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Abstract

The interest to use Switched Ethernet technolo-
gies in real-time communication is increasing due to
its absence of collisions when transmitting messages.
Nevertheless, using COTS switches affect the time-
liness guarantee inherent in potentially overflowing
internal FIFO queues. In this paper we focus on a
solution, called the FTT-SE protocol, which is devel-
oped based on a master-slave technique. Recently, an
extension of the FTT-SE protocol has been proposed
where the transmission of messages are controlled us-
ing multiple master nodes. In order to guarantee
the correctness of the protocol, the masters should
be timely synchronized. Therefore, in this paper we
investigate the possibility of using a clock synchro-
nization protocol, based on the IEEE 1588 standard,
among master nodes. Moreover, we evaluate the over-
head that is imposed by the clock synchronization pro-
tocol to the FTT-SE protocol. Finally, we present
a formal verification of this solution by means of
model checking technique to prove the correctness of
the FTT-SE protocol when the clock synchronization
protocol is applied.

1 Introduction

In the context of real-time communication, the us-
age of switched Ethernet technology is increasing due
to its properties such as providing a high through-
put and a collision free domain when transmitting
messages. These properties can provide possibility
to guarantee the timeliness behavior of the traffic.
Among several types of switches, Commercial Off-
The-Shelf (COTS) switches are more interesting be-
cause of their lower maintenance cost/process and
wide availability.

Nevertheless, using COTS switches in critical ap-
plications is not straightforward as they can gener-
ate blocking for urgent messages, inherent in having
a FIFO queue inside these switches. Moreover, the
switch ports may overflow because of uncontrolled ar-
rival of packets, inducing drop of some packets in a
worst-case situation.

One effective solution to eliminate the above men-
tioned limitations is to use a master-slave technique
to control the traffic loaded to the switch. In this
paper we focus on the FTT-SE (Flexible Time-
Triggered Switched Ethernet) protocol [12] which en-
forces global coordination of traffic. In order to
avoid the potential overflow of the queues inside the
switches, the global coordination is performed by a
dedicated node called master. This protocol was
proposed for a network containing a single switch,
while the extension to overcome that restriction was
proposed following two different approaches in [13]
and [4]. In these both architectures multiple switches
are connected together to compose a tree topology. In
the former architecture, a single master is attached to
the root of the tree and it coordinates the whole traf-
fic in the network. Whilst, in the latter architecture,
multiple switches along with multiple master nodes
are scheduling the traffic which is more suited for the
large networks as it is investigated in [3].

In this paper we focus on the second architecture
which comprise several master nodes in a network,
namely the multi-master architecture. According to
the FTT-SE protocol, all messages should be sched-
uled within a fixed duration of time, called Elemen-
tary Cycle (EC), by the master node. In the multi-
master architecture, each master schedules its asso-
ciated slave node’s messages within its local EC. To
achieve consistency among the ECs of different mas-
ters, all master nodes should be timely synchronized.

In our previous work [4], we have proposed a tech-
nique based on using a signaling message broadcasted
from the root master node to the children master
nodes in order to indicate the start of each EC. Us-
ing a signaling message may degrade the performance
of the protocol by imposing large timing deviations
of ECs due to the switching delays after crossing a
number of switches. Therefore, in this paper we in-
vestigate the use of a clock synchronization mech-
anism based on the IEEE 1588 standard, which is
a de-facto solution that was proposed for different
communication protocols such as the TT Ethernet
[2]. Also, we study the effects of this mechanism on
the network performance and bandwidth utilization,



compared with the signaling method proposed in [4].
Moreover, we formally prove the correctness of the

FTT-SE protocol when applying the clock synchro-
nization protocol, using a model checker called UP-
PALL [5] which has been widely used for real-time
systems (see [16], [15]).

