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ABSTRACT 
Cloud computing represents a technological change in computing.  Despite the technological change, 
however, the quality of the computation, in particular its dependability, keeps on being a fundamental 
requirement.  

To ensure dependability, more specifically reliability, transaction models represent an effective means. 
In the literature, several transaction models exist. Choosing (reusing entirely) or introducing (reusing 
partially) transaction models for cloud computing is not an easy task.  The difficulty of this task is due to 
the fact that it requires a deep understanding of the properties that characterize transaction models to be 
able to discriminate reusable from non reusable properties with respect to cloud computing 
characteristics. To ease this task, the PRISMA process is introduced. PRISMA is a Process for 
Requirements Identification, Specification and Machine-supported Analysis that targets transaction 
models. PRISMA is then applied to engineer reusable requirements suitable for the achievement of the 
adequate transaction models for cloud computing. 
 
INTRODUCTION 
Cloud computing is a computing service offered over the Internet. That is, a customer plugs into the 
“cloud” (metaphor for Internet) and uses computing scalable capabilities owned and operated by the 
service provider (Bernstein & Newcomer, 2009).  

Two kinds of service can be offered over the Internet: either an application-specific service that offers 
a specific application (e-mail, search, social networking, etc.) or a general-purpose service (raw storage, 
raw processing power, etc.).  The provider of these kinds of service may be a large company that owns 
many data centers, clusters of hundreds of thousands of computers.  

Cloud computing represents a paradigm shift, a technological change in computing. This technological 
change forces cascading changes. Despite the technological change, however, the quality of the 
computation, in particular its dependability, keeps on being a fundamental requirement.  

To ensure dependability, more specifically reliability, transactional principles, in particular ACID 
(Atomicity, Consistency, Isolation and Durability) properties (Härder & Reuter, 1983), which 
characterize the flat transaction model (Gray, A Transaction Model, 1980), represent an effective means. 
ACID properties combine fault tolerance and concurrency control to preserve global data consistency.  

In the context of cloud computing, however, ACID properties are too strict and need to be reviewed 
and carefully changed, “relaxed”, to achieve adequate transaction models, characterized by the right 
ACIDity (the right choice in terms of Atomicity, Consistency, Isolation and Durability). The traditional 
Atomicity, for instance, has to be relaxed when a computation is executed over a series of Internet’s 
partitions that belong to different and autonomous service providers. Autonomy implies the possibility to 



 

 

decide locally about the outcome of the computation. This possibility would be denied by the all-or-
nothing semantics (known as Failure Atomicity) that characterizes traditional atomicity, since it 
subordinates local decisions to the global decision. To preserve autonomy, the all-or-nothing semantics 
has to be changed into all-or-compensation semantics (known as compensation (Levy, Korth, & 
Silberschatz, 1991)).  

Scattered throughout the literature are available several relaxed notions of the traditional ACID 
properties. Since, however, no effective means exist to support a systematic understanding of the 
differences and similarities among these notions, no selectable and composable on-the-shelf-(relaxed)-
ACID properties exist yet. This lack of means hinders the beneficial exploitation (reuse) of these 
properties. 

To reduce time to market and increase quality, reuse has to be the key-leading-principle and changes 
have to be introduced only where needed. Changes have to be engineered. To be able to plan the changes 
as well as the reuse correctly and efficiently, a methodological support has to be provided. In particular, 
the methodological support should help engineers to identify what has to be changed and what has to be 
kept unchanged. More specifically, it is fundamental to be able to identify what are the changes in terms 
of ACIDity, that is what are the changes required to adapt each single ACID property to meet the 
requirements of cloud computing and provide the right transaction model. By being able to identify what 
has changed and what remains unchanged, engineers are able to maximize reuse. 

As initially discussed in (Gallina & Guelfi, A Product Line Perspective for Quality Reuse of 
Development Framework for Distributed Transactional Applications, 2008), to succeed in engineering 
systematically common (what remains unchanged) and variable properties (what changes), a product line 
perspective on transaction models has to be considered. 

This chapter builds on this initial discussion and presents PRISMA (Gallina, PRISMA: a Software 
Product Line-oriented Process for the Requirements Engineering of Flexible Transaction Models, 2010). 
PRISMA integrates a product line perspective and supports the reuse of reliability-oriented and 
transaction-based requirements for achieving the adequate ACIDity. PRISMA is an acrostic that stands 
for Process for Requirements Identification, Specification and Machine-supported Analysis. PRISMA is 
helpful as a prism (from Greek “prîsma”) in the identification of fundamental constituting properties of 
transaction models to achieve, as a result of the PRISMA process, correct and valid requirements 
specifications.  

By integrating a product line perspective, PRISMA allows similarities and differences, which are 
called commonalities and variabilities in the terminological framework of product lines, to be identified, 
systematically organized and engineered to distinguish, as well as to derive,  the single "products". 
Specifically, PRISMA is conceived for engineering the specification of a transaction model by placing the 
effort in revealing its requirements in terms of ACIDity. By following the PRISMA process, then, the 
adequate transaction models for cloud computing can be obtained. 

PRISMA proposes two phases: the first one to engineer the commonalities and the variabilities that 
characterize the entire product line and the second one to derive the products by reusing the 
commonalities and the variabilities engineered during the first phase. The ACIDity, for instance, is seen 
as an abstract variability which can be customized during the application engineering phase to obtain the 
desired ACIDity of the transaction models (products). This customization is obtained by selecting and 
composing the adequate notions of ACID properties. 

Each PRISMA’s phase consists of three activities: identification, specification and verification & 
validation. To perform the activities, PRISMA proposes to use the requirements elicitation template, 
called DRET (Gallina & Guelfi, A Template for Requirement Elicitation of Dependable Product Lines, 
2007), and the specification language, called SPLACID  (Gallina & Guelfi, SPLACID: An SPL-oriented, 
ACTA-based, Language for Reusing (Varying) ACID Properties, 2008; Gallina, Guelfi, & Kelsen, 
Towards an Alloy Formal Model for Flexible Advanced Transactional Model Development, 2009). 



 

 

DRET allows requirements engineers to gather requirements in a structured way. Domain concepts as 
well as product behaviors may be elicited through, respectively, DOMET and UCET, which are the two 
templates composing DRET. 

SPLACID is a domain-specific specification language targeting transaction models. SPLACID 
integrates the above mentioned product line perspective and provides constructs for the specification of 
commonalities and variabilities within the product line. SPLACID offers a powerful means to maximize 
reusability and flexibility.  

The SPLACID language benefits from a formal tool-supported semantics, which is obtained as a 
translation of the SPLACID concepts into Alloy concepts (Jackson, 2006). The Alloy-Analyzer tool 
(Alloy Analyzer 4), therefore, can be exploited to carry out automatic analysis. Because of its tool-
supported semantics SPLACID contributes to improving the verifiability and reliability of transaction 
models. 

In addition to the introduction of the PRISMA process, this chapter illustrates its application. PRISMA 
is applied to show how it can be used to engineer reusable Atomicity-related assets suitable for cloud 
computing.  

The illustration of the PRISMA process is based on the current and informal understanding concerning 
the feasible ACIDity in the context of cloud computing (Karlapalem, Vidyasankar, & Krishna, 2010; 
Hohpe, 2009; Puimedon, 2009; Vogels, 2008;  Pritchett, 2008). The aim of the chapter is to present a 
methodological support, the PRISMA process, and provide a first analysis on how it could be applied to 
reuse reliability-oriented and transaction-based models in the context of cloud computing. Cloud 
computing is still a rather new technology and therefore the PRISMA phases will need multiple iterations 
before achieving the right ACIDity. 
 
 
BACKGROUND 
This section is devoted to presenting the background concerning the problem and the solution space. First 
of all, this section introduces the main characteristics of cloud computing that make ACID properties 
inadequate to meet the dependability’s requirements. Then a step-by-step immersion into transactional 
principles is given. This immersion is aimed at providing the necessary elements to understand the 
problem space and to prepare the reader to the solution space. In particular, first, the traditional 
transactional properties, namely ACID properties, which allow global data consistency to be preserved, 
are recalled. More specifically, the role of each single property is pointed out to deeply understand the 
property’s contribution in preserving global data consistency. Then, intuitions are given to motivate and 
start conceiving the potentially numerous relaxed notions of the ACID properties as well as the 
potentially numerous transaction models that incorporate them. Two existing transaction models are then 
analyzed.  

