
The state of the art in

Cache Memories and Real-Time Systems

MRTC Technical Report 01/37

Filip Sebek

Department of Computer Engineering
Mälardalen University

Västerås, Sweden

Presented 2001-09-28, revision III

ii

Abstract

The first methods to bound execution time in computer systems with cache memories were presented
in the late eighties — twenty years after the first cache memories designed. Today, fifteen years later,
methods has been developed to bound execution time with cache memories. . . that were state-of-the-
art twenty years ago.

This report presents cache memories and real-time from the very basics to the state-of-the-art of
cache memory design, methods to use cache memories in real-time systems and the limitations of
current technology. Methods to handle intrinsic and extrinsic behavior on instruction and data caches
will be presented and discussed, but also close issues like pipelining, DMA and other unpredictable
hardware components will be briefly presented.

No method is today able to automatically calculate a safe and tight Worst-Case Execution Time
(WCETC) for any arbitrary program that runs on a modern high-performance system — there are
always cases where the method will cross into problems. Many of the methods can although give very
tight WCETC or reduce the related problems under specified circumstances.

i

2001 c
 Filip Sebek

Mälardalen Real-Time Research Centre
Department of Computer Engineering
Mälardalen University
Västerås, Sweden

This document was written in the text editor Emacs 20.7.1, typesetted in LATEX, spell and grammar checked in
Microsoft Word 2000 and compiled with MikTeX 2.1. Figures were created bygnuplot 3.7.1, gpic by
B.W. Kernighan anddot from AT&T Bell labs.

Contents

1 Introduction to cache memories 1
1.1 Locality . 1
1.2 Cache basics. 2

1.2.1 Placement . .. 2
1.2.2 Probing 3
1.2.3 Writing . 4
1.2.4 Replacement. 5

1.3 Implementative perspectives . .. 6
1.3.1 Partitioning the cache organization. 6
1.3.2 Look through & look aside. 7

1.4 Performance. 8
1.4.1 Size. 8
1.4.2 Replacement algorithms. 9
1.4.3 Locality . 10

1.5 Evolution – theory and practice .. 10
1.5.1 Sector cache memories .. 10
1.5.2 Multiple levels of caches. 11
1.5.3 Small fully associative caches in co-operation. 12
1.5.4 Inexpensive set-associativity 13
1.5.5 Skewed association 16
1.5.6 Instruction fetching and comparing tags simultaneously. 17
1.5.7 Trace cache .. 17
1.5.8 Write-Buffers and pipelined writing. 19
1.5.9 Early restart .. 19
1.5.10 Critical word first. 20
1.5.11 Non-Blocking Cache Memories .. 20

1.6 Prefetching . 21
1.6.1 Prefetching with software. 21
1.6.2 Prefetching with hardware. 22

1.7 Software design 22
1.7.1 Compiler optimizations .. 22
1.7.2 Code placement. 23

1.8 Case studies on single CPU systems (no RT aspects). 24
1.8.1 Intel Pentium III . 24
1.8.2 Motorola Power PC 750. 25
1.8.3 StrongARM SA-1110 .. 27

iii

iv CONTENTS

2 Real-Time and unpredictable hardware 31
2.1 Introduction to real-time. 31
2.2 Real-time and scheduling. 32

2.2.1 Static scheduling algorithm example: Rate monotonic. 32
2.2.2 Dynamic scheduling algorithm example: Earliest deadline. 33

2.3 Execution Time Analysis. 33
2.3.1 Software analysis. 33

2.4 Cache memories in RTS. 34
2.4.1 Write-back or write-through? . .. 35
2.4.2 Better and worse performance with cache memory = loose WCETC 35

2.5 Other unpredictable hardware issues in Real-Time systems 36
2.5.1 Translation look aside buffers and virtual memory 36
2.5.2 Instruction pipelining . .. 37
2.5.3 Direct Memory Access - DMA . .. 39
2.5.4 High priority hardware interferences. 40

3 Analysis on cache memories in real-time systems 43
3.1 Intrinsic interference. 43

3.1.1 Integer Linear Programming (ILP) methods 43
3.1.2 Static analysis with graph coloring. 45
3.1.3 Abstract Interpretation .. 46
3.1.4 Data flow analysis 48
3.1.5 Reducing and approximative approaches 53

3.2 Extrinsic interference. 55
3.2.1 Partitioning by hardware. 56
3.2.2 Partitioning by software. 57
3.2.3 Analysis methods. 59
3.2.4 Cache-sensitive scheduling algorithms. 63
3.2.5 Abstract interpretation approach .. 63
3.2.6 WCET measurement with analysis support 63
3.2.7 Task layout to predict performance (and minimize misses). 64

3.3 Special designed processors and architectures. 66
3.3.1 MACS . 66
3.3.2 A hardware real-time co-processor — the Real-Time Unit. 67

3.4 Summary .. 68

4 Conclusions 69
4.1 Summary .. 69

4.1.1 Modern cache memories 69
4.1.2 . . . in real-time systems .. 69
4.1.3 Extrinsic behavior 69
4.1.4 Intrinsic behavior. 70

4.2 Open areas and future work 70

Chapter 1

Introduction to cache memories

When the gap between CPU and memory speed has increased as long as computers has been made
by semiconductors (Figure 1.1), the idea of a memory hierarchy with cache memories that increase
performance substantially, is quite common knowledge. The knowledge about how cache memories
actually works is although not that common even if it has been described in many text books [HP96]
[Ekl94] that has been used in undergraduate courses. This report will give a brief summary on how
cache memories works to be complete.

1

10

100

1000

10000

100000

1980 1985 1990 1995 2000 2005

P
er

fo
rm

an
ce

Year

Moores law

’cpu’
’memory’

Figure 1.1: Moore’s law shows that technology enhancements has been put into performance on the
CPUs and size on memory. The performance gap widens. . . From [HP96]

1.1 Locality

One fundament of cache memories islocality that either can be temporal or spatial.

� Temporal locality(also calledlocality in time) concerns time. If a program use an address the
chance is bigger to use it in the near future than an arbitrary other address.

1

2 CHAPTER 1. INTRODUCTION TO CACHE MEMORIES

� Spatial locality(also calledlocality in space) states that items that are close to each other in
address space tend to be referred close in time too.

The statements above builds on the fact that instructions are formed in sequences and loops, and that
data is often allocated as stacks, strings, vectors and matrices. Sometimes alsosequential localityis
mentioned when discussing locality; memory locations are accessed in order in some types of data
accesses as they are for instance in instructions streams and disk accesses. Sequential locality is often
defined as a subset of the spatial locality definition.
With the spatial behavior of programs in mind, much sense would be to load more data from the
underlying hierarchic memory at once to take advantage of greater bandwidth and long latency that
characterizes primary memory. This chunk of data is calledcache line (line)and is the smallest piece
of data a cache handles. There physical location in the cache memory where the line is stored is called
a cache block (block). In most cases no distinction is however made between “block” and “line” and
are often referred as equivalents.

1.2 Cache basics

1.2.1 Placement

A cache memory can be viewed as a hardware implementation of a hash table where the primary
memory address is the key. A straight forward method is to have just one distinct place for a block in
the cache —direct mapped. The mapping is usually

(Block address)MOD (Number of blocks in cache)

that can be illustrated with the following example:
The cache size is 512 blocks and a cache block is 16 bytes (see Figure 1.2).. In this case the user
is interested to access all bytes independently which means we have to uselog216 = 4 bits (more
realistic is to read 16, 32 or 64 bit-words at once since 8-bits machines are rare now days). If the
address to the primary memory is$012345abHEX then the 4 least significant bits can be ignored since
they are used to address a byte in the block.

$012345aHEX MOD 512DEC = 145HEX = 325DEC

The performance of a direct mapped cache will be analyzed in section 1.4, but as it will be shown
that there are some drawbacks of the direct mapped concept, also two other common implementations
must be presented:

� If the block can be found and placed anywhere in the cache, the cache memory is said to befully
associative.

� A cache memory that can place a block in a set of places is calledset-associative cache memory
. The cache is then organized inways(sometimes also calledbank) where 2,4 or 8 ways are the
most common. This means that a direct mapped cache is a 1-way set associative cache, a fully
associative cache memory have one set and that a direct mapped cache with 128 sets is equal in
data size with a 4-way set associative cache memory with 32 sets if the block size is the same.
To calculate where a which set of ways a block can be placed the formula must be modified to

(Block address)MOD (Number of sets in cache)

For an illustration of the set associative cache memory see (Figure 1.3).

1.2. CACHE BASICS 3

17 11 2

V Tags Data

0
1

511

Comparator MUX

32 bit data
miss/hit

8>>>>>>>>>>>><
>>>>>>>>>>>>:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Figure 1.2: Example of a 8 kB direct mapped cache memory with 512 sets and a block size of 16 bytes.
The CPU always reads 4 bytes when addressing and is able to address 1 GB (230) of primary memory
address space.

1.2.2 Probing

To find out if a block is in the cache two pieces of information are necessary; avalid- or invalid-flag
and atag for each block.
A tag can be any bit-pattern as long as it is unique in the set. An easy solution is to let the tag be
the primary address, but since the least significant bits that address in the block and map into the sets
would be redundant information, these bits can be ignored.
When computer system starts, the cache memory is reseted (also calledflushed) and all blocks are
marked as invalid. When a set is addressed in the cache probes (compares) all valid tags in the set and
if a comparison is equal in one of the ways we get ahit and the data is transferred in the fast manner the
cache is supposed to work like. Invalid tags will never result in a hit. If all tags in the set are unequal to
the comparing one, the cache memory indicates amissand the correct block must be loaded from the
underlying memory (primary memory, level-2 cache etcetera). The new loaded block will be marked
as valid.

Cache misses can occur for three reasons – also mention as the “three-C” [HP96].

� Compulsory – the line is not in the cache since the associated blocks are empty (invalid). These
misses are also calledinitial or transient.

� Conflict – the line is not in the cache and all blocks associated to the set are being used (valid)
by other lines.

4 CHAPTER 1. INTRODUCTION TO CACHE MEMORIES

21 6 3

*

8>>>>>>>>>>>><
>>>>>>>>>>>>:

0
1

63
| {z } | {z }

3
2

1
Comparator 0

* MUX 32 bit data

way select

Logical
OR

Hit

Figure 1.3: Example of a 4-way set-associative cache memory with 64 sets and a block size of 32
bytes. The data size of the cache is4 ways � 64 sets � 32 bytes=block = 8192 bytes

� Capacity – the complete cache memory is full by other lines than the requested. In nearly all
cases only a full associative cache memory can be “full” in this kind of way.

1.2.3 Writing

Cache memories that can hold data must be able to handle writing/store operations. Writing on a hit
in the cache can be done in two different manners:

� Write-throughwhich means that any writing to the cache is also made to the lower memory
level.

� Copy-backor write-backwrites in the cache only and writes to the lower memory only when the
block is replaced.

The advantage with write-through is that the underlying memory level is coherent which simplifies
multiprocessor systems. Copy-back’s major pro is the reduction of bus traffic that is both faster and
reduces the average latency time for other bus masters. To solve inconsistency with lower memory

1.2. CACHE BASICS 5

levels, a flag calleddirty or D can be added. This means that besides the tag and the valid-flag and,
each block also has to have a D-flag where the block can be dirty (modified) or clean (unmodified).
Writing on a miss has also two strategies:

� Write allocate. The block is loaded into the cache followed by a write-hit-action that is described
above. When a miss occurs in the cache with write allocate and the block is dirty, the block in
the cache is first written to the lower level memory and then the new loaded block replaces the
old one. Clean blocks can always be directly overwritten which means that the elapsed time on
a miss can differ. (See also Figure 1.4)

� No-write allocate. The block is only modified in the lower level — not in the cache. The idea
behind this is that a program or function ends its operation with storing a result. This result will
not be used so a replacement with a valid block could be a bad idea. The concept works well in
these kinds of programs with write-through caches.

Case timeCPU
read hit tA1
WB write hit tA1
WT write hit tA2
WT read miss tA1 + tA2B=I
WB read miss, clean block tA1 + tA2B=I
WB read miss, dirty block tA1 + tA2B=I + tA2B=I

write allocate no write allocate
WT write miss tA2B=I + tA2 tA2
WB write miss, clean block tA1 + tA2B=I tA2
WB write miss, dirty block tA1 + tA2B=I + tA2B=I tA2

Figure 1.4:Access time with different cache implementations, states and actions.tA1 is access
time for the cache,tA2 is access time for the next lower memory level,B stands forblock sizeand I
for data bus width. The cache is attached in a look through manner (see chapter1.3.2)

1.2.4 Replacement

If one of the blocks must be replaced, due to a cache miss, one must be chosen. Ideally it should be
the one that won’t be used in the (near) future but unfortunately an oracle isn’t possible to implement,
so other algorithms has to be used:

� Random— replace an arbitrary block in the set.

� Least Recently Used - LRU— log all accesses and replace the block that has been used least.

� Other ideas that are bad in some kind of sense or very hard to implement like:

– First In First Out - FIFO is a commonly used algorithm in other application but it has
nothing to do with locality. Only because a block was read a long time ago, doesn’t mean
that it hasn’t been used much.

6 CHAPTER 1. INTRODUCTION TO CACHE MEMORIES

– Least Frequently Used - LFUmight seem to be a good idea. The flaw with LRU is that it is
hard to implement. In this case also the time must be logged and to decide what block that
has been used least a complex calculation has to be done. Do not forget that a fast cache
memory has to do everything within a single clock cycle. Another way to solve the time
costly calculation would be to use (large) pre-calculated tables.

A simplified version is to just associate a counter to each block in the set and then increase
the counter for each access. The block in the set that has the lowest counter will be ex-
changed on a miss and the blocks counter will be reset to zero. The disadvantage with this
simplification is that words that have been recently loaded into the cache have a low count
and that words that has been heavily used in a tight but now exited loop very hardly will be
exchanged. To compensate for this effect the cache controller could decrease all counters
periodically but then one must choose the size of the period. All these problems can surely
be solved but to a cost of a complex and large hardware solution.

Except for the random-case and direct mapped caches (that has no choice), each set has to log and
store access information to maintain the selection algorithm. Together with the valid- and the eventual
dirty-bit, the log-bits makes the set’s so calledstatus-bits.
Pseudo-varieties are commonly used with all algorithms. A pseudo-random strategy is good enough to
react randomly, but it simplifies debugging since any state can be reproduced. On a highly associative
cache many bits must be used to keep track of the accesses in a LRU based implementation. To main-
tain and compare bits is a complex task that takes both space and time. A pseudo-LRU implementation
reduces both space and time. See the case studies in this report for example.
The random algorithm works surprisingly well. Only some few percent worse hit-ratio affects the
performance compared with LRU, but since the miss penalty can be rather high this difference in
execution time can be much greater than that.

1.3 Implementative perspectives

Even if all the basic parameters that has been described in the previous section, also other concepts
and ideas must be carefully chosen. The author has drawn the line here between basics and the rest
since the cache actually works when all these four aspects has been considered.

1.3.1 Partitioning the cache organization

The cache memory can be unified to contain both instructions and data after von Neumann’s "stored
program concept" — also called Princeton architecture. In contrast to this data and instructions can
be divided into two physically separated cache memories; one for data and one for instructions —
also called Harvard architecture. The advantage of a unified cache memory is that the computer will
be more general since it can be efficient in both data and instruction intensive programs. A split
cache structure demands the constructor to choose the absolute size of the both memories, which in
many application cases will not use the both memories full size. An instruction intensive application,
like a database program, will not use much data cache and a scientific or mathematical application
with vectors, matrices and narrow loops will fill up the data cache and not use the instruction cache.
Such partitioning is not necessary in a unified cache memory. The really big advantage of the Harvard
architecture is the bandwidth that will be doubled and reduce structural hazards in instruction pipelines.
Many measurements has been done by several researchers and both architectures can show better

1.3. IMPLEMENTATIVE PERSPECTIVES 7

performance than the other in special cases. It has also been showed that the best solution is very
application dependable [Smi82].
The (cache) memory can also be divided into other constellations such as giving each program, process
or task a part of the cache to guarantee all running programs to have at least a minimum of cache space.
The compiler can do that by logically place parts of the program in different address spaces that doesn’t
interfere the same blocks, or by hardwiring the hardware in the same way. In real-time applications this
concept can also make the system more predictable which will be discussed in the Real-Time chapter
(page 31) in this report.

1.3.2 Look through & look aside

Cache memories can be attached to a system in two ways:

� Look through or serialized (fig. 1.5); between the CPU core and the memory which will iso-
late the CPU from the memory which will simplify bus arbitration and reduce bus traffic. No
addressing on the bus is performed on read-hits, and write-actions can also be reduced. The
average access-time can be calculated with:

AverageAccessTime = HitTime +MissRate �MissPenalty (1.1)

CPU
Cache

memory

bus

Primary
memory

Figure 1.5: A look-through model

� Look aside or in parallel (fig. 1.6); All memory accesses goes to the main memory directly but
in parallel the cache makes a tag match and if it is a hit, the cache interrupts the memory access
and deliver the data to the CPU. The cache can be an own component that easily can be attached,
detached or replaced and all cache misses will be handled faster since the memory access and
tag compare is done in parallel.

AverageAccessTime = HitRate �HitTime +MissRate �MissPenalty (1.2)

In reality this solution will in fact become a disadvantage since caches and CPU:s today works
at very much higher speed than the bus. This means that the penalty to evaluate a miss or hit
is just a small fraction of the memory access and added to that all memory accesses goes out
on the slow system bus with all the delay and increased traffic, the look-aside-concept is a more
and more rare choice.

8 CHAPTER 1. INTRODUCTION TO CACHE MEMORIES

CPU
Cache

memory

bus

Primary
memory

Figure 1.6: A look-aside model

1.4 Performance

A cache memory can simply be described as a small fast memory and its main purpose is to make
programs run faster. The first question to ask is then“How much faster?”. Since caches concerns
purely and nothing else but performance (which in the other hand virtually every implementative issue
also concerns, many performance studies has already been done [PHH89] [Smi82]. Performance mea-
surement can either be done by hardware on a working system or by simulation and concerning cache
memories, simulation is the far most used since hardware configuration is more difficult to change than
a parameter to software based simulator driven by memory access traces (trace-driven simulation) de-
rived from different type of applications. Measuring on a running system is complicated but will give
a true measurement since it will all code running at the computer (including operating system etc.), but
in many cases a small amount of extra code must be included to make the measurement. A third way
is to estimate the performance analytically [AHH89] with a cache model and by representing cache
properties that affect performance. Comparing to trace-driven simulation, the analytical method can
save lots of simulation time.
The speedup of an application that can be gained by a cache memory is depending at the application’s
structure and the cache memory’s internal structure [Smi82]. A cache will gain more if the application
has a “high deree of locality”. Measuring locality is discussed in section1.4.3, The best metrics to use
when measuring performance isexecution time, which in cache memory cases is reduced toaverage
access time. Miss-ratio, bandwidth, hit-time etc. are all insufficient measurements if stated alone since
execution time is the only thing that really matters — especially in real-time systems.

1.4.1 Size

As seen in equation (1.1), an important parameter in performance aspects,hit-ratio is one key to suc-
cessful cache memories. Large cache size increase hit-ratio is the first conclusion to state. Large caches
are on the other hand more expensive and slower. How much slower depends on which parameter the
computer architect tunes.

Blocksize

Choosing larger blocks is the easiest way and the method that generates least hardware overhead area
to increase the cache size. More bits will be needed to point out the correct word in the block and the
TLB and the memory area for storing tags will be some bits smaller since fewer bits will generate the
tag.

1.4. PERFORMANCE 9

As seen in table 1.4 theB=I factor is an important factor when calculating penalties. To have a low
penalty the block size should be as large as the bus width or at least as close as possible. If the block
is smaller it is a waste of bus bandwidth, but on the other hand large blocks are costly to load into
the cache and very large blocks will as seen in figure 1.7 result in lower hit-ratio even if the cache
is larger. The explanation is that the probability to access all the parts of the block becomes lower
— as the principals of locality states. The new loaded large block will push some other data out that
probably also could be used. The large blocks “pollute” each other and we call the point where hit-ratio
decreases thepollution-point.

0

5

10

15

20

25

32 64 128

M
is

s
ra

te
 (

%
)

Block size

Blocksize impact

’1k’
’4k’

’16k’
’64k’

’256k’

Figure 1.7: The block size impact on miss ratio. Observe the “pollution-point” for each cache size.
From [HP96]

Number of sets

Increasing the number of sets is also an easy task. The number of significant bits that decodes which
set of blocks that is pointed out has to be increased but also the area to store the increased amount of
tags, LRU-information and other statusbits.

Associativity — number of ways

The most expensive way to increase cache memory size is to make it more associative. This means that
there are more alternatives to place the block into the cache memory hence it will be utilized better
and less space will be unused. This also means more administration for the replacement algorithm
and more bits has to be compared by the tag matching unit since the tag field also will grow. Large
associative cache memories are therefore slower and larger (more expensive) than low associative or
direct mapped caches.

1.4.2 Replacement algorithms

The efficiency of the replacement algorithm in a set-associative cache memory can also be measured
or calculated. A very advanced replacement algorithm can take lots of time to calculate which leads
to poor access time on writes and replacements. On the other hand a poor algorithm leads to wrong

10 CHAPTER 1. INTRODUCTION TO CACHE MEMORIES

replacement, which punish the overall performance with a poor hit ratio. In reality it has been shown
that the hit ratio differs very little between different replacement algorithms on caches with a small
number of ways like two or four. On a simulator used in undergraduate education, three different
replacement algorithms can be chosen. On a four-way set-association the same program gave the
following result;

Replacement algorithm Hit ratio

Random 78,6%
FIFO 79,1%
LRU 81,1%

One should of course never forget that hit-ratio is very application specific depending on locality of
code and data. On the other hand miss penalty is very costly which leads to the conclusion that
execution time will increase more rapidly than miss ratio. Two percent change in hit ratio can in some
cases increase performance with ten percent on a modern processor.
What kind of replacement algorithm that is used depends today on the associativity since that is the
most important factor regarding cache memory access time. The more associativity, the more work to
do during a cache access.