This paper consists of the following sections. Sec-
tion 2 describes the technical background of the FTT-
SE protocol, the IEEE 1588 standard and the UP-
PAAL model checker. Section 3 outlines the need for
clock synchronization in the FTT-SE protocol. Sec-
tion 4 presents the solution based on IEEE 1588. Sec-
tion 5 sketches the formal verification of the proposed
solution. Section 6 summarizes related work and fi-
nally Section 7 concludes the paper.

2 Technical Background

In this section we explain some background which
we use in the paper, including the multi-master FTT-
SE protocol, the IEEE 1588 standard and the UP-
PAAL model checker.

2.1 The FTT-SE Protocol

FTT-SE [12] is an Ethernet real-time communica-
tion protocol that uses a master-slave technique to
coordinate all traffic in the network in a flexible and
timely manner. Here we describe the multi-master ar-
chitecture that uses multiple switches, each deploying
one master node, as depicted in Figure 1.
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Figure 1. Multi-Master FTT-SE Network

Each switch along with all associated nodes that
are directly connected to it is called a sub-network,
e.g., SW1, M1, S1 and S2 in Figure 1. Moreover,
each sub-network is a parent for the lower level sub-
networks that are connected to it. A group of sub-
networks with the same parent sub-network is called a
cluster, e.g., Cluster2 in Figure 1. The only exception
is the root sub-network that is included in its children
cluster. In addition, we distinguish two categories of
traffic: the traffic that is transmitted within a sub-
network is called local, otherwise it is called global.

In the multi-master architecture, each master
schedule messages on-line according to any desired

scheduling policy, e.g., Fixed Priority Scheduling, on
a cyclic basis. The basic cycle has a configurable
fixed duration and is called Elementary Cycle (EC).
Each EC is partitioned into two windows, one to or-
ganize the protocol called initialization time and an-
other one that is dedicated to data message transmis-
sions which is called data transmission window (Fig-
ure 2). Moreover, the data transmission window is
divided among all traffic types, i.e. local/global and
synchronous/asynchronous. The global asynchronous
window is further splitted among clusters, e.g. Clus-
ter1 and Cluster2 in Figure 2.
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Figure 2. The EC in Multi-Master FTT-SE

Local and global synchronous messages are acti-
vated periodically and the scheduler checks every EC
whether they fit in the corresponding window. The
scheduled messages are encoded in a Trigger Message
(TM) that is transmitted, in the beginning of the next
EC, to all slave nodes (TM3 from M3 to S4 in Fig-
ure 1). The global synchronous messages are sched-
uled in all master nodes in parallel.

Unlike synchronous messages, activation of asyn-
chronous messages is unknown in advance and can
occur at any time. A signaling mechanism [14] al-
lows the slaves to notify the master of pending re-
quests using a Signaling Message (SIG) that is trans-
mitted during the initialization time. For instance,
in Figure 2 message A is used as a SIG message for
local asynchronous messages sent from S6. The mas-
ter then schedules the asynchronous messages ade-
quately. To handle the global asynchronous messages,
the slave nodes send their SIG messages directly to
the master of each cluster, which is responsible for
scheduling that traffic (message B in Figure 2). For
this purpose, the master of the cluster uses a partic-
ular TM, called the asynchTM, that is sent to the
children slave nodes right after sending its regular
TM in its sub-network (asynchTM3 from M3 to S6
in Figure 2).

The slave nodes receive the TM and the
asynchTM, decode them and initiate the transmission
of the scheduled messages. Decoding the TM and the
asynchTM takes a specific time which is called Turn
Around Time (TRD) (Figure 2).



2.2 The IEEE 1588 Standard

IEEE 1588, known as the Precision Time Protocol
(PTP), is a clock synchronization protocol especially
tailored for networked measurement and control sys-
tems [1]. IEEE 1588 supports heterogeneous clock
systems with different resolutions and it establishes
a master-slave clock synchronization in which each
node synchronizes its clock with respect to the refer-
ence provided by a single node, called the master.

