
Experiences with Component-Based Software Development in Industrial Control

Frank Lüders and Ivica Crnkovic
Department of Computer Engineering

Mälardalen University
frank.luders@mdh.se

Abstract

When different business units of an international com-
pany are responsible for the development of different parts
of a large system, a component-based software architecture
may be a good alternative to more traditional, monolithic
architectures. The new common control system, developed
by ABB to replace all its existing control systems, must
incorporate support for a large number of I/O systems,
communication interfaces, and communication protocols.
An activity has therefore been started to redesign the sys-
tem’s architecture, so that I/O and communication compo-
nents can be implemented by different development centers
around the world. This paper reports on experiences from
this effort, describing the system, its current software ar-
chitecture, the new component-based architecture, and the
lessons learned so far.

1. Introduction

Increased globalization and the more competitive
climate make it necessary for international companies to
work in new ways that maximize the synergies between
different business units around the world. Interestingly, this
may also require the software architecture of the developed
systems to be rethought. In a case where different
development centers are responsible for different parts of
the functionality of a large system, a component-based
architecture may be a good alternative to the more
traditional, monolithic architectures, usually comprising a
large set of modules with many visible and invisible
interdependencies. Additional, expected benefits of a
component-based architecture are increased flexibility and
ease of maintenance [1][2].

This short paper reports on experiences from an ongoing
project at ABB to redesign the software architecture of a
control system to make it possible for different
development centers to incorporate support for different I/O
and communication systems. While it is obvious that the
component-based approach in the long run brings
advantages in terms of time-to-market and less costs for
system adaptability and improvements, it is also clear that
the redesign itself and the additional costs for designing
components to be reusable require more costs in the
beginning of the process [3]. Minimizing the additional

costs of the project in its starting phase was one of the main
challenges. The second challenge of the project was to
achieve a good design of the architecture where the
interfaces between reusable parts are clear and sufficiently
general. The third challenge was to keep the performance of
the existing system, since the separation of system parts and
introduction of generic interfaces between the parts may
cause overhead in the code execution.

The remainder of the paper is organized as follows. In
section two, the ABB control system is described with
particular focus on I/O and communication. The software
architecture and its transformation are described in more
detail in section three. In section four, we analyze the
experiences from the project and try to extract some lessons
of general value. Section five reviews some related work in
this area, and section six present our conclusions and
outlines future work.

2. The ABB control system

Following a series of mergers and acquisitions, ABB
now has several independently developed control systems
for the process, manufacturing, substation automation and
related industries. To leverage its worldwide development
resources, the company has decided to continue
development of only a single, common control system for
these industries. One of the existing control systems was
selected to be the starting point of the common system. This
system is based on the IEC 61131-3 industry standard for
programmable controllers [4]. The software has two main
parts, the ABB Control Builder, which is a Windows
application running on a standard PC, and the system
software of the ABB Controller family, running on top of a
real-time operating system (RTOS) on special-purpose
hardware. The latter is also available as a Windows
application, and is then called the ABB Soft Controller.

The ABB Control Builder is used to specify the
hardware configuration of a control system, comprising one
or more ABB Controllers, and to write the programs that
will execute on the controllers. The configuration and the
control programs together constitute a control project.
When the control project is downloaded to the control
system via the control network, the system software of the
controllers is responsible for interpreting the configuration
information and for scheduling and executing the control

programs. Only periodic execution is supported. Figure 1
shows the Control Builder with a control project opened. It
consists of three structures, showing the libraries used by
the control programs, the control programs themselves, and
the hardware configuration, respectively. The latter
structure is expanded to show a configuration of a single
AC800M controller, equipped with an AI810 analogue
input module, a DO810 digital output module, and a CI851
PROFIBUS-DP communication interface.

Figure 1. The ABB Control Builder.

To be attractive in all parts of the world and a wide
range of industry sectors, the common control system must
incorporate support for a large number of I/O systems,
communication interfaces, and communication protocols. In
the current system, there are two principal ways for a
controller to communicate with its environment, I/O and
variable communication. When using I/O, variables of the
control programs are connected to channels of input and
output modules using the Control Builder. For instance, a
Boolean variable may be connected to a channel on a
digital output module. When the program executes, the
value of the variable is transferred to the output channel at
the end of every execution cycle. Variables connected to
input channels are set at the beginning of every execution
cycle. Real-valued variables may be attached to analogue
I/O modules.

