
Measuring Cache Related Pre-emption Delay on a Multiprocessor
Real-Time System

Filip Sebek{fsk@mdh.se}
Dept. of Computer Engineering, Mälardalen University, Västerås, Sweden

Abstract

Cache memories in real-time systems can increase performance,
but to the cost of unpredictable behavior which gives loose
bounds on the worst case execution time analysis. Task pre-
emption cause a swap of cache contents with an initial perfor-
mance dip that is considered as a delay. This delay is neces-
sary in execution time analysis and must be added to each task-
switch to determine if the task sets are schedulable.

Cache performance and costs have traditionally been esti-
mated through trace-driven simulations, but since representa-
tive traces and a true simulation models are hard to accomplish,
a ”physical” measurement at the system might be the only way
to get the status of the system.

This paper suggests two methods to measure the cache re-
lated pre-emption delay on a Power PC750 multiprocessor sys-
tem by using the processors’ built-in performance monitor. One
method is completely hardware-based and the other has a min-
imal software support. Both methods pass information to an
external monitor system that stores data with timestamps in a
database for further analysis.

1 Introduction and motivation

Cache memories are today common in computer systems to
bridge the response time from primary memory to boost up
performance. Since the small cache is too small to hold all
data and instructions, blocks are swapped in and out depend-
ing of what section of code in the program that is handled
at the moment. The swapping results to a variable memory
access time, which make execution time analysis in real-time
systems very tricky to analyze.

There are two categories of cache block swap-outs [1];

� Intrinsic (inter-task) behavior depends on the internal
design and execution path of the task. Two functions or
data areas in the task may compete for the same cache
space with cache misses and a performance loss as a re-
sult. Increasing the cache memory size or associativity
can reduce these effects.

� Extrinsic (intra-task) behavior depends of the environ-
ment and the others tasks’ inter-task behavior. At
context-switch the cache contents will be more or less
displaced by the new running task. This performance
loss is also calledcache related pre-emption delay
(CRPD). To eliminate the CRPD and extrinsic cache ef-
fects, Kirk suggests to partition the cache into segments
and assign task their own segment of the cache [2]. This
can also be accomplished in software by locating code

and data so they won’t map and compete for the same
areas in the cache [3].

Both these problems must be solved or correctly analyzed
to be able to give an accurate and tightWorst Case Execution
Time (WCET). The WCET is the base to all scheduling of a
task set — without it one cannot determine if the task set is
schedulable or not in a real-time system.

Basumallick and Nilsen identifies the CRPD in the Real-
Time environment in [4] with the formulaC 0 = C + 2Æ +

, whereC 0 is the new WCET,C stands for the unmodified
WCET, Æ is the execution time for the operating system to
make a context-switch (two are needed for a pre-emption)
and symbolize the maximum cache related cost by a pre-
emption.

Even though many different analysis methods and recent
research has been able to bound WCET tighter with many
different solutions, they are still not applicable in industrial
systems due to their limitations. See for instance [5, 6, 7, 8].
A safe approach is to assume that the complete cache must
be reloaded on a context-switch, but since this shouldn’t be
true in for instance a system with small but many tasks,
the schedule would lead to an underutilization of CPU re-
sources. Industrial developers are today in a great need of real
values to implement new software based products on high-
performance processors.

To the best of our knowledge the only work that has been
presented to measure the CRPD is Mogul and Borg’s trace
driven simulation of a UNIX-system [9]. Mogul and Borg
measured the delay () to 200� 400�s of a task. The traces
were however not taken from a real-time system and all the
time-slices were of equal size. The cache memories are to-
day larger and more complex than those the simulations were
performed at.

Performance estimation on cache memories has tradition-
ally been made with trace driven simulation. The simulations
are mainly made at single programs or tasks and with ab-
sence of operating system, pipelining, complex cache struc-
tures, prefetching features etc. This paper presents methods
how to measure the CRPD at a real running multi-processor
system.

2 The multi-processor system

SARA — Scaleable Architecture for Real-Time Applications
— is a research project with a Motorola Compact PCI back-
plane bus with Power PC750-processor boards [10]. See fig-
ure 1.



L2 Cache
1024kB

CPU MPC750
L1 D+I cache

32+32kB

66MHz

Memory
64MB

PCI-bridge
”Raven”

33MHz Local PCI-Bus

RT-Unit
with MaMon

PCI-bridge
DEC21154

Backplane CPCI-Bus

Figure 1: CPU-card. The RT-Unit is only on master cards.

A specialmaster card is equipped with a Real Time Unit
(RTU)[11] that controls the execution of the tasks on all pro-
cessor cards. The RTU is a high performance and perfor-
mance predictable hardware implementation of an operat-
ing system that handles scheduling and other real-time op-
erating system services. No other software is needed. The
other processor cards are used asslaves to increase appli-
cation performance. All communication between tasks (in-
ter and intra-processor) is performed through avirtual bus
which simplifies application development[12]. A special de-
vice calledMultipurpose Application Monitor (MAMon) [13]
is connected to the RTU.

Today MAMon and the RTU co-exists in the same FPGA,
and besides increased performance it is a very practical and
cost effective way to eliminate problems with PCB-layout
and other hardware manufacturing issues.

3 The measurement

The Motorola PowerPC 750-processor (MPC750) is
equipped with a performance monitor [14, 15] with four
dedicated registers which count predefined events such as
cache misses, miss predicted branches, number of fetched
instructions, and other occurrences. The monitor function
is meant to be used to tune performance on software
applications and to help system developers to debug their
systems.

To measure the CRPD time directly is not possible since
the MPC750 performance monitor is not that advanced. The
performance monitor at the processor is set to count cache
misses and instruction fetches, which is the information
needed to calculate instruction miss ratio. To calculate the
data miss ratio, the data misses, and the number of loads and
stores must be counted. By continuously measuring the miss
ratio, the CRPD can be calculated and presented.

One problem is to distinguish the extrinsic misses from the
intrinsic, which is by the suggested measure model impossi-

ble to do exactly since the performance monitor is unable to
recognize types of the misses. Our approach is to determine
the average miss-ratio-level of the task and subtract it from
the miss-ratio after the context-switch. Figure 2 illustrates a
scenario with a context-switch from a task with 22 percent
average miss-ratio to another task with 12 percent.

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

Mi
ss

rat
io 

(%
)

Time

Context-switch
’plot.dat’

Figure 2: Miss-ratio during a context-switch.

3.1 With software support

A small, simple, cyclic task — ”MonPoll” — polls the
MPC750’s performance monitor registers and pass them to
MAMon where they get time stamped. An alternative so-
lution is to store the data in the task’s local memory, but
the writing to memory would compete with the application’s
need for cache memory with a serious swap of cache data as a
result. A third possibility is to stream the data through an Eth-
ernet card as UDP-messages to a remote host on the network,
but these actions leads to substantially longer execution and
a swap of contents in the instruction cache.

MAMon is non-intrusive and provide the service needed
with a minimum of software code. Only one simple C-code
assignment is all that is needed to store a value in a MA-
Mon register. MAMon sends (through a parallel port) times-
tamps, register values and other predefined task information
to a database on an external host where it is stored for further
analysis and graphical presentation. See figure 3.

Even if it is smallest possible, the MonPoll-task will how-
ever interfere and pollute the cache result by its own pres-
ence in the executing environment. It will also use system
resources and decrease performance by increasing the execu-
tion load. The cache content could be unaffected by turning
off the cache memories during the polling, but that would on
the other hand have an influence on the execution time.

Leaving the polling task as is in the running system can
”solve” the problem. To make a system safe and act as it
did under the test phase during its development, probes must



Slave #1

MPC750

PerfMon

Appl.tasks

MonPoll

Slave #2

MPC750

PerfMon

Appl.tasks

MonPoll

Master

MPC750

PerfMon

M
on

P
ol

l

M
A

M
onRTU

Database

Appl.tasks

Appl.tasks

Backplane Compact PCI Bus

Figure 3: SARA system. Dashed boxes are software implementations.

never be removed [16]. The cost of an observable system is to
dedicate some percentage of the capacity to software probes.
The less frequent probing is performed, the less interference,
but with a loss of valuable data. If the performance loss is un-
acceptable in a running system, the ”MonPoll”-task must be
removed and to get a more correct performance value, mea-
surements at different sample frequency must be performed.
By extrapolating these values more correct performance es-
timations will be at hand. This method is applicable on soft
real-time systems due to its more or less polluting nature.

3.2 Completely in hardware

The register values from the performance monitor can be read
through special pins on the processor called JTAG-pins (de-
fined by IEEE 1149). To interpret those signals on an os-
cilloscope by ”hand” is a non-trivial task due to the large
amount of information presented in just a wave-diagram. To
cope with this translation and interpretation problem a special
hardware device communicates with the performance moni-
tor through JTAG and ”download” the requested data. This
device could then pass the information further to MAMon
through either dedicated peer-to-peer links or a special bus
with MAMon and those devices attached to it. The device
acts exactly as the ”MonPoll” task described in the previ-
ous section but in this case it is implemented in hardware.
This method might be suitable for hard real-time applications
since it doesn’t interfere the caches or the execution time.

Many hardware constructions can however not run at full
speed when JTAG is used which is the fact for some CPUs
in the Motorola PPC-family. The positive part of this ap-
proach is its non-polluting and non-interferingmeasuring, but
the drawbacks are, as mentioned, an underutilization of CPU
performance and hardware costs.

4 A synthetic workbench

No good standard benchmark suits are available today to
measure cache memory effects in real-time systems. Non-
real-time benchmarks such as SPEC or Dhrystone are just
single programs without (interfering) tasks. Rhealstone[17]
on the other hand just tests real-time operating system issues
such as task-switches, deadlock handling and task communi-
cation. The test applications are to small to test cache mem-
ory issues and were not meant to do so either.

The test will therefore be performed on synthetically gen-
erated task sets where the amount of tasks and the data and
instruction size of all the tasks will be generated by a special
program. Task interaction, priorities, and cycle time can also
be set. By altering the mentioned parameters and measure
the hit ratio over time, a pretty good view of how the CRPD
will be available. The method has successfully been used in
for instance Busquets-Mataixet al’s work[18].

5 Conclusions and Future work

Performance estimation on cache memories has traditionally
been made with trace driven simulation with only pieces of a
complete trace and simplified simulators. To be able to make
correct and tight worst-case execution time analysis all types
of delays and interference in the execution must be identified.
One such property is the Cache Related Pre-emption Delay
(CRPD), which is a product of extrinsic cache behavior.

This paper suggests two methods to measure hit-ratio by
using the processors built-in performance monitor. Either a
software task or a hardware device can poll the data from
the performance monitor. The software solution is performed
with a minimum of code to reduce a probe effect. The
polled information is passed further to a system monitor that
also collects and stores context-switch information and other



predefined events in a database. Since all events are time
stamped miss ratio can be continuously monitored and the
CRPD can be calculated. The methods will give applica-
ble values to execution time analysis since they measure real
time on a real running system. A complete hardware solution
might seem to be a better solution since it could be intrusive
free, but the data is only available when the processor is run-
ning at half speed if JTAG is to be used.

Standard benchmarks don’t cause pre-emption and that is
why CRPD cannot be measured at those. Generated task sets
with synthetic tasks of different numbers, sizes, relations, cy-
cle time etc. will generate pre-emptions to be measured and
will also give a figure how exact the suggested measurement
method is.

Due to heavy performance loss and costly redesign of
PCB-layout, the hardware device solution is excluded and
only the software solution is motivated to implement in the
future work.

References

[1] Anant Agarwal, Mark Horowitz, and John Hennessy.
An analytical cache model.ACM Theory of Computing
Systems, 7(2):184–215, May 1989.

[2] David B. Kirk. SMART (strategic memory allocation
for real-time) cache design. In IEEE Computer Soci-
ety Press, editor,Proceedings of the Real-Time Systems
Symposium - 1989, pages 229–239, Santa Monica, Cal-
ifornia, USA, December 1989. IEEE Computer Society
Press.

[3] Andrew Wolfe. Software-based cache partitioning for
real time applications. InProceedings of the Third
International workshop on Responsive Computer Sys-
tems, September 1993.

[4] Swagato Basumalik and Kelvin D. Nilsen. Cache is-
sues in real-time systems. InProceedings of the ACM
SIGPLAN Workshop on Language, Compiler, and Tool
Support for Real-Time Systems, June 1994.

[5] Hiroyuki Tomiyama and Nikil Dutt. Program path anal-
ysis to bound cache-related preemption delay in pre-
emptive real-time systems. InProceedings of 8th In-
ternational Workshop on Hardware/Software Codesign
(CODES2000), pages pp. 67–71, May 2000.

[6] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe.
Performance estimation of embedded software with in-
struction cache modeling.ACM Transactions on Design
Automation of Electronic Systems, 4(3):257–279, July
1999.

[7] C. Healy, R. Arnold, F. Mueller, D. Whalley, and
M. Harmon. Bounding pipeline and instruction
cache performance.IEEE Transactions on Computers,
48(1):53–70, January 1999.

[8] Henrik Theiling, Christian Ferdinand, and Reinhard
Wilhelm. Fast and Precise WCET Prediction by Seper-
ate Cache and Path Analyses.Real-Time Systems,
18(2/3), May 2000.

[9] Jeffrey C. Mogul and Anita Borg. The effect of con-
text switches on cache performance. InProceedings of
the 4th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 75–84, Santa Clara, CA, USA, April 1991.

[10] Lennart Lindh, Tommy Klevin, and Johan Furunäs.
Scaleable architecture for real-time applications –
SARA. In Proceedings of SNART 1999, Linköping,
Sweden, 1999.

[11] Johan Furunäs, Johan Stärner, Lennart Lindh, and
Joakim Adomat. RTU94 – real time unit 1994 – ref-
erence manual. Technical report, Dept. of computer
engineering, Mälardalen University, Västerås, Sweden,
January 1995.

[12] Peter Nygren and Lennart Lindh. Virtual communica-
tion bus with hardware and software tasks in real-time
system. InProceedings for the work in progress and
industrial experience sessions at 12th Euromicro con-
ferance on Real-time systems, June 2000.

[13] Mohammed El Shobaki. Non-intrusive hard-
ware/software monitoring for single- and multiproces-
sor real-time systems. Technical report, Mälardalen
Real-Time Research Centre, Västerås, Sweden, April
2001.

[14] Motorola Corp. MPC750 RISC Microprocessor Users
Manual, August 1997.

[15] Motorola Corp.Errata to MPC750 RISC Microproces-
sor Users Manual, July 1999.

[16] Henrik Thane.Monitoring, Testing and Debugging of
Distributed Real-Time Systems. Doctorial thesis, Royal
Institute of Technology, KTH and Mälardalen Univer-
sity, Stockholm and Västerås, Sweden, May 2000.

[17] Rabindra P. Kar. Implementing the rhealstone real-time
benchmark.Dr. Dobb’s Journal, pages 46–55 and 100–
104, April 1990.

[18] J. V. Busquets-Mataix, A. Wellings, J. J. Serrano,
R. Ors, and P. Gil. Adding instruction cache effect to
schedulability analysis of preemptive real-time systems.
In IEEE Real-Time Technology and Applications Sym-
posium (RTAS ’96), pages 204–213, Washington - Brus-
sels - Tokyo, June 1996. IEEE Computer Society Press.