The IEEE 1588 messaging is illustrated in Fig-
ure 3. At the beginning of the algorithm, a particular
message, denoted Sync message, is transmitted from
the master to the slave nodes. The Sync message
is time stamped with the starting time tm. When-
ever the slave receives the Sync message, it records
the received time ts. Afterwards, the master sends
another message called Follow up which contains the
actual value of the time stamp tm. Then, the slave
calculates the offset from the master using (1), where
pDelay is the propagation delay of the Sync message.

offset = ts − tm − pDelay (1)
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Figure 3. The PTP messaging mechanism

In order to measure the propagation delay, the
IEEE 1588 standard mentions two methods: the de-
lay request-response and the peer delay mechanisms.
In this paper we use the latter because it does not
depend on the Sync message time stamps. The mech-
anism initiates by sending PDelay Req from the slave
to the master and recording t1 as sending time stamp.
The master receives the request while recording the
receiving time t2 and sends back the response to the
slave at time t3. The slave sends the follow up mes-
sage containing the actual value for t2 and t3. Finally,
the propagation delay is calculated as in Equation (2).

pDelay =
(t2 − t3) + (t4 − t1)

2
(2)

2.3 UPPAAL

There are different ways to evaluate the correctness
of a system using simulation, experiment and formal
verification. The formal verification provides a tool to
investigate whether the protocol behaves as expected.
In the context of formal verification, model checking
technique is one of the techniques which guarantees
the absence of error in the model. In this paper we
have used the UPPAAL model checker [5].

UPPAAL provides the ability to model a system as
networks of timed automata where the clock for each
timed automaton progresses with the same rate. A
timed automaton is a finite state machine which has
a clock variable to measure the time progress. Each
timed automaton in UPPAAL is called a template and
it contains number of locations and edges. An edge
is a transition from one location to another, while,
a location describes a state in the model. Figure 4
shows a model containing two locations and one edge
between them.

Figure 4. UPPAAL Model Example

Over each edge the defined system variables can
be updated. However, the clock variables can only be
restarted at edges, e.g., x = 0 in Figure 4.

Moreover, two or more actions in different timed
automaton can be synchronized by defining syn-
chronous channels in the UPPAAL model (sync! in
Figure 4 is synchronized with other edges labeled with
sync?). Whenever one transition is performed, the
other transitions, which are synchronized with that,
are updated to a new state in the system. A state is
changed in a timed automaton (for both synchronized
and regular transitions) whenever a guard condition
defined for that transition is satisfied. The guard con-
dition can be defined based on an integer, boolean or
clock variable, e.g, x >= v1 in Figure 4. For each lo-
cation an invariant can be defined for the clock vari-
able that limits the amount of time the model can
stay in that location, e.g., x ≤ v2, where v2 ≥ v1.

The state of a system can stay in a location as
long as the edges guard or invariant of the location is
not satisfied. However, a particular type of location,
namely committed location, is available such that the
system should immediately leave this location.

3 Problem Formulation

In this section we present the system model and we
outline the need for a clock synchronization mecha-
nism in the FTT-SE protocol.

3.1 System Model

In this paper, we assume COTS switches with sev-
eral parallel prioritized FIFO queues for each out-
put port. We also consider store-and-forward Ether-
net and non-blocking message transmission switches.
Two different switching delays, namely the store-and-
forward (SFD) delay and the switch fabric relaying
latency (∆), is assumed for each switch. The SFD is
the time that the switch is required to save the data
before forwarding to the right output port.



Furthermore, in order to distinguish between the
master-slave notation in the synchronization protocol
and the master-slave in the FTT-SE protocol, we use
master-clock and slave-clock nodes for clock synchro-
nization purposes.

We assume the root master as a reference clock.
Also, we define εMj as the clock deviation of master
Mj from its parent master during one EC, e.g., εM4

is the clock deviation of M4 from M3 in 1 EC in the
example that is depicted in Figure 1.