Associativity Replacement algorithm Example

-4 LRU Intel Pentium
8 Pseudo LRU Power PC

16- FIFO Strong-ARM

The largest impact of replacement is code and data locality, and this leads to the conclusion that a cache
optimizing compiler is generally a better choice to increase performance than an advanced replacement
algorithm.

1.4.3 Locality

The “degree” of locality can be determined by for instance Grimsrud’s analytical methods based on
stride and distance or a simpler model with just measuring “stack distances”[BE98]. There is on the
other hand no generally accepted model of program behavior, which makes it difficult to define metrics
for such properties.

1.5 Evolution – theory and practice

In reality no modern cache memory is that simple as described in the previous sections. By studying
program locality and cache behavior, many enhancements have been implemented to the cache, but
also memory organization in general to reduce penalties and increase hit-ratio.

1.5.1 Sector cache memories

Sector (also called sub-block) caches differ from regular cache memories by allowing more than one
block to be associated with each address tag. A block that is associated to a tag is called asectorand
the unit that is loaded or stored on a cache miss is called asubsectoror subblock(See Figure1.8).

1.5. EVOLUTION – THEORY AND PRACTICE 11

a) Address Tag Cache Block

V D

b) Address Tag Subsector 3 Subsector 2 Subsector 1 Subsector 0

V D V D V D V D

Figure 1.8: A schematic illustration of the difference between a normal cache block frame (a) and a
sector frame (b) in a unified or data sector cache. ’V’ stands for validbit and ’D’ for dirtybit.

Each subsector must have a corresponding valid bit and, if it is containing data and copy-back strategy
is used, also a dirty bit.
The advantage of this approach is that less data space for storing tags is required which means that
overhead costs and space can be reduced. The second benefit is that dividing a block into sub blocks
reduces the penalty of a cache miss if all memory accesses take equally long time. Unfortunately
primary memories work in burst modes, which means that bandwidth is increased, but with the same
latency. The block should in this case be equal to the data size of the burst to exploit this feature to the
maximum. The next disadvantage is the price for reduced flexibility of mapping subsectors into the
cache — generally meaning increasing miss ratio.
Other benefits has been discovered by using sector caches such as reduction of bus traffic since each
block transfer is small which also reduces miss latency. On the other hand a sector is replaced in most
cases before all its subsectors are occupied with data, which can be interpreted as bad utilization of
cache space. The second drawback is when a sector is replaced; all of its subsector must be replaced (or
invalidated) even if only one subsector is or will be fetched and used. In [RS99] a pool of subsectors is
suggested where subsectors are allocated dynamically to reduce the negative parts of sectorizing cache
memories.

1.5.2 Multiple levels of caches

A larger cache memory has a better condition to keep old data that will be reused much later. To just
make a cache memory bigger introduces however some problems:

� A large chip is more expensive to manufacture since the yield is lower when the die-area is larger
[Ekl99].

� A large chip is slower than a small since the speed of light a limiting factor in this case.

� To interconnect many small cheap ICs makes distances between the gates even longer (slower)
and PCB-space is even more expensive, so that solution is out of the question.

These facts makes it clear that there are no simple solutions which makes the“golden middle way”a
reasonable path. A cache memory that is so big that it can hold the majority of the most frequently used
functions but much faster than a regular memory can be connected between the fast cache memory and
the primary memory. It can of course not be as fast as the level one (L1) cache but it will boost up
performance substantially. A level two (L2) cache is normally 10-30 times larger than the L1-cache
and is 2-10 times slower. If a L1-cache is for example 32kB and can be accessed in 1 clock cycle, the
L2 should be 512kB and the access time can be expected to be 3 clock cycles. (See Figure1.9)

12 CHAPTER 1. INTRODUCTION TO CACHE MEMORIES

CPU core

Level 1
32kB Cache Memory

1 cc accesstime

Level 2
256kB Cache Memory

2 cc:s accesstime

Level 3
2MB Cache Memory

4 cc:s accesstime

Main Memory
20 cs:s accesstime

CPU core

I-CM
16kB

D-CM
16kB

Level 2
256 kB Cache Memory

2 cc:s accesstime

Main Memory
20 cs:s accesstime

Figure 1.9: Multiple levels of caches. The model to the right has a partitioned level-1 cache. Note:
“cc” = clock cycle

1.5.3 Small fully associative caches in co-operation

By adding a very small fully associative cache in the ordinary cache system, conflict misses can be re-
duced — especially direct mapped cache memories since the concept increases “over-all associativity”
[Jou90].

Miss caching

A miss cacheis a small fully associative cache memory that contains only two-five cache blocks and
is located between the first and second level of the caches. Since it is so small it can easily fit on the
same chip as the CPU core and level one cache memory. When a miss occurs, data is return to both the
cache memory and the miss cache under it. Replacement policy can be any but the LRU is the most
common. When the cache memory is comparing a tag, the miss cache looks up all its entries as well.
If a hit occurs only in the miss cache, the cache can reload the data next clock cycle and in that case
save time since the long off-chip penalty will be replaced.
Especially data conflict misses are removed (compared with instructions) since data tends to be smaller
in space than function calls (procedures for instance). The miss cache is to small to contain the com-
plete outswapped function so it will help very little. On the other hand comparing two data strings that

1.5. EVOLUTION – THEORY AND PRACTICE 13

Address from
processor

tags data

tag and comparator one cache block of data MRU entry
tag and comparator one cache block of data

tag and comparator one cache block of data

tag and comparator one cache block of data

tag and comparator one cache block of data LRU entry

To next lower level cache From next lower level cache

Data to processor

Figure 1.10: A miss cache organization

are thrashing each other will not fill the miss cache and can therefore take greater advantage of it.

Victim caching

On cache misses a miss cache loads new data from the lower level and puts it into both the miss cache
and the regular cache. This is of course waste of expensive cache memory (especially the miss cache).
A better way to utilize the space is to store the outswapped cache block into the fully associative cache
and in this case no duplicates are necessary. The outswapped cache block is also called the victim
block which naturally makes the fully associative cache be called avictim cache.
A victim cache is an enhancement of the miss cache so it reduces the conflict misses always better.
Depending on the application, a four-entry victim cache removed 20-95% of the conflict misses in a
4kB direct-mapped cache.

1.5.4 Inexpensive set-associativity

Increasing associativity is common way to reduce miss rate but to the price of larger and more ex-
pensive cache directory and a slightly slower access/hit time. Some ideas how to make direct mapped
caches act like set-associative caches will be presented in the following subsections.

Sequential associativity

Instead of havingn parallel tag comparators in a n-way set-associative cache a direct mapped cache
could sequentially search throughn tags forward from the origin point. Thisnaiveapproach will make

14 CHAPTER 1. INTRODUCTION TO CACHE MEMORIES

Address from
processor

Address to next
lower cache

tags data

tag and comparator one cache block of data LRU entry
tag and comparator one cache block of data

tag and comparator one cache block of data

tag and comparator one cache block of data MRU entry

Data to processor

Data from next
lower cache

Figure 1.11: A victim cache organization

the average number of probes(n�1)
2 + 1 [KJLH89] which i rather costly compared to just one parallel

probe in the set-associative organization. One improvement of the concept is to order the stored tags
so the most probable will be probed first. Such an order could be placing theMost Recently Used
(MRU) tag first which is reasonable due to temporal locality. On a hit in the cache the order is updated.
Instead of swapping the tags and blocks around which is rather costly in time, a special field informs
in which order the tags should be probed. An LRU-replacement algorithm can also use this field. A
second improvement of the sequential search is to make the probing in two steps. In step one a fraction
of tag bits are probed and only the one that passes the first test will be examined further.
Any of the mentioned implementation will be less costly than a true set-associative but to the price of
a longer average hit time.

Pseudo-associativity

By making a cache memorypseudo-associativealso calledcolumn-associative[AP93] an associativity
can be achieved. When a miss occurs in the cache memory an alternate hash function (in this section
called“rehash function”) is called to probe a second set of tags. The rehash function can be imple-
mented real simple by just for instance inverting the most significant bit in the look-up address. If a
hit occurs it’s called a second-hit or pseduo-hit. This means that the cache has two hit times; a regular

1.5. EVOLUTION – THEORY AND PRACTICE 15

and a pseudo-hit time. A dilemma can now occur; the (most) used block can be in the alternative
pseudo-way, which would lead to worse performance. To reduce this effect each hit in the pseudo-
block generates a swap with the first-block, which at average should be better — stated by temporal
locality — choice than living with the dilemma. The cost for this “FIFO-solution” is that the swap also
costs some time in average access time.

set
000

001

010

011

100

101

110

111

a1

a2

set
000

001

010

011

a1 a2

set
000

001

010

011

100

101

110

111

a1

a2

set
000

001

010

011

100

101

110

111

a1

a2

(3b)(3a)(2)(1)

Figure 1.12: (1) Direct mapped cache (2) 2-way set associative cache (3a) Pseudo associative cache –
most significant bit is flipped in the rehash function (3b) Pseudo associative cache – all bits are flipped
in the rehash function

The use of a rehash function may result in a potential problem. A bit flipped address must never been
mistaken by an unaltered address since a block in the cache must have a one-to-one relation with a
primary memory location. A hazard could change the semantics or data values of a program. The
problem can however easily be solved by adding information to the tag about it’s placement condition.
A bit that states if the bits are flipped or merging the unaltered most significant bits to the tag are two
solutions. A third solution is to merge the hash functions index-bits to the tag (figure1.13).

tag index

1, $11 00010 001

2, $19 00011 001

3, $1d 00011 101

tag+Rbit index

000100 001

000110 001

000111 101

set
000

001

010

011

100

101

110

111

correct hit

wrong hit

correct miss

(b)(a)

Figure 1.13: Example of potential hazardous behavior. The pseudo associative cache has 8 blocks
which needs 3 bits to address and the rest of an 8-bit address will make the tag (5 bits). Scenario: the
address $11 will target at index 001 and $19 will after a miss go to the pseudo block 101. When $1d
enters the scene aiming at 101 (a) will fault, and (b) with an additional merged index bits will cope the
situation correctly.

A direct mapped pseudo-associative cache memory withone rehash function will give almost the
same hit ratio as a two-way set-associative cache memory. A pseudo-associative cache memory can of
course be equipped with more than one rehash function and hereby make it more associative but also
increase the amount of hit-times.

16 CHAPTER 1. INTRODUCTION TO CACHE MEMORIES

Even if associativity can be achieved by a low cost, it generates the problem with variable hit times —
something that’s not too thrilling when designing pipelined implementations or calculating execution
times in real-time applications.

1.5.5 Skewed association

To map an address (line) into a set of blocks in the cache memory has the disadvantage that the hashing
function that points out the set of blocks will make some lines to compete for the same set — a“hot-
spot”. A skewed association [Sez93] uses different hashing functions for each way of blocks in the
cache which reduces the amount of hot-spots and increases hitratio.
The placement algoritm as presented in 1.2.1 must in this organization be extended with one or more
skewing functions. A good skewing function must spread over a large number of lines in other blocks
and it must be simple to compute to not extend the hit time of the cache. Such properties can be
achieved by using a perfect shuffle[Sto93] of the address. By XORing some address bits; new “ad-
dresses” will be generated that can be used to point in the cache memory.
Example: A 2-way set-associative cache-organization with 64 blocks/way and 64 bytes/block each
way must be addressed with 6 bits; in this case bitsfa11 � a6g are dedicated to point out the sets.
To build a similar cache with a skewed approach some bits can be XORed with each other to shuffled
abit more. Bitsfa11 � a6g will be replaced with (observe the order)f(a7 � a13); (a9 � a15); (a11 �
a17); a6; a5; a10g in way 1 andf(a6 � a12); (a5 � a14); (a10 � a16); a7; a9; a11g in way 2. Another
example is illustrated in fig 1.14.

a, b, c
f()

a, b, c

f()

g()

(a) (b)

Figure 1.14: (a) is a 2-way set-associative cache that is accessed with the three addresses
fa; b; cg9f() ! ff(a) = f(b) = f(c)g all will correspond to and compete for two blocks in the
same set. (b) has one skewed function to each way(f(); g()) which has the propertyff(a) = f(b) =
f(c) 6= g(a) 6= g(b) 6= g(c)g

A replacement algorithm other than a random or pseudo-random is less than a nontrivial task since
the set of blocks isn’t fixed — which also is the key concept of skewed association. A true LRU
implementation requires a time stamp foreveryblock in the cache which is costly and hard to handle.
By asserting a Recently Used (RU) bit associated to a block on an access, periodically reset and a
replacement policy prioritized by different conditions a pseudo-LRU behavior is implemented also
referred asNot Recently Used Not Recently Written (NRUNRW). [BEW98] propose to store a “partial
time stamp” to each block by using some high-order bits in a clock. On a miss the time stamps is
compared (modulo subtraction that also handles clock wrap around) with current time and the block
with the highest value will be replaced.

1.5. EVOLUTION – THEORY AND PRACTICE 17

Skewed association gives better performance than a regular set-associative cache; a 4-way skewed-
associative cache can outperform a 16-way set-associative cache [BS97]. The cache memory’s speedup
can be more predictable estimated[Sez97] — at least in single threaded applications.

1.5.6 Instruction fetching and comparing tags simultaneously

Most instructions has to be managed in the same way — they are fetched, decoded, executed and
finally the result is written somewhere. Instead of doing this as a four-state-machine the different parts
of the CPU could be divided and connected as an assembly line. If the machine is broken into four
(equal) pieces, this means that each part makes it work in a fourth of the original time and the clock
rate can be quadrupled. Since the pipeline’s parts can work simultaneously the processor will produce
a result each clock tick and the performance is quadrupled! The speedup of pipelining is proportional
to thedepth(number of stages) of the pipeline. See also section2.5.2 for more details about instruction
pipelining.
Instruction pipelining is an efficient way to increase CPU performance — not without problems but
they can all be solved more or less.
To keep up with today’s high clock rate, cache memories are a must and a common instruction
pipelined structure contains an Instruction Fetch and a Memory stage. These stages are connected
to an instruction respectively a data cache memory. But a pipeline is never faster than the slowest stage
and since those stages that are connected to the memories are often the slowest, the complete pipeline
will suffer. To deal with the problem, the stages are divided into substages and the rate can continue to
be high.
The MIPS R4000 has divided its’ instruction fetch stage into three sub-stages; Instruction Fetch – First
Half (IF), Instruction Fetch – Second Half (IS) and Register Fetch (RF) [Hei94].

� IF — A branch logic selects an instruction address and the instruction cache fetch begins. Si-
multaneously an address translation of the virtual-to-physical address begins in the instruction
translation look-aside buffer (ITLB).

� IS — The instruction is fetched and the virtual-to-physical address translation is completed.

� RF — Instruction decoding and cache tag probing is performed. If there are dependencies that
cannot be solved or a cache miss is detected, the three first stages in the pipeline are frozen until
the dependence has broken or the correct cache block has been loaded from the main memory.
Any required operands are fetched from the register file.

The memory stage is also divided into three stages and works in a similar way. What makes it possible
to fetch the instruction from the cache without tag comparisment is only possible in this construction
when the cache is direct mapped — which it is in the R4000. As seen in the performance section a
direct mapped cache has lower hit-ratios than set-associative solutions but the architecture wins with
higher clock rate and faster hit-time.
A set-associative cache could be used, but then the identification and register fetch hardware had to be
multiplied followed by multiplexors controlled by the duplicated cache tag probers.

1.5.7 Trace cache

Modern CPU:s fetches multiple instruction to a superscalar pipeline. Branches in the code will how-
ever cause stalls and decrease performance, since the execution path isn’t determined until the branch

18 CHAPTER 1. INTRODUCTION TO CACHE MEMORIES

instruction reaches the execution unit. The problem can be solved by branch prediction that relays on
repetitive branch behavior (see section2.5.2). This simple solution can however only cope with a fetch
of a size of a basic block — multiple branches in a single fetch cannot be handled. If a fetch occurs
over two cache lines, memory bank conflicts will cause a delay and a fetch each clock cycle will not
be possible.
These two problems can be solved if the basic blocks were stored contignous in a buffer — these
instruction streams are calledtraceswhereas the memory store is called atrace cache. An implemen-
tation is described in [RBS96]. The trace caches performance increasement rely on

� temporal locality — a referred trace will probably be fetched again

� branch behaviour — the branches that were taken will probabluy be taken in the same manner
again

Spatial locality is however not to be considered since the trace “block” doesn’t contain items that are
stored closed to the referred. The trace cache only speculates in branch behaviour, not in close objects.
The key concept of a trace cache is to to deliver “a high bandwidth instruction fecthing with low
latency”.
The following example will illustrate the concept of a trace cache and also show the difference with an
ordinary instruction cache. Ponder two instruction streams of basic blocks {ABCDE} and {FEFGH}
where the blocks are located in the memory as in figure1.15.

A

B

C

D

E

F

E

G

H

A

C2
F2

B

E2

D

C1
F1
H

E1

G

A

B

C

D

E

F

E

F

G

H

(a) (b) (c)

Figure 1.15: Code allocation in (a) primary memory, (b) 2-way set-associative instruction cache,
(c) trace cache.

Observe that items can be duplicated in the trace cache. Fetches can cross instruction cache block
boundaries and by this increase the risk of a bank conflict with a delay as a result. The trace cache
has shown 15-35% performance increase compared with a system with a regular instruction cache
[RBS99].
The Intel Pentium 4 was the first commercial CPU that was equipped with a trace cache [Int01]. Its
size is 12kB and stores decoded micro-operations to feed the execution units directly.

1.5. EVOLUTION – THEORY AND PRACTICE 19

1.5.8 Write-Buffers and pipelined writing

When the cache is writing to the lower memory level, often the cache memory (and CPU) is locked
and idle until the complete write procedure is completed — which is costly and results in reduced
performance. The write-though strategy will of course suffer more than the copy-back concept. A
solution to this problem can be awrite bufferthat is an independent unit of the cache memory. Instead
of waiting till the write is completed to the lower memory level, the write is left to the buffer to be
completed and the CPU may continue. If another write is performed before the write buffer is finished,
the CPU will have to wait. A solution to this problem is to connect more buffers in a FIFO-queue.
Data mergingin the FIFO is a method to reduce system bus traffic and the size of the queue (amount
of buffer space). When two writes to the same address space are queued in the FIFO the first (old and
“wrong” value will be merged and replaced by the new correct one. For example if all elements in a
vector are being summarized this will generate a burst of writes to the sum-variable (if the code is bad
written/compiled since it should use a register instead). With data merging only the complete sum —
the last write — will be written to the primary memory.

Write buffers gives also the possibility to givepriority to read misses over writes. When the CPU
fetches (reads) new data on misses, it would be starved (no instructions to execute) if this read stream
would be interrupted by a write. The fact that data traffic comes very often in bursts (e.g. on context
switches) makes waiting with the write till a less dense data traffic occurs sense.
This feature might although introduce some problems. What happens when data in the write buffer
is so old that the original data in the cache has been replaced and a miss occurs? The lower memory
hasn’t the correct value since it still hasn’t been written even though it “should” have been done due
to the semantics of the code. This situation is calledload hazardand [SC97] presents four different
solutions to a FIFO-organized write buffer when such an access occurs;

� Flush-full — Write all values in the buffer to the lower memory and reload it to the cache. Buffer
will be empty (flushed).

� Flush-partial — Write all values in front of the queue till the requested value to the lower mem-
ory and reload it to the cache. The last values in the FIFO will remain in the buffer (if the critical
word wasn’t the last – then the buffer will be empty.

� Flush-item-only — Only the requested value will be written to the lower memory and reloaded
to the cache. The rest of the values will remain in the buffer.

� Read-from-WB — The requested value will be written directly to the requesting unit. The
queue, cache, and lower memory will not be changed. In this case the write buffer will act like
a supplemental but temporal cache memory.

1.5.9 Early restart

When a cache access ends up in a miss, the cache memory loads a new block after an eventual write-
back if the block was dirty. When the block is on place the requested word in the block — hereby
calledcritical word — is forwarded further to the CPU. This means that the CPU is blocked during
the miss and to reduce the penalty a good idea would be to forward the critical word to the CPU as
soon as it arrives to the cache. The rest of the block can after this continue to be loaded into the cache
memory. This solution is calledearly restartand saves time especially when the critical word is at the
beginning of the block. It also means that the miss penalty will vary depending on which of the word

20 CHAPTER 1. INTRODUCTION TO CACHE MEMORIES

in the block that is being wanted — a not to tasteful property in real-time WCET-calculation. When
considering performance this concept will always gain speedup to a very low cost.

1.5.10 Critical word first

To enhance this method and also give a fixed miss penalty time is to let the cache memory ask for the
critical word first. This means that the cache memory doesn’t request for a block but for a specific word
and the lower memory have to send that first before it sends the rest of block. The “rest” is normally
sent “wrap-around”; that is the contiguous words after the critical word is sent and when it reaches
the block end it restarts at the beginning of it till it reaches the word before the critical. Example: If
the critical word in a four-word block is the third one, the words are sent in the order {3,4,1,2}. The
method is therefore even mentioned aswrap-around fill cache[WMH+97].
The lower memory have to justify it’s burst-mode to be able to handle this new feature. The perfor-
mance gain varies depending on primary memory latency, block and word size.
An illustrative example can maybe give a hint of the speedup.
The cache block is 32 bytes, the word size of the CPU is 32 bits (=4 bytes) and the data bus width is
64 bits. This means that a cache block transfer takes 4 bus reads. If the latency time to the primary
memory is 50ns with a cycle time of 20ns when accessing different memory banks, a systemwithout
the enhancement a cache miss costs50 + 3 � 20 = 110ns. Using thecritical word first-concept the
penalty will be reduced to 50ns which is more than twice as fast.
Both early restartandcritical word first gives a speedup at the first cache miss, but if the next access
(in the next CPU-clock cycle) is in the same block a new penalty will arise since the block hasn’t been
completely loaded yet. This and the fact of a more complicated low-level memory behavior requires
a rather complex implementative solution but is manageable and today most new high-performance
microprocessors are equipped with the featurecritical word first.