To configure the I/O modules of a controller, variables
declared in the programs running on that controller is
associated with I/O channels using the program editor of the
Control Builder. Figure 2 shows the program editor with a

small program, declaring one input variable and one output
variable. Notice that the I/O addresses specified for the two
variables correspond to the position of the two I/O modules
in Figure 1.

Figure 2. The program editor of the Control Builder.

Variable communication is a form of client/server
communication and is not synchronized with the cyclic
program execution. A server supports one of several
possible protocols and has a set of named variables that
may be read or written by clients that implement the same
protocol. An ABB Controller can be made a server by
connecting program variables to so-called access variables
in a special section of the Control Builder. Servers may also
be other devices, such as field-bus devices. Any controller,
equipped with a suitable communication interface, can act
as a client by using special routines for connecting to a
server and reading and writing variables via the connection.
Such routines for a collection of protocols are available in
the Communication Library, which is delivered with the
Control Builder.

3. Componentization

3.1. Current software architecture

The software of the ABB Control System consists of a

large number of source code modules, each of which are
used to build the Control Builder or the controller system
software or both. Figure 3 depicts this architecture, with
emphasis on I/O and communication. The boxes in the
figure represent logical components of related functionality.
Each logical component is implemented by a number of
modules, and is not readily visible in the source code.

To see the reason for the overlap in the source code of
the Control Builder and that of the controller system
software, we look at the handling of hardware
configurations. The configuration is specified using the
control builder. For each controller in the system, it is

specified what additional hardware, such as I/O modules
and communication interfaces, it is equipped with. Further
configuration information can be supplied for each piece of
hardware, leading to a hierarchic organization of
information, called the hardware configuration tree. The
code that builds this tree in the Control Builder is also used
in the controller system software to build the same tree
there when the project is downloaded. If the configuration
is modified in the Control Builder and downloaded again,
only a description of what has changed in the tree is sent to
the controller.

The main problem with the current software architecture

is related to the work required to add support for new I/O
modules, communication interfaces, and protocols. For
instance, adding support for a new I/O system may require
source code updates in all the components except the User
Interface and the Communication Server, while a new
communication interface and protocol may require all
components except I/O Access to be updated.

As an example of what type of modifications may be
needed to the software, we consider the incorporation of a
new type of I/O module. To be able to include a device,
such as an I/O module, in a configuration, a hardware
definition file for that type of device must be present on the
computer running the Control Builder. For an I/O module,
this file defines the number and types of input and output
channels. The Control Builder uses this information to
allow the module and its channels to be configured using a
generic configuration editor. This explains why the user
interface does not need to be updated to support a new I/O
module. The hardware definition file also defines the
memory layout of the module, so that the transmission of
data between program variables and I/O channels can be
implemented in a generic way.

For most I/O modules, however, the system is required
to perform certain tasks, for instance when the
configuration is compiled in the Control Builder or during
start-up and shutdown in the controller. In today’s system,
routines to handle such tasks must be hard-coded for every

type of I/O module supported. This requires software
developers with a thorough knowledge of the source code.
The situation is similar when adding support for
communication interfaces and protocols. The limited
number of such developers therefore constitutes a
bottleneck in the effort to keep the system open to the many
I/O and communication systems found in industry.

3.1. Component-based software architecture

To make it much easier to add support for new types of

I/O and communication, it was decided to split the
components mentioned above into their generic and non-
generic parts. The generic parts, commonly called the
generic I/O and communication framework, contains code
that is shared by all hardware and protocols implementing
certain functionality. Routines that are special to a
particular hardware or protocol are implemented in separate
components, called protocol handlers, installed on the PC
running the Control Builder or on the controllers. This
component-based architecture is illustrated in Figure 4. To
add support for a new I/O module, communication
interface, or protocol to this system, it is only necessary to
add protocol handlers for the PC and the controller along
with a hardware definition file. The format of hardware
definition files is extended to include the identities of the
protocol handlers.

Essential to the success of the approach, is that the

dependencies between the framework and the protocol
handlers are fairly limited and, even more importantly, well
specified. One common way of dealing with such
dependencies is to specify the interfaces provided and
required by each component. ABB’s component-based

Control
Builder

Controller
System
Software

User Interface

I/O
Access

I/O
Status

Com.-
muni-
cation
Server

OS & HW Abstraction, Device Drivers

Com-
muni-
cation
Client

HW
Con-
figur-
ation

Figure 3. The current software architecture.

Control
Builder

Controller
System
Software

User Interface

Gen.
I/O

Access

Gen.
I/O

Status

Gen.
Com.-
muni-
cation
Server

Gen.
Com-
muni-
cation
Client

Gen.
HW
Con-
figur-
ation

OS & HW Abstraction, Device Drivers

Protocol Specific Components

 Protocol Specific Components

Figure 4. Component-based software architecture.

control system uses Microsoft’s Component Object Model
(COM) [5] to specify these interfaces, since COM provides
suitable formats both for writing interface specification,
using the COM Interface Description Language (IDL), and
for run-time interoperability between components. For each
of the generic components, two interfaces are specified: one
that is provided by the framework and one that may be
provided by protocol handlers. Interfaces are also defined
for interaction between protocol handlers and device
drivers. The identities of protocol handlers are provided in
the hardware definition files as the Globally Unique
Identifiers (GUIDs) of the COM classes that implement
them.

The use of COM implies that all invocations of an
interface’s methods are sent to a particular object. The use
of objects turns out to work very well for the system in
question. It allows several instances of the same protocol
handlers to be created. This is useful, for instance, when a
controller is connected to two separate networks of the
same type. Also, it is useful to create one instance of the
object implementing an interface provided by the
framework for each protocol handler that requires the
interface. An additional reason that COM is the technology
of choice is that it is expected to be available on all
operating systems that the software will be released on in
the future. The Control Builder is only released on
Windows, and an effort has been started to port the
controller system software from pSOS to VxWorks. In the
first release of the system, which will be on pSOS, the
protocol handlers will be implemented as C++ classes,
which will be linked statically with the framework. This
works well because of the close correspondence between
COM and C++, where every COM interface has an
equivalent abstract C++ class.

When a control system is configured to use a particular
device or protocol, the Control Builder uses the information
in the hardware definition file to load the protocol handler
on the PC and execute the protocol specific routines it
implements. During download, the identity of the protocol
handler on the controller is sent along with the other
configuration information. The controller system software
then tries to load this protocol handler. If this fails, the
download is aborted and an error message displayed by the
Control Builder. This is very similar to what happens if one
tries to download a configuration, which includes a device
that is not physically present. If the protocol handler is
available, an object is created and the required interface
pointers obtained. Objects are then created in the
framework and interface pointers to these passed to the
protocol handler. After the connections between the
framework and the protocol handler has been set up through
the exchange of interface pointers, a method will usually be
called on the protocol handler object that causes it to
continue executing in a thread of its own. Since the
interface pointers held by the protocol handler references

objects in the framework, which are not used by anyone
else, all synchronization between concurrently active
protocol handlers can be done inside the framework.

To make this a little bit more concrete, consider the
interface pair IGenClient, which is provided by the
framework, and IPhClient, which is provided by protocol
handlers implementing the client side of a communication
protocol. IPhClient has a method

HRESULT SetClientCallback(IGenClient *pGenClient)

which is called to pass an interface pointer to an object in
the framework to the protocol handler. There is a similar
method for passing an interface pointer providing access to
a device driver. After the interface pointers have been
handed over, the framework can start the execution of the
protocol handler in a separate thread. The code in this
thread will then mediate message between control programs
and a communication interface via the device driver.

4. Lessons learned

The definitive measure of the success of the project
described in this paper will be how large the effort required
to redesign the software architecture has been compared to
the effort saved by the new way of adding I/O and
communication support. It is important to remember,
however, that in addition to this cost balance, the business
benefits gained by shortening the time to market must be
taken into account. Also important, although harder to
assess, are the long time advantages of the increased
flexibility that the component-based software architecture is
hoped to provide.

At the time of writing, the design of the framework,
including the specification of interfaces, is largely
completed and implementation has started. It is thus too
early to say exactly how much work has been needed, but it
seems safe to conclude that the efforts are of the same order
of magnitude as the work required to add support for an
advanced I/O or communication system the old way, that is
by adding code to the affected modules. From this we can
infer, that if the new software architecture makes it
substantially easier to add support for such systems, the
effort has been worthwhile. We therefore find that the
experiences with the ABB control system supports our
hypothesis that a component-based software architecture is
an efficient means for supporting distributed development
of complex systems.

Another lesson of general value is that it seems that a
component technology, such as COM, can very well be
used on embedded platforms and even platforms where run-
time support for the technology is not available. Firstly, we
have seen that the overhead that follows from using COM is
not larger than what can be afforded in many embedded

systems. In fact, used with some care, COM does not
introduce much more overhead than do virtual methods in
C++. Secondly, in systems where no such overhead can be
allowed, or systems that run on platforms without support
for COM, IDL can still be used to define interfaces between
components, thus making a future transition to COM
straightforward. This takes advantage of the fact that the
Microsoft IDL compiler generates C and C++ code
corresponding to the interfaces defined in an IDL file as
well as COM type libraries. Thus, the same interface
definitions can be used with systems of separately linked
COM components and statically linked systems where each
component is realized as a C++ class or C module.

An interesting experience from the project is that
techniques that were originally developed to deal with
dynamic hardware configurations have been successfully
extended to cover dynamic configuration of software
components. In the ABB control system, hardware
definition files are used to specify what hardware
components a controller may be equipped with and how the
system software should interact with different types of
components. In the redesigned system, the format of these
files has been extended to specify which software
components may be used in the system. The true power of
this commonality is that existing mechanisms for handling
hardware configurations, such as manipulating
configuration trees in the Control Builder, downloading
configuration information to a control system, and dealing
with invalid configurations, can be reused largely as is. The
idea that component-based software systems can benefit by
learning from hardware design is also aired in [1].

5. Related work

The use of component-based software architecture in

real-time, industrial control has not been extensively
studied, as far as we know. One example is documented in
[7]. This work is not based on experiences from industrial
development, however, but rather from the construction of a
prototype, developed in academia for non-real-time
platforms with input from industry. It also differs from our
work in that it focuses on the possibility of replacing the
multiple controllers usually found in a production cell with
a single controller, rather than on supporting distributed
development.

6. Conclusions and future work

The initial experiences from the effort to redesign the
software architecture of ABB’s control system to support
component-based development are promising, in that the
developers have managed to define interfaces between the
framework and the protocol handlers. Since the effort to

redesign the system has not been too extensive, we
conclude that the project has met its first challenge
successfully. An assessment of how the remaining
challenges of achieving sufficiently general interfaces while
maintaining an acceptable performance have been met
would be premature at this point.

An issue that may be addressed in the future
development at ABB is richer specifications of interfaces.
COM IDL only specifies the syntax of interfaces, but it is
also useful to specify loose semantics, such as the allowed
parameters and possible return values of methods, and
timing constraints. Since UML has already been adopted as
a design notation, one possibility is to use the specification
style suggested in [6]. In our continued research concerning
this effort we plan to study in more detail how non-
functional requirement are addressed by the software
architecture. We will, for instance, look at reliability, which
is an obvious concern when externally developed software
components are integrated into an industrial system.

7. Acknowledgements

We gratefully acknowledge the financial support of ABB
Automation Products, Sweden and the Swedish KK
Foundation.

8. References

[1] Clemens Szyperski, Component Software – Beyond

Object-Oriented Programming, Addison-Wesley,
1997.

[2] H. Hermansson, M. Johansson, L. Lundberg, “A
Distributed Component Architecture for a Large Tele-
communication Application”, Proceedings of the Sev-
enth Asia-Pacific Software Engineering Conference,
December 2000.

[3] I. Crnkovic, M. Larsson, “A Case Study: Demands on
Component-Based Development”, Proceedings of
22nd International Conference of Software Engineer-
ing, May 2000.

[4] International Engineering Consortium, IEC Standard.
61131-3.

[5] Microsoft Corporation, The Component Object Model
Specification, Version 0.9, October 1995.

[6] A. Speck, “Component-Based Control System”, Pro-
ceedings of the Seventh IEEE International Conference
and Workshop on the Engineering of Computer-Based
Systems, April 2000.

[7] John Cheesman, John Daniels, UML Components – A
Simple Process for Specifying Component-Based Soft-
ware, Addison-Wesley, 2001.