3.2 The Need for Synchronization

According to the FTT-SE protocol, all scheduled
messages that are transmitted within an EC should
be received within the same EC to override the prob-
lem of overflowing in the queues inside the switch.
Therefore, the messages that are transmitted across
sub-networks should be received before the start of
the next EC. This requires that the ECs in all sub-
networks are synchronized, otherwise the transmis-
sion of messages may face overrun.

In fact, we cannot guarantee the perfect simultane-
ity of ECs. Therefore, the scheduler of all master
nodes should take into account a certain delay εMi

from the beginning and the end of the EC.
Assume that m1 is a local message that is trans-

mitted within the M1 sub-network and that m2 is a
global message which is sent from S1 to S4. Con-
sidering a particular deviation (εM3) between two re-
spective ECs, the overrun occurs for m2 as depicted
in Figure 5. In other words, the effective EC for
data transmission available for both sub-networks is
EC − 2εM3 which should be considered by both M1
and M3 schedulers to prevent the overrun.

In our previous work presented in [4] we proposed
to use a particular message, called Global Trigger
Message (GTM), being broadcasted by the root mas-
ter and propagated down through the entire network.
The remaining masters synchronize upon receiving
the GTM and start their local ECs. This mecha-
nism generates a different receiving time of the GTM
depending on the corresponding depths in the net-
work hierarchy, that may degrade the network per-
formance. In addition, in case of losing the GTM
during the propagation, we need a recovery mecha-
nism to handle this situation, that increases further
the overhead of the protocol.
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Figure 5. Overrun of a Message

In order to eliminate the above mentioned prob-
lems, in this paper we use a clock synchronization
protocol based on the IEEE 1588 standard.

Note that, in the FTT-SE protocol, the slave nodes
are synchronized with their associated master node
when they receive the TM. Therefore, the clock syn-
chronization is not required for the slave nodes.

4 Clock Synchronization Method

In this section we propose an implementation of
a clock synchronization protocol in the multi-master
FTT-SE network, based on the IEEE 1588 standard.
Also, we study the effect of this adaptation on the
bandwidth utilization and performance of the net-
work compared with the GTM signaling solution.

4.1 Clock Synchronization in the FTT-SE
Protocol

To synchronize the ECs of all master nodes in the
network, we propose to reserve a particular band-
width, called Sync Guard, in order to transmit the
required messages for clock synchronization as de-
fined in the IEEE 1588 standard. In this approach
we assume a single-step clock for nodes which leads
to ignore the Follow Up and PDelay Resp Follow Up
messages in the mechanism according to the stan-
dard. Moreover, in the multi-master FTT-SE ar-
chitecture, the master node of each sub-network is
the master-clock for its master node of children sub-
networks (slave-clock nodes). Therefore, each mas-
ter node should synchronize with the master node of
its parent sub-network. For instance, M3 is a slave-
clock node that should be synchronized with M1 as a
master-clock node.

The clock synchronization includes two phases:
propagation delay measurement and Sync message
transmission which are performed in two different
ECs, one EC for each phase. In one EC the prop-
agation delay measurement occurs by sending the
PDelay Req from the slave-clock node to the master-
clock node. As a response the master-clock node
sends back the PDelay Resp. These two request and
response messages are transmitted within the Sync
Guard (Figure 6, EC1). The slave-clock node mea-
sures the propagation delay according to (2). In the
other EC, the Sync message is transmitted from the
master-clock node to the slave-clock node within the
Sync Guard (Figure 6, EC2).

The procedure of propagation delay measurement
is more complex than the Sync message transmission
due to the transmission of request and response mes-
sages. Moreover, the propagation delay between two
master nodes does not vary too much during run time
assuming that the architecture remains unchanged.
Therefore, the propagation delay measurement is per-
formed periodically every period Tpd, not every EC.