1.5.11 Non-Blocking Cache Memories

A cache miss will make the cache memory to go into a waiting state till it has received the correct new
block. Ponder the following section of code;

LOAD R1,R0($12) # data is not in the cache
LOAD R2,R0($56) # data is in the cache

If two consecutive instructions both read some data where the second is but the first isn’t in the cache,
the cache memory will in the first instruction enter a wait state — which normally means blocked.
An instruction pipelined or superscalar1 CPU with “data dependency checking” will detect the inde-
pendency and take precautions like stalling, register renaming or forward data to avoid the hazard. In
this specific case the two loads are independent and doesn’t belong to the same block. Anon-blocking
(also referred aslock-up freecache memory will detect a miss and start to load a new block, but it will
still be able to serve the CPU or upper memory hierarchy with other information — such as the next in-
struction’s request. The first instruction’s request is placed in a special buffer and a special engine that
is independent of the rest of the cache structure will take care of this task. How many tasks a cache can
take care of depends of how many buffers and machines that has been implemented. When all buffers
are full the cache memory will although enter a blocked state. The Intel Pentium Pro-CPU can buffer
up to 4 misses and still work. The amount of buffers needed depends on performance requirement,

1a CPU that is available to issue two or more instructions simultaneously

1.6. PREFETCHING 21

chip space available, miss penalty, system clock frequency and the application’s highest frequency of
load and store instructions in a piece of code.

1.6 Prefetching

Even if “early restart” and “critical word first” can reduce penalty, the best performance will be gained
by excluding all or at least some of the penalties. This can be achieved byprefetchingblocks before
the processor actually is requesting for them. The prefetching must however be done not to early since
they then can be replaced by other blocks, but of course not too late either since there will be a delay
with a performance loss as an result. The prefetching can be done directly into the cache or into a
special buffer.

1.6.1 Prefetching with software

When entering a new section of data or instructions the cache has to be filled with these blocks,
which of course will reduce performance. By having special prefetch instructions in the instruction
set, these instructions can be inserted several instructions ahead and by this reduce the cost of context
change. Prefetching with instructions makes only sense if the cache memory is non-blocking (see
section 1.5.11) – otherwise the prefetch instruction would stall the processor.
Certain data areas and calculations in for instance matrices will not take advantage of the temporal
locality since they only make one access in each position of the matrix and after this will go further in
the code. This kind of code will not take advantage of the cache and locality concept, and is forced to
use prefetching to reach high performance.

Example;
for(i=0; i<1000; i=i+1)
for(j=0; j<1000; j=j+1)
sum=sum+a[i][j];

The above program will not take advantage over temporal locality. The spatial locality will at least
make it possible to not decrease performance, but the performance achieved could be done with a CPU
without any data cache memory what so ever. If the cache block contains 4 integers, every fourth
access in ’a’ will end up with a miss and a cache block fill.
A prefetch of data will hide latency to the price of some extra instruction execution. Since memory
latency increases and execution time decreases this price will however be rather small;

Example;
for(i=0; i<1000; i=i+1)
for(j=0; j<1000; j=j+1)
{
if(j % BLOCKSIZE == 0)
prefetch(a[i][j+LATENCY]); /* prefetch block in advance */

sum=sum+a[i][j];
}

The first accesses in ’a’ will miss and the last prefetches in the loop will gain nothing, but all the other
accesses will take advantage of the prefetching. The higher proportional latency a cache miss yields
(compared with cache hit), the larger LATENCY-factor must be used.

22 CHAPTER 1. INTRODUCTION TO CACHE MEMORIES

By prefetching andloop unrolling, miss penalty can be reduced to zero. The loop unrolling has the
effect that more code will take more time to execute which gives the possibility to prefetch simultane-
ously as executing some other code. Loop unrolling is also beneficial to reduce bubbles in instruction
pipelining since the amount of branches will be reduced. In a tight loop, the administration of it (an
increasing counter, a compare and a branch) will consume a large part of the execution time and by
making more “real work” in the loop, a third gain of loop unrolling can be stated. The longer latency
for the fetching the more unrolling is needed, but conceptually the result can be something like;

for(i=0; i<1000; i=i+1)
{
prefetch(a[i][j]); /* prefetch first block in the column */
for(j=0; j<1000; j=j+4)
{
prefetch(a[i][j+4]); /* a 4-word-block in advance in the row */
sum=sum+a[i][j+0]; /* unroll the code twice */
sum=sum+a[i][j+1];
sum=sum+a[i][j+2];
sum=sum+a[i][j+3];

}
}

Where the prefetch-instruction exactly must be inserted in advance has to do with the processors exe-
cution pace and the memory’s access time (latency). The faster CPU and slower memory access, the
more ahead a prefetch must be made which in this case can be achieved by more unrolling of the loop.

1.6.2 Prefetching with hardware

Prefetching can be accomplished by letting special hardware in the CPU try to predict what block is
to be used in the near future. Spatial locality can give such a hint; if a miss occurs in the cache, not
only the missed block is fetched from the lower memory but also some of the consecutive blocks.
In the Alpha AXP 21064 on instruction misses the requested block is loaded into the cache and the
prefetched block is directed to an instruction stream buffer. This kind of prefetching relies on unused
bus and memory bandwidth which can with this approach be better utilized.

1.7 Software design

1.7.1 Compiler optimizations

Performance can be enhanced by better hardware (for instance cache memories) but also by designing
the software to better fit the hardware. A program that instantly makes caches to thrash data mustn’t
necessarily mean that the cache has to be more associative or larger. By just slightly justify the pro-
gram “miracles” can happen to performance. The easiest way to prove that is by the following small
example;

1.7. SOFTWARE DESIGN 23

int a[1000][1000];
... ...
for(i=0; i<1000; i=i+1) for(j=0; j<1000; j=j+1)
for(j=0; j<1000; j=j+1) for(i=0; i<1000; i=i+1)
sum=sum+a[i][j]; sum=sum+a[i][j];

In the above code examples the only difference is that the left one is adding column by column and the
right is performing the same procedure but in rows instead. Ponder a system where an integer requires
4 bytes of memory space and the cache block is 64 bytes large in an 32kB data cache. The memory
for the matrixa[][] is allocated in rows by the compiler, and consecutive addressing in columns will
always generate misses since the data cache can’t hold all 1000 blocks in memory (64 kB) at once.
Addressing the matrix the row-way will take advantage of the spatial locality and generate 15 hits for
each miss. With prefetching hit-ratio can, as shown in1.6.1, increase even more.
Another way to increase performance by data caches is to exploit the locality by declare variables that
will be used close in time close to each other (in sequence) to take advantage of the spatial locality (a
real smart compiler will however rather use registers than the cache).
Other kinds of code optimization for a cache memory isdata merging; data that will be used “simul-
taneously” can take advantage of spatial locality by for instance grouping the data in structures;

int a_v[8192],b_v[8192];
...
for(i=0; i<1000; i=i+1)
sum=a_v[i]+b_v[i];

If the data cache is 8kB, the summation will cause instant thrashing and reduce performance to lower
than a system without a cache(!). A suggested solution in this case could be;

typedef struct{int a;
int b;}pairs;

pairs vector[8192];
...
for(i=0; i<1000; i=i+1)
sum=vector[i].a+vector[i].b;

The competition of the same cacheblock is avoided and spatial locality is exploited. A good rule is not
to allocate data in sizes that are even multiples of the cache size. It is better to allocate a little bit more
(preferably a prime number) and by this avoid direct thrashing.

1.7.2 Code placement

High hit ratios can be achieved by placing code in such manner that it doesn’t interfere with other parts
of the code that is used frequently. The interference turn up when two or more sections of the code
maps to the same part of the cache.
The behavior of a program can be described in aControl Flow Graph(CFG) where each node corre-
spond to a basic block and directed edges represents to a a control dependency between basic blocks.
Assume two functions with CFGs as described in figure 1.16 and thatb4 callsb6. With a typical input
data the code will be executed in the following sequence;

(b0; b2; b3; b4; b6; b7; b8; b3; b4; : : : b3; b5)

24 CHAPTER 1. INTRODUCTION TO CACHE MEMORIES

Function A

b0
0.80.2

b2 b1

b3
0.95

0.05

b5

b4

Function B

b6
0.66

b7 0.33

b8

Figure 1.16: Weigthed control flow graph. The weight reflects the probability to choose a specific
execution path

It is more probable that basic blockb2 will be executed afterb0 thanb1 will. In this caseb2 should
be placed afterb0 because the chance is higher that the two basic blocks are on the same cache line.
The risk is also lower thatb0 andb2 will map (and compete) for the same cache lines since they are in
sequence. Due to the same reasonb4 should be placed beforeb3, b5 afterb3 etc. which will render the
following basic block placement;

b0; b2; b1; b4; b3; b5; b6; b7; b8

In [TY96] an optimizing method is described to select code layout into main memory to achieve higher
hit ratios. The method uses an ILP-approach and experimental results showed 35-45% reduction of
miss ratio.

1.8 Case studies on single CPU systems (no RT aspects)

1.8.1 Intel Pentium III

Overview

The Intel Pentium III is a high-performance 32-bit processor that is meant to be used in personal
computers, multimedia applications, and games. It was released 1999 and it’s main structure is still
very close to the Pentium Pro released in 1995. It is x86-compatible and the instruction set has been
increased with multimedia instructions such as MMX and streamed SIMD. Aggressive branch spec-
ulation and out-of-order execution will make performance non-deterministic; even for a specific code
sequence since it may depend on a state the machine was in when that code sequence was entered.
The first level cache is divided into a 16kB instruction cache and a 16kB data cache. The second level
cache is unified, direct mapped and 512kB, but in Q1 2000 an enhanced E-version of the L2 cache was
released — a smaller but more advanced L2 cache called ATC (advanced transfer cache). A MESI
snooping protocol supports cache coherence in multiprocessor systems.
The L1 I-cache supplies the fetch unit with blocks that are decoded and put in a reorder buffer (called
“instruction pool”). The execution unit i capable to issue three instruction each clock cycle from the
instruction pool and finally the retire unit keeps the instruction till the semantic order of the instructions
is “secured”. All data in this subsection is retrieved from [Int99] and [Int01].

1.8. CASE STUDIES ON SINGLE CPU SYSTEMS (NO RT ASPECTS) 25

The first level cache

The first level of caches is divided into an instruction and a data part (Harvard architecture). The
instruction cache is four-way set-associative organized in 256 sets of 32-byte-blocks. Replacement
strategy is LRU. The data cache is less associative — 2 ways — and since the block size is also here
32 bytes 512 sets are needed. Both caches are dual-ported, use LRU replacement strategy, and write
policy for the data cache is write-through.

The second level cache

The second level cache comes in two versions; a “discrete” and an “ATC” (also called ’E’) version,
where the latter is more advanced and was released in Q1 2000. The L2-cache is non-blocking and
can handle up to four accesses simultaneously.

� The discrete L2-cache i 512kB, 4-way set-associative and use a block size of 64 bytes. It is
resided with standard L2-components (e.g. Burst pipeline Synchronous static RAM (BSRAM)
technology) on another die than the CPU-core but in the CPU-capsule. It is connected look-
through the L1-cache on a dedicated “back-side” 64-bit data bus to the CPU-core and runs at
half the CPU-core speed.

� Advanced Transfer Cache (ATC) is 256kB in 8 ways and it resides on the same die as the CPU-
core and L1-cache. The 256bit data bus runs at the CPU-core speed which means that the peak
throughput has been 8-folded. ATC also incorporates 4 write-back buffers, 6 fill buffers and 8
bus queue entries to reduce latency on high bus activity. The cache blocks are increased to 128
bytes but sectorized where each subsector is 64 bytes.

1.8.2 Motorola Power PC 750

Overview

The MPC750 (also advertised as “G3”) is a 32-bit processor meant to be used in personal computers
(e.g. Apple Macintosh) and high-end embedded systems (e.g. Region Processors in Ericsson AXE-
routing system) which requires a processor with most available features such as out-of-order execution,
branch prediction, superscalar pipelines with multiple execution units and an advanced cache system
to keep the pace. Low power consumption and price are areas that might be less considered.
The first level cache memory is split into a data, an instruction part of each 32kB organized in 128
sets, 8 ways, and 32 bytes block size. A second level cache of up to 1MB with an access time of
only 1,5 clock cycle can be attached to the CPU. To this, read and write buffers decrease latencies,
and a MEI snooping protocol maintains cache coherency when multiple bus masters (e.g. DMA, other
processors) reside on the system bus.

First level cache memory

The level-1 cache memory is divided into a instruction and a datapart and both parts look much the
same except of course for write-capabilies in the datapart. Each block is 32 bytes containing 8 words
and all blocks are organized in 128 sets and eight ways. The CPU-core is fed from a six-entry instruc-
tion queue that is connected to the instruction cache via four word wide databus. The data cache is
connected to the core via a 2 word wide databus. Both caches are non-blocking to be able to maintain
the core’s multiple execution units that can hold up to six instructions simultaneously. Replacement
strategy is pseudo-LRU which is a fast, high-performance, and very close a true LRU implementation.

26 CHAPTER 1. INTRODUCTION TO CACHE MEMORIES

tags 32kB I-cache

CPU-Core

tags 32kB D-cache

DMMU

IMMU

L2 bus

interface

(Castout Q1)

L2

tags

60x bus

interface

(Queues2)

17-bit L2 Address Bus

64-bit L2 Data Bus

1MB

L2

cache

32-bit Address Bus

64-bit Data Bus

Figure 1.17: Block diagram of the MPC750 cache memory system. The L2 Bus interface is equipped
with a 4-entry castout queue1 to hide write latency during simultaneous reads to the L2 and the 60x
bus interface is in the same fashion equipped2 with one instruction fetch buffer, two castout buffers
and one data load buffer.

Second level cache memory

The level-2 cache is two-way set associative and can either be none, 256kB, 512kB or 1024kB. The L2
cache tag memory can hold2� 4096 tags and is located on the CPU-core die for faster performance.
The data is organized in sectors and is located on an other die of SRAM memory. A sector is one
L1-block (32 bytes = 8 words).

total size sets used sectors / L2-block L2-address bus used
256kB 2048 2 = 64 bytes 14-0
512kB 4096 2 = 64 bytes 15-0

1024kB 4096 4 = 128 bytes 16-0

Replacement policy is LRU that is maintained by a single bit at each set in the tag memory. Write
strategy can be set by software to either write-through or copy-back. Hit time depends on the frequency
of the L2 bus that can be set to {1, 1.5, 2, 2.5, 3} times CPU-core clock frequency. Which speed that
can be set depends on CPU-core speed, SRAM-technology, and write-policy (pipelined/flow-through).
On L2 cache misses the critical word first will be forwarded to the L1 cache simultaneously when it
reaches the L2 cache. The first level cache is always a subset of the secondary cache memory.

Read/write buffers

To boost up performance a numerous different buffers and queues are available to reduce bus activity
penalties, latency etc. Both the CPU-core (L1-cache) and the L2 cache bus controller are equipped
with castout queuesthat can hold writes/stores to the memory if other bus activity is performed to
reduce the amount of blocked executing units. When the queues are full after a burst of writes the
unit will however be blocked until the writes are performed to the lower hierarchical memory. The
60x-bus interface unit has also been equipped with one instruction fetch buffer, one data load buffer
and a two-entry castout queue.

1.8. CASE STUDIES ON SINGLE CPU SYSTEMS (NO RT ASPECTS) 27

Software control

Each cache block has four bits called WIMG that specifies some memory characteristics that can be
set by the operating system with the
tt mtspr-instruction. The WIMG attributes controls the following properties of the cache memory;

� Write-through (W) – sets write-policy to be either write-through (1) or copy-back (0)

� Caching-inhibited (I) – turns on the cache (0=on, 1=off)

� Memory coherency (M) – ensures that memory coherency is maintained (1)

� Guarded memory (G) – prevents out-of-order loading and prefetching (1)

If self-modified code is used, data (instructions) is written to the data cache and not to the instruction
cache. A special sync-instruction-sequence can update the instruction cache with the data cache mod-
ification. The snooper that maintains the MEI-protocol has special instructions and the caches can be
locked, but will still be coherent by letting the snooper modify the MEI-status bits. Single blocks but
also the complete cache can be invalidated (flushed) by single instructions.

Hit and miss ratio for data and instructions in both of the L1 and L2 cache memories can be moni-
tored by using specialperformance monitorregisters. This monitor can also register events regarding
snooping, branch prediction, TLB miss ratio etc. and can be valuable tool to tune in applications for
best performance.

Pseudo-LRU replacement algorithm

Administrating a real LRU-algorithm on a 8-way set-associative cache memory is difficult. In a single
clock cycle up to 7 comparisments and counter increments must be performed which of course is hard
to handle when running at 500MHz or more and also rather costly in space to maintain. The PPC
7x-series handle the replacement algorithm with only 7 bits/set of blocks, one ROM-table to set those
bit on memory accesses and one table to interpret them on cache misses. The bits, their selection, and
updating are cleverly chosen so the set’s state is very close to a true LRU algorithm.
This solution is fast, small, behavior reproducible, easy to understand and implement.

1.8.3 StrongARM SA-1110

Overview

In February 1995, Digital Equipment Corporation and ARM Ltd announced a development and license
agreement that enabled Digital Semiconductor to develop and market a family of low-power micro-
processors based on the ARM 32-bit RISC architecture. On May 17, 1998, Intel Corporation acquired
Digital’s StrongARM which today means that StrongARM is a product developed by Intel and ARM.
The Intel StrongARM SA-1110 Microprocessor (SA-1110) is a highly integrated communications
micro controller that incorporates a 32-bit StrongARM RISC processor core, system support logic,
multiple communication channels, an LCD controller, a memory and PCMCIA controller, and general-
purpose I/O ports. It’s meant to be used in performance demanding, portable and embedded applica-
tions. When running at 206 MHz it only consumes< 400mW at normal mode and that could be
lowered when using power-management. The SA-1110 incorporates a 32-bit StrongARM RISC pro-
cessor capable of running at up to 206 MHz. The SA-1110 is equipped with instruction and data cache,

28 CHAPTER 1. INTRODUCTION TO CACHE MEMORIES

Current update the PLRU bits to PLRU bits status Block to be replaced
access to b0 b1 b2 b3 b4 b5 b6 b0 0 b1 0 b3 0 W0

W0 1 1 x 1 x x x 0 0 1 W1
W1 1 1 x 0 x x x 0 1 b4 0 W2
W2 1 0 x x 1 x x 0 1 1 W3
W3 1 0 x x 0 x x 1 b2 0 b5 0 W4
W4 0 x 1 x x 1 x 1 0 1 W5
W5 0 x 1 x x 0 x 1 1 b6 0 W6
W6 0 x 0 x x x 1 1 1 1 W7
W7 0 x 0 x x x 0

x = does not change

Figure 1.18: Pseudo-LRU tables. The left table shows, which bits are to be set on a hit or replacement.
The right table shows which block is to be replaced. Example: a set’s PLRU bits are 1011001 and on
a hit in W4 the PLRU bits would have the new value0011011. If the next access generates a miss W1
is to be replaced due to the bold marked bits0011011 — and don’t forget to update those bits with
11x0xxx.

memory-management unit (MMU), a victim cache (called “minicache”) and read/write buffers. All
data material from [Hei94].

� 32-way set-associative caches

– 16 kB instruction cache

– 8 kB write-back data cache

� Write buffer with 8-entry, between 1 and 16 bytes each

� Read buffer 4-entry, 1, 4, or 8 words

� 512 byte mini data cache

� all cache memories and buffers can be turned off, invalidated, pushed or drained by software.

Instruction cache

The instruction cache (I-cache) is 16 kB divided in 32-byte (8 words) blocks and 32-way set-associativity,
which will leave us with 16 sets of blocks. On misses blocks are replaced in a round-robin (FIFO) al-
gorithm. The instruction cache isn’t able to detect writes in the data cache or the write buffers which
means that coherency and consistency must be maintain by the programmer. The programmer is able
to push out values from the cache and also drain the write buffers.

Data caches

This version of the StrongARM has a smaller data cache (D-cache) — 16kB has been decreased to
8kB, but it looks much the same as the I-cache: 32 bytes blocks and 32-way set-association. Write
strategy is copy-back and replacement policy is round-robin. When reset each set of blocks resets
it’s way-pointer to zero. To compensate for the poor replacement algorithm a 16 block minicache

1.8. CASE STUDIES ON SINGLE CPU SYSTEMS (NO RT ASPECTS) 29

IMMU Icache 16kB
PC

Addr
Dcache 8kBDMMU

Minicache

Load/Store Data

ARM
SA-1
Core

Instructions

Internal System bus

WrBuf RdBuf

Figure 1.19: Part of the StrongARM-1110 block diagram

is connected look-aside to the main data cache. The minicache is 2-way set-associative and use an
LRU-replacement strategy. A data block can never be duplicated in both of the D-caches.
Both D-caches use the virtual address generated by the processor and allocate only on loads (write
misses never allocate in the cache). Each line entry contains the physical address of the line and two
dirty bits. The dirty bits indicate the status of the first and the second halves of the line. When a store
hits in the D-caches, the dirty bit associated with it is set. When a line is evicted from the D-caches,
the dirty bits are used to decide if all, half, or none of the line will be written back to memory using the
physical address stored with the line. The concept is described in a previous section as sector caches
(section 1.5.1), but in this case only the write-back is sectorized — not the loading. The D-caches are
always reloaded with a complete block (8 words) at a time.

Write Buffers

To reduce penalties on cache misses on writes a write buffer has been attached to the system.
If the write buffer is enabled and the processor performs a write to a bufferable and cacheable location
(these properties are set in the MMU), and the data is in one of the caches, then the data is written to
that cache, and the cache line is marked dirty. If a write to a bufferable area misses in both data caches,
the data is placed in the write buffer and the CPU continues execution. The write buffer performs the
external write sometime later. If a write is performed and the write buffer is full, then the processor is
stalled until there is sufficient space in the buffer. No write buffer merging is allowed in the SA-1110
except during store multiples.

Read Buffers

The SA-1110 is equipped with a four 32-byte read buffers controlled by software and makes it possible
to increase performance of critical loop code by prefetching read-only data. By prefetching data to the
read buffers, memory latency and cache misses can be reduced since the loading of a read buffer
doesn’t lock the CPU-core. Observe that these buffers cannot be used to prefetch instructions.

30 CHAPTER 1. INTRODUCTION TO CACHE MEMORIES

Chapter 2

Real-Time and unpredictable hardware

2.1 Introduction to real-time

A more general and flexible machine — the computer, has in the last decades replaced automatic
control and traditional controlling system in industrial applications.
It can not only calculate positions, flows and take precautions to regulate processes, but it can also
be connected to other controllers (computers) databases, administrative systems and give not only the
man on the working floor information about how the temperature is in a nuclear power plant core,
but also provide estimations about how long the uranium will last to the buying office or the boss
with an economic report if the system will be driven in the way it actually does. The computer has
in many areas out competed PLCs and manual gears due to its flexibility, accuracy, and speed. As
mentioned a automatic control system, or real-time system (RTS) as they now days are called, can be
a nuclear power plant, but also an air bag in a car, power control in a microwave oven, a robot painting
automobiles or a telephone switching device. In all these systems time and timing is crucial. The
response time cannot be acceded or the system will fail.
To control a process with a computer (real time) system is a achieved by to following steps (in order)

1. Observe the process –samplethe values from a probe

2. Decide what to do – execute some instructions to calculate new positions etc.

3. Actuate – Control the process by giving a device (motor, relay etc.) a signal

This approach raises two new questions; how often does a sample have to be performed and how fast
must each sample be computed to give a correct control signal? If the sample isn’t performed often
enough, the system will have a very rough and “jumpy” view of the world. A higher sample rate
will give a smoother view, but also more data to handle. The sampling process should therefore not
be performed more often than necessary. The second issue about the computation (and maybe even
physical) delay is maybe even more important. A fast response time can maybe be achieved by a small
and simple calculation, but a more sophisticated algorithm with better precision takes longer time to
calculate. If the response time is too long the system will not work and maybe cause errors and injuries.
The system is controlling a world from the past and not ”real time”.
The answer to both questions is that the environment where the system interacts must be specified and
from this specifications one can for instance get answers like that the sample rate must be no less than
500Hz and worst-case response time must no more than 10 milliseconds.

31

32 CHAPTER 2. REAL-TIME AND UNPREDICTABLE HARDWARE

A job must always be finished untildeadlinebut in many application the job mustn’t be finished before
a certain time either. In ahard RTS all jobs must be finished in this window of time but insoftonly a
certain percentage of the jobs must do this. Hard RTS are typically those who control something that
mustn’t fail or something or someone will be hurt or damaged — for instance air plains. Soft RTS
RTS are those that can tolerate misses to some extent and will regulate it with decreased quality of the
result — for instance a telephone switch station. The specifications of the system describes if it is a
hard or soft real-time system.

2.2 Real-time and scheduling

The simplest form of an RTS is a single program running at a computer with no other tasks to handle.
More complex systems are however easier to construct with several tasks (processes, threads) running
simultaneously in a time-sharing environment which also utilize system resources better. A simple
operating system gives every task an equal slice of the time and runs the jobs in a round-robin order.
An operating system that is specialized for real time systems can utilize performance even more;
giving the tasks priorities, allow preemption (interrupt a low-priority work by a high-priority and then
resume), use more advanced scheduling algorithms etc.
Scheduling can be performed in advance (static) or at run-time (dynamic). A static schedule can
theoretically utilize system performance to 100% but only a few applications can be designed to do
that. A schedule done in advance is easy to proof that it will meet time constraints. Systems that are
event-driven can in many cases utilize system resources if they are scheduled at run-time; if certain
events occur only sporadically a static schedule must have allocated this time for each

2.2.1 Static scheduling algorithm example: Rate monotonic

The principle for the rate monotonic scheduling algorithm is to give the task with the shortest period
time gets the highest priority and the tasks with the longest period time will consequently get the lowest
priority. All tasks time constraints are defined by period timeTiand execution timeCi. Each tasks
load or utilization of the system can then be calculated asU = Ci=Ti and forn tasks the utilization is
U =

Pn
i=1

Ci
Ti

. Lui and Layland[LL73] found that a task set withn tasks where

1. all tasks are periodical,

2. no task must exceed it’s deadline that is the period time,

3. all tasks are independent of each other and must never wait for a message or synchronization,

is schedulable if

U =
nX
i=1

Ci +
i
Ti

� n(s1=n � 1) (2.1)

The
i stands for the time it takes for the operating system to make a context switch1 (sometimes even
called overhead time). The condition leads to a maximum 69% utilization of the system when the
number of tasks is approaching infinity.
Liu and Layland’s equation is however pessimistic since there are several cases where the task set
is schedulable even if the utilization is more than 69%. The condition is therefore sufficient but not
necessary.

1In equation 2.2
i has been evolved to separate operating system issues and cache related issues, thus
 ! 2Æ +

2.3. EXECUTION TIME ANALYSIS 33

2.2.2 Dynamic scheduling algorithm example: Earliest deadline

Earliest deadline is a dynamic scheduling algorithm that dynamically can change the priority of the
tasks during run-time. The key concept is to assign the task with shortest time until deadline the
highest priority. This leads to the possibility of higher system utilization than for instance the rate
monotonic algorithm. The main disadvantage of earliest deadline is that if a task misses it’s deadline,
the execution order is undefined.

2.3 Execution Time Analysis

Real-Time systems rely on correct timing. All scheduling needs timing data and real-time means in
this casereal time. To be able to schedule a task set, each task must be provided with thecalculated
worst-case execution timeWCETC in for instance milliseconds.
To really know how long a program sequence takes to execute, it’s almost never as easy as to take a
stopwatch and measure the time it takes to execute the section of the program. The response time of a
program depends not only of the critical code sequence that must be performed but also on computer
performance, workload, condition, state etc. — an analysis must be performed.
The execution time of a program is depending of the following factors[Gus00]

The input data — The value of the data may steer which execution path or how many iteration a loop
will make. The timing of the data is also important; data comes in bursts or irregularly

The behavior of the program (as defined by the program source code) — The design of the program
(tasks and operating system) can be short, long, data intensive, interrupt-driven, polling, short
or long time-slices, task layout on multiprocessors . . .

The compiler (the translation from source to machine code) — Optimizing the code by loop un-
rolling, use CPU registers instead of main memory etc. can affect execution time substantially.

The hardware — Number of processors, processor type, bus bandwidth, memory latency, cache
memory and instruction pipelines states how fast the machine instructions will be executed.

All these factors affects the WCET, but also the Best Case (BCET) that can be equally important
(e.g. a too early shot of a air bag in a car can be fatal for the driver). Execution time analysis is
preferably performed statically, which means that it iscalculated(index C) and overestimated from
actual (index A) since the analysis must take a very pessimistic approach and include for instance
infeasible execution paths and maximal iterations of all loops. Figure2.1 illustrates the basic execution
time measures.

2.3.1 Software analysis

To test all possible execution paths in a program is not a realistic way to find out the WCETA . A
simple example is a sequence of code with 35 if-statements, which means that there are235 execution
paths. If each test takes 1 millisecond to perform, the search for WCETA would last for more than one
year. Another example is to test a functionfoo(x,y,z)wherex,y andz are 16-bit integers. To test all
possibilities, one would need216 � 216 � 2� 216 � 3� 1014 test cases or with a millisecond test over
9000 years. A more analytical and smart method is therefore necessary. A crucial fact of computer
software is that analysis and testing is hard to perform since traditional mathematic and scientific
methods are (almost) unusable on computer software. Thane[Tha00] states two key accounts:

34 CHAPTER 2. REAL-TIME AND UNPREDICTABLE HARDWARE

execution
time0 BCETC BCETA

AVET

WCETA WCETC

over estimation
different executions

Figure 2.1: Basic execution time measures (from [Gus00])

� They have discontinuous behavior.

� Software lacks physical attributes like e.g., mass, inertia, size and lacks structure or function
related attributes like e.g. strength, density and form

The only physical attribute that can be modeled and measured istime.

2.4 Cache memories in RTS

To calculate a tight WCETC in a system with cache memories is very tricky since the contents of the
cache memory relies on the programs former execution path. The execution path is on the other hand
depending (to some extent) on the cache contents! This section will give a very brief description about
cache issues in real-time systems and a more deep survey will be presented in chapter3.
A naive approach to calculate WCETC would be to handle all memory accesses as misses but that
would end up with a WCETC that would be many times worse than a system without a cache, which
will be shown in the next example. In that case it would better to turn of the cache, which have been
the case for safety critical hard real-time systems.
There are two categories of block swap-outs [AHH89];

� intrinsic (inter-task) behavior depends of the tasks internal design and execution path. Two
functions or data areas in the task may compete for the same cache space and increasing the
cache size and/or associativity can reduce the effects.

� extrinsic (intra-task) behavior depends of the environment and the others task’s inter-task be-
havior. At context-switch (preemption) the cache contents will be more or less displaced by
the new running task. This performance loss is also calledcache related preemption delay. In
[BN94] the preemption’s impact on WCETC is defined as:

WCET 0

C = WCETC + 2Æ +
 (2.2)

, whereWCET 0

C is the cache affected WCETC , Æ is the execution time for the operating system
to make a context-switch (two are needed for a preemption) and
 symbolize the maximum cache
related cost by a preemption2. The effects can be reduced bypartitioning the cache and assign
tasks to private partitions of the cache.

2Observe that
i in equation 2.1 is symbolized asÆ in this equation

2.4. CACHE MEMORIES IN RTS 35

Even if both kind of swap-outs can be reduced, the real-time aspect remains as long as hit-ratio is less
than 100% Several studies how the cache performance can be predicted will be presented later in this
chapter.

2.4.1 Write-back or write-through?

Write-back strategy gives in the average case better performance than write-through. In execution
time analysis write-back strategy will lead into looser WCETC prediction since it is harder to analyze.
Each write in a write-through takes the same time but write-back has two different execution times
depending if the data is dirty or not. See figure1.4 for equations.

2.4.2 Better and worse performance with cache memory = loose WCETC

Performance speedup gained by cache memories relies totally on program behavior and locality. Pro-
grams with poor locality will thus gain less speedup. A greater problem is that systems with cache
memories can giveworseperformance than without which will be illustrated with the following exam-
ple that copy eight words from memory section A to B.

Label Instr. Operands ET Block
1 .data
2 DataA: DC.L 2048 B1,B2
3 DataB: DC.L 2048 B3,B4
4
5 .code
6 MOVEI.W D0,#8 IF+3 B5
7 MOVEA.L A1,DataA IF+3
8 MOVEA.L A2,DataB IF+3
9 Loop: MOVE.L (A1+),(A2+) IF+3+DF+DF

10 DBRA D0,Loop IF+3 B6

Assume that data and instruction are stored in 32-bit words. A memory access costs 10 clock cycles
and beside the instruction fetching and data access(es) 3 additional cycles are needed to execute an
instruction. The program starts with 3 initial instructions and the loop that copies data consists of two
instructions that makes two data accesses each revolution. This makes 19 instruction fetches and 16
data accesses.

� The execution time (ET) without a cache would take19(10 + 3) + 16(10) = 407 cc.

� BCET on a system with a cache memory would occur if no thrashing occurred and only initial
misses to fill the cache would occur. Assume that a cache hit takes one cycle and a miss four
accesses (40 cc). The first instruction block B5 with the instructions 6–9 would generate one
miss and three hits. The loop would generate two data misses every fourth revolution (in this
case 4 misses and 12 hits) and on the instruction side one initial instruction miss in B6 but then
seven hits; Instructions: 2 misses, 17 hits and data: 4 misses, 12 hits; BCET= 2(40 + 3) +

17(1 + 3) + 4(40) + 12(1) = 326 cc.

The poor performance speedup depends of the fact the copied data isn’t reused (yet).

36 CHAPTER 2. REAL-TIME AND UNPREDICTABLE HARDWARE

� WCETA on a system with cache occurs if almost all data and instruction thrashes each other
which could be the case with a unified 2kB direct mapped cache. All data will thrash each other
including the instructions. B1, B3 and B5 is competing for the same block and B2, B4 and B6
does the same. This will lead to 25 misses and 10 hits; WCETA =1067 cc. If extrinsic misses
also occur we’ll get 100% miss = 1457 cc

Even if cache memories makes life more difficult to live for the real-time society, Kirk comes to the
following thoughtful conclusion in [Kir88];

“. . . r eal-time systems are often characterized by predefined task sets. For this reason,
program behavior is available at system configuration time, and can be used to enhance
predictability and sometimes the performance of a cache. . . ”

This can also be interpreted that cache memories are more suitable for real-time programs than other
types of programs due to it predefinition of work and cyclic behavior! Kirk also states;

“. . . it is possible to improve the hit ratio for a given task, while at the same time guarantee
a certain minimal hit count. The guaranteed minimal hit count is then used to reduce the
worst case execution time.”

Instead of turning off the cache to be safe but under-utilize the processor, the cache memory can – if
correctly used – make unschedulable task sets due to lack of performance to schedulable.

2.5 Other unpredictable hardware issues in Real-Time systems

Before going further and describe suggested solutions of the problems with cache memories in real-
time systems, it’s worth mention some related and similar problems in the area of real-time, execution
time analysis and unpredictable hardware. This section isn’t meant to cover the field completely since
this thesis’ main focus is on cache memories — it will show some examples and show question simi-
larities with cache memories.

2.5.1 Translation look aside buffers and virtual memory

A large memory makes it possible to run large and more programs simultaneously.Virtual memory
where parts that doesn’t fit into primary memory can be stored at a magnetic media instead is an eco-
nomic way to make a large memory. It will conceptually work like the cache and primary memory with
the principle of locality as a ”grant” for high performance. Virtual memory is divided into segments or
blocks with a size of 4-64kB. A table points at blocks in the memory and the disk and software main-
tains writes (copy-back) and exchange algorithm (almost always fully associative). One tricky part is
that this table that keeps records of all blocks is large and also is stored in the virtual memory that
leads to the problem that each memory access must be translated twice. To speed up this translation
the most recent translation are stored in a cache-like memory buffer — atranslation look-aside buffer
or TLB.
Virtual memory can also be used in diskless systems and all the applications can fit into the primary
memory. One reason to this is special hardware requirements where certain addresses are mapped to
special hardware. An other reason is the extended possibility to store programs, functions and data at
memory addresses where they won’t interfere with other data in the cache —software partitioning.
See chapter 3.2.2 for a more detailed description.

2.5. OTHER UNPREDICTABLE HARDWARE ISSUES IN REAL-TIME SYSTEMS 37

A miss in the primary memory leads to a data swap from and to the disk, which can takes millions
of clock cycles with a very large variation. The access time depends of distance of the requested
sector on the disk and the reading head. Best case is when the sector is just to be passed and worst
case is if it passed right after the request. This variation and the variation of the translation time
make execution time analysis very hard to cope with. Virtual memory is therefore not very common
in real-time systems — it is much easier to equip the system with a large primary memory. In very
small or embedded systems, hard disks themselves are also rare due to their physical and mechanical
weaknesses.

2.5.2 Instruction pipelining

A traditional CPU executes instructions by first fetching an instruction, decode it, fetch operands and
data from memory, execute, write back the result and then restart the sequence by fetching a new
instruction. This approach is easy to implement by using micro code to control the internal micro-
architecture and is also easy to specialize and upgrade the instruction set. Since memory technology
couldn’t feed the CPU with instructions and data in such high pace as the CPU could handle, and
this gap was widened, an easy way to increase performance is to get more done at each instruction.
Complex and huge instructions sets was a way to bridge the gap between memory access speed and
CPU execution pace — the Complex Instruction Set Computer (CISC) was a solution and a fact.
By dividing each logical phase of the execution of an instruction into physical stages, a performance
improvement equal to the number of stages can be achieved if all stages take the same amount of time.
When a stage is completed with its task it will feed the next stage — like workers building cars at an
assembly line.
With cache memories the problem with feeding the CPU-pipeline with a new instruction at each clock
cycle is almost eliminated.

Pipelining conflicts

A problem with instruction pipelining is the presence of different hazards that can occur. There are
three kinds;

� data hazard – an instructions operand isn’t updated since it is still in the pipeline handled by a
close previous instruction.

ADDI R1,R2,#5 # R1 <- R2+5
ADD R5,R1,R3 # R5 <- R1+R3

This can be solved with several techniques [HP96];

– stall the ADD instruction and wait until ADDI is completed

– forwardingdata values through multiplexors as soon as R1 is calculated

– usingscore boardingor Tomasulo’s algorithm

� structural hazard. A resource is used and a new instruction needs it to complete its task. A
data cache miss can stop other LOAD, STORE but maybe even other instructions to pass the
MEM-stage of a pipeline. A complex floating-point instruction takes more than a clock cycle to
complete. Solutions

38 CHAPTER 2. REAL-TIME AND UNPREDICTABLE HARDWARE

– stall until the previous instruction has completed its task in the stage — inefficient

– duplicatethe hardware resource so more instructions can be handled at the same time —
expensive and may under-utilize the resources

– make abypassso instructions that doesn’t have to use that particular stage of the pipeline
can sneak around — may on the other hand cause“anti-conflicts”

� control hazard. A conditional or unconditional jump instruction is fetched and the instruction
fetch stage feeds the pipeline with (possibly) wrong instructions. The target address (new Pro-
gram Counter value) is not yet calculated and the condition is maybe even undecidable due to
data hazard.

– stall until the correct value of the program counter is calculated.

– letting a specific number of instructions after the branch instruction always execute and
perform adelayed branch. These instructions must be independent of an eventual condition
in the branch. The compiler preferably handles this reorganization of code. The tricky part
is to find enough independent instructions that can be stuffed behind the branch and if that
doesn’t succeed NOP (NO Operation) instructions must be used.

– Calculate new PC and test the condition in an earlier stage to reduce penalty.

By using prediction units that memorize previous jumps, the stalls affected by a control hazard
can be reduced and performance increased in most cases. This means that branches in modern
hardware in a real-time angle is even more trickier; the unit that memorize previous jumps is
mostly organized like a cache; this means that there is a certain probability that the branch
isn’t logged in the memory with less probability to make a correct guess, and please observe
probability.

Interrupts and preemption are on the other hand hard to predict and will always end with a
flushed pipeline.

Pipelining and cache memories

The concept of pipelining is an efficient way to increase performance but the presence of hazards,
stalls and miss prediction of branches, execution time may vary and give a looser WCETC bound. In
a system with both cache memory and pipeline these hazards may hide each other and give an even
looser WCETC -estimation. Executing three instructions in a pipeline takes under ideal circumstances
only three clock cycles (plus some initial instructions to fill up the pipeline). The following code with
independent instructions (in two separate cache blocks);

STORE R0(1000),R2 # instruction cache miss and data hit (3 cycles penalty)
LOAD R3,R5(2000) # instruction cache hit and data miss (3 cycles penalty)
LOAD R4,R5(2004) # instruction cache hit and data hit

. . . will however have less luck . . .

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13
I Fetch ST ST ST ST L1 L2
I Decode ST L1 L2
Execute ST L1 L2 L2 L2 L2
Memory ST L1 L1 L1 L1 L2
Write back L1 L2

2.5. OTHER UNPREDICTABLE HARDWARE ISSUES IN REAL-TIME SYSTEMS 39

These instruction would need 13 cycles to execute but if they would be in the following order;

LOAD R3,R5(2000) # instruction cache hit and data miss (3 cycles penalty)
STORE R0(1000),R2 # instruction cache miss and data hit (3 cycles penalty)
LOAD R4,R5(2004) # instruction cache hit and data hit

. . . they would need . . .

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13
I Fetch L1 ST ST ST ST L2
I Decode L1 ST L2
Execute L1 ST L2
Memory L1 L1 L1 L1 ST L2
Write back L1 L2

. . . only 10 cycles to execute. The instruction cache miss by ST is hidden by the L1-miss (or vice versa)
and gain 3 cycles. This example shows that if penalties (or individual instruction’s execution times)
are added together, the WCETC -analyze will be even looser. Further reading about pipelining and
real-time aspects can be done in for instance [HAM+99], [LS99b] or [LBJ+95].

2.5.3 Direct Memory Access - DMA

A Direct Memory Access (DMA) controller can transfer data between a hard disk or an other I/O
device and the primary memory with reduced CPU involvement (figure 2.2). The CPU is able dur-
ing such a transfer to concurrently execute instructions. The presence of a DMA arises also cache
coherency problems that make a snooper and a snooping protocol necessary.

Memory CPU I/O

Memory CPU DMA

I/O

Bus

Figure 2.2: An I/O operation in a system without and with a DMA controller

In a real-time system a DMA introduces new problems since the bus might be taken by the DMA
when the CPU needs it with a delayed execution time as a result. A safe approach of such a problem
would assume thatWCET total =

P
(WCETCPU�operations)+

P
(WCETDMA�operations), but this

40 CHAPTER 2. REAL-TIME AND UNPREDICTABLE HARDWARE

over pessimistic assumption results in a loose WCETC . CPU clock cycles are either categorized as
bus-activity (B), such as instruction fetching or data load/write, or as execution cycles (E).
Beside a pure and faster data transfer, the DMA is able to ”steal” clock cycles during the execution
phase of an instruction and utilize the bus even more. The stolen E-cycles can also be described as
parallel work that will be considered as serialized in a safe WCETC calculation. All the E-cycles can
although not be used since bus arbitration (bus master transfer time — BMT) takes some time and
delay the switch.