Finally, before letting the main section to introduce the solution proposal, the background section 
provides the fundamental ingredient of the solution space: product line engineering. 
 
 
Cloud computing characteristics 
As mentioned in the introduction, in cloud computing, the customer plugs into the cloud to use the 
computing service that is offered over it. The cloud is a metaphor for the Internet, a medium that consists 
of geographically and purposely scattered computers or supercomputers that perform different parts of the 
computation. Several properties characterize cloud computing (Buyya, Yeo, Venugopal, Broberg, & 
Brandic, 2009), the following list focuses on those that make the traditional ACID properties inadequate 
to meet the dependability’s requirements of cloud computations. 



 

 

• autonomy. The scattered computers and supercomputers that compose the cloud are loosely 
coupled and they belong to different autonomous organizations. Since autonomy implies the 
possibility to take decisions locally, it is not compatible with any master-slave hierarchy in which 
a local decision taken by a slave is subordinated to the decision of a non-local master. 

• complexity. The computations involved in cloud computing are often complex. Complex comes 
from Latin past participle “complexus” and it means “composed of two or more parts”. Complex 
computations are constituted of several operations accessing several data (complex data) and they 
often present parallelism. E-scientific applications, for instance, often submit to the cloud the 
request of executing large computations (i.e. large-matrix multiplications). 

• intra and cross-organization cooperation. The scattered computers or supercomputers act in 
concert to execute very large computations. Cooperation implies that the scattered computers 
exchange information. 

• performance. The computations involved in cloud computing are often expected to be executed 
quickly. 

• customization. Cloud computations are supposed to be customizable. The customization may, for 
instance, involve reliability. 

• scalability. Expansion, as well as contraction, of the capabilities (i.e. storage, database, etc.) 
needed by cloud computations is expected. Scalability can be guaranteed by scaling either 
vertically or horizontally (Pritchett, 2008).  Vertical scaling (or scaling up) consists in moving the 
application that needs to be scalable to larger computers. Horizontal scaling (or scaling out) 
consists in adding more computers (generally low cost commodities) to the system that runs the 
application. Since vertical scaling is expensive and limited to the capacity of the largest computer, 
in cloud computing, scaling is mainly achieved horizontally. Cloud computing is in fact supposed 
to guarantee “infinite” scaling (a seemingly inexhaustible set of capabilities). 

When an application is executed on a cluster of computers (on a scaled out system) some 
adjustments are required. For instance, its data have to be properly distributed (scattered and 
replicated to guarantee low-latency access). To do that, a functionality-based approach can be 
followed. Functionality-based scaling consists in creating groups of data by dividing data 
according to functionalities and then spreading as well as replicating the groups across databases.  

Horizontal scaling, however, suffers from network partitions. Since network partitions happen, 
they need to be tolerated. 

 
ACID properties 
Atomicity, Consistency, Isolation and Durability, widely known under the acronym ACID (Härder & 
Reuter, 1983), are four properties, which, if satisfied together, ensure high dependability and, more 
specifically, reliability. These properties combine fault tolerance and concurrency control. The definitions 
of these properties, adapted from (Gray & Reuter, Transactions Processing: Concepts and Techniques, 
1993) are given in what follows. The definitions make use of some terms defined in the appendix. The 
terms are written in italics.  

Atomicity: a work-unit’s changes to the state are atomic: either all happen or none happen (all-or-
nothing semantics, known as failure atomicity). Atomicity guarantees that in case of failure, 
intermediate/incomplete work is undone bringing the state back to its initial consistent value. 

Consistency: a work-unit is a correct transformation of the state. All the a priori constraints on the 
input state must not be violated by the work-unit (intra-work-unit, local, consistency). 

Isolation: a set of work-units either is executed sequentially (no interference) or is executed following 
a serializability-based criterion (controlled interference). 

Durability: once a work-unit completes successfully, its changes to the state are permanent. 
 



 

 

All of these four properties aim at preserving a consistent state (global data consistency), that is the 
state that satisfies all the predicates on objects. To become familiar with these definitions and to really 
achieve a deep understanding of their impact, a simple example (partially inspired by (Besancenot, Cart, 
Ferrié, Guerraoui, Pucheral, & Traverson, 1997)) is introduced to illustrate them. Throughout the example 
the following notation is used: 
-to refer to a read operation which belongs to a work-unit labelled with the number 1 and which reads an 
object x (where the read value is v), the following notation is used: read1[x, v]; 
-similarly, to refer to a write operation which writes an object x (where the written value is v), the 
following notation is used: write1[x, v]; 
-the symbol “<>” denotes inequality and the symbol “*” denotes multiplication. 
Example: 
Two objects x and y of type integer are related by the constraint: y=2x 
The initial state of the two objects is: 
x=1 and y=2 
Since 2 = 2 * 1, in the initial state, the constraint holds. 
Case 1: ACID properties hold 
Work-unit 1 executes permanently to completion (all semantics) and in isolation, the following 
operations: write1[x, 10] and write1[y, 20]. 
Work-unit 2 executes permanently to completion (all semantics) and in isolation, the following 
operations: write2[x, 30] and write2[y, 60] 
A possible sequential execution: 
write1[x, 10] write1[y, 20] write2[x, 30] write2[y, 60] 
The final state in permanent storage is: 
x=30 and y=60 
Since 60= 2 * 30, the a priori constraint holds. The sequential execution of Work-unit 1 and Work-unit 2 
therefore transform the state correctly and preserve the consistent state. 
Case 2: AID properties only hold 
Work-unit 1 executes permanently to completion (all semantics) and in isolation, the following 
operations: write1[x, 10] and write1[y, 30] 
The final state in permanent storage is: x=10 and y=30 
Since 30 <> 2*10, the a priori constraint does not hold. Work-unit 1 therefore does not transform the state 
correctly, i.e., it does not preserve the consistent state (broken consistency semantics within the work-
unit). 
Case 3: CID properties only hold 
Work-unit 2 executes permanently in isolation but not atomically (something in the middle semantics) the 
following operations: write2[x, 10] and write2[y, 20] 
The something in the middle semantics has to be intended as follows: only a subset of the operations to be 
executed is in reality executed. Work-unit 2, instead of executing both operations, executes only the first 
(write2[x, 10]). 
The final state in permanent storage is: 
x=10 and y=2 
Since 2 <> 2 * 10, the a priori constraint does not hold. Work-unit 2 therefore does not preserve the 
consistent state (broken all or nothing semantics). 
Case 4: ACI properties only hold 
Work-unit 2 executes to completion (all semantics) and in isolation but not permanently the following 
operations: write2[x, 10] and write2[y, 20]. In particular, the second write operation. 
The final state in volatile storage is: 
x=10 and y=20 
Since 20 = 2 * 10, the final state in volatile (non permanent) storage is consistent. 



 

 

The final state in permanent storage is: 
x=10 and y=2 
Since 2 <> 2 *10, the a priori constraint does not hold. Work-unit 1 therefore does not preserve the 
consistent state (broken durability semantics). 
Case 5: ACD properties only hold 
Work-unit 1 executes permanently to completion (all semantics) but not in isolation the following 
operations: write1[x, 10] and write1[y, 20] 
Its execution time overlaps the execution time of work-unit 2. Work-unit 2 executes permanently to 
completion but not in isolation the following operations: write2[x, 30] and write2[y, 60] 
In particular considering the following interleaved execution: 
write1[x, 10] write2[x, 30] write2[y, 60] write1[y, 20] 
The final state in permanent storage is: 
x=30 and y=20 
Since 20 <> 2*30, the a priori constraint does not hold. The concurrent execution of Work-unit 1 and 
Work-unit 2 therefore does not preserve the consistent state (broken isolation semantics, in particular 
an update is lost). 

ACID properties are not easy to ensure. Some research has shown that to guarantee these properties, a 
work-unit has to exhibit additional properties. A non-exhaustive list of these additional properties 
includes: 

• each work-unit presents a short execution time (Gray & Reuter, Transactions Processing: 
Concepts and Techniques, 1993; Besancenot, Cart, Ferrié, Guerraoui, Pucheral, & Traverson, 
1997). 

• each work-unit accesses, during its execution time, a small number of data (Gray & Reuter, 
Transactions Processing: Concepts and Techniques, 1993; Besancenot, Cart, Ferrié, Guerraoui, 
Pucheral, & Traverson, 1997); 

• the same data must not be accessed by a large number of concurrent work-units (Gray & Reuter, 
Transactions Processing: Concepts and Techniques, 1993; Besancenot, Cart, Ferrié, Guerraoui, 
Pucheral, & Traverson, 1997); 

• each work-unit accesses only non-structured (simple) data (Gray & Reuter, Transactions 
Processing: Concepts and Techniques, 1993; Besancenot, Cart, Ferrié, Guerraoui, Pucheral, & 
Traverson, 1997); 

• each work-unit executes reversible work (Gray & Reuter, Transactions Processing: Concepts and 
Techniques, 1993; Besancenot, Cart, Ferrié, Guerraoui, Pucheral, & Traverson, 1997); 

• each work-unit is executed in a non-mobile environment (mobile work-units are assimilated into 
long-living work-units because of long communication delays over wireless channels, whether or 
not disconnection occurs, that is whether or not communication connections are broken) 
(Walborn & Chrysanthis, 1995); 

• each work-unit accesses only data belonging to a single organization (belonging to a trust 
boundary) (Webber & Little). 

This partial list helps in defining the limits beyond which it’s hard or even counterproductive to 
guarantee ACID properties. This list is constantly being enriched as a consequence of the continuously 
challenging ACID properties in new environments. As discussed in the following sub-section, as soon as 
a work-unit does not exhibit these properties, the ACID properties have to be relaxed. 
 
Relaxed ACID properties 
Relaxed ACID properties are the result of a modification of the semantics of ACID properties to achieve 
less restrictive properties. Further, the relaxation allows the properties to meet the new requirements 
imposed by the application domains, which are different from those for which the original semantics was 



 

 

adequate. One-by-one each one of the fundamental ACID properties has been challenged in various 
environments to achieve realistically applicable properties, even though less simple. As a result, for each 
property, a spectrum of notions is available. In the following discussion are given the reasons that may 
lead to relax the ACID properties. 

Relaxed atomicity is introduced to deal with the higher abortion frequency of longer running work-
units by providing a means for guaranteeing intermediate results and selective roll-back (degradation 
acceptance, i.e., something in the middle semantics instead of all or nothing). Relaxed atomicity is also 
introduced to deal with computations that involve autonomous work-units (Levy, Korth, & Silberschatz, 
1991).  

The notions of atomicity differ on the basis of the allowed intermediate results. In (Derks, Dehnert, 
Grefen, & Jonker, 2001) intermediate results are interpreted as partial execution of operations. 

Relaxed consistency is introduced to deal with the complexity of highly distributed systems. In case 
of complex distributed systems, when global consistency is not achievable, a relaxed consistency, for 
instance, allows a state to associate to a name a value that violates its domain range (Drew & Pu, 1995; 
Sadeg & Saad-Bouzefrane, 2000).  

The notions of consistency differ on the basis of the allowed integrity violation. The domain range for 
instance could be violated according to a planned delta and the delta used is a criterion to differentiate the 
notions.	  

Relaxed isolation is introduced to deal with: 1) performance requirements (Adya, Liskov, & ÓNeil, 
2000; Berenson, Bernstein, Gray, Melton, O'Neil, & O'Neil, 1995); 2) the higher data unavailability of 
long running work-units; and 3) cooperative work-units (Ramamritham & Chrysanthis, 1996).  

The notions of isolation differ on the basis of the interference allowed. 	  
Relaxed durability is introduced to deal with time constraints. In case of time constraints, write 

operations on persistent storage (which represent bottlenecks) have to be delayed and, in case of failures, 
data are lost. Relaxed durability is also introduced when permanence is not required immediately after the 
completion of a work-unit (Moss, 1981).  

The notions of durability differ on the basis of the allowed loss.  
 
Transaction models  
Transaction models represent a means to structure complex computations by grouping logically related 
operations into sets and by imposing a series of properties on them. During the last three decades, several 
transaction models have been proposed.  

The flat transaction model, known as ACID transactions, was the first transaction model. This model, 
as it will be explained in the remaining part of this subsection, exhibits ACID properties. All the others 
models have been obtained from it by relaxing ACID properties in some way. Since these other models 
stem from the same model, they must have precise similarities and differences.  

To try to achieve a deeper understanding of their similarities and differences, they have been deeply 
surveyed (Elmagarmid, 1992; Gray & Reuter, Transactions Processing: Concepts and Techniques, 1993). 
In (Elmagarmid, 1992), for instance, transaction models are classified by taking into consideration two 
important aspects: 1) the structure that they impose on a history; and 2) their difference with respect to 
ACIDity. This classification is an important starting point in revealing the dimensions according to which 
the original transaction model has evolved. However, since the classification assumes the final user’s 
point of view, the dimensions do not present a satisfying level of granularity. This subsection builds on 
this embryonic classification and provides a more detailed analysis. Two transaction models are 
discussed: the Flat Transaction Model and the Nested Transaction Model. The discussion makes use of 
the terms defined in the appendix. The terms are written in italics. 

The Flat Transaction model (Gray, A Transaction Model, 1980) identifies the first transaction 
model. This model presents a very peculiar multigraph as structure: the multigraph is constituted of a 



 

 

single node and no edges. All the work-units compliant to this model, therefore, are typed according to a 
single transaction type: 

• flat transaction type. Work-units of type flat exhibit the following properties: Atomicity, 
Consistency, Isolation and Durability. Moreover, their events are delimited by a standard 
boundary, that is two management events mark the initiation and termination of the work-unit and 
all the other events are in between. 

The Nested Transaction Model (Moss, 1981) represents a transaction model that allows work-units 
to be structured in a hierarchical way, forming either a tree or an entire forest. In this model, work-units 
are partitioned into two distinct transaction types:  

• top-level transaction type, usually called root. A top-level transaction type is equal to the Flat 
transaction type. 

• nested transaction type, usually called child. Work-units of type child exhibit the following 
properties: Atomicity, Consistency, Isolation and Conditional Durability. Conditional Durability 
requires that whenever a work-unit of type child successfully terminates its work, it is not allowed 
to save it permanently but it has to delegate the work-unit, enclosing it, to take care of the 
durability of the work). Moreover, the events of the work-units of type child are delimited by a 
non-standard boundary. In particular, in the non-standard boundary the durability management 
events follow the event that marks the termination of the work-unit. 

These two types constitute the two nodes of the multigraph that identify the Nested Transaction 
Model. A structural dependency, more precisely a containment dependency (obtained as an initiation 
dependency plus a termination dependency), relates these two types. Another containment dependency 
relates the child type with itself (a loop).  

This model differs from the Flat Transaction Model according the following dimensions: structure 
(multigraph) and properties (a relaxed durability is introduced). 
 
Software product line engineering 
Software product line engineering is a key ingredient to maximize reuse systematically. In software 
product line engineering, reuse embraces the entire software life-cycle. The maximization of reuse is 
achieved thanks to the identification/engineering of common (always reusable) and variable (not always 
reusable) properties that characterize a set of products. Given its effectiveness in maximizing reuse, 
product line engineering can be a key-ingredient to reuse transaction models in the context of cloud 
computing. This subsection therefore is aimed at introducing some basic concepts related to software 
product line engineering and at drawing the attention to the current practices for product line requirements 
engineering to learn fruitful lessons to engineer the requirements of the adequate transaction model for 
cloud computing by maximizing reuse. 
 
Basic concepts 
The definitions of concepts listed below are mainly taken from (Clements & Northrop, 2001, Withey, 
1996; Klaus, Böckle, & van der Linden, 2005). 

• An asset is a description of a partial solution (such as a component or design document) or 
knowledge (such as a requirements database) that engineers use to build or modify software 
products.  

• A software product line is “a set of software intensive systems sharing a common, managed set 
of features that satisfy the specific needs of a particular market segment or mission and that are 
developed from a common set of core assets in a prescribed way”. 

• The common set of core assets is known as commonalities. The set of assets that distinguish one 
product from another is known as variability. 

• A commonality is a property that is common to all members of a software product line. 



 

 

• A variability represents the ability of an asset to be changed, customized, or configured for use in 
a particular context. To characterize variability in more detail, it is useful to answer the following 
questions: "what varies?" and "how does it vary?". The answers to these questions lead to the 
definitions of variability subject and variability object, which are given here: 

o A variability subject is a variable item of the real world or a variable property of such an 
item; 

o A variability object is a particular instance of a variability subject. 
• A variation point is a representation of a variability subject within domain artifacts enriched by 

contextual information. 
• A variant is a representation of a variability object. 
• Feature is a product’s property that is relevant to some stakeholder and is used to capture a 

commonality or discriminate among products of the product line. 
• Feature diagrams are trees (or graphs) that are composed of nodes and directed edges. The tree 

root represents a feature that is progressively decomposed using mandatory, optional, alternative 
(exclusive- OR features) and OR-features. A mandatory feature represents a product line 
commonality. Features that have at least one direct variable sub-feature (i.e. as one of its children) 
represent variation points. 

• Cardinality-based feature diagrams are feature diagrams that allow features to be annotated 
with cardinalities. 

• A domain represents an area of knowledge or activity characterized by a set of concepts and 
terminology understood by practitioners in that area. This set of concepts and terminology 
corresponds to “set of core assets”, which is mentioned in the definition of a software product 
line. 

• Domain engineering is the first phase that has to be carried out during product line engineering. 
This phase is meant at defining and building the “common set of core assets” that serves as a base 
to develop the products. Domain engineering starts with a domain analysis phase that 
identifies/engineers commonalties and variabilities amongst the software product line members. 

• Application engineering, known also as “product derivation”, is the second phase that has to be 
carried out during product line engineering. This phase represents a complete process of 
constructing products from the domain assets. This phase covers the process (mentioned in the 
definition of a software product line) of developing a “set of software-intensive systems” from “a 
common set of core assets in a prescribed way”. 

Domain engineering and application engineering are intertwined, the former providing core assets that 
are “consumed” by the latter while building applications. As a result of the product derivation task, 
feedback regarding specific products can be acquired and used to improve the software product line core 
assets. 
 
Product line requirements engineering 
Product line requirements engineering embraces the engineering (elicitation, specification and verification 
& validation) of the requirements for the entire product line as well as for the single products. The set of 
requirements that concerns the entire product line contains all the common and variable requirements. 
The set of requirements that concerns a single product is derived from the set of requirements of the 
product line.  This derived set, contains all the common requirements plus those requirements that allow 
the product to be distinguished from the other products (variability objects). 

In the literature as surveyed in (Kuloor & Eberlein, 2002; Gallina, PRISMA: a Software Product Line-
oriented Process for the Requirements Engineering of Flexible Transaction Models, 2010), several 
general-purpose processes for product line engineering are available. These processes embrace the entire 
software life-cycle and, since they are general-purpose processes, they do not suggest specific techniques 



 

 

for accomplishing all the process tasks. The only techniques that are suggested are those to be used during 
the requirements elicitation and specification. These techniques include cardinality-based feature 
diagrams and textual use-case scenario-based templates. 

To perform the requirements specification, a common suggestion is also to use domain-specific 
languages. To perform verification & validation, no suggestion is given.  

Despite the interest of these general-purpose processes, sharply focused processes are lacking.  
 
WHICH TRANSACTION MODELS FOR CLOUD COMPUTING? 
From the background section, it emerges that cloud computing represents a technological change and that 
this change is revealed by a series of key properties. To achieve dependable cloud computations, 
transactional principles represent an effective means. However, as it emerges clearly from the 
background, since cloud computations do not exhibit the typical properties that are needed to be able to 
ensure ACID properties, adequate transaction models for cloud computing need to be identified, either by 
reusing an existing relaxed transaction models or by reusing some key properties. To achieve adequate 
transaction models, it is fundamental to take into account what emerges from the background. In 
particular, it is fundamental to take into account that: 

• to deal with the complexity of cloud computations, structured transaction models are needed. This 
consideration suggests that the adequate transaction models should be hierarchical and therefore 
composed by more than one transaction type (the multi-graph that characterizes the Nested 
transaction model could represent an interesting starting point); 

• to deal with autonomous computations, an adequate relaxed atomicity is needed. This 
consideration suggests that the all-or-nothing semantics of the traditional Atomicity should, for 
instance, be replaced by all-or-compensation  (Levy, Korth, & Silberschatz, 1991) or by failure-
atomic-or-exceptional (Derks, Dehnert, Grefen, & Jonker, 2001); 

• to deal with cooperative computations scattered across the cloud, an adequate relaxed isolation is 
needed. This consideration suggests that the serializability-based semantics of the traditional 
Isolation should, for instance, be replaced by cooperative-serializability  (Ramamritham & 
Chrysanthis, 1996); 

• to deal with computations that need to be executed at high levels of performance, an adequate 
relaxed durability, as well as an adequate relaxed isolation, is needed. This consideration suggests 
that: 

o the no-loss semantics of the traditional Durability should, for instance, be replaced by an 
ephemeral permanence similar to the one available in in-memory databases (Garbus, 
2010); 

o the serializability-based semantics of the traditional Isolation should, for instance, be 
replaced by the PL1 Isolation (Adya, Liskov, & ÓNeil, 2000). 

Besides these considerations, it is also relevant to point out that, since the scattered computers and 
supercomputers that compose the cloud are expected to share data, cloud computing is governed by the 
CAP theorem. This theorem, initially presented as a conjecture by Eric Brewer, during his Keynote talk at 
PODC (Brewer, 2000), and later proved in (Gilbert & Lynch, 2002), states that of three properties of 
shared-data systems (data consistency, system availability and tolerance to network partitions), only two 
can be achieved at any given time. 

Despite the fact that all the three above-listed properties are desirable and expected, a trade-off is 
required. Before sketching the plausible trade-off in the framework of cloud computing, the definitions 
(Gilbert & Lynch, 2002) of these three properties are given. 

Data consistency is defined as “any read operation that begins after a write operation completes must 
return that value or the result of a later write operation”. This definition refers only to a property of a 
single operation. Since the ACID properties guarantee global data consistency to be preserved, they are 



 

 

commonly associated to this definition. The data consistency achieved through the ACID properties, 
however, is a property that refers to a set of operations. This set of operations, thanks to the Atomicity 
property is treated as if it was a single operation. Therefore, the association that commonly is done 
between these two different notions of data consistency makes sense.  

System availability is defined as “every request received by a non-failing node in the system must 
result in a response”. 

Partition tolerance is defined as: “No set of failures less than total network failure is allowed to cause 
the system to respond incorrectly”.  

As seen in the background, cloud computations have to be partition-tolerant. According to the CAP 
theorem, then a choice has to be made between availability and consistency. 

In (Pritchett, 2008), the necessity of lowering the ACIDity of the ACID transaction model is 
advocated. The author suggests that it is time to break the unbreakable ACID paradigm and that it is time 
to recognize that consistency is not paramount to the success of an application. The author, then, uses the 
term BASE (Basically Available, Soft state, Eventually consistent) to denote a new paradigm. This term, 
initially introduced in (Brewer, 2000), taken from chemical reactions domain, underlines the necessity of 
having a less ACID transaction model. This less ACID transaction model must provide a lower guarantee 
in terms of global data consistency (i.e. eventual consistency). However, if some guarantees in terms of 
global consistency are desired, the process of relaxing the ACID transaction model by lowering its 
ACIDity must not lead to a neutral transaction model. To plan this relaxation process, a methodological 
support is needed. 

From the background it also emerges that an important set of relaxed transaction models exists. Since, 
however, this set is not structured, it is not possible to understand, compare and reuse these models easily. 
As a consequence it is not easy to understand which relaxed transaction model could be adequate for 
cloud computing or which properties could be reused to introduce a new transaction model to satisfy 
specific cloud computing requirements.  

To ease the understanding, comparison and reuse, the set of transaction models has to be 
systematically organized. To do that, the dimensions that contribute to their differences and similarities 
have to be systematically engineered.  

As discussed in the background, the current practices adopted within the product lines’ community can 
represent a key- ingredient in providing a solution to maximize reuse.  

To structure the set of transaction models in order to ease the understanding, comparison, reuse as well 
as the careful planning of the adequate ACIDity, a product line perspective is adopted.  

This section presents the product line perspective on transaction models. Then, it presents a new 
process for engineering the requirements of the desired transaction model. This new process integrates the 
product-line perspective. Finally, this section illustrates the application of the approach towards the 
achievement of the adequate transaction model for cloud computing. 
 
A product line perspective on transaction models 
As it was pointed out previously, existing transaction models constitute an unstructured set and as a 
consequence it is difficult to understand, compare and reuse existing transaction models. Product line 
engineering represents a concrete opportunity to engineer commonalities and variabilities and, as 
consequence, to maximize reuse systematically.  

This subsection builds on the work proposed in (Gallina & Guelfi, A Product Line Perspective for 
Quality Reuse of Development Framework for Distributed Transactional Applications, 2008) and 
enhances it by introducing a more mature product-line perspective on the set of transaction models. 

The viability and feasibility of the product line composed of transaction models is justified by the fact 
that since transaction models have more properties/features in common (commonalities) than 



 

 

properties/features that distinguish them (variabilities), there is more to be gained by analyzing them 
collectively rather than separately. 

From what was presented in the background, two main commonalities characterize transaction models: 
1- A transaction model can be seen as a multi-graph. Transaction types identify the nodes; structural 
dependencies inter-relating transaction types identify the edges. 
2- Each transaction model is characterized by a specific ACIDity. The ACIDity of a transaction model 
can be seen as the result of the selection and composition of the ACIDities characterizing the transaction 
types, which compose the transaction model itself. The ACIDity consists of the coexistence and synergy 
of four assets aimed at guaranteeing Atomicity, Consistency, Isolation and Durability (Gray & Reuter, 
Transactions Processing: Concepts and Techniques, 1993). All these assets, taken individually, identify a 
variability subject, which may give rise to different variability objects. As seen in the background, the 
semantics of the ACID properties has been challenged in various ways. As a consequence, for each 
property a spectrum of notions is available. The notions which compose a spectrum are the variability 
objects which instantiate the corresponding variability subject. Failure Atomicity, for instance, represents 
a variability object. To obtain the appropriate Atomicity asset, the adequate variability object has to be 
selected. A transaction model is, therefore, characterized by an ACIDity, which results from the selection 
and composition of the variability objects that correspond to the (relaxed) ACID notions. 

Whenever an adequate variability object is not available, if reasonable, the product line should evolve 
and a new variability object should be introduced to cover a specific need. 

Figure 1 and Figure 2 show the cardinality-based feature diagram that partially represents the product 
line constituted of transaction models. In this diagram, variability subjects are represented by variation 
points, that is by those features that have at least one direct variable sub-feature. Leafs, instead, are 
selectable variants at variation points and represent variability objects.  
 

 
Figure 1 Cardinality-based feature diagram: focus on the multi-graph structure 

 
Figure 1, in particular, focuses on the common multi-graph structure and it summarizes that a 

transaction model can be either a pre-defined transaction model (i.e. the Flat transaction model discussed 
in the background) or a user-defined one. A transaction model is commonly structured as a collection of 
inter-dependent transaction types. Transaction types and the structural dependencies that inter-relate them 



 

 

can in turn either be selected among those available (pre-defined) or obtained by selecting and composing 
the needed sub-features. 

 
 

Figure 2 Cardinality-based feature diagram: focus on the transaction type's Atomicity 
 

Figure 2 shows that each transaction type is characterized by commonalities (i.e. coexistence of a 
boundary, an Atomicity variant, a Consistency variant, an Isolation variant and a Durability variant) and 
variabilities represented by, for instance, the ACID variation points. The Atomicity Type is a variation 
point and at this point a choice has to be made. A predefined Atomicity (i.e. Failure Atomicity) or a user-
defined Atomicity has to be selected. A user-defined Atomicity requires the introduction of new features 
to describe the desired intermediate result. Usually, to mark the successful or unsuccessful execution of 
an operation, specific management events are used. For instance, the all semantics is represented by 
marking all the operations with a management event (a Commit Type event) that indicates full 
commitment. Similarly, the nothing semantics is represented by marking all the operations with a 
management event (an Abort Type event) that indicates full abortion. Management events are helpful to 
distinguish the different intermediate semantics. In Figure 2, these events, which are used to distinguish 
the Atomicity variants, are represented by the feature called “A-Extra Event Type”. 

For space reasons, dashed features are not detailed. For more details, the interested reader can refer to 
(Gallina, PRISMA: a Software Product Line-oriented Process for the Requirements Engineering of 
Flexible Transaction Models, 2010). 
 
The PRISMA process 



 

 

As mentioned in the background, within the product line’s community, a sharply focused methodological 
support is lacking. As stated in (Jackson M., 1998), it’s a good rule of thumb that the value of a method is 
inversely proportional to its generality. A good method addresses only the problems that fit into a 
particular problem frame. Systematic and sharply focused methods help in reaching a solution. 

To reuse existing transaction models either entirely or partially a sharply focused methodological 
support is needed. PRISMA provides that support. PRISMA stands for Process for the Requirements 
Identification, Specification and Machine supported Analysis. PRISMA is a new software product line-
oriented requirements engineering process, which  aims at being useful as a prism in revealing clearly the 
properties composing the transaction models. 

PRISMA is compatible with the general-purpose processes surveyed in (Kuloor & Eberlein, 2002). 
PRISMA inherits from them. PRISMA, for instance, similar to those processes, is composed of the two 
typical inter-related phases: the domain engineering phase and the application engineering phase. 
PRISMA, however, aims at offering a sharply focused method as opposed to one that is more general-
purpose. PRISMA targets a precise class of problems and aims at offering specific guidelines and 
techniques to perform the tasks, which make up the process. In particular, within PRISMA the following 
techniques are integrated: 

• a specific use-case-based template to carry out the elicitation, called DRET  (Gallina & Guelfi, A 
Template for Requirement Elicitation of Dependable Product Lines, 2007); 

• a domain-specific specification language to carry out the specification, called SPLACID  (Gallina 
& Guelfi, SPLACID: An SPL-oriented, ACTA-based, Language for Reusing (Varying) ACID 
Properties, 2008; (Gallina, PRISMA: a Software Product Line-oriented Process for the 
Requirements Engineering of Flexible Transaction Models, 2010); 

• a tool support (integration of the Alloy Analyzer tool) to carry out the verification and validation  
(Gallina, Guelfi, & Kelsen, Towards an Alloy Formal Model for Flexible Advanced 
Transactional Model Development, 2009;  (Gallina, PRISMA: a Software Product Line-oriented 
Process for the Requirements Engineering of Flexible Transaction Models, 2010); 

Before introducing the static as well as the dynamic structures of the PRISMA process, a brief 
explanation of these techniques is given. 
 
The PRISMA’s techniques 
As mentioned before, the relevance of the PRISMA process is its sharp focus. This sharp focus is 
achieved through the integration of sharply focused techniques, which support engineers during the 
different tasks that compose the process. 

To ease the understanding of the following sections, these techniques (DRET, SPLACID, and the tool-
supported verification and validation) are briefly introduced. 

DRET is a requirements elicitation template suitable for the elicitation of dependable software product 
lines. This template is composed of two parts: a DOMain Elicitation Template (DOMET) and a Use Case 
Elicitation Template (UCET).  