This will diminish the overhead of the protocol and
the complexity in the FTT-SE protocol.
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Figure 6. Clock Synchronization Method

However, since the Sync Guard has been assumed
within each EC, the Sync message can be transmitted
every EC, except the EC in which the propagation
delay is measured.

The length of the Sync Guard should be selected
enough for both procedures, i.e., the Sync transmis-
sion and the propagation delay measurement. In
fact, the propagation delay procedure takes more
time than the Sync message transmission. Therefore,
the Sync Guard size based on the switching delay
(two switches between two master nodes) is computed
in (3).

SyncGuard = Creq + 2(SFDreq + ∆) + Cresp

+2(SFDresp + ∆)
(3)

where Creq and Cresp are the transmission times of
the Pdelay Req and Pdelay Resp messages respec-
tively. Also, the SFD delays of both messages are
equal to their corresponding transmission times.

The proposed synchronization protocol affects the
bandwidth utilization due to the assignment of the
Sync Guard in each EC. The data bandwidth uti-
lization is the percentage of time allocated for data
transmission in one EC, which is calculated in (4),
where dev is the biggest deviation of ECs with re-
spect to the root master EC and InitT ime is the
initialization time as shown in Figure 2.

util =
EC − SyncGuard− InitT ime− 2dev

EC
(4)

In the clock synchronization for the multi-master
architecture, each master node is synchronized with
the master node of the parent sub-network. There-
fore, the worst-case deviation is accumulated in each
level of the network hierarchy. However, the worst-
case deviation in each level with respect to the master
node of the parent sub-network is the summation of
the two biggest ε because the other smaller deviations
are located within them.

In order to compute the worst-case deviation for all
ECs, we define El(i) that contains εMi for all master
nodes in level l of the network hierarchy. Moreover, to
obtain the two biggest deviations we define Esort

l (i)

which holds the sorted values of El(i) in a descend-
ing order. Finally, the worst-case deviation of ECs is
calculated in (5).

dev =

l∑
level=1

2[Esort
l (1) + Esort

l (2)] (5)

Note that, the synchronization round in the worst-
case is 2 EC as there is an EC in which the propaga-
tion measurement is performed. Therefore, the devi-
ation in each level of the network hierarchy should be
multiplied by 2 as ε is defined for one EC.

Also, the initialization time (InitT ime) is calcu-
lated in (6).

InitT ime = 2(CTM + CasynchTM + ∆)
+max{TRD,Nmax × (CSIG + CasynchSIG)} (6)

where Nmax is the maximum number of nodes in a
sub-network. Also, the transmission of SIGs overlaps
with the TRD and thus we consider the maximum
delay between the TRD and the time to transmit all
the SIGs in the network, given by Nmax × (CSIG +
CasynchSIG).

Note that, it is reasonable to assume in the start-
up mode of the network that the ECs are not synchro-
nized. Therefore, it takes some ECs to obtain the syn-
chronization among ECs. Meanwhile, the data trans-
mission is paused to prevent any interference with the
synchronization protocol signaling.

4.2 Comparative Evaluation

In order to compare the proposed clock synchro-
nization mechanism with the method using GTM,
we calculate the data bandwidth utilization for both
techniques with respect to the network scale.

In the method using a GTM signal, each master
node initiates its local EC by reception of the GTM.
Therefore, the deviation of each master from the root
master depends on its position in the network hierar-
chy. This deviation is calculated in (7).

dev = (l − 1)× (CGTM + ∆) (7)

Moreover, the bandwidth utilization for the
method using a GTM is computed in (4), where
SyncGuard = 0. The initialization time is computed
in the same way as the clock synchronization method
presented in (6), however the transmission time for
GTM (CGTM ) should be added.

In order to illustrate the effects of both synchro-
nization methods on data bandwidth utilization and
maximum deviation of ECs, we generate a particular
network example. The network contains several sub-
networks where each is limited to include 10 nodes,
the network capacity is 100Mbps and ∆ = 5µs. The
deviