies that the software development unit this property is ascribed 
to ‘has a software process that is documented and standardized, and that all software 
projects use an approved, tailored version of this standard software process for devel-
oping and maintaining software’[22]. 

Specificity refers to the fact that a property can be a determinable or a determinate. 
The distinction, however, is relative in that a determinate property is a more specific 
version of a determinable. For example, “up-time” is a determinate property (i.e. a 
more specific one) of the determinable “availability”. The measure “time passed be-
tween failures” is in turn one possible determinate of “up-time”. The hierarchy of 
determinables and determinates is generally expected to bottom out in completely 
specific, absolute determinates. In software engineering, such leave determinates 
would be called quality-carrying properties, or direct properties, or tangi-
ble/measurable properties, to name a few. 

In software engineering, hierarchies or taxonomies of properties, which are funda-
mentally based on the notions of complexity and specificity, are at the heart of the 
decompositional approaches of quality models (e.g. [8] and its predecessors).  

2.3  Realization-Oriented Decomposition Versus Other Forms of Property 
Decompositions 

Before we proceed to the patterns of realization-oriented decomposition/traceability in 
the next main chapter, we want to clarify by means of Fig 1 how two other types of 
property decompositions are related to the realization-oriented decomposition: (1) 
classification oriented quality attribute decompositions, and (2) the analysis-oriented 
decomposition for non-functional requirements. 
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Fig 1. Different Types of Property Decompositions 

Fig 1 shows a System and its ascribed properties P1…Pn. The System is composed of 
two components (Component 1 and Component 2) that engage in a Collaboration. In 
this simple example, every component has just one property P1. If we envision a 
designer who needs to design a System with the required properties P1…Pn, the con-
stituents of the System would be called the realization elements. 

In a realization-oriented decomposition we want to relate a system-level property 
to the elements that realize the system and that cause the property to manifest in the 
requested way. Fig 1 illustrates a simple case in which the Component 1 and 2 and 
their respective property P1 realize the system-level property P2. Let us take the sim-
ple case where P2 of the System expresses its power consumption in Watts. P1 of 
Component 1 and 2 would simply be the respective consumption per component. 
Hence, P2 of the System is no more than the sum of the two properties P1 of the two 
components. This is of course the simplest case and it is, in fact, the subject of the rest 
of this paper to elaborate on other types of realization-oriented decompositions. 

A classification-oriented decomposition on the contrary refers to a hierarchy rep-
resented as a tree of determinables and determinates, where the leaf determinates 
could be selected as the relevant, required properties of a system. Hence, it is a classi-
fication that serves the purpose of knowledge structuring. It represents a decomposi-
tion of high-level properties into more tangible ones so as to end with a set of quanti-
fiable properties on some scale. The ISO/IEC 9126-1 [8] is a representative for such a 
classification because it defines a set of characteristics, which are decomposed into 
subcharacteristics, which in turn shall be decomposed into potentially measurable 
properties. Such a classification can therefore serve as starting point for defining the 
system-level properties to be realized. In Fig 1, such a classification is used to derive 
the required properties P1 and P2 of the System. For instance, P1 could be the re-
quired physical property power consumption, whose value must be below a certain 
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threshold. P1 could have resulted from the ISO/IEC 9126-1 derived classification 
Efficiency (C1) -> Resource Utilization (C11) -> Power Consumption (C111). 

The third kind of decomposition - analysis-oriented decomposition – is shown in 
the figure for completeness reasons only. It relates to the decomposition of require-
ments. For more details of this category and in general on these classes of decomposi-
tion refer to [18]. 

2.4   Definitions of Certain Terms 

We feel that terms such as non-functional property, extra-functional property, quality 
attribute, etc. are very often not used carefully enough. Based on our research, we 
would suggest the following distinction which we used in this paper.  

− Attribute/property are treated as synonymous and are used in the most general 
sense as defined by standard dictionaries, e.g.: “a construct whereby objects 
and individuals can be distinguished” [15] “a quality or trait belonging and es-
pecially peculiar to an individual or thing” or “an effect that an object has on 
another object or on the senses” [16]  

− A required attribute/property is expressed as a need or desire on an entity by 
some stakeholder. We may call such a property a requirement.  

− An exhibited attribute/property is an attribute/property ascribed to an entity as 
a result of evaluating the entity. The evaluation may be direct, in the sense that 
one does some measurement with the entity in question, or it may be indirect. 
The latter may be the case when we ascribe a property to an entity because we 
evaluate related artifacts or because someone made us believe that the entity 
has this (typically conceptual) property, although we can hardly measure it on 
the entity itself.  

− Quality: The totality of exhibited attributes/properties of an entity that bear on 
its ability to satisfy stated or implied needs, i.e. to satisfy its requirements. 
Quality thus represents the set of all exhibited attributes/properties that have a 
relationship to required properties. 

− Quality attribute/property: Refers to an exhibited attribute/property that is part 
of the Quality of an entity. 

Having discussed the basic classes of property decompositions that are being used 
today, we can now focus on the conceptualization of the realization-oriented decom-
positions that go along with building software-intensive systems based on software 
components. 

3   Classification of Properties 

A great number of quality attributes are encountered in software engineering. They 
are classified in many different ways, frequently in a non-orthogonal manner. One 
example of classification is related to the system lifecycle: run-time properties (visible 
and measurable during the program execution) and lifecycle properties (those that 
characterize different phases in a development and maintenance process). Another 
example is the quality model defined in ISO/EIC 9126-1 “Software engineering - 
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product quality” standard [8], which classifies quality attributes as external and inter-
nal. Quality attributes are the measurable, quantifiable properties of a software prod-
uct. The latter also includes all its intermediate development artifacts. Quality attrib-
utes that refer to the internal quality – internal quality attributes - are typically applied 
to intermediate deliverables at certain development stages (e.g. attributes of a design 
specification, source code, etc.). Internal therefore has the connotation of “develop-
ment internal view”. The relation between internal and external quality attributes is 
not unambiguous though; an internal quality attribute may have impact on different 
external quality attributes and of course an external quality attribute is a result of 
combination of internal attributes.  

The classification we consider here is related to composability. We classify proper-
ties according to the principles applied in deriving the system properties from the 
properties of the components involved. Instead of the term “system”, we shall use a 
generic term Assembly (A) which simply denotes a set of interacting components. 
Such an assembly can be a part of a software system (for example a functional unit, or 
a subsystem), or the entire system. The only characteristic we want to relate to an 
assembly is a set of integrated components – an assembly can be assumed as a com-
ponent (however composed of other components). Some properties, however, cannot 
be related only to an assembly, but are explicitly related to the entire system and its 
interaction with the environment. In such cases we refer to a System (S).  

We distinguish the following types of properties: 

a. Directly composable properties. A property of an assembly which is a function 
of, and only of, the same type of property of the components involved. 

b. Architecture-related properties. A property of an assembly which is a function of 
the same type of property of the components and of the software architecture. 

c. Derived properties. A property of an assembly which depends on several differ-
ent properties of the components.  

d. Usage-depended properties. A property of an assembly which is determined by 
its usage profile.  

e. System environment context properties. A property which is determined by other 
properties and by the state of the system environment. 

Let us discuss these cases and give examples in the following subsections. 

3.1   Directly Composable Properties 

Definition: A directly composable property of an assembly is a function of, and only 
of the same property of the components. 
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Note that the property of the assembly is the same as the component property. Fur-
ther, the component technology is not explicitly specified in the relation (1). However 
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it is obvious that the function f itself is dependent on the technology since the mecha-
nisms to assemble components is provided by the component technology.  

An example of a property of this type is the static memory size of a component 
or an assembly, this is also known as the memory footprint. The simplest composi-
tion model is the calculation of the static memory of an assembly as the sum of the 
memories used by each component: 

componentsassembly,size,memory
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The function M(ci) is different for different technologies. For example in the 
case of the separation of composition time from run-time which is usually used in 
embedded systems, M(ci) will be a constant, possibly parameterized by configura-
tion factors. In such cases the static memory size of an assembly will be a constant. 
A more complicated model can be found in the Koala component model [25], in 
which additional parameters, such as size of glue code, interface parameterization 
and diversity are taken into account (i.e. the parameters determined by the compo-
nent technology used).  

The equation (2) is also valid for a dynamic memory, with the difference that 
M(ci) is not a constant, but a function which may depend on the usage profile. 
When using a particular technology, design patterns or parameterized resources  
this function may be limited  on a particular value or budgeted. In such a case the 
total amount of memory can be calculated. 
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The properties of this type can be calculated directly from the component properties 
if the components comply with particular restrictions for memory allocation. These 
restrictions can be built in component technologies. 

For this type of composition there are no other assumptions and therefore these 
properties are the easiest to specify and predict. This does not mean that the compo-
sition functions are easy or even possible to express formally. However the fact that 
the property is visible on component and assembly level, and that the assembly 
property is dependent only on the component properties simplifies the  
prediction procedure and makes the prediction valid in any application using these 
components.  

3.2   Architecture-Related Properties 

Definition: An architecture-related property of an assembly is a function of the same 
property of the components and of the software architecture. 
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In this case the assembly properties depend not only on the component properties but 
on the architectural structure. The software architecture is often used as a means for 
improving particular properties without changing the component properties. These 
types of properties can be tuned by different architectural solutions or variations. An 
example of such a property is a performance predictability model for J2EE (Java 2 
Platform, Enterprise Edition) application presented in [9,29]. A typical application 
implemented in this technology would be a distributed web-based application in 
which the variability in scalability is achieved by it being possible to add new clients 
and new computational (business) components to the server as illustrated in Fig 2. To 
achieve concurrency the components are executed in different threads. A possible 
extension variation of this architecture is the possibility to include several nodes with 
web servers and business applications. 

Client tier Web server tier Business logic tier Data tier

Web server

Business
components

Data access
components Data

Variability
points

Client tier Web server tier Business logic tier Data tier

Web server

Business
components

Data access
components Data

Variability
points  

Fig. 2. A typical multi-tier architecture with client and servers variability points affecting the 
performance quality property 

The performance of the system shown in the Fig 2 is related to the number of cli-
ents and the number of server components. A typical requirement for such applica-
tions is the performance and scalability, i.e. the dependencies between the perform-
ance and number of clients and active business components.  

According to [9,29] the time per transaction T/N expressed in equation (5) depends 
on several factors related to the system architecture: The first factor comes from the 
concurrent requests that compete for service from the server component. This in-
cludes the network bandwidth and underlying transport mechanisms. The second 
factor describes a case in which accepted requests compete for a thread to execute the 
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business components. The third factor results from concurrent access to the database 
by the concurrent server threads.  

The first factor is proportional to the number of clients, the second to the number 
of clients and inversely proportional to the number of threads (i.e. number of compo-
nents on the server) and the third factor is proportional to the number of threads.  
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The form of the equation shows that it is possible to calculate the optimal number of 
threads in relation to the number of clients to achieve a minimum respond  time per 
transaction. 

3.3   Derived Properties 

Definition: A derived property of an assembly is a property that depends on several 
different properties of the components.  
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In the same way that a function of an assembly is more than the sum of the compo-
nent functions, there are properties that are the result of the composition of different 
component properties.  

An example of such a property in a real-time system is the end-to-end deadline (a 
maximal response time) that is a function of different component properties, such as 
worst case execution time (WCET) and execution period as shown in the following 
example. Let us consider real-time port-based component models with provided and 
required interfaces and interfaces to an underlying operating system or I/O devices, as 
discussed in [5,10,28]. In these models, components are implemented as tasks, parts 
of a task or a set of tasks. An assembly consisting of two components, where every 
component is realized as a task is shown on Fig 3. Each basic component includes 
properties such as WCET and execution period. A composition of this simple model 
is achieved by connecting ports and identifying provided and required interfaces. 

The question is whether we can calculate WCET for an assembly of components 
executing with different periods. In a case in which the execution periods are the 
same, this would be possible. In a case in which these periods are different, we cannot 
specify WCET of the assembly, but we can specify end-to-end deadline and a period. 
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An end-to-end deadline is the maximum time interval between the start of the first 
component in an assembly and the finish of the last component in the assembly. The 
assembly period will be a number to which the components periods are divisors. 
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Fig. 3. Composition of port-based components 

In a similar way we can calculate latency, or response time, from the real-time 
properties of components if particular assumptions about real-time system characteris-
tics, such as scheduling policy, and mapping between component and real-time enti-
ties are taken. In a case in which components are mapped to tasks and the fixed prior-
ity scheduling is used, a worst case latency of component ci, L(ci), can be calculated 
as [11]: 
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B is the blocking time, hp(ci), is the set of components having tasks with higher prior-
ity than component i, cj.T is the period and cj.wcet is the worst-case execution time of 
component ci. 