The DOMET allows the concepts of the domain to be elicited. The DOMET is depicted using a tabular 
notation. The field meaning is briefly provided in the following. Name labels the concept via a unique 
identifier. Var Type underlines commonalities and variabilities in the software product line and is filled 
with one of the following keywords: Mand (mandatory concept); Alt (alternative concept); Opt (optional 
concept). Description is an informal explanation of the concept purpose. Dependencies exposes any kind 
of relationship with other concept(s). Misconception & class(es) is an informal explanation concerning 
the misunderstanding of the domain (fault). Misconception consequence & class(es) is an informal 
explanation concerning the consequence (failure), observable by the stakeholders, that the 
misunderstanding of the domain may entail. Priority Level represents different levels of priority on the 
basis of criticality and is filled with one of the following keywords: High, Medium or Low.  



 

 

The two fields that involve the misconception are meant to elicit the causality chain existing among 
the dependability’s threats (Avizienis, Laprie, Randell, & Landwehr, 2004). 

The UCET allows the software product line members’ behaviour to be elicited. The UCET is an 
extension of the popular textual use-case scenario-based template given by Cockburn. It allows 
requirements to be organized in a tabular form that has a series of fields. Besides the standard fields (use 
case name, goal, scope, level, trigger, the actors involved, pre-conditions, end-conditions, main scenario, 
alternatives of the main scenario) the UCET includes fields (mis-scenarios, recovery scenarios, etc.) to 
elicit non-functional behaviour. The UCET may be labelled as Collaborative or Single. These labels, 
jointly with the labels used to characterize the resources, provide a means to distinguish concurrency’s 
types. The explanation of the detailed structure of the UCET is outside of this scope. The names of the 
template’s fields, however, should be understandable. Details can be found in (Gallina & Guelfi, A 
Template for Requirement Elicitation of Dependable Product Lines, 2007). 

SPLACID is a domain-specific language conceived to specify transaction models on the basis of their 
fundamental properties. SPLACID is based on ACTA (Chrysanthis, 1991), a unified framework that was 
introduced for the specification, synthesis and verification of transaction models from building blocks. 
The main advantages of SPLACID over ACTA are: 

• a well-structured abstract syntax, given in terms of a meta-model; 
• a well-structured textual concrete syntax, given in EBNF;  
• a formal semantics given following a translational approach.  

SPLACID integrates the product line perspective, which was discussed previously. The meta-model 
that defines its abstract syntax contains an abstract meta-class for each concept that was labelled as User-
def in Figure 1 and in Figure 2 (i.e. TrasactionModelType, TransactionType, etc). Figure 3 illustrates a 
blow up the SPLACID meta-model.  

Similarly, the syntactical rules, which are written in EBNF, that define the concrete syntax contain a 
non-terminal for each concept that was labelled as User-def. 



 

 

 
 

Figure 3 Cut of the SPLACID meta-model. 
Each concept (variant) that was a leaf of a feature labelled Pre-def in Figure 1 and in Figure 2 is 

represented in the SPLACID meta-model by a concrete meta-class that reifies the corresponding abstract 
meta-class. The concept of Failure Atomicity, for instance, is represented by a concrete meta-class that 
reifies the abstract meta-class corresponding to the Atomicity Type. 

Similarly, these leaf-concepts have a representation in the concrete syntax and specifically they are 
represented as terminals. 

All the concepts (abstract and concrete) are characterized by a set of constraints that define them. The 
constraints impose either a specific order among the events that belong to a history or require specific 
management events to occur in the history. 

The concept of Failure Atomicity, for instance, establishes that all events, which have executed an 
operation on an object, have to be followed by one management event. The management event in 
particular has to be of type CommitType in case the “all"’ semantics has to be guaranteed; it has to be of 
type AbortType in case the “nothing” semantics has to be guaranteed. 

The tool support for verification and validation is achieved by providing a translational semantics 
to SPLACID. SPLACID concepts are translated into Alloy concepts. A model transformation provides 
rules to obtain an Alloy specification from a SPLACID specification. Once the Alloy specification is 
available, the tool, called Alloy Analyzer, can be used to verify and validate it. The verification consists 
in executing the executable Alloy specification to look for instances of it. If instances exist, it means that 
the specification is contradiction-free and that therefore it is consistent. A consistent specification has to 



 

 

be validated. To validate the specification, the instances are inspected to check that they really describe 
the desired requirements. 
 
 
The PRISMA process’ static structure 
The backbone of the static structure is made up of a set of activities, a set of roles, and a set of work-
products. A detailed description of these elements, using the SPEM 2.0 standardized format (OMG, 
2008), is given in (Gallina, PRISMA: a Software Product Line-oriented Process for the Requirements 
Engineering of Flexible Transaction Models, 2010). In the following list, the set of activities is presented. 
For each activity, the roles, the work-products and the guidelines (if any) are given. 

• Product line requirements elicitation. This activity is carried out by using the DRET template. 
This activity aims at revealing commonalities, variabilities (i.e. the Atomicity types, etc.) and 
dependencies (cross-cutting concerns) existing among variants at different variation points. The 
dependencies have to be documented to constrain the permitted combinations of variabilities.  
The work-products involved are: 

o input: none 
o output: the filled-in DRET template. 

The roles involved are: 
o Concurrency control expert focuses on the Isolation spectrum. 
o Fault tolerance expert (before termination) focuses on the Atomicity spectrum.  
o Fault tolerance expert (after termination) focuses on the Durability spectrum.  
o Application domains expert focuses on the Consistency spectrum. 

The first four roles represent key-roles in engineering the requirements pertaining to the ACID 
spectra. 
Guidelines: DRET usage in the context of the PRISMA process 

• Product line requirements specification. This activity is carried out by using the SPLACID 
language. This activity aims at specifying the elicited requirements.  
The work-products involved are: 

o input: the filled-in DRET template 
o output: the SPLACID specification. 

The roles involved are: 
o Analyst mastering the SPLACID  

Guidelines: traceability rules to move from a filled-in DRET template to a SPLACID 
specification. 

• Product line requirements verification & validation. This activity is carried out by using the 
Alloy Analyzer tool. This activity aims at verifying and validating the specified requirements. 
The work-products involved are: 

o input: the SPLACID specification 
o output: the Alloy specification 

The roles involved are: 
o Analyst mastering the Alloy Analyzer tool 

Guidelines: transformation rules to translate SPLACID concepts into Alloy concepts. 
• Product requirements derivation. This activity is carried out by using the DRET template. This 

activity aims at eliciting the requirements of a single product. The elicitation is obtained by 
derivation/pruning (the thick black path in Figure 4), that is by selecting from the filled-in DRET 
template received in input all the commonalities plus those variability objects that characterize 
the product.  
The work-products involved are: 



 

 

o input: the filled-in DRET template 
o output: the pruned filled-in DRET template. 

The roles involved are: 
o Product requirements engineer. This role incorporates the competences of the experts in 

ACID spectra. In addition, this role is competent in pruning. 
• Product requirements specification. This activity is carried out by using the SPLACID 

language. This activity aims at achieving the SPLACID specification of a single product.  
The work-products involved are: 

o input: product line SPLACID specification (the black dashed path in Figure 4 is 
followed) xor pruned filled-in DRET template (the thick and horizontal black path in 
Figure 4 is followed). 

o output: Product-SPLACID specification. 
The roles involved are: 

o Product requirements engineer. 
o Product specifier. This role incorporates the competence of Analyst mastering the 

SPLACID language. In addition, this role is competent in pruning. 
Guidelines: traceability rules to move from a filled-in DRET template to a SPLACID 
specification. 

• Product requirements verification & validation. This activity is carried out by using the Alloy 
Analyzer tool. This activity aims at achieving a correct and valid Alloy specification of a single 
product.  
The work-products involved are: 

o input: product line Alloy specification (the thick grey path in Figure 4 is followed) xor 
product-SPLACID specification (the thick and horizontal black path in Figure 4 is 
followed). 

o output: Product-Alloy specification. 
The roles involved are: 

o Product verifier and validator. This role incorporates the competence of Analyst 
mastering the Alloy Analyzer tool. In addition, this role is competent in pruning. 

o Product user represents a key-role during validation. 
o Product requirements engineer 

Guidelines: transformation rules to translate SPLACID concepts into Alloy concepts. 
 
The PRISMA process’ dynamic structure 
Besides the static structure, to fully define a process, its dynamic structure must also be provided. A 
software process defines ordered sets of activities, which may be grouped into phases. The ordered sets of 
activities define meaningful sequences that, if followed, allow interacting roles to produce valuable work-
products. Figure 3, summarizes these meaningful sequences. Globally, Figure 3 shows that the PRISMA 
process is made up of two inter-related phases: the domain engineering phase and the application 
engineering phase. 

During the domain engineering phase, commonalities and variabilities characterizing the product line 
are engineered. Artefacts, which constitute the product line’s assets, are produced. Once the domain is 
rich enough to allow requirements engineers to derive at least one product from the assets available, the 
second phase can be started. During the application engineering phase, single products are derived. 

The sequence of these two phases is iterated. The iteration ends as soon as the product line loses its 
worthiness. Four roles are in charge of establishing worthiness of iterating the sequence: the Product 
requirements engineer, Product specifier, Product verifier and validator, and Product user. 
 



 

 

 
Figure 4 The PRISMA process’ dynamic structure 

 
 
Towards adequate transaction models for cloud computing 
To achieve adequate transaction models to be used for cloud computing, the reusable assets have to be 
engineered. To do that the PRISMA process is applied. This subsection, first introduce a toy cloud 
computation to understand the characteristics that force a change in terms of ACIDity. Then on the basis 
of this toy computation, the PRISMA process is applied to achieve reusable Atomicity-related assets, 
adequate for cloud computing. In particular, the thick black path, shown in Figure 4, is followed until the 
achievement the SPLACID specification. The following ordered tasks are executed: 

• Product line requirements elicitation; 
• Product requirements derivation; 
• Product line requirements specification. 

The last step of the path, that is the Product requirements V&V, is not executed but simply discussed. 
The translation into Alloy is not presented since, to be fully understood, it requires wider background 
information, which for space reasons cannot be provided within this chapter. 

Finally, this subsection discusses the results obtained by applying the PRISMA process. 
 
Toy computation 
The toy computation introduced here is adapted from (Pritchett, 2008). The computation involves the 
modification of three different objects which are related by a consistency constraint and which are 
distributed on different computers. The first object x contains the purchase, relating the seller and buyer 
and the amount of the purchase. The second object y contains the total amount sold and bought by a 
seller. The third object z contains the total amount bought by a buyer.  

The modifications consist in one insert (a write operation) into the first object and in two updates (a 
read operation followed by a write operation) into the last two objects. The notation introduced in the 
background, has to be enriched to describe this computation. A read operation on an object x is denoted as 
read[x]. Therefore the computation consists of the following set of operations:  

{write [x, 10]; read [y]; write [y, 10]; read [z]; write [z, 10]} 



 

 

Due to the distribution of the objects, in (Pritchett, 2008), these modifications are not grouped 
altogether. Three different work-units are used to decompose the computation. These three work-units 
are: 

Work-unit 1={write [x, 10]} 
Work-unit 2={read [y]; write [y, 10]} 
Work-unit 3={read [z]; write [z, 10]} 

All these three work-units exhibit ACID properties. However, if at least one of them does not 
complete the work while the others do, the global consistency is not guaranteed. As it was explained in 
the background, global consistency would be broken due to the broken atomicity. 

An additional work-unit, called for example Work-unit 4, should be considered to enclose these three 
modifications. This work-unit is: 

Work-unit 4={write [x, 10]; read [y]; write [y, 10]; read [z]; write [z, 10]} 
Work-unit 4 does not exhibit ACID properties. The Atomicity property, in particular, is replaced by a 

weaker notion of atomicity that allows a work to be done only partially. 
 
Product line requirements elicitation 
To plan the adequate Atomicity-related assets, first of all a deep understanding of the characteristics of 
the application domain is mandatory. This understanding must be documented. According to the PRISMA 
process, the Application domains expert has to fill in the DRET template with this information. Once this 
information is available, the elicitation of the ACIDity-related assets may start.  

The Fault tolerance (before termination) expert, for instance, may proceed by filling-in the sub-
DOMET and the UCET concerning Atomicity. 

The sub-DOMET must contain all the concepts concerning the Atomicity-assets (all the Atomicity’s 
notions and Atomicity’s management events) and the UCET must contain all the behaviours. 

The goal of the Fault tolerance (before termination) expert is to engineer the Atomicity-assets. With 
respect to Figure 2, the Fault tolerance (before termination) expert has to provide the User-def assets as 
summarized in Figure 5. 

 
Figure 5 Atomicity-related assets 



 

 

On the basis, of the toy computation, two notions of Atomicity seem to be necessary: the traditional 
notion of Atomicity (Failure Atomicity) and a new notion that allows the set of operations to complete 
fully or only partially. This new notion is called here “All-or-neglect Atomicity”. 

As mentioned in the background, the notions of Atomicity differ from each other on the basis of the 
completeness of the execution. To distinguish these notions (these variants), different event types can be 
considered. For instance, the notion of Failure Atomicity (all or nothing semantics) might be 
characterized by two event types: one for the “all” semantics, aimed at committing the entire work (that is 
each event within the work-unit has to be committed), and the other for the “nothing” semantics, aimed at 
aborting the entire work (that is each event within the work-unit has to be aborted).  

The sub-DOMET, presented in Figure 6, therefore, contains the two notions of Atomicity and the 
different notions of event types used to distinguish them. 
 

 
Figure 6 Sub-DOMET focuses on Atomicity 

 
A single UCET is used to elicit the requirements concerning the variants associated with the behaviour 

related to the guarantee of a property. The Single UCET filled in by the Fault tolerance (before 
termination) expert is: 

• ID: UC2 
• Single Use Case name: provide [V1] Atomicity 
• Selection category: Mand 
• Description: During this use-case, [V1] is guaranteed 
• Primary Actor: Atomicity-Manager 
• Resources: work-units (no sharing), data (competitive sharing), operations (no sharing) 



 

 

• Dependency: if V1=Failure, then V3=aborts; if V1=All-or-neglect, then V3=neglects 
• Preconditions: [V2] data 
• Post-conditions: [V2] data 
• Main scenario: The Atomicity Manager guarantees [V1] Atomicity, i.e. if the work done by the 

work-units is complete, it commits otherwise it [V3] 
• Alternatives of the main scenario: None 
• Variation points description: 

o V1: Type = Alt, values = {Failure, All-or-neglect}, Concerns = Behaviour 
o V2: Type = Alt, values = {Consistent, Eventually consistent}, Concerns = Behaviour 
o V3: Type = Alt, values = {aborts, neglects}, Concerns = Behaviour 

• Non-functional: reliability 
• Duration: None 
• Location: None 
• Mis-scenario: None 
• Fault Variation descriptions: None 
• Recovery scenarios: None  

 
Product requirements derivation 
The requirements of the single assets can be derived easily from the filled-in DRET previously obtained. 
Two different Atomicity assets can be derived. The derivation (pruning) of the concepts belonging to a 
single asset is obtained by: 

• keeping all the mandatory concepts; 
• choosing the desired concepts in the case of alternatives; 
• choosing a concept or not in case of an option. 

The resulting two pruned filled-in sub-DOMETs are:  
• Pruned-filled-in-sub-DOMET related to Failure Atomicity={FailureAtomicity, 

CommitEventType, AbortEventType}  
• Pruned-filled-in-sub-DOMET related to All-or-neglect Atomicity={All-or-neglectAtomicity, 

CommitEventType, NeglectEventType}  
Despite the small dimension of this asset, by inspecting the two pruned sub-DOMETs, it can be seen 

that the set of common concepts is not empty. 
Reused concepts ={CommitEventType} 

The derivation (pruning) of the behaviour characterizing a single asset is obtained by: 
• keeping all the mandatory UCETs; 
• choosing the desired UCETs in case of alternatives, choosing a UCET or not in case of option;  
• for each UCET derived for the product, selecting the desired variant at each variation point. 

The two Atomicity assets differ on the basis of the choices that have to be made at the variation points. 
To obtain the behavior of the FailureAtomicity asset, in UC2 the following choices must be done: 

• V1=Failure 
• V2=consistent 
• V3=aborts 

To obtain the behavior of the FailureAtomicity asset, in UC2 the following choices must be done: 
• V1=All-or-neglect 
• V2=Eventually consistent 
• V3=neglects 

The two pruned UC2 differ only on the basis of the choices made at the variation points. The 
remaining part is in common and can be totally reused. 