Huang and Liu describe in [HL95] an algorithm to calculate a tighter WCETC than the described
safe approach; For each type of instruction in the instruction set the useful DMA stealth cycles are
defined. The next step is to sum up all E-cycles and subtract them from the DMA clock cycle need
during the instruction sequence. If the result is positiveWCETtotal =

P
(WCETCPU�operations) +P

(WCETDMA�00leftover 00) and if it is negative (all DMA activities are done in parallel)WCETtotal =P
(WCETCPU�operations). The calculated WCETC was compared with simulated results on a MC68332

that ran a benchmark set. Their algorithm achieved for instance a 39% improvement in accuracy of the
prediction on a matrix multiplication on a fully utilized I/O bus.
The method is however not applicable on systems without instruction pipelining and cache memories.
Instruction pipelining fetches new instruction during the execution phase that will give no time left for
other bus masters. A cache memory could on the other hand solve this problem by hiding the CPU
activities from the bus, but then the suggested model would not be applicable at all.

In [HLH96] the method is extended to include direct mapped instruction cache memories (but not
pipelining). Their approach is an extension of a method developed by Li, Malik, and Wolfe [LMW95]
(se also section 3.1.1 in this work). In a system without cache all instructions starts and some ends
with B-cycles. This means that no cycle stealing is possible between instructions. In cached system
on the other hand, instructions may hit in the cache and cause E-cycles only — even between two
cache blocks if they are present in the cache. The method doesn’t handle set-associative caches or data
caches. Nor does it handle scheduling and preemption issues.

2.5.4 High priority hardware interferences

Park and Shaw observe and measure the real-time effects of interfering hardware in [PS91]. A way to
cope with these interferences is to also schedule their activity among the applications’ tasks.

Interrupts

In real-time systems, time is of great essence and must be at hand to synchronize processes and main-
tain scheduling. Park and Shaw measured the effects caused by periodical timers with an oscilloscope
on a Motorola 68010-system. Timers normally generate interrupts to the processor that increase a
clock counter by a step. The interrupt handling and the instruction execution are a load and delay in
the system.

Dynamic Memory refreshment

Dynamic RAM consists of a transistor gate and a capacitor where the capacitor stores the 0 or 1. Due
to the capacitors self-drain it must be refreshed periodically every 13 microseconds. This memory
refreshment is done completely in hardware and can be considered as a high-prioritized task that can

2.5. OTHER UNPREDICTABLE HARDWARE ISSUES IN REAL-TIME SYSTEMS 41

delay any software instruction. Park and Shaw measured this cyclic task to a processor slowdown by
0–6.7 percent with an average of 5 percent.

42 CHAPTER 2. REAL-TIME AND UNPREDICTABLE HARDWARE

Chapter 3

Analysis on cache memories in real-time
systems

3.1 Intrinsic interference

3.1.1 Integer Linear Programming (ILP) methods

From a program graph and additional constrains (eg. manual annotations indication infeasible paths,
maximum iterations in a loop etc), WCETC can be calculated withInteger Linear Programming(ILP)
optimization. The use of ILP as an analytical method has numerous advantages;

1. the graph construction can be based on many different levels of code; object, source etc., which
makes the method general.

2. It supports control-flow breaking constructs likereturn andgoto-statements

3. Manual annotations are supported which simplifies an estimation of a tight WCETC

4. Except for the WCETC , also other information about the program behavior will be available.

Cinderella - ILP

Basic method. Li and Malik[LM95] from Princeton University identified two main components of
WCETC analysis:

� Program path analysis— determines the sequence of instructions to be executed in for instance
the worst-case scenario.

� Microarchitecture modeling— how long time it takes to execute the scenario in the actual hard-
ware.

Instead of searching through all possible execution paths, the method analytically determines the
worst-case scenario byimplicit path enumerationby converting the problem to sets of integer linear
problems with manual annotations. When the ILP are solved the number of executing instructions are
defined and by the assumption that each instruction takes a constant time to execute, the total WCETC

can be computed by

43

44 CHAPTER 3. ANALYSIS ON CACHE MEMORIES IN REAL-TIME SYSTEMS

WCETC =
NX
i=1

cixi (3.1)

wherexi is the instruction count1 of a basic block2 Bi, ci the constant execution time of the basic
block and N is the number of basic blocks in the program.

Method extension to include an instruction cache. To include instruction cache memories the
method was extended[LMW99] by dividing the basic block intoline-blocksor simply l-blocks3 that
corresponds to each line in the cache. Anl-block is defined as“a contiguous sequence of code within
the same basic block is mapped to the same cache set in the instruction cache memory”. Figure3.1
(from [LMW99]) illustrates aControl Flow Graph(CFG) with three basic blocks and these basic
blocks’ mapping into l-blocks into a cache with the size of four sets. Two l-blocks that are mapped to
the same cache set will conflict with each other (in the example basic blocksB1 andB3 will conflict),
but in case where the basic block boundary doesn’t align with the cache line boundary two line-blocks
mustn’t conflict. Those are callednonconflicting l-blocksand an example isB1;3 andB2;1 shown in
figure 3.1.

B1

B2

B3

0

1

2

3

B1;1

B1;2

B1;3

B1

B1

B1 B2

B2

B2;1

B2;2

B3

B3

B3;1

B3;2

Cache set Basic block

Figure 3.1: The above example shows the relationship between l-blocks and basic blocks.

By adopting new cache related terms into the analysis, the formula3.1 must split and consist of one
hit-termand onemiss-term.

WCETC =
NX
i=1

niX
j=1

(chiti;j x
hit
i;j + cmiss

i;j xmiss
i;j) (3.2)

1The instruction countis by Li and Malik defined as the number of executed instructions within a limited space of a
program

2A basic blockis a linear sequence of instructions without halt or possibility of branching except at the end
3Li and Malik have chosen to call the smallest cache item for(cache) lineand not(cache) blockto reduce semantic

confusion withbasic block

3.1. INTRINSIC INTERFERENCE 45

After identification of l-blocks and their relationship according to conflicts a cache conflict graph
(CCG) is constructed for each cache set that contains conflicting l-blocks. During WCETC analysis,
counters sum the hits and misses for l-blocks in the basic block and is then later used to calculate
WCETC for the complete program.

Modeling and results. All analysis methods are implemented in a tool calledcinderella, which
estimates WCETC running on an 20MHz Intel i960KB processor with 128kB main memory and sev-
eral I/O peripherals. The tool reads executable code, constructs CFGs, CCGs, and asks the user to
provide loop bounds whereas a WCETC bound can be computed. To solve ILP problems,lp_solve
by Michel Berkelaar is used.
The results from the method have given close results to actual WCETA — especially for small pro-
grams.

Ottosson and Sjödin

In [OS97], Ottosson and Sjödin extend theImplicit Path Enumeration Technique (IPET[LM95] (de-
scribed in section 3.1.1) to also include pipelining and cache memories. The cache is modeled with
non-linear arithmetic and logical formulas, which are available for a finite domain constraint solver.
The model can describe a unified set-associative cache since instructions and data is handled in the
same way. The method is also feasible to model instruction pipelining, but it is very compute inten-
sive and suffers from performance problems — especially when large programs or loosely constrained
references are given as an input.

3.1.2 Static analysis with graph coloring

One powerful method to optimize register allocation for or instance compilers builds on a color map-
ping technique by Chow and Hennessy[CH90]. By identifying variables with overlapping lifetimes,
the optimization can be performed with a method analogous to the problem of graph coloring, which
is a colored graph where no adjacent nodes have the same color4. For register allocation, a node
represents a variable and variables with overlapping lifetimes are connected by an edge. Each color
symbolize user registers and their method assigns colors to“live ranges” (that corresponds to the
variables lifetime) in the order of priorities that depends on anticipated performance speedup. The
remaining variables that are uncolored (maybe even uncolorable) must share registers and therefore
leverages are split and new graphs created.

Jai Rawat

A master thesis from Iowa state university by Jai Rawat[Raw93] describes a static analysis method to
find intrinsic misses in a direct mapped data cache memory.
Rawat’s technique for static analysis of cache behavior is similar to Chow and Hennessy’s register allo-
cation. The (data) cache block contains variables from where live ranges are specified. These “variable
live ranges” specifies the block’s live range. Splitting of live ranges correspond to replacement of the
block in the cache. The analysis algorithm is as follows;

4That an arbitrary map with distinct areas (for instance countries with shared borders) can be established with four
colors or less, has been a well known fact for several hundred years. Mathematicians have tried to prove this statement
mathematically, but not until 1976, a mathematical proof (yet very discussed since it was non-analytically performed) was
found. To determine the minimum amount of colors to a graph of arbitrary dimension is a NP-hard problem.

46 CHAPTER 3. ANALYSIS ON CACHE MEMORIES IN REAL-TIME SYSTEMS

1. Live ranges on variables and memory locations are calculated

2. Variables with highly intersecting live ranges are grouped in sizes of cache blocks. The block’s
live ranges are determined.

3. An interference graph for each cache set where edges bind variables to the same cache block
(node) and which live range is equal is constructed.

4. Live ranges are split in case of a possible cache conflict.

5. The amount of cache misses is estimated through summing up all frequencies of all live ranges
at all memory blocks that are used in the program.

The results of the estimated performance were compared with simulations. Five small test programs
were simulated on a DINERO cache simulator with a DLX[HP96] instruction set as a target. The
test programs had a hit ratio between 59–78%. All estimations were safe and overestimated the miss
ratio (high miss ratio yields longer execution time) to 5–37%. By identifying the live ranges, variables
could be regrouped to fit into the cache in a more beneficial way. Hit ratio could in one case by this
rearrangement be increased from 49% to 94%.

Discussion. There are many limitations in this work; it handles only data on write-allocate with ran-
dom replace and write-back strategy. It doesn’t support function calls, dynamic memory management,
and global variables. All loops must iterate 10 wraps (no more, no less). All analysis is on source-code
thus compiler optimizations will not be taken into account. A cache block that has been classified as a
missing one is always a miss — even in a tight loop. Yet, the work is only a master thesis and further
research could possibly solve many of the mentioned limitations. One reason why no one has picked
up this “loose end” to complete the work is that the method will only handle scalar variables (not arrays
or dynamic memory) and they are mostly handled as registers by optimizing compilers.

3.1.3 Abstract Interpretation

Abstract interpretation is a formal method that analyzes a program statically and gives safe information
about the execution properties of the program. It formalizes the idea that the semantics can be more
or less precise according to the considered level of abstraction. The approach renders approximations
that might include incomputable results, represented as “I don’t know”. The result is however, even if
an approximation, always safe and is never underestimated.
The main advantages with abstract interpretation [CC77] are:

� it yields run-time properties through static analysis

� with the suitable choice of abstractions, the analysis will terminate, even for non-terminating
programs

� since the calculations are made on simple abstractions, the calculations are typically much faster
than the concrete executions

� the results are always provable safe

The definition is“An abstract interpretation of a program P is a pair of(DP ; FP) such thatDP is a
complete lattice andFP is monotone.”

3.1. INTRINSIC INTERFERENCE 47

Alt, Ferdinand, Martin, and Wilhelm

A group at Universität des Saarlandes in Germany use abstract interpretation to predict set-associative
instruction and data cache behavior. The analysis is performed at single program hence only intrinsic
cache behavior is studied and predicted. Their method categorizes basic blocks intomayandmustbe
in the cache which derives two safe states;always hitandnever hitfrom which the analysis defines a
WCETC for each basic block [FMWA99]. Loops and iteration can however render a very pessimistic
WCETC since the basic block in loop can be classified as “may” (never hit). This might be true in the
first iteration but since the instructions and possibly also data is reused each iteration, the estimated
WCETC would be looser for each iteration. To cope with this problem, loops areunrolled one step
to “initialize” the cache before entering the actual loop. The initializing block can be classified as
“may” but the basic block in the loop will be classified as “must” (always hit). Loops are treated
(in the analysis) as procedures to be able to use existing methods of interprocedural analysis such as
thecallstring approachand an own method calledVirtual Inlining and Virtual Unrolling. Figure3.2
illustrates an example of a loop transformed to a recursive procedure call.

procloopL();

... if P then
while P do BODY

BODY =) loopL();
end; end
...

...
loopL();
...

Figure 3.2: Transformation of a loop to a recursive equivalent

The cache analysis technique is implemented into PAG (Program Analyzer Generator)[AM95] that
takes the control flow graph and cache design description as an input. The static cache analysis together
with the program path analysis generates WCETC , BCETC , cache behavior, and other data. The
analysis can take several minutes for a small test program. No special input of a skilled user is required
to tune the analysis for acceptable performance.

Theiling and Ferdinand

This work continues the previous by combining ILP with abstract interpretation[TF98]. The cache
block analysis is extended to, besidemust and may, also have apersistentclassification. This is
possible when a first execution of the block may result in a hit or miss in the cache, but all consecutive
references results in hits. Themaycategorization is leads to very pessimistic WCETC -estimations
in loops since those normally starts initially with misses at the first iteration but when instructions
are loaded, the cache will yield hits. This categorization is very similar to the Florida research group
(described in 3.1.4) as thefirst miss.
The analysis is performed roughly in the following steps:

1. Blocks are categorized as always hit, always miss, persistent or not classified by join functions
controlled by abstract interpretation rules.

48 CHAPTER 3. ANALYSIS ON CACHE MEMORIES IN REAL-TIME SYSTEMS

2. Loops are transformed to recursive equivalents.

3. The program path is described as ILP problems and constraints are automatically generated from
the control flow graph.

4. A cost function computes how many CPU cycles the program needs to execute.

This work is implemented intoPAG andlp_solve (by Michel Berkelaar) is used to the solve ILP
problems. The results have been compared with the “Florida research group” by using parts of the
same test suit as they did. On optimized code the accuracy of the predicted analysis was between
0.5-8% from the traced WCETA . Code that hasn’t been optimized by the compiler could be over
estimated by over 50%

3.1.4 Data flow analysis

Florida research

The approach of these researchers from Florida state university is to produce timing data from data-
flow analysis through astatic cache simulationand was first published in [MWH94]. To analyze the
behavior in a direct mapped instruction cache the following steps were made;

1. A control-flow graph is constructed out of a compiled C-program

2. The graph is analyzed to detect possible instructions that compete for the same location in the
cache memory.

3. Each instruction is categorized by its behavior.

For an overview behold figure 3.3. At this stage recursion and indirect calls could not be analyzed.

C
source
files

Compiler
Control
Flow

Information

Timing
Analyzer

Timing
Predictions

Cache
Configuration

Static
Cache

Simulator

Instruction
Caching

Categorizations

User Timing Requests

Figure 3.3: Overview of the flow to bound instruction cache and pipeline performance.

The method categorize the caching behavior of each instruction into one of the following four cate-
gories;

� Always Hit (ah) – the instruction is always in the cache. After a miss the consecutive instructions
within the block will also be loaded and those will ride on the principles of spatial locality but
also guaranteed in the cache (if preemptions, traps to OS and interrupts aren’t allowed).

3.1. INTRINSIC INTERFERENCE 49

� Always Miss (am) – the instruction is never in the cache

� First Miss (fm) – at the first access of the instruction, the cache will generate a miss, but all se-
quential accesses will generate hits. This is a common situation in for instance loops (illustrates
also temporal locality), where the first iteration renders a miss but when the instruction is loaded
into the cache it will generate hits.

� First Hit 5 (fh) – the first access is a hit but all consecutive accesses will be a miss. This sit-
uation can occur in for instance the following scenario; A piece of code with the instructions
fi1; i2; : : : ; in�1; ing will be executed wherei2 to in are the border instructions to a loop. If
the first and last instructions are members of a cache block that compete for the same spot in
the cache,i1 will be categorized asalways miss(if it’s the first instruction in a cache block,
otherwisefirst hit), i2 asfirst hit.

After the cache simulation thetiming analysisis performed to bound WCETC . The tool interactively
asks the user to assign each loop the maximum amount of iterations that the compiler couldn’t auto-
matically determine. In the next step the analyzer constructs atiming analysis treeand the worst-case
cache performance is estimated for each loop in the tree. After these steps the user can request timing
information about parts, functions or loops in the program.

In [Whi97, WMH+97] direct mapped data cache memories were included into the model. The ap-
proach works on optimized code and exploits both temporal and spatial locality. Limitations in the
method still concern recursion and indirect calls. The four instruction cache categories can be used
for scalar data references but was clumsy to handle arrays, vectors, and strings and an extension of
the categorization was needed. The new fifth stateCalculated (c) has a counter associated and keeps
a record over the maximum number of misses that could occur at each loop level in which the data
reference is nested.
Example; Assume a large data cache memory that could hold four words in each block. Scalar vari-
ables will reside in registers to make the example clearer. To sum 50 elements in an array can be
accomplished withsum += a[i]; which would render a sequence of misses (m) and hits (h);

m h h h m h h h m h h h ...m h h h m h

This data reference will be categorized as

c 13

If the next statement after this loop was anew loop that accesseda[i] again and the cache was big
enough to hold all those previous values, this line would be categorized asalways hit. The method
yields an average 30% tighter WCETC than an analysis without data cache issues.

In [WMH+99] a timing analysis method onwrap-around fill caches(also calledcritical word first)
is presented. The method detects also pipeline-hidden misses to bound WCETC even tighter and the
results gave an average tighter WCETC from 1.38 times WCETA to 1.21 (14%)

The method was later extended to also include pipelining [HWH95, HAM+99] (see also section 2.5.2)
and instruction set-associative cache memories[WMH+97].

5Actually in [MWH94] the fourth state wasConflict – the state of the instruction is undeterminable since the instruction
might compete of the space in the cache with another instruction. All instructions that cannot be categorized by the three
others will be assigned to this cache state. The handling of this state was however the same asalways miss. In later work
this state was exchanged byfirst hit to bound WCETC tighter.

50 CHAPTER 3. ANALYSIS ON CACHE MEMORIES IN REAL-TIME SYSTEMS

Those extensions results in a overestimation of 1.32 times (32%) on average on a benchmark set
compared to a conservative disabling of the cache that renders 9.25 times overestimation (= underuti-
lization) of WCETA .

Discussion The method has been criticized to have a to conservative view of the categorization model
in the simulator[LBJ+95]. Assume that the blocks B1 and B2 (but no other blocks) compete for the
same space in the cache in the following code;

for(i=0;i<N;i++) {
...
S1: (B1)
...
for(j=0;j<M;j++) {

...
S2: (B2)
...

}
}

In this case only the first reference in S2 will cause a cache miss and all other will be hits. The cache
simulation will however not categorize this block asfirst missbut asconflict or always misswith a
loose WCETC as an result.

Sung-Soo Limet al

To not suffer from the pessimistic WCETC as mentioned under discussion in section3.1.4 these Korean
researchers have proposed an alternative method to bound WCETC with respect of instruction caches
in [LML +94]. A small and simplified example will open the explanation of the approach.
Assume the access sequence of cache blocksfb2; b3; b2; b4g on a direct mapped cache of a size of two
blocks. The cache contents before the sequence is unknown. Even addresses(fb2; b4g) will be mapped
to block 1 and odd(fb1; b3g) to block 0. The flow can be seen in figure 3.4.

Cache
contents

block 0 ? b2 b2 b2 b4

block 1 ? ? b3 b3 b3

b2

(hit/miss)
b3

(hit/miss)
b2

(hit)
b4

(miss)

Figure 3.4: A sequence of cache memory accesses

The method to track the cache state and from this calculate WCETC is to store timing information and
the state of the cache of each block access in a structure (“atomic object”);

3.1. INTRINSIC INTERFERENCE 51

struct timing_information {
block_address first_reference[NO_OF_BLOCKS];
block_address last_reference[NO_OF_BLOCKS];
time t;

}

Thefirst_reference stores the blocks for which hits and misses depends on the cache contents
before the sequence is entered andlast_reference is assigned the view of the cache when the
sequence ends aftert clock cycles. In the shown example the structure will beffb2; b3g; fb4; b3g; 38g
On selections (if (exp) then S1 else S2) those timing information structures areconcate-
natedandunionizedin such a way that the new

c = fcexp � c1g [fcexp � c2g

where� is a special concatenation algorithm6, cx is a timing information structure which is associated
with the instruction sequenceSx. Sets of atomic elements (such as the one derived from the selec-
tion) can be simplified by safely removing elements in the set that have smaller WCETC than others
if the block states are equivalent. Others can be reduced by pruning (also a kind of concatenation).
Sequences of code and function calls can be pruned and while-loops are handled with the three conser-
vative assumptions that (1) cache-contents is invalid upon entrance, (2) the loop leaves invalid cache
contents, and (3) each loop iteration benefits only from the instruction blocks that were loaded into the
cache by the immediately preceding loop iteration.
To handle set-associativity the methods must be extended which the authors to the paper claims is an
easy matter to implement. To handle data caches a special hardware support is needed to decode a
special“allocate-bit” . This bit controls whether the memory block fetched on a miss will be loaded
into the cache. Loads and stores to memory locations that can be determined statically will have this
bit set and other load/stores will have this bit cleared by the compiler. The array-elements in the timing
information structure will ignore clear bit operations and handle them as misses.

The method was in [LBJ+95] extended to also include pipelining issues and the approach use concate-
nate and union methods that are similar to the cache methods.

Discussion The method will handle nested loops as described in a less conservative way than the
“Florida research approach”, but nevertheless it has some limitations with loops. A (nested) loop that
has a selection inside will be very conservative handled since the method will only take advantage of
the previous iteration’s accesses. If the execution path is altering during each iteration

i=0;
while(i<N) {

if(i % 2 == 0) {
...

}
else {
...

}
i++;

}

6see Figure 5 in [LML+94] for exact semantics of�

52 CHAPTER 3. ANALYSIS ON CACHE MEMORIES IN REAL-TIME SYSTEMS

the method will yield a loose WCETC . Handling dynamic data cache references as always miss is a
too defensive approach to bound WCETC tightly.

Sung-Kwan Kim et al

In [KMH96] Kim et al propose two different techniques that extends Lim’s analysis (page50) to yield
a tighter WCETC regarding data caching. C-G Lee (page 61 and also others use a similar defensive
approach on data caches — all dynamic references will conservatively be considered as misses.

Reduce misclassified load/store instructions Since all dynamic references in some methods (for
instance Lim (section 3.1.4) or Lee (section 3.2.3)) are considered as misses, it is very important that
the categorization of static/dynamic references doesn’t overestimate the number of dynamic references.
It is common for RISC load/store architectures to only supply a very limited number of addressing
modes. Data addresses are in those cases computed by adding a base address to a displacement. Static
memory references are located in the local stack (pointed from stack pointer –sp) or in a global
memory area (pointed from global pointergp) and the base address is in those cases eithergp or sp.
This must however not always be true. The base address is still static if it is inherited fromgp or sp.
Such an access is illustrated in the following two versions of a code example;

... ...
addiu R15,sp,#16 addiu R15,sp,#0
... ...
loadw R24,0(R15) loadw R24,16(R15)
... ...

(a) (b)

An analysis method will in case if it has a undetailed view of the code, class theloadw access in (a)
as dynamic only because the base address differs fromsp andgp. The semantically same code in (b)
would on the other hand be correctly classified as static. The proposed technique tries to derivesp or
gp from loads and stores by a data-flow analysis so the access can be handled as in the (b)-example.

Reduce WCETC overestimation on load/store instructions The suggested method is feasible in
loops with data arrays and vectors as work sets. Instead of assuming that all accesses are misses, a
region of references by each load/store instruction is determined. All blocks in “last reference block
set” that corresponds to the loop will be invalidated. The next step is to find an upper bound of distinct
memory locations referenced by the set of load/store instructions in the loop nest.

Discussion Even if this is one of the more promising approaches to bound WCETC on data caches it
is still very pessimistic since it cannot handle dynamic load/stores and adding to this also assume that
all those accesses will lead to a double miss. The dynamic access can be at any arbitrary spot which
is classified as a miss and since this spot possibly can reside static useable data, a second miss might
later occur.
According to this the miss can possibly be followed by a write-back on replacement due to dirty data.
Blocks that are only loaded and never written to will not suffer from this assumption. It might be
obvious but for the sake of science it has been proved in for instance [LS99a].

3.1. INTRINSIC INTERFERENCE 53

3.1.5 Reducing and approximative approaches

Nilsen and Rygg

Most proposals to compute WCET analysis on modern processors only approaches one or very few of
the issues regarding caches, pipelining, DMA etc. One of the very first proposals that described a com-
plete framework to handle both software and hardware issues is described in [NR95]. Pipelining issues
are simulated and cache performance is predicted with a live range method described in section7. To
ease the prediction a subset of C/C++ is used for programming and analyzed by a special tool calledC
Path Finder(cpf). The tool analyzes the control flow on source-level7 and determines the worst case
execution path based on manual annotations in the source code. No experimental evaluations were
however made, but the authors claimed that. . . it seems unlikely that. . . the cache analyzer can predict
more than 50% of the actual hits for realistic workload.

Liu and Lee

In [LL94] the approach is to estimate an exact WCETC through extensive search in CFG-trees. To
reduce search time, the proposal suggests a“hybrid approach” that with a number of approximations
reduce the search tree. The trade-off between the analysis complexity and tightness of the results is
also discussed.

Lundqvist and Stenström

By combining path and timing analyses for programs, Lundqvist and Stenström has developed a
method based oncycle-level symbolic execution[LS99b]. The method is feasible on modern high-
performance processors since it includes cache, superscalar pipelining, and dynamic execution issues.
Instead of using manual annotations to bound the number of iterations in loops, the method use au-
tomatic path analysis. Infeasible paths are detected and excluded from the analysis. The approach is
to analyze all paths in the program and to handle the exponentially growth of test cases, apath merge
strategyis employed: Each time two simulated paths meet in the program they are merged into one.
The crucial point by this handling is to choose the worst-case execution path.
Variable values can either be discrete numerical orunknown. By this simple approach WCETC can
be exactly estimated. Results from experimental evaluation showed that six out of seven benchmark
programs WCETC = WCETA .

In [LS99c] an improvement to handle data caching is proposed. The approach is to distinguish pre-
dictable from unpredictable data cache behavior for data structures. Experimental results show that up
to 84% hit ratio in a data cache is achievable on a benchmark program.

Discussion No other method has managed to integrate automatic path analysis and detailed timing
analysis into the same method. To handle pipelining, instruction and data caching simultaneously
creates a good environment and possibility to bound a tight WCETC . The approach is simple, but
in some cases it seems to be too simple since it cannot handle data domains or sets of data values (as
[Gus00] do). For a loop where the number of iterations depends on unknown input data8, the method
will fail to predict WCETC .

7Each expression is treated as straight-line code. Optimized object code cannot be analyzed.
8Unknown data can be exemplified with temperature values from a sensor that might be anything between 0–100

54 CHAPTER 3. ANALYSIS ON CACHE MEMORIES IN REAL-TIME SYSTEMS

Altenbernd and Stappert

Straight-line code without loops and recursive functions that is for instance found in automatically gen-
erated code for real-time systems. TheProgram Timing Analyzer (PTA)covers both low and high-level
aspects in the analysis. The method presented in [SA97], covers unified and split data and instruction
caches, and pipelining. The system is automated which means that manual annotations are unneces-
sary. An overview of the timing analysis is illustrated in figure3.5

Task
(C-code)

Compiler

Assembler

code

Control

Flow Graph

CFG

Cache analysis &

Pipeline analysis

Labelled

CFG

Longest Executable

Path Search

LEPS

WCETc

Object

code

Low Level Analysis:

High Level Analysis:

Processor

properties

Figure 3.5: PTA system overview

The code supported by the system is a C-subset. PTA searches for the longest execution path in the
control flow. Observe that the approach of straight-line code will assume that an instruction that has
been accessed will never be accessed again which simplifies the constraints of cache behavior.

The experimental results on four test tasks shows that the frequency of overestimated instruction and
data cache misses are between 0–14% and the overestimation on WCETC is 4–13%. The target sys-
tem was a PowerPC and the measurement was performed with the built-in performance monitoring
facilities. The analysis time was about 2–18% of the total compile time. A naive approach yields 6–8
times overestimation of WCETC .

3.2. EXTRINSIC INTERFERENCE 55

3.2 Extrinsic interference

Extrinsic (inter-task) interference in the cache can be described in different ways, but Basumallick
and Nilsen’s approach[BN94] by defining it as an delay to the pre-empted task is the most common
and will hereby be used. Cache related preemption delay (CRPD) is a side effect of extrinsic (inter-
task) occurrences. The CRPD was measured in [MB91] to 500 micro seconds in UNIX-system with
round-robin scheduling by trace driven simulation. This value is although getting a bit old. . .
The fact that it is a delay makes it more common to discussWorst Case Response Time – WCRTc in
these situations than about WCETC . C.-G. Lee shows in [LHM+97] that since the cache refill time
increases relatively to CPU speed, the CRPD takes a proportionally large percentage in the WCRT of
a task.

T1 T2

without pre-emption

T1

T2 preemptsT1

T2

T1 cont.

Cache refill penalty = CRPD

T1

with pre-emption

Figure 3.6: The cache related pre-emption delay is a cost

In [BMWSM+96b, BMWSM96a] Busquets-Mataixet al identify five different approaches to to assess
the refill penalty
 after a context-switch.

1. The time to refill the entire cache.

2. The time to refill the lines misplaced by the preempting task.

3. The time to refill the lines used by the preempted task

4. The time to refill the maximum number of useful lines that the preempted task may hold in the
cache at the worst case instant a preemption may arise. Useful lines are those that are likely to
be used again.

5. The time to refill the intersection of lines between the preempting and preempted tasks.

The chosen assess approach depends of the analysis approach and its’ limitations.
Besides the delay, a cache refill burst is effect costly which is an important parameter when construct-
ing mobile devices that run on batteries [ABR01] . In those cases the CRPD should be eliminated or
at least reduced.

This section will be organized as follows; first it will present cache partitioning as a method to avoid
extrinsic cache behavior and then some methods to compute the (worst case) CRPD.

56 CHAPTER 3. ANALYSIS ON CACHE MEMORIES IN REAL-TIME SYSTEMS

3.2.1 Partitioning by hardware

David B. Kirk

Kirk describes in [Kir88] how to divide a full associative instruction cache memory into a static part
that is preloaded at context switch and a regular LRU-part. The key concept of the idea is to guarantee
a certain hit-ratio since some blocks are fixed resulting a certain amount of hits. If a block should be
in the static or the LRU-part can be chosen statically at compile-time or dynamically at run-time by
keeping track of how often some blocks are touched. How the preload should be done and what time
it could take is however not explained.
In [Kir89] Kirk suggests a partitioning scheme called “SMART” (Strategic Memory Allocation for
Real-Time) with a shared pool of blocks and a number of private segments owned by tasks. A pri-
vate segment will eliminate extrinsic cache interference and reduce cache related pre-emption delay
(CRPD) at context switch.

Cache

Shared
partition

Partition 0

Partition 1

Partition 2

Partition 3

Partition 4

Partition 5

Partition 6

Partition 7

Cache ID Segment Count

Cache ID-2

Set Address

HW flag

Hardware flags

Mapping

function

SP flag=1

SP flag=0

Figure 3.7: SMART cache design

To choose size of the segments and how many segments should be owned by which task an algorithm
is presented in [KSS91].

In [KS90] Kirk and Strosnider describe an implementation of SMART on a MIPS R3000 CPU with an
16kB direct mapped instruction cache. The extra hardware needed to handle the partitioning render a
15% performance loss on a 25MHz processor.

Henk Muller et al

A group at University of Bristol describes in [MMIP98] a partitioned direct mapped data cache with
a modified hash-function. The hash-function needs besides the memory address also additional infor-
mation such as partition start pointer and partition size to point out the correct partition.
To be efficient, the compiler must be able to analyze access patterns and find out strides on data in
loops to know how much data must be shifted in memory to allocate the partition efficiently. In this

3.2. EXTRINSIC INTERFERENCE 57

case a shift parameter is used in the hash-function. The information is automatically derived from the
program without any user intervention.

Discussion

The partitioning of a cache by additional hardware’s major drawbackis the need of a specially designed
cache hardware which maybe was hard to accomplish when Kirk’s papers were written, but might be
easier today with FPGA technology [Xil01]. Data coherency must also be maintained since data
structures can be duplicated in more than one partition. It can for instance be solved in the same
manner as in a system with multiple bus masters — with a cache coherency protocol and a (cache
internal) snooper.

3.2.2 Partitioning by software

Andrew Wolfe

Inspired by Kirk’s proposition, Wolfe suggests in [Wol93] to partition instructions to memory ad-
dresses so they map into the cache to reduce extrinsic cache interference. The major advantage of this
approach is that no extra hardware is needed which is a less expensive solution but also a faster since
more hardware will end with slower hardware due to longer signal paths. Wolfe shows with some
trivial examples how and where tasks should be located to cause as less interference as possible.
Wolfe suggests a method to segmentize the memory by altering the decoding of memory addresses.
Instead of decoding the address to (in order) tag, set, and offset, the address field can be interpreted as
set, tag, and offset. In the traditional decoding of a cache address all parts of the memory will map the
cache contiguously. The altered version will map the contiguously addresses to a segment of the cache
(vice versa so to say). Spatial locality will in this case not been exploited so a hybrid version where
a part of the set-bits also are used the traditional way will solve the problem. See figure3.8. (The
method can also be implemented in hardware.) By this approach each task can be assigned a segment
of the memory and will not interfere with other tasks in other segments.

Frank Mueller

In [Mue95] Frank Mueller automates Wolfe’s ideas by letting the compiler and linker assign tasks
to addresses and solve the puzzle by assembling the code in the right order. Instruction partitioning
is solved by non-linear control-flow transformations and the data partitioning use transformations of
data references. Large tasks may not fit entirely into it’s own partition (and not a mapping segment
of the memory since they are of equal size), so if the tasks code must map to it’s own part of the
cache, the code must be at such a place in the memory so it will map to the correct part of the cache.
Splitting code and connect them with unconditional jumps and global data is supported by the method.
See figure 3.9 where a task that can’t suffer from CRPD has its own partition of the cache and all
other tasks share the rest of the cache. The privileged task will nevertheless still have intrinsic cache
misses. A task’s assignment to a certain percentage of the cache will block the same amount of the
main memory; if task is assigned to a partition of a size of 40% of the complete cache, there will be
only 60% of the main memory left to other tasks even if the task only uses 2% of main memory — the
rest will be wasted. (This waste can however be avoided by letting the operating system control the
memory management [LHH97].)
Tasks at the same priority level have however a special relationship. They will never preempt each
other and will therefore be scheduled in a FIFO-manner. The consequence of having several tasks

58 CHAPTER 3. ANALYSIS ON CACHE MEMORIES IN REAL-TIME SYSTEMS

Tag Set Offset

Prim Mem

(a)

Cache

Set’ Tag Set Offset

Prim Mem

(b)

Cache

Figure 3.8: In (a) cache addresses are traditionally address spaced decoded. In (b) a hybrid version of
address spaced and contiguous segments is presented.

of equal priority sharing the same partition is an increase of “relative internal” interference (lower
hit-ratio), which is a consequence of having more code in a (small) cache.
Each tasks code and dataarea is compiled separatly with cache partitioning information as in input. All
files are then piped further to the linker that allocates the code into the correct partitions.

Code partitioning is carried out by splitting the code into portions of size(s) that the cache partition
information file provides. Each portion is terminated by an unconditional jump to next portion. A
cache partition will be of equal size as the portions. Portions may be padded by NOP-code to fill up
the partition if necessary.
Conditional and unconditional jumps between code portions (so calledremote transfers) must be justi-
fied, but internal jumps can be left as is. Indirect jumps and conditional branches may have difficulties
to be performed remotely since the number of bits to set the offset might be too few. In those cases
jump tables with absolute addresses or a local short jump to an unconditional jump might solve the
problem. Procedure calls and returns from them might have to be located in the same portion since
most architectures use indirect implementations. Traps to the operating system should normally be
unaffected.
The code transformation requires, as mentioned, in some cases additional code which leads to increas-
ing code space.

Data partitioning is more trickier than code since data can be located asglobal,local (stack)and
dynamical (heap). Large global data structures must be split and indexing of arrays justified. The next
code example will illustrate how such splitting and code transformation might look like. Observe that
the example is in high-level-source for better understanding, but in reality this should be implemented
in the back-end of the compiler.

3.2. EXTRINSIC INTERFERENCE 59

Memory
Ta

sk
X

Other tasks

Ta
sk

X

Other tasks

Ta
sk

X

Other tasks

e
m

p
ty

Other tasks

e
m

p
ty

Other tasks

e
m

p
ty

Other tasks

Cache

Ta
sk

X

Other tasks

Figure 3.9: Task X has it own part of the cache. Observe that even if the task’s size is no more than
three segments, the space in the empty spaces must remain empty since a use of those addresses would
interfere with the privileged task.

/* Original code */ /* Indexing function */ /* Counter Manipulation */

int max_i,max=1000;
int i, sum, a[1000]; max_i=(max/PS)+CS+max%PS;
...
for(i=0;i<1000;i++) for(i=0;i<1000;i++) for(i=0;i<max_i;i++) {
sum = sum+a[i]; sum = sum+a[f(i)]; sum = sum+a[i];

... if(i%PS == 0)
int f(int i) { i = i+CS-PS;
return(i/PS)*CS + i%PS; }

}

The original code contains a large array that is accessed linearly, but since this part might be to large
for a single portion (size PS) the accesses will be non-linear. If all portions are of the same size, the
cache (of size CS) will containPS

CS
partitions. One solution is to hide the non-linearity with a function

that calculates the real positions of the data, but the disadvantage of this solution is that the calculation
and function cost execution time. Another solution is to manipulate the indexing variables directly, but
this might give side effects to other variables that might use them for other purposes.
Local data is stored into the stack, which leads to a split of the stack and stack pointer manipulation.
Each task must exchange the regular stack pointer with an offset and partition to handle the pop and
pushes. Dynamic allocation on the heap can be supported as long as the memory need is less than a
cache partition size. If the allocation need extends the partition size, data can be scattered in multiple
partitions just like global data.

3.2.3 Analysis methods

Basumallick and Nilsen

In [BN94] an approach to include CRPD in Rate Monotonic Analysis by adding
 as a term in to
the scheduling. Inheriting the CRPD of tasks with higher priorities will accumulate this CRPD-term.
Instead of assuming that the complete cache must be refilled at preemption, the method estimates how
large the fraction of the cache that must be refilled by preemption. The concept is best explained with
an example with three tasks;

60 CHAPTER 3. ANALYSIS ON CACHE MEMORIES IN REAL-TIME SYSTEMS

Task priority cache use
A high 1/8
B middle 1/4
C low 1/1

Assume that A intersects C with 1/16 of the cache and 1/16 with both B&C. If C is preempted by B
that is preempted by A follows the question how much of the cache has to be refilled when C resumes
its execution?
A: 1/4 of the cache will be altered by B and 1/8 by A. Since A and B intersect in the cache, C will not
have to suffer the complete A-use but only half of its use (1/16) since the rest is “shadowed” by B. The
cache refill will be1=16 + 1=4 = 5=16 � 31% of the complete cache.

Discussion The approach is very pessimistic since the approach doesn’t take into account that pieces
of the tasks could be shared and not altered.

José V. Busquets-Mataix and Juan J. Serrano-Martínet al

These Spanish researchers have studied cache related costs during context-switches in pre-emptive
real-time systems. Their approach is to use Basumallick and Kelvin’s equation2.2, but with the ap-
proximation that the only cost during a context switch is the refill penalty. Thus will formula be
simplified to

WCET 0

C = WCETC +
 (3.3)

which means that Liu and Layland’s formula (see equation2.1) can be used without any change or mix-
up with the symbols. In [BMSM95] they have compared a system with Rate Monotonic scheduling
with independent tasks in a partitioned instruction cache (PART) and a rate monotonic scheduling that
included cache related pre-emption delay (CRMA). The pre-emptive scheduling algorithm has fixed-
priority, which means that tasks don’t change priorities due to for instance scheduling efficiency or
breaking deadlock situations. With a synthetic benchmark as a load they could for instance control
number of tasks, frequency, and utilization load and came to the following (summarized) conclusions
regarding
;

� Cache size is important for both CRMA and PART. Since the complete cache is considered as
empty after a context switch, the refill time is proportional to

� The MIPS factor is important for PART, while it can be overlooked for CRMA. The higher MIPS
rate the processor can achieve, the higher instruction fetch rate and higher intrinsic interference
comparatively to extrinsic one.

� A high number of tasks is more affecting factor for PART than for CRMA.

� Cache partitioning performs better as cache size (and the partitions) increases.

� Workload factors influence more than hardware factors.

In [BMWSM+96b, BMWSM96a] the comparison is extended to also include a cached version of
Response Time Analysis (CRTA). RTA is a more precise method than RMA since it deals with more
information, which theoretically leads to a higher utilization capacity. The research showed the not too

3.2. EXTRINSIC INTERFERENCE 61

surprising conclusion that the CRTA also leads to a higher utilization than RTA, RMA, and CRMA.
In some cases a partitioned cache can still lead to a better utilization than the cached versions of the
scheduling algorithms.

In [BMWSM97] a hybrid solution of CRTA and partitioning of instruction caches is proposed to take
advantage of the best of both worlds. The partitioning can by any of a hardware or software solution. In
contrast to Kirk’s SMART-solution in hardware (see section 3.2.1), all tasks are cached in the hybrid
partitioning. On the other hand the cache partitioned aren’t private but shared by several tasks. To
avoid inherited CRPD, the best solution is to provide only one shared partition. Private partitions
should be assigned to high priority task and tasks with high frequency to reduce the high number of
indirect cache interference.
Simulated evaluations show that the utilization of the hybrid solution always is equal to or better than
CRTA, regardless of cache sizes, number of tasks or the frequency of them. The PART-scheme has (as
also shown in former work) better utilization at workloads with many tasks and where a large cache is
available.

Chang-Gun Leeet al

Busquets-Mataixet al, Basumallick and Nilsen, and many others approach to bound CRPD is to as-
sume that each cache block that has been replaced by the preempting task has to be copied back when
the control is given back to the preempted task. This assumption must be considered as pessimistic
since it is very possible that the replaced memory block will not be longer needed after the preemption.
These Korean researchers approach to bound a tighter WCETC on CRPD is to identify and only use
useful cache blocksinto the calculation. Their approach is performed in two steps;

1. Per-task analysis: Each task is statically analyzed to determine the preemption cost at each
execution point by estimating the number ofusefulblocks in the cache. In the example illustrated
in figure 3.10 the cache during timet0 contains memory blocks numberf0; 5; 6; 3g reside. The

time t0 t1 t2 t3 t4 t5 t6 t7 t8

access event - 4 5 6 7 0 0 1 2
action - m h h m m h m m

cache block 0 0 4 4 4 4 0 0 0 0
1 5 5 5 5 5 5 5 1 1
2 6 6 6 6 6 6 6 6 2
3 3 3 3 3 7 7 7 7 7

useful blocks {5,6} {5,6} {6} {} {} {0} {} {} {}

Figure 3.10: A memory access scenario from which usefull cache blocks has been derived.

technique to determine the amount of useful cache blocks is based on data flow analysis over the
control flow graph (CFG) of a program. One array stores the blocks that are reachable (reaching
memory blocks– RMB) and another storeslive memory blocks(LMB) at each execution point.
From this material the amount of useful blocks at each execution point can be determined with
an iterative method. The worst-case preemption scenario turns up when a task is preempted at
the point with the largest amount of useful cache blocks since the cost will be largest when the
task resumes its execution. The second worst scenario is a point with the second largest amount

62 CHAPTER 3. ANALYSIS ON CACHE MEMORIES IN REAL-TIME SYSTEMS

of useful blocks etc. and all those scenarios are stored in apreemption cost table. Each task has a
corresponding vector (fi;j) where the j:th entry reflects the point with the j-th largest preemption
cost.