Emerging properties, i.e. properties that are pertinent on a system (or an assembly) 
level but are not visible on the component level are of special interest in this category. 
For such properties the major challenge is to identify the properties of the components 
that have impact on them. 

3.4   Usage-Dependent Properties 

Definition: A Usage-dependent property of an assembly is a property which is deter-
mined by its usage profile.  
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The behavior of an assembly and consequently of a system depends not only on the 
internal properties of the components and their composition but also on the particular 
use of the system. A usage profile Uk which determines a particular attribute Pk must 
be transformed to the usage profile U´i,k to determine the properties of the compo-
nents.  

Properties of this type introduce particular problems as they depend on the use of 
the system. This means that the component developers must predict as far as possi-
ble the use of the component in different systems – which may not yet exist. A 
second problem is the transfer of the usage profile from the assembly (or from the 
system) to the component. Even if the usage profile on the assembly level (Uk) is 
specified, the usage profile for the components (U´i,k) is not easily determined espe-
cially when the assembly (and the system) configuration is not known.  

A particular problem with this type of property is the limited possibility of reus-
ing measured and derived properties. If the usage profile is changed, the properties 
must be re-calculated or re-measured. An example of such property is reliability 
which in software is calculated or measured for particular usage profiles. The ques-
tion arising here is the possibility of reusing previous specifications of the property 
[5]. The first thought would be that this is possible if the domain of the new usage 
profile is a sub-domain of an old usage profile. In this case the value of a property 
will be within the range of possible values of the property for the old usage profile; 
the local maximum and minimum value being in the range of values for the old 
usage profile (see Fig 4).  

Uk

Ul

P(U)

Uk-min Uk-max

Ul -min Ul -max

Pl

Pk

Uk

Ul

P(U)

Uk-min Uk-max

Ul -min Ul -max

PlPl

PkPk

 

Fig. 4. Property for different usage profiles 

If the new requirements of a property in a new usage profile are equal of or less 
stringent than the old requirements, we can use the property value from the old 
usage profile. This means, for example, that we do not need to measure the compo-
nent properties.  

),(),(),( maxmin kkllkkkl UAPUAPUAPUU −−⇒ ≤≤⊆  (9) 
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In a case in which a property is expressed as a statistical value (such as a mean value), 
the property value in an interval can be changed in an unwanted direction; Fig 4 illus-
trates such example in which the mean value of the property P(U) in the interval [Ul-

min, Ul-max]  is lower than in the entire interval [Uk-min, Uk-max], although the minimum  
and maximum values are higher. For certain properties (such as availability, or differ-
ent quality of services) in certain domains (for example multimedia) the average plays 
a more important role than min or max values. 

3.5   System Environment Context Properties 

Definition: A System Environment Context property is a property which is determined 
by other properties and by the state of the system environment. 
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The property depends not only on the system property determined by the usage 
profile, but also on the environment in which the system is used (denoted by Ck in 
(10)). This case of composition is very much related to the “Usage dependent prop-
erties” type of composition, because the set of system profiles include a subset of 
all usage profiles. However, the property itself can be different in different contexts 
(i.e. surrounding environment) in which the system is placed. By this we emphasize 
that it is not possible to determine the value of the property even the if the usage 
profiles are known. An example of such a property is safety. As the safety property 
is related to the potential catastrophe, it is obvious that in different circumstances, 
the same property may have different degrees of safety even for the same usage 
profile. We can argue that these properties are out of the scope of the predictable 
assembly, as they depend on the surrounding environment. In contrast to “composi-
tionally” deriving assembly properties from component properties, the approach for 
such kinds of properties is more like “given the system environment and the system 
properties, what are the requirements on the assembly and component properties. 
Nonetheless, system environment context properties are also dependent on compo-
nent properties. Further, for most of the cases an environment can be assumed or 
even be required for a usage profile.  

A system can exhibit numerous properties and certainly not all of them have the 
same characteristics; some are easy to perceive and measure while others are very 
difficult to analyze, or measure (for instance administrability). Analyzable proper-
ties, which can be measured, are potential candidates for automatic reasoning about 
the behavior of a system. Properties that depend on the environment in which a 
system is deployed are generally hard to derive from the component properties. 
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4   Composition of Properties 

For a classification it is important that it is complete and orthogonal. The complete-
ness assumes that all cases fit into the classification. The orthogonally means that a 
particular case belongs to and only to a particular type in the classification. The pre-
sented classification is an idealization and an abstraction; in systems, in particular in 
complex systems, we could have many properties that are important for the stake-
holders but are by their nature not precisely and formally specified, and which have 
different manifestations at component and system levels. While the question whether 
there are other types of properties, i.e. that there are types which do not fit into the 
classification cannot be formally justified or falsified, we can certainly find properties 
whose composition is the result of a combination of the principled types described in 
the previous section. For this reason it is of interest to see which combinations of 
these basic types are feasible and which combinations are of fundamental character. 
Further, there is a question related to recursive composability. Similarly to the ques-
tion “can we provide component models that support recursion, in which we treat 
assemblies as components?” we can state a question: which properties and under 
which constraints are recursively composable?  

In this section we discuss these two aspects of composability: composition of dif-
ferent types of properties and recursive compositions. 

4.1   Composition Combination of Different Types of Properties 

We are analyzing here a possibility of combining basic types of properties; can a 
system property be a result of a combination of different composition types? Theo-
retically we can have 26 combinations (single, double, triple, fourfold and fivefold 
combinations) of basic property types. Some of the combinations do not make sense. 
For example, a derived (emerging) property by definition cannot be at the same time a 
directly composable property. Similarly, combinations between directly composable 
and usage-dependent, or system environment-related properties are not feasible. This 
reduces the number of combinations. Further we shall see that some of the combina-
tions cannot be found in practice.  

In [11] we have analyzed and classified many properties grouped with respect to 
different concerns and validated the classification by inquiring a dozen researchers 
through a questionnaire to classify almost 100 properties. Since in general the proper-
ties and their definitions are the result of concerns, limitations and requirements it is 
possible to find an arbitrary number of different properties. To make the questionnaire 
manageable we have collect properties in groups, which correspond to different con-
cerns (such as performance, dependability, usability, business, etc.). The results of the 
questionnaire indicated that there are many properties, in particular emerging proper-
ties, which are a combination of two, three or more basic classification types.  

Here follows all possible combinations of the basic types of properties and identify 
those which we have never seen in practice (indicated by N/A), and give examples of 
possible combinations. From Table 1 we can see that a rather small number of combi-
nations seem to be feasible.  
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Table 1. Examples of properties that are related to combinations of basic types of properties  (a. 
Directly composable properties (DIR), b. Architecture-related properties (ART), c. Derived 
properties (emerging properties) (EMG), d. Usage-depended properties (USG), and e. System 
environment context properties (SYS)) 

No a)  
DIR 

b)  
ART 

c)  
EMG 

d)  
USG

e)  
SYS 

Concerns/Properties 
Examples 

1 x x    Performance/Scalability 
2 x  x   N/A 
3 x   x  N/A 
4 x    x N/A 
5  x x   Performance/Timeliness 
6  x  x  Dependability/Reliability 
7  x   x N/A 
8   x x  N/A 
9   x  x N/A 

10    x x Dependability/Security 
11 x x x   N/A 
12 x x  x  Performance/Responsiveness 
13 x x   x N/A 
14 x  x x  N/A 
15 x  x  x N/A 
16 x   x x N/A 
17  x x x  Dependability/Security 
18  x x  x N/A 
19  x  x x N/A 
20   x x x Dependability/Safety 
21 x x x x  N/A 
22 x x x  x Business/Cost 
23 x x  x x N/A 
24 x  x x x N/A 
25  x x x x N/A 
26 x x x x x N/A 

4.2   Recursive Composition of Quality Properties 

We have used the generic term “assembly” for a set of integrated components. In 
section 2 it is shown that specification of some properties should distinguish be-
tween an assembly and a system; the difference is whether only internal parameters 
are assumed, or a combination of internal and external factors, not part of the sys-
tem, are included. A software system may consist of a set of assemblies, which 
turns out to be a set of components. Several questions arise when composing as-
semblies: Can the assemblies composed be treated as components in the new as-
sembly, or are they treated in the new assembly as a set of the original components 
loosing the assembly identity? A similar question we can state for a properties; can 
a property be expressed in a recursive form of (the same) properties of hierarchical 
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components? An ideal situation would be to have a means of using a hierarchical 
and recursive model which permits the same reasoning on all levels of the hierar-
chy.  

We can distinguish two types of assemblies supported by existing component 
technologies. The first is the 1st  order assembly which is not treated as a compo-
nent in the component model. This type of assembly is merely a set of components 
integrated together, creating an application or a part of an application. In this case 
an assembly is seen as a virtual boundary of the component set and not as a separate 
entity. An assembly of the 1st order does not follow the semantics of a component. 
The second type of assembly is hierarchical which means that the assembly, created 
from components, is treated as a new component inside the component model.  

There are different criteria which must be satisfied if an assembly is to be treated 
as a component.  The basic criteria are the ability to provide recursive principles on 
(i) operational (construction) interface, (ii) component deployment and (iii) compo-
nent quality properties. 

The way to obtain the property value of an assembly is different from obtaining 
assemblies from components, and a recursive composition of properties is not re-
lated to the (recursive) constructions of assemblies. Rather it depends of the type of 
the property. For example the directly composed properties are by definition recur-
sive; for recursive assemblies these properties will be recursive. In this way a prop-
erty of an assembly of assemblies will be a composition of assembly and compo-
nent property functions. For example, the properties of type (a) from the section 3 
will be derived in the following way: 
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For the memory consumption case in equation (2), we have: 
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For derived properties, it is in general not possible to achieve recursion. The same 
is valid for component properties which are not relevant on the assembly level. 

5   Composability of Dependability Properties 

To illustrate the property classification, we take dependability as an example. De-
pendability is defined as the ability of a system to deliver service that can be  
trusted and the ability of a system to avoid failures that are more severe and frequent 
than are acceptable to the users. According to [1] dependability is a complex property 
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including six basic attributes, namely, availability, reliability, safety, confidentiality, 
integrity and maintainability.  

The questions of interest to component-based software engineering or development 
are: 

− To which category belong the dependability properties? In particular, which of 
the dependability properties are emerging or derived system properties, and 
which are both system and component properties? 

− How are these properties in a component-based system related to other com-
ponent properties? 

− To which extent (and how) can these properties can be determined from com-
ponent properties? 

− To which extent can the unpredictability of these properties be minimized and 
how much is it related to the uncertainty of the component properties? 

Reliability 
The definition of reliability originates from the probability that a system will fail 
within a given period of time. The probability of failure is directly dependent on the 
usage profile and context of the module under consideration. One possible approach 
to the calculation of the reliability of an assembly is to use the following elements 
[20,21]: 

− Reliability of the components – Information that has been obtained by testing 
and analysis of the component given a context and usage profile; 

− Usage paths – Information that includes usage profile and the assembly struc-
ture. Combined, it can give a probability of execution of each component, for 
example by using Markov chains. 

A model based on this approach needs the means for calculating or measuring com-
ponent reliability and an architecture which permits analysis of the execution path. 
Component models that specify provided and required interface make it possible to 
develop a model for specifying the usage paths. This is an example in which the 
definition of the component model facilitates the procedure of dealing with the 
quality attribute. The system reliability can be analyzed by (re)using the reliability 
information of the assemblies and components (which can be derived or measured). 

Availability 
Availability is defined as the probability of a module being available when needed. 
The difference between reliability and availability is that availability is not only 
dependent of the system properties but also on a repair process, which implies that 
the availability of an assembly cannot be derived from the availability of the com-
ponents in the way that its reliability can be derived from the reliability of its com-
ponents.  If the repair rate of the components are known, it also must be known the 
repair time of the system integration. In a larger context, non run-time attributes 
must be taken into a consideration; availability is related to the maintenance and 
support of the components constituting the assembly. 
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Safety 
Safety is an attribute involving the interaction of a system with the environment and 
the possible consequences of the system failure [12]. It is a system attribute, neither 
a component nor an assembly attribute. Its safety depends on where and how the 
system is deployed. Since safety is a system attribute that is dependent on the sys-
tem’s environment, a means for analyzing safety is a top-down architectural ap-
proach, a decomposition rather than composition. Examples of such approach can 
be found in [2,27] In the analysis process, the components’ attributes are used as 
selection criteria or are identified as demands that should be met. For this reason a 
component-based approach might not have the apparent advantage – on the con-
trary, if the starting idea is a reuse of existing components, the components’ attrib-
utes cause new constraints and in this way might decrease the system safety. How-
ever, when the constraints are identified and unambiguously related to the con-
straints on the system level, the system safety can increase. Also, some attributes, 
such as reliability, might improve the accuracy of the system safety prediction, 
especially if known or measured when used in other applications. 

Confidentiality and Integrity 
Security properties, confidentiality and integrity, defined as follows apply to de-
pendable systems [1].  

− Confidentiality is defined as a measure of the absence of unauthorized disclo-
sure of information; 

− Integrity is defined as the absence of improper system state alterations. 

From the definitions it is apparent that these attributes are not directly measurable 
and composable, and this is the main obstacle to the development of a theory for 
their prediction. Confidentiality and integrity are emerging system attributes that 
can be tested and analyzed on the system and architectural level but not on the 
component level. Usage profiles can be used for testing and analysis, but it is im-
possible to automatically derive these attributes from the component attributes. 

Maintainability 
Maintainability is related to the activities of people and not of the system itself, 
although there exists self-repairable systems which in some cases can reconfigure 
themselves in order to continue to provide services. Component technologies might 
provide support for dynamic upgrading/deployment of components which can im-
prove the maintainability of a system. In this case the maintainability is much a 
matter of component technology, and not of the component itself. The system archi-
tecture thus has an impact on maintenance. 

There are many parameters that can be measured and then used to estimate the 
maintainability of a code (for example McCabe Metrics for complexity [13]). These 
parameters can be identified for each component. It is however not clear how these 
parameters can be defined on the assembly level. One possibility is to define a mean 
value of all components normalized per lines of code.  
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6   Conclusion 

The full advantage of the component-based approach to developing software will 
only be achieved when, in addition to a compositional reasoning of a system’s func-
tionality, we are able to more easily and accurately predict the system behavior with 
its quality attributes. When systems are designed and build from components, many 
system properties can be derived from the component properties. Hence, a generic 
support for the definition and measurement of the properties, which is built into the 
component models and technologies, would be greatly welcomed. However, the 
predictability of properties does not depend only on such a support in the compo-
nent models but more on the types of properties themselves. Consequently, there is 
no silver bullet to deal with all types of properties. For each type of property, a 
theory of the property, its relation to the component model, composition rules and 
their contextual dependence and relation to requirements must be known.  

Dependability properties belong to a class of properties which compositions are 
the most difficult; they are system properties and are result of different properties 
on component level, and system usage context. The feasibility of a bottom-up ap-
proach is questionable, but a more feasible challenge is to achieve an incremental 
composability when adding a new or modifying a component in a system, and being 
able to reason about the system properties from the properties of the old system and 
the properties of new component. 

Because no generic approach will do, the paper suggests a classification of prop-
erties according to their principled way of compositional reasoning. Each type of 
the classification is characterized by the required parameters for obtaining predict-
ability on the system level. Some types show clear composable characteristics, 
while others are not directly related to compositions.  

The existing component models differ considerably and how the assemblies’ and 
components’ properties are treated will be highly dependent on these models, espe-
cially for those properties that are directly composable or are related to the architec-
ture. For example, if the component model has independently deployable compo-
nents with a 1st order assembly model, it is likely that the properties of the compo-
nents cannot be propagated further than the assembly level without considering the 
environment.  

In spite of diversity of properties, technologies, and theories, it should be possi-
ble to create reference frameworks that by identifying type of composability of 
properties can help in estimation of accuracy and efforts required for building com-
ponent-based systems in a predictable way. These frameworks can be built for par-
ticular component-models in combination with architectural solutions and particular 
domains. Our future work will continue in these directions in which different com-
ponent technologies and architectural solutions in the domain of embedded systems, 
such as automotive or automation systems will be considered. 
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