 

 

 
Product line requirements specification 
The concepts and behaviours that have been previously documented must be specified using the 
SPLACID language. The SPLACID language offers extension mechanisms. The language is not closed 
but evolves in parallel with the evolution of the product line. As soon as new asset is introduced, the 
abstract syntax, the concrete syntax as well as the executable semantics have to evolve.  

Therefore, the traceability rules detailed in (Gallina, PRISMA: a Software Product Line-oriented 
Process for the Requirements Engineering of Flexible Transaction Models, 2010) have to be followed to 
move from the work-product obtained during the elicitation (that is the filled in DRET template) to the 
SPLACID specification.  

According to these rules, for each concept introduced in the DOMET, an abstract meta-class (if not yet 
available) and a concrete meta-class have to be added in the meta-model. Considering that the concepts 
related to Atomicity, introduced during the elicitation, represent variants of pre-existing concepts (the 
AtomicityVariantType,  NothingEquivalentEventType, AllEquivalentEventType, etc. see Figure 5), only 
concrete meta-classes (namely, FailureAtomicity, All-or-neglectAtomicity, CommitType, etc.) have to be 
added. The concrete meta-classes represent reusable modeling concepts. 

Similarly, terminals (namely, FailureAtomicity, All-or-neglectAtomicity, CommitType, etc.) have to 
be introduced in the concrete syntax. 

The SPLACID specification for the Failure Atomicity is: 
FailureAtomicity 
AXE={CommitType, AbortType} 

The SPLACID specification for the All-or-neglect Atomicity is: 
All-or-neglect Atomicity 
AXE={CommitType, NeglectType} 

In the two-above SPLACID specifications, “AXE” stands for Atomicity Extra Events and it is the 
name of the set that contains all the management event types related to Atomicity. 
 
Product line requirements V&V 
The SPLACID concepts, newly introduced, have to be translated into the Alloy concepts. The translation 
rules detailed in (Gallina, PRISMA: a Software Product Line-oriented Process for the Requirements 
Engineering of Flexible Transaction Models, 2010) have to be followed. As a result of the translation an 
Alloy specification is available for both assets. As can be imagined, the two specifications differ on the 
basis of the concepts and behaviours that distinguish them. The remaining part is equivalent. 

The resulting Alloy specification can be executed to check its consistency as well as its validity The 
Alloy Analyzer tool, for instance, is used to check that the All-or-neglect Atomicity allows a less 
constrained history. 

With respect to the toy computation, more specifically with respect to Work-unit 4, the Alloy Analyzer 
tool, for instance, is expected to allow the instance h (given below) in the case of All-or-neglect 
Atomicity and forbid it in the case of Failure Atomicity. 

h: write [x, 10] àread [y]àwrite [y, 10] 
  
Discussion 
Despite this brief and incomplete illustration of the PRISMA process, its effectiveness in easing the 
(partial or entire) correct and valid reuse of transaction models should be evident. The reuse embraces the 
entire set of the PRISMA’s work-products: elicited requirements (sub-parts of the filled-in DRET 
template), specified requirements (SPLACID specifications), V&V requirements (results obtained by 
using the Alloy Analyzer tool). 
 



 

 

FUTURE RESEARCH DIRECTIONS 
The PRISMA process, which has been presented in this chapter, offers a methodological support to 
engineer adequate transaction models for cloud computing by customizing their ACIDity qualitatively.  
Thanks to the identification of the building properties (sub-properties) which, in turn, characterize the 
ACID properties, it is possible to evaluate qualitatively the ACIDity of one model with respect to another 
one, simply by considering which sub-properties it is composed of. This evaluation capability suggests a 
systematic organization of transaction models into a lattice structure, which holds together many 
individual elements, otherwise unstructured, into one coherent and understandable order. This evaluation 
capability also pioneers the path to the provision of a quantitative evaluation of ACIDity.  

As discussed throughout the chapter, since cloud computing is subjected to the CAP theorem, the 
customization of ACIDity is necessary and has to be planned carefully. To enforce the PRISMA process 
effectiveness in offering a valid means, it would be useful to have at disposal metrics to evaluate 
quantitatively the ACIDity of a transaction model. These metrics could be used to measure the ACIDity 
of the transaction models currently in use in the context of cloud computing so that to achieve a range of 
reliability. 

To provide a quantitative metric for the ACIDity, the number of histories generated by the Alloy 
Analyzer tool, within a certain scope, could be counted. The ACIDity of two transaction models might, 
therefore, be compared on the basis of the number of histories allowed. For instance, with the predicate 
“moreACIDthan (transaction model A, transaction model B, application X)” a truth value might be 
assigned by verifying that the number of histories allowed by the transaction model A structuring the 
application X is less than the number of histories allowed by the transaction model B structuring the same 
application. More granularly, it would be useful to be able to establish the role of each single feature that 
composes a transaction model in decreasing or increasing the ACIDity of the model itself (that is, the 
contribution of each sub-property in increasing/decreasing the number of allowed histories).  

The work presented in (Prömel, Steger, & Taraz, 2001) could represent another possibility for 
counting the histories.  

The percentage of ACIDity characterizing a computation structured according to a transaction model 
could be calculated as follows: 

ACIDity% = (#forbiddenHistories)/(#allpossibleHistories), 

where the number of forbidden histories is obtained by subtracting to the number of all possible histories 
the number of allowed histories. 

By decreasing the ACIDity, that is by choosing base like features, at some point a transaction model 
degenerates completely since its ACIDity is neutralized. A threshold that separates feasible and 
reasonable transaction models from non-reasonable, neutralized transaction models must exist. A metric 
would allow this threshold to be identified. An ACIDity metric would allow an engineer to quantify and 
plan the ACIDity and as a logical consequence this would allow the loss in terms of global consistency to 
be planned as well. 
 

CONCLUSION 
The technological change represented by cloud computing forces cascading changes and, as a 
consequence, several issues need to be solved to identify and adequately engineer the cascading changes. 
Since the quality and, in particular, reliability remains a fundamental requirement and since transaction 
models represent effective means to increase the quality of a computation, this chapter has been devoted 
to the identification of the cascading changes that involve transaction models and, more specifically, their 
requirements in terms of Atomicity, Consistency, Isolation and Durability. To engineer the changes, then 
this chapter has introduced a requirements engineering process, called PRISMA. This process integrates a 
product line perspective and supports engineers to reuse systematically properties of pre-existing 



 

 

transaction models to achieve adequate transaction models, which meet the application domain’s 
requirements as well as the technological domain’s requirements. Finally, on the basis of the current 
understanding, the PRISMA process has been applied to engineer Atomicity-related reusable assets. This 
chapter has provided a first step to achieve adequate transaction models for cloud computing. 
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KEY TERMS & DEFINITIONS 
 
State - This term identifies a mapping from storage unit names to values storable in those units. 
Object (or or data-item) - This term identifies a single pair <name, value>. 
Consistency constraint - This term identifies a predicate on objects. A state satisfying all the consistency 
constraints defined on objects is said to be consistent. 
Operation - This term identifies the access of a single object. Two types of access are allowed. One type 
identifies operations that read (get the value). The other type identifies operations that write (set the 
value). 
Event - This term identifies the execution of a single operation on the state. 
Work-unit - This term identifies the set of possible executions of a partially ordered set of logically 
related events.  
History - This term identifies the set of possible complete executions of a partially ordered set of events 
belonging to a set of work-units.  
Transaction type - This term identifies a specific set of properties that have to be satisfied by work-units. 
The set of properties constrains the events belonging to a work-unit. 
Transaction model - This term identifies the type of structure/ordering used to organize the transaction 
types that are used to decompose a computation. This structure identifies a multigraph. Nodes are 
identified by transaction types and edges by structural dependencies existing among the transaction types. 
The structure/ordering that organizes the transaction types has an impact on the ordering of events 
belonging to a history. A containment dependency between two transaction types, for instance, has the 
following impact on the history: all the events belonging to a work-unit of type “content” are enclosed 
within those events that represent the boundary and that belong to a work-unit of type “container”. 