2. Preemption delay analysis: A linear programming technique is used to compute
i
9 by sum-

ming up the product of number of preemption of a task during a time period with the number of
useful cache blocks at an execution point (taken from the preemption cost table). More formally

PCi(R
k
i) =

iX
j=1

1X
l=1

gj;lfj;l (3.4)

wheregj;l is the number of invocations of taskj that is preempted at leastl times during a given
response timeRk

i . It is however not possible to determine exactly whichgj;l combination that
gives the worst case CRPD to a task.

By defining constraints that among other information yield a maximum amount of preemptions
by a single invocation of a task, an integer linear programming (ILP) problem will be formulated
and a safegj;l can be derived.

The model has been verified by experimental results on a 20MHz R3000 RISC CPU with an instruction
cache of 16kB (the data cache was turned off). The workload was four different programs that were
intentionally located in the main memory to compete for the same area in the cache. The proposed
technique gave a 60% tighter CRPD estimation than the best of previous approaches.
To handle data caches, memory references must be categorized asstaticor dynamicload/store instruc-
tions. All static block accesses can be handled in the same way as instructions but since the method
states that each instruction is in a specific block, the dynamic data areas will be conservatively consid-
ered as misses.

In [LHM +97] the method is simplified in “step 1” to only use the largest number of useful blocks (fj)
for the taskj into the analysis instead of grading the scenarios (since this approach had very small
impact on the result). Hence equation 3.4 will be simplified to

PCi(Ri) =
iX

j=2

gjfj (3.5)

More important; the analysis has been extended to not assume that all useful cache blocks are replaced
at preemption, but to only select useful blocks in task thatintersect with cache blocks of the preempt-
ing tasks. This novel approach will bound the worst case CRPD tighter since it will only select useful
blocks that may have been replaced by the preempting task. This means for instance that if the com-
plete program will fit into the cache and the tasks don’t map to the same locations in the cache, the
CRPD will be computed (correctly) as zero. The method will however still not be exact in all other
cases since there are several (safe) approximations in the analysis.
The extension can very briefly be described as a new table calledaugmented preemption cost tableis
constructed and added, and used as an input to the previous constrains that has been extended.
The experimental results has been performed at the same machine as the previous work and the work-
load has been four tasks that has been mapped to the cache in three different ways; completely, partly,
and non-intersecting. The latter will of course yield no CRPD and will stand as a reference to calculate
the CRPD at the other task-sets. The four tasks were all of different sizes and running at different
period. The load of the system the CRPD generates depends of how large the refill penalty is.

9by Leeet al referred asPCi(R
k

i)

3.2. EXTRINSIC INTERFERENCE 63

refill worst case
penalty CRPD load
10 cc 1%
25 cc 2%
50 cc 5%
100 cc 9%
250 cc 18%

This work branched further by Sheayun Lee presented in section3.2.4.

3.2.4 Cache-sensitive scheduling algorithms

Sheayun Leeet al

Since the method proposed by Chang-Gun Leeet al (presented in section3.2.3) analyze all execution
points to determine the number of useful cache blocks, it is at hand to find out execution points where
the minimum number of useful blocks are reachable. Those points are the best opportunities to make
a context switch in respect of CRPD. Such a method is presented and evaluated in [LLL+98] and is
calledLimited Preemptible Scheduling(LPS). Limiting preemption points increase theblocking time
suffered by higher priority tasks. The risk is that if a task is blocked to long, it might potentially miss
its deadline.
The response timeof a task is the time that starts from where a task is permitted to start till it has
actuated. Two main issues delays the task from execute code and finally actuate;blocking delay–
tasks with higher priority executes and force the task to wait, andpre-emption delay– the cost to make
a context switch by the operating system and CRPD.
In other words, the CRPD can be reduced to the price of a longer blocking delay on low priority task
and possibly also a longer WCRT (Worst Case Response Time). High priority tasks will by this yield
a lower CRPD and by this also a lower WCRT.

Experimental results show that LPS can increase schedulable utilization by more than 10% and save
processor time by up to 44% as compared with a traditional fully preemptible scheduling scheme.

3.2.5 Abstract interpretation approach

In [KT98], Kästner and Thesing propose a static method to schedule a task set and incorporates CRPD.
The method can handlenon preemptablescheduling. The algorithm can detect if a task set is schedu-
lable but not directly influence the scheduling decisions.

3.2.6 WCET measurement with analysis support

To test and measureall execution paths to determine WCETA isn’t a realistic approach, but if only
local WCET-paths were chosen, the number of test would decrease dramatically.

Petters and Färber (et al)

This German research group has implemented a tightly coupled multi-processor system on a PCI-bus
with MIPS4600 and dual Intel Pentium II/III CPU-high performance units (HPU). The system also

64 CHAPTER 3. ANALYSIS ON CACHE MEMORIES IN REAL-TIME SYSTEMS

contain a Real-Time Unit10 , Configurable I/O Processor (CIOP) with FPGA and dual ported RAM.
The system goes under the name REAR.
In [PF99], Petters and Färber describe a measurement approach that starts with an automatically com-
piler generated Control Flow Graph (CFG). The CFG reflects the optimized code and will after an
analysis that cleans infeasible paths and skips non WCET-paths yield areduced CFG. The reduced
CFG will be manually partitioned into measurement blocks to reduce complexity and hereby decrease
the time of the measuring phase. The last step before the actual measurement is to insert probes (proce-
dure callssttrace(id)) into the measurement blocks that will provide the CIOP with time-stamped
id-tags.
The CIOP use the dual ported RAM as a FIFO-buffer to push the data to an external host for postmon-
itoring. Each measurement starts with an initialization of the cache and pipeline and all paths in the
reduced CFG of the measurement block are executed. The data cache flush might be a gain since dirty
data is backwritten so a replacement will be achieved with less penalty so a compensating penalty is
added to the execution time. Under normal conditions this flushing will however lead to an overesti-
mation of WCETC . All measurement block’s highest WCET are summed up and a safety margin is
added to cover DRAM refreshment. The method can be used on HPUs as well as the RTU.
The operating system will cause context-switches, which means that the switch time and the cache
related effects also must be included to the tasks’ WCETC . All RTU-service calls have an WCETC so
also this can easily be measured and added. CRPD is calculated from the task size added with global
data since this is assumed as lost at preemption. If the size exceeds the cache size, the maximum cache
size is chosen.

Discussion The method in the paper isn’t performed exactly in order as described. The testing is
performed through manipulation of the object code to select execution paths and then a measurement
is performed. The next step is to evaluate the result, make a new manipulation, possibly skip a code
section, and start new measurements. This is performediteratively and to reduce complexity and
manual work, the measurement is performed from “good”, “safe”, low-complex points in the code
at loops, function calls etc. However, the method needs lots of hands-on and knowledge of how the
software is constructed to give safe and a fast WCETC . It has also been criticized for not being safe
enough to be used inhard real-time systems. The methods attraction is that very complex systems can
be analyzed with a very tight WCETC bound result.

3.2.7 Task layout to predict performance (and minimize misses)

Task sets, which may not be schedulable when the layout of tasks in main memory is arbitrarily chosen,
might become schedulable provided the layout minimizes the CRPD. In some sense, task layout can be
considered as an advanced form of (software) partitioning. Another approach is to only permit some
(prioritized) tasks to reside in the cache and deny other tasks to use the cache.
The concept can easily be shown by an example of non-partitioned code and a modified placement
of code that is more “cache-friendly”. In figure 3.11(a) a piece of code with two tasks is located
in memory. Unfortunately the two tasks map partly to the same parts of the cache with extrinsic
cache interference as an result. In (b) the pieces are carefully assigned addresses so no interference is
possible.
The method can of course even be used to reduce intrinsic cache interference by for instance assigning
a frequent function to special parts of the cache.

10A dedicated Intel Pentium II CPU with a local SRAM that runs the operating system

3.2. EXTRINSIC INTERFERENCE 65

Primary Memory

init code

Task A

”other”
code

Task B

(a)

Cache

Task A

Interference!

Task B

(old other code)

Primary Memory

”other”
code

Task A

init code

Task B

(b)

Cache

Task A

Task B

Figure 3.11: In (a) code parts intersect in the cache, but in (b) they won’t due to carefully chosen
address-assignment.

Datta et al

In [DCB+00] and [DCB+01] a proposal to a technique to find out an optimal layout which minimizes
the WCRT ofone task and satisfy the deadline to all other tasks. The method uses ILP formulations
and the experimental results show that the method renders better performance than arbitrary chosen
layouts – with a few exceptions. The method is only feasible on direct mapped instruction caches with
task sets containing periodic tasks only.

Tomiyama and Dutt

The approach in [TD00] is similar to [TY96] described briefly in section 1.7.2. This paper includes
a real-time perspective and determines the execution path that uses the maximum number of cache
blocks. This is a better approach than assuming that the longest execution path automatically will
yield the maximum CRPD. A simple example of that is illustrated in figure3.12.
Experimental results show that this ILP-approach provides up to 69% tighter bounds on CRPD than a
conservative assumption where a refill is of the size of the preempting task(s).

Lin and Liou

Instead of letting all tasks share the cache, Lin and Liou propose in [LL91] to disable the cache to all
tasks but the most privileged or frequently used, and they must not be larger than they would all fit into

66 CHAPTER 3. ANALYSIS ON CACHE MEMORIES IN REAL-TIME SYSTEMS

b0

b1

b3

b2

Primary Memory

b0

b1

b2

b3

m0

m1

m2

m3

m4

I-cache

c0

c1

c2

c3

Figure 3.12: the execution path through b1 will use four cacheblocks but the longer execution path
through b2 will only use three.

the cache. Extrinsic cache misses and this would also eliminate CRPD. The authors claim that a task
that doesn’t fit into the cache will yield the same WCETC as a system without a cache. In [AMWH94]
it is however shown that this approach is unnecessary defensive and that the worst case performance
is better for a cached system than for an equal with a (for some or all tasks) disabled cache.

3.3 Special designed processors and architectures

Instead of trying to analyze or predicting every state a program could put the cache into, reducing the
possibilities by a hardware or software framework will force programmers to choose another way and
hereby make a safer implementation. This method will of course cost in for instance execution time,
flexibility or forbid some general solutions, which might be a reasonable price to get a tight WCETC

bound. This section will show some suggested methods to such avoiding approaches.

3.3.1 MACS

The MACS (Multiple Active Context System) approach, suggested by Cogswell and Segall in [CS91]
is to avoid caches by using memory banks. The execution of tasks is performed on a single shared
pipeline and all tasks are running at “task level parallelism” with instructions. Instead of making
context switch at a regular millisecond bases, the pipeline is fed with a new instruction alternating
from each task. This means that ifN tasks are running at the system, a new instruction will be issued
from this task everyN clock tick. To exploit the pipelining to the maximum there must be at least
as many tasks as stages in the pipeline — otherwise bubbles with NOP-instructions must be inserted.
Each task must have its own register file, set of condition flags and program counter in the processor
that follows the tasks instruction in the pipeline. By this approach all pipeline hazards are avoided.
Instead of fast cache memories, instructions are stored in memory banks that are used in an interleaved
manner. The number of banks that must be used can be calculated by dividing the latency of a memory
bank by the longest pipeline-stage’s cycle time. The higher clock frequency or longer memory latency,
the more memory banks will be needed. See figure 3.13 for an overview.
All problems seem to be solved; no pipeline hazards, no cache misses, and one instruction is executed
each clock cycle. One catch is how to handle dynamic data or data structures that are larger than a
single block.

3.3. SPECIAL DESIGNED PROCESSORS AND ARCHITECTURES 67

Register File

(N instances)

Execution

Pipeline

Control

Unit

Data bus

Instruction bus

Main Memory

(multiple banks)

Figure 3.13: Overview of MACS

3.3.2 A hardware real-time co-processor — the Real-Time Unit

Johan Stärner suggested in [Stä98] to prefetch the complete thread or task into a local memory (or
cache) before the actual context switch is performed. By this approach not only the extrinsic cache
interference can be avoided, but also the complete cache can be used by a single task with a higher
performance than a scattered partitioned (small) cache as a result. This can be accomplished by a
special co-processor (Real Time Unit – RTU) that among other services also schedules tasks in a
system by controlling the CPU and its’ registers[SAFL96].
The RTU sends an interrupt request when it wants to switch tasks to the CPU. The CPU starts a
subroutine that writes all current user register values to the RTU and then reads the corresponding
tasks register values and sets the program counter to the new task. This performs the context-switch.
See figure 3.14 for an overview of the proposal.

CPU

data address

Cache MMU

Memory

Real-Time
Kernel

context-switch interrupt

Figure 3.14: Overview of a system where the RTU controls the prefetching before a context-switch

The method is utilizable straigth-forward on instructions, but to prefetch data some kind of help from
the operating system is needed.
The disadvantage of the approach is that a special co-processor is needed and a cache memory that
can be controlled by an external device. DMA, floating point units and MMU were on the other hand
also co-processors but are today accepted as regular (and even necessary) components in a computer

68 CHAPTER 3. ANALYSIS ON CACHE MEMORIES IN REAL-TIME SYSTEMS

system. The RTU has been implemented in an FPGA but also as an ASIC.

3.4 Summary

A table of all described methods that handle cache issues in real-time systems summarizes this chapter.
Even if it is not possible to see what kind of approach that is used or the mentioned limitations, it can
although give a rough picture of what areas that are more solved than others.

year E
xt

rin
si

c

In
tr

in
si

c

In
st

ru
ct

io
ns

D
ire

ct
m

ap
pe

d

S
et

-a
ss

oc
ia

tiv
e

D
at

a

D
ire

ct
m

ap
pe

d

S
et

-a
ss

oc
ia

tiv
e

A
ut

om
at

ed

L2 P
ip

el
in

in
g

S
up

er
sc

al
ar

e

Alt, Ferdinandet al 95–99 p p p p p p p p

Altenbernd & Stappert 1997 p p p p p p p p p p

Basumallick & Nilsen 1994 p p

Busquet-Mataixet al 94–97 p p
(
p

) (
p

)

“Florida research” 94–99 p p p p p p p p

Cogswell & Segall 1991 (p) (p) (p) (p) p

Dattaet al 2000 p p p

Kirk 88–91 p p
(
p

)

Kim et al 1996 p p

Kästner & Thesing 1998 p p p p p

Lee C-Get al 96–98 p p p
(
p

) (
p

)

Lee Set al 1998 p

Li, Malik & Wolfe 95–99 p p p p

Lim S-Set al 94–95 p p p
(
p

) (
p

)

Lin & Liou 1991 p p p

Liu & Lee 1994 p p p

Lundqvist & Stenström 1999 p p p p p p p

Mueller 1995 p p p p

Mulleret al 1998 p p
(
p

)

Nilsen & Rygg 1995 p p p p

Ottosson & Sjödin 1997 p p p p p p p p

Petters & Färber 1999 p p p p p p p p
(
p

)
p p p

Rawat 1993 p p p p

Stärner 1998 p p
(
p

)

Theiling & Ferdinand 98–00 p p p p p p p p

Tomiyama & Dutt 2000 p p p

Wolfe 1993 p p

Chapter 4

Conclusions

This chapter summarizes and discusses the state of the art in the area of real-time systems and with
focus on cache memories.

4.1 Summary

4.1.1 Modern cache memories . . .

Cache memories today are not just fast small simple memories, but complex components with features
like prefetching, write buffers, data pipelining, victim caching, fast replacement algorithms etc. to hide
main memorylatency. This report explains how cache memories work from the very beginning; show
different methods how to enhance caches with features, and how they finally are designed in some
modern microprocessors.

4.1.2 . . . in real-time systems

Computer processors of today are mainly constructed for high performance in the average case —
not the worst case. A hard real-time system must never exceed its deadline and that is why modern
processors seldom are found in those processes, and if they are installed, most of the features like
caching and pipelining is disabled.
This report present several methods to include cache memories into worst-case performance analysis
in real-time systems. No method is today able to calculate a safe and tight Worst-Case Execution Time
(WCETC 1) for any arbitrary program that runs on a modern high-performance system.

4.1.3 Extrinsic behavior

Extrinsic cache behavior is less studied than intrinsic since many researchers find the problem solved
by partitioning the cache and assign tasks to dedicated parts of the cache. The problem might be
avoided, but to the price of lower hit ratios and decreased performance since the cache will be smaller
for the task. A few major proposals have been made to incorporate caches into the scheduling but
only instruction caching has been successful. The impact of cache related preemption delay (CRPD)
is getting more notified since the cache refill time increases relatively to CPU speed, and the CRPD
takes a proportionally large percentage in the WCRT of a task.

1In preemptive multi-tasking systems it is more common to discuss Worst-Case Response Time (WCETC) but the
difficulties are the same as WCETC .

69

70 CHAPTER 4. CONCLUSIONS

4.1.4 Intrinsic behavior

Instruction caching

Several methods with different approaches model instruction caching quite well — especially when
the cache is direct mapped and the software is single threaded without interrupts or preemptions.
Theoretically all execution paths can be searched yielding an exact WCETC . Searching through all
paths is although not practically feasible even for a small program but with design limitations and
model approximations a tight WCETC can be calculated. Statically non-preemptive scheduling can be
analyzed in the same manner since the execution of the execution order is static.
Very few methods are fully automated and needs manual annotations in the code or user interaction
during the analysis to bound WCETC . Some of the methods cannot handle some of these program-
ming constructs: recursion, switches, and gotos.

Data caching

It seems clear that instruction caching is much easier to analyze than data caching and there are several
reasons for that;

� spatial locality is inheritably higher for instructions than for data. Instructions come in sequences
while data only can take advantage of this on vectors and strings.

� data might be altered by other devices such as other CPU:s and DMA. Coherency must be
maintained.

� Memory mapped I/O must never be cached and the analysis must be aware of which addresses
that might be cached or not

� Writing data can be done in several ways; emphwrite-through and emphwrite-back can be per-
formedwrite allocateor no write allocate

� Data can be stored either in either global, local or dynamic space. All three methods use different
techniques and thus must be modeled differently.

� Addresses to variables or data structures can change even if the data is the same.

� Since data might be allocated on an arbitrary space on the heap when dynamic memory is used,
thrashing, mapping, updating and replacement is difficult to predict.

� Consistency must be maintained on multi-processor systems.

4.2 Open areas and future work

Even if research has been ongoing for twenty years to solve caching in real-time systems, very much
work is still left to be examined. The following list is just some suggestions of open areas with real-
time and cache aspects (no particular order).

� Caching dynamic memory in real-time systems.

� CRPD on multi-level caches.

4.2. OPEN AREAS AND FUTURE WORK 71

� CRPD on data caches.

� Flexible (run-time) hardware partitioning.

� Cache write buffers and real-time systems.

� Low-power consuming cache memories.

� Compiler supported code/data optimization by prefetching to cache.

� . . . and more.

Solving any of those problems would be worth a PhD-title. . . . Theauthor of this paper has although
aimed his future work on how to measure, control and reduce the cache related preemption delay on
modern processors.

72 CHAPTER 4. CONCLUSIONS

Bibliography

[ABR01] Andrea Acquaviva, Luca Benini, and Bruno Riccó. Energy characterization of em-
bedded real-time operating systems. InProceedings of Parallel Architectures and
Compilation Techniques, Barcelona, Spain, September 2001.

[AHH89] Anant Agarwal, Mark Horowitz, and John Hennessy. An analytical cache model.
ACM Theory of Computing Systems, 7(2):184–215, May 1989.

[AM95] Martin Alt and Florian Martin. Generation of efficient interprocedural analyzers
with PAG. InStatic Analysis Symposium, pages 33–50, 1995.

[AMWH94] Robert D. Arnold, Frank Mueller, David B. Whalley, and Marion G. Harmon.
Bounding worst-case instruction cache performance. InProceedings of the IEEE
Real-Time Systems Symposium 1994, pages 172–181, December 1994.

[AP93] Anant Agarwal and S. Pudar. Column-associative caches: a technique for reducing
the miss rate for direct-mapped caches. InProceedings of the 20th International
Symposium on Computer Architecture, San Diego, CA, May 1993.

[BE98] Mark Brehob and Richard Enbody. An analytical model of locality and caching.
Technical report, Dept. of CSaE – Michigan State University, 1998.

[BEW98] Mark Brehob, Richard Enbody, and Nick Wade. Analysis and replacement for skew-
associative caches. Technical report, Dept. of CSaE – Michigan State University,
1998.

[BMSM95] José V. Busquets-Mataix and Juan J. Serrano-Martín. The impact of extrinsic cache
performance on predictability of real-time systems. InProceedings of Workshop on
Real-Time Computing Systems and Applications, October 1995.

[BMWSM96a] José V. Busquets-Mataix, Andy Wellings, and Juan J. Serrano-Martín. Adding in-
struction cache effect to an exact schedulability analysis of preemptive real time
systems. InProceedings of 9th Euromicro Workshop on Real-Time Systems, Tokyo,
Japan, June 1996.

[BMWSM+96b] José V. Busquets-Mataix, Andy Wellings, Juan J. Serrano-Martín, Rafael Ors-Carot,
and Pedro Gil. Adding instruction cache effect to schedulability analysis of preemp-
tive real-time systems. InIEEE Real-Time Technology and Applications Symposium
(RTAS ’96), pages 204–213, Washington - Brussels - Tokyo, June 1996. IEEE Com-
puter Society Press.

73

74 BIBLIOGRAPHY

[BMWSM97] José V. Busquets-Mataix, Andy Wellings, and Juan J. Serrano-Martín. Hybrid in-
struction cache partitioning for preemptive real-time systems. InProceedings of
EuroMicro Workshop on Real-Time Systems, pages 56–63, June 1997.

[BN94] Swagato Basumallick and Kelvin D. Nilsen. Cache Issues in Real-Time Systems.
In Proceedings of the ACM SIGPLAN Workshop on Language,Compiler, and Tool
Support for Real-Time Systems, June 1994.

[BS97] Francois Bodin and Andre Seznec. Skewed associativity improves program perfor-
mance and enhances predictability.IEEE transactions on Computers, 46(5):530–
544, May 1997.

[CC77] P. Cousout and R. Cousout. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximations of fixpoints. InProceed-
ings of the 4th ACM Symposium on Principles of Programming Languages, January
1977.

[CH90] Fred C. Chow and John L. Hennessy. The priority-based coloring approach to
register allocation.ACM Transactions on Programming Languages and Systems,
12(4):501–536, October 1990.

[CS91] Bryce Cogswell and Zary Segall. Macs – a predictable architecture for real time
systems, 1991.

[DCB+00] Anupam Datta, Sidharth Choudhury, Anupam Basu, Hiroyuki Tomiyama, and
Nikil D. Dutt. Task layout generation to minimize cache miss penalty for preemp-
tive real time tasks: An ilp approach. InProceedings of 9th Workshop on Synthesis
and System Integration of Mixed Technologies (SASIMI 2000), pages 202–208, April
2000.

[DCB+01] Anupam Datta, Sidharth Choudhury, Anupam Basu, Hiroyuki Tomiyama, and
Nikil D. Dutt. Satisfying timing constraints of preemptive real-time tasks through
task layout technique. InProceedings of VLSI Design, pages 97–102, 2001.

[Ekl94] Sven Eklund.Avancerad Datorarkitektur. Studentlitteratur, Sweden, 1994.

[Ekl99] Sven Eklund.Modern Mikroprocessorarkitektur. Studentlitteratur, Sweden, 1999.

[FMWA99] Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Martin Alt. Cache
behavior prediction by abstract interpretation.Science of Computer Programming,
35(2–3):163–189, November 1999.

[Gus00] Jan Gustafsson.Analyzing Execution-Time of Object-Oriented Programs Using Ab-
stract Interpretation. Doctorial thesis, Uppsala University and Mälardalen Univer-
sity, Västerås, Sweden, May 2000.

[HAM +99] Christopher A. Healy, Robert D. Arnold, Frank Mueller, David B. Whalley, and
Marion G. Harmon. Bounding pipeline and instruction cache performance.IEEE
Transactions on Computers, 48(1):53–70, January 1999.

[Hei94] Joe Heinrich.MIPS R4000 Microprocessor UserŠs Manual Second Edition, 1994.

BIBLIOGRAPHY 75

[HL95] Tai-Yi Huang and Jane W.-S. Liu. Predicting the worst-case execution time of the
concurrent execution of instructions and cycle-stealing DMA I/O operations.ACM
SIGPLAN Notices, 30(11):1–6, 1995.

[HLH96] Tai-Yi Huang, Jane W.-S. Liu, and David Hull. A method for bounding the effect of
DMA I/O interference on program execution time. InProceedings of the RTSS’96,
pages 275–287, Washington D.C., USA, December 1996.

[HP96] John L. Hennessy and David A. Patterson.Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, San Mateo, CA, second edition, 1996.

[HWH95] Christopher A. Healy, David B. Whalley, and Marion G. Harmon. Integrating the
timing analysis of pipelining and instruction caching. InProceedings of IEEE Real-
Time Systems Symposium 1995, pages 288–297, December 1995.

[Int99] Intel Corporation.Intel Architecture Software Developer’s Manual, 1999.

[Int01] Intel Corporation. Intel Pentium 4 Processor Optimization – Reference Manual,
2001.

[Jou90] Norman P. Jouppi. Improving direct-mapped cache performance by addition of a
small fully-associative cache and prefetch buffers. InThe 17th ISCA, pages 364–
373, May 1990.

[Kir88] David B. Kirk. Process dependent static cache partitioning for real-time systems.
In Proceedings of the 1988 IEEE Real-Time Systems Symposium, pages 181–190.
IEEE Computer Society Press, 1988.

[Kir89] David B. Kirk. SMART (Strategic Memory Allocation for Real-Time) Cache De-
sign. In IEEE Computer Society Press, editor,Proceedings of the Real-Time Sys-
tems Symposium - 1989, pages 229–239, Santa Monica, California, USA, December
1989. IEEE Computer Society Press.

[KJLH89] R. E. Kessler, R. Jooss, A. Lebeck, and M. D. Hill. Inexpensive implementations
of set-associativity. In Michael Yoeli and Gabriel Silberman, editors,Proceedings
of the 16th Annual International Symposium on Computer Architecture, pages 131–
139, Jerusalem, Israel, June 1989. IEEE Computer Society Press.

[KMH96] Sung-Kwan Kim, Sang Lyul Min, and Rhan Ha. Efficient worst case timing analysis
of data caching. InProceedings of the IEEE Real-Time Technology and Applications
Symposium, pages 230–240, Brookline, Massachusetts, USA, June 10–12, 1996.

[KS90] David B. Kirk and Jay K. Strosnider. SMART (strategic memory allocation for
real-time) cache design using the MIPS R3000. In IEEE Computer Society Press,
editor, Proceedings of the Real-Time Systems Symposium - 1990, pages 322–330,
Lake Buena Vista, Florida, USA, December 1990. IEEE Computer Society Press.

[KSS91] David B. Kirk, Jay K. Strosnider, and John E. Sasinowski. Allocating SMART cache
segments for schedulability. InProceedings from EUROMICRO ‘91 Workshop on
Real Time Systems. IEEE Computer Society Press, 1991.

76 BIBLIOGRAPHY

[KT98] Daniel Kästner and Stephan Thesing. Cache sensitive pre-run scheduling. InPro-
ceedings of the ACM SIGPLAN Workshop on Languages, Compilers and Tools for
Embedded Systems, volume 1474, pages 131–145. Springer, 1998.

[LBJ+95] Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do Rhee, Sang Lyul Min,
Chang Yun Park, Heonshik Shin, Kunsoo Park, Soo-Mook Moon, and Chong Sang
Kim. An accurate worst case timing analysis for RISC processors.IEEE Trans-
actions on Software Engineering, 21(7):593–604, July 1995. Best Papers of the
Real-Time Systems Symposium, 1994.

[LHH97] Jochen Liedtke, Hermann Hartig, and Michael Hohmuth. OS-controlled cache
predictability for real-time systems. InProceedings of the Third IEEE Real-Time
Technology and Applications Symposium (RTAS ’97), pages 213–227, Washington -
Brussels - Tokyo, June 1997. IEEE.

[LHM +97] Chang-Gun Lee, Joosun Hahn, Sang Lyul Min, Rhan Ha, Seongsoo Hong,
Chang Yun Park, Minsuk Lee, and Chong Sang Kim. Enhanced analysis of cache-
related preemption delay in fixed-priority preemptive scheduling. InProceedings of
the 18th Real-Time System Symposium, pages 187–198, San Francisco, USA, De-
cember 3–5, 1997. IEEE Computer Society Press.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment.Journal of the ACM, 20(1):46–61, 1973.

[LL91] T.H. Lin and W.S Liou. Using cache to improve task scheduling in hard real-time
systems. InProceedings of the IEEE Workshop on Architecture support for Real-
Time System, pages 81–85, December 1991.

[LL94] Jyh-Charn Liu and Hung-Ju Lee. Deterministic upperbounds of the worst-case ex-
ecution times of cached programs. InProceedings of the 15:th IEEE Real-Time
Systems Symposium, pages 182–191, 1994.

[LLL +98] Sheayun Lee, Chang-Gun Lee, Minsuk Lee, Sang Lyul Min, and Chong Sang Kim.
Limited preemptible scheduling to embrace cache memory in real-time systems. In
Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems, pages 51–64, June 1998.

[LM95] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded software
using implicit path enumeration. InProceedings of the 32nd ACM/IEEE Conference
on Design Automation (DAC’95), page 6, San Francisco, CA, USA, June 12–16,
1995.

[LML +94] Sung-Soo Lim, Sang Lyul Min, Minsuk Lee, Chang Park, Heonshik Shin, and
Chong Sang Kim. An accurate instruction cache analysis technique for real-time
systems. InProceedings of the Workshop on Architectures for Real-time Applica-
tions, April 1994.

[LMW95] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Efficient microarchitecture
modeling and path analysis for real-time software. InProceedings of the 16th Real
Time System Symposium, pages 298–307, December 1995.

BIBLIOGRAPHY 77

[LMW99] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance estimation of
embedded software with instruction cache modeling.ACM Transactions on Design
Automation of Electronic Systems, 4(3):257–279, July 1999.

[LS99a] Thomas Lundqvist and Per Stenström. Emperical bounds on data caching in high-
performance real-time systems. Technical Report 99-4, Department of Computer
Engineering, Chalmers, Göteborg, Sweden, April 1999.

[LS99b] Thomas Lundqvist and Per Stenström. An integrated path and timing analysis
method based on cycle-level symbolic execution.Journal of Real-Time Systems,
pages 183–207, November 1999. Special Issue on Timing Validation.

[LS99c] Thomas Lundqvist and Per Stenström. A method to improve the estimated worst-
case performance of data caching. InProceedings of the 6th RTCSA, December
1999.

[MB91] Jeffrey C. Mogul and Anita Borg. The effect of context switches on cache perfor-
mance. InProceedings of the 4th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 75–84, Santa Clara, CA,
USA, April 1991.

[MMIP98] Henk Muller, David May, James Irwin, and Dan Page. Novel caches for predictable
computing. Technical Report CSTR-98-011, Department of Computer Science, Uni-
versity of Bristol, October 1998.

[Mue95] Frank Mueller. Compiler support for software-based cache partitioning. InACM
SIGPLAN Workshop on Languages, Compilers and Tools for Real-Time Systems, La
Jolla, CA, USA, June 1995.

[MWH94] Frank Mueller, David B. Whalley, and Marion G. Harmon. Predicting instruction
cache behavior. InACM SIGPLAN Workshop on Language, Compiler and Tool
Support for Real-Time Systems, June 1994.

[NR95] Kelvin D. Nilsen and Bernt Rygg. Worst-case execution time analysis on modern
processors.ACM SIGPLAN Notices, 30(11):20–30, 1995.

[OS97] Greger Ottosson and Mikael Sjödin. Worst-case execution time analysis for modern
hardware architectures. InACM SIGPLAN Workshop on Languages, Compilers, and
Tools for Real-Time Systems (LCT-RTS’97), 1997.

[PF99] Stefan M. Petters and Georg Färber. Making worst case execution time analysis
for hard real-time tasks on state of the art processors feasible. InProceedings of the
6th Real-Time Computing Systems and Applications RTCSA, Hong-Kong, December
13–15, 1999. IEEE Computer Society.

[PHH89] Steven Przybylski, Mark Horowitz, and John Hennessy. Performance tradeoffs in
cache design.Proceedings of the 15th Annual Int. Symposium on Computer Archi-
tecture, pages 290–298, June 1989.

[PS91] Chang Yun Park and Alan C. Shaw. Experiments with a program timing tool based
on source-level timing schema.IEEE Computer, 24(5):48–57, May 1991.

78 BIBLIOGRAPHY

[Raw93] Jai Rawat. Static analysis of cache performance for real-time programming. Master
thesis TR93-19, Iowa State University of Science and Technology, November 17,
1993.

[RBS96] Eric Rotenberg, Steve Bennett, and James E. Smith. Trace cache: A low latency
approach to high bandwidth instruction fetching. InProceedings of the 29th Annual
International Symposium on Microarchitecture, pages 24–34, Paris, France, Decem-
ber 2–4, 1996. IEEE Computer Society TC-MICRO and ACM SIGMICRO.

[RBS99] Eric Rotenberg, Steve Bennett, and James E. Smith. A trace cache microarchitecture
and evaluation.IEEE Transactions on Computers, 48(2):111–120, 1999.

[RS99] Jeffrey B. Rothman and Alan J. Smith. The pool of subsectors cache design. Tech-
nical Report CSD-99-1035, University of California, Berkeley, January 6, 1999.

[SA97] Friedhelm Stappert and Peter Altenbernd. Complete worst-case execution time anal-
ysis of straight-line hard real-time programs. Technical Report 27/97, C-Lab, Pader-
born, Germany, December 9 1997.

[SAFL96] Johan Stärner, Joakim Adomat, Johan Furunäs, and Lennart Lindh. Real-time
scheduling co-processor in hardware for single and multiprocessor systems. InPro-
ceedings of the 22:nd Euromicro conference, 1996.

[SC97] Kevin Skadron and Douglas W. Clark. Design issues and tradeoffs for write buffers.
In Proceedings of the Third International Symposium on High Performance Com-
puter Architecture (HPCA ’97), pages 144–155, Los Alamitos, Ca., USA, February
1997. IEEE Computer Society Press.

[Sez93] Andre Seznec. A case for two-way skewed-associative caches. In Lubomir Bic, ed-
itor, Proceedings of the 20th Annual International Symposium on Computer Archi-
tecture, pages 169–178, San Diego, CA, May 1993. IEEE Computer Society Press.

[Sez97] Andre Seznec. A new case for skewed-associativity. Technical Report RR-3208,
Inria, Institut National de Recherche en Informatique et en Automatique, 1997.

[Smi82] Alan Jay Smith. Cache memories.ACM Computing Surveys, 14(3):473–530,
September 1982.

[Stä98] Johan Stärner. Controlling cache behavior to improve predictability in real-time
systems. InProceedings of 10th Euromicro Workshop on real-time systems, June
1998.

[Sto93] Harald S. Stone.High Performance Computer Architecture 3rd ed. Addison-Wesley,
1993.

[TD00] Hiroyuki Tomiyama and Nikil Dutt. Program path analysis to bound cache-related
preemption delay in preemptive real-time systems. InProceedings of 8th Inter-
national Workshop on Hardware/Software Codesign (CODES 2000), pages 67–71,
May 2000.

BIBLIOGRAPHY 79

[TF98] Henrik Theiling and Christian Ferdinand. Combining Abstract Interpretation and
ILP for Microarchitecture Modelling and Program Path Analysis. InProceedings
of the 19th IEEE Real-Time Systems Symposium, pages 144–153, Madrid, Spain,
December 1998.

[Tha00] Henrik Thane.Monitoring, Testing and Debugging of Distributed Real-Time Sys-
tems. Doctorial thesis, Royal Institute of Technology, KTH and Mälardalen Univer-
sity, Stockholm and Västerås, Sweden, May 2000.

[TY96] Hiroyuki Tomiyama and Hiroto Yasuura. Optimal code placement of embedded
software for instruction caches, March 1996.

[Whi97] Randall T. White. Bounding Worst-Case Data Cache Performance. PhD thesis,
Florida State University, April 1, 1997.

[WMH+97] Randall T. White, Frank Mueller, Christopher A. Healy, David B. Whalley, and
Marion G. Harmon. Timing analysis for data caches and set-associative caches. In
Proceedings of the Third IEEE Real-Time Technology and Applications Symposium
(RTAS ’97), pages 192–202, Washington - Brussels - Tokyo, June 1997. IEEE.

[WMH+99] Randall T. White, Frank Mueller, Christopher A. Healy, David B. Whalley, and
Marion G. Harmon. Timing analysis for data and wrap-around fill caches.Real-
Time Systems, 17(2–3):209–233, 1999.

[Wol93] Andrew Wolfe. Software-based cache partitioning for real time applications. In
Proceedings of the 3rd International Workshop on Responsive Computer Systems,
September 1993.

[Xil01] Xilinx corporation. Xilinx web site http://www.xilinx.xom, 2001.

Index

, 32, 34, 55

abstract interpretation, 46, 63
actaute, 31
Alpha AXP, 22
Altenbernd, 54
associativity

direct mapped, 2
fully, 2
performance, 9
pseudo, 14
sequential, 13
set, 2
skewed, 16

atomic object, 50

bank,seecache way
Basumallick, 55, 59, 61
BCET, 33
block,seecache block

reachable, 61
useful, 61

blocking time, 63
Busquets-Mataix, 55, 60

C-subset, 54
cache

block, 2
coherency, 57
hit, seehit
in RTS, 34
levels, 11
line, 2
miss,seemiss
non-blocking, 20
partitioning,seepartitioning
performance, 8
set, 2
tag, 17
unified, 6

way, 2
write, seewrite

cache related preemption delay, 34, 55
load, 62
power consumption, 55
refill penalty, 55

Cinderella, 43
code optimization

placement, 64, 65
code optimizations, 22

data merging, 23
placement, 23

column associativity,seeassociativity pseudo
copy-back, 4
critical word first, 20, 49
CRMA, 60
CRPD,seecache related preemption delay, 59
CRTA, 60
cycle-level symbolic execution, 53

D-flag,seedirty bit
Datta, 65
deadline, 32
delayed branch, 38
direct mapped, 2
direct memory access, 39
dirty bit, 5
DMA, seedirect memory access
DRAM refreshment, 40
Dutt, 65
dynamic memory, 59

earliest deadline, 33
early restart, 19
execution time analysis, 33
extrinsic,seeiterference, extrinsic54

FPGA, 57, 64, 68
fully accociative, 2
Färber, 63

80

INDEX 81

global memory, 58

Harvard architecture, 6
hit, 3

ILP, seeinteger linear programming
implicit path enumeration, 43
instruction pipeline

single shared, 66
instruction pipelining, 37, 49, 51

and cache memories, 38
conflicts, 37
hazards,seeconflicts

integer linear programming, 43
Intel Pentium, 24, 63
inter-task,seeinterference, intrinsic
interference

extrinsic, 34, 54
intrinsic, 34, 43

interrupts, 40
intra-task,seeinterference, extrinsic
intrinsic,seeinterference, intrinsic

Kim, 52
Kirk, 56

L2, seecache levels
least recently used, 5
Lee, Chang-Gun, 61
Lee, Sheayun, 63
Level-2,seecache levels
Li, 44
Lim, S.-S., 50
Lin, 65
line, seecache line
Liou, 65
locality, 1

optimization, 23
performance, 10
sequential, 2
spatial, 2, 18
temporal, 1, 18

look aside, 7
look through, 7
loop unrolling, 22

virtual, 47
LRU, seeleast recently used
Lundqvist, 53

MACS, 66
Malik, 44
measurement, 64
mini cache,seevictim cache
MIPS, 60, 63
misclassification, 52
miss, 3

capacity, 4
compulsory, 3
conflict, 3

miss cache, 12
Moore’s law, 1
Motorola Power PC750, 25
Mueller, 57
Muller, 56
multiple cache levels,seecache levels

Nilsen, 53, 55, 59, 61
no-write allocate, 5

PAG, 47
partitioning

compiler support, 57
hardware, 56
software, 36, 57

path merge, 53
Petters, 63
pipelining,seeinstruction pipelining
pollution-point, 9
prefetching, 21

hardware, 22
software, 21

Princeton architecture,seeunified cache
private segment, 56

rate monotonic, 32
Rawat, 45
real-time system, 31

hard, 32
soft, 32

replacement
algorithms, 5
least recently used, 5
most recently used, 14
performance, 9
pseudo, 6
pseudo LRU, 27
random, 5

82 INDEX

RTS,seereal-time system
RTU

Petters, 64
Stärner, 67

Rygg, 53

scheduling, 32
dynamic, 32
limited preemptible, 63
static, 32

score boarding, 37
sector cache, 10
set-associative, 2
Seven of nine, 73
shared pool, 56
simulation

static cache, 48
trace driven, 8, 55

SMART, 56
stack, 59
Stappert, 54
status-bits, 6
Stenström, 53
straight-line code, 54
Strong ARM SA-1110, 27
subblock,seesubsector
subsector, 10

tag, 3
task layout,seecode optimization
TLB, seetranslation lookaside buffer
Tomasulo’s algorithm, 37
Tomiyama, 65
trace cache, 17

example, 18
translation lookaside buffer, 36

unified cache, 6

valid flag, 3
victim cache, 13
virtual memory, 36

way,seecache way
WCET, 33
WCRT,seeworst-case response time, 63
Wolfe, 57
worst-case execution time,seeWCET

worst-case response time, 55, 63
wrap-around fill,seecritical word first
write, 4, 35

buffer, 19
pipelined, 19

write allocate, 5
write-back,seecopy-back
write-through, 4

Xilinx, 57

Chance is irrelevant — we will succeed.

– Seven of nine

	Introduction to cache memories
	Locality
	Cache basics
	Placement
	Probing
	Writing
	Replacement

	Implementative perspectives
	Partitioning the cache organization
	Look through & look aside

	Performance
	Size
	Replacement algorithms
	Locality

	Evolution -- theory and practice
	Sector cache memories
	Multiple levels of caches
	Small fully associative caches in co-operation
	Inexpensive set-associativity
	Skewed association
	Instruction fetching and comparing tags simultaneously
	Trace cache
	Write-Buffers and pipelined writing
	Early restart
	Critical word first
	Non-Blocking Cache Memories

	Prefetching
	Prefetching with software
	Prefetching with hardware

	Software design
	Compiler optimizations
	Code placement

	Case studies on single CPU systems (no RT aspects)
	Intel Pentium III
	Motorola Power PC 750
	StrongARM SA-1110

	Real-Time and unpredictable hardware
	Introduction to real-time
	Real-time and scheduling
	Static scheduling algorithm example: Rate monotonic
	Dynamic scheduling algorithm example: Earliest deadline

	Execution Time Analysis
	Software analysis

	Cache memories in RTS
	Write-back or write-through?
	Better and worse performance with cache memory = loose WCETC

	Other unpredictable hardware issues in Real-Time systems
	Translation look aside buffers and virtual memory
	Instruction pipelining
	Direct Memory Access - DMA
	High priority hardware interferences

	Analysis on cache memories in real-time systems
	Intrinsic interference
	Integer Linear Programming (ILP) methods
	Static analysis with graph coloring
	Abstract Interpretation
	Data flow analysis
	Reducing and approximative approaches

	Extrinsic interference
	Partitioning by hardware
	Partitioning by software
	Analysis methods
	Cache-sensitive scheduling algorithms
	Abstract interpretation approach
	WCET measurement with analysis support
	Task layout to predict performance (and minimize misses)

	Special designed processors and architectures
	MACS
	A hardware real-time co-processor --- the Real-Time Unit

	Summary

	Conclusions
	Summary
	Modern cache memories …
	…in real-time systems
	Extrinsic behavior
	Intrinsic behavior

	Open areas and future work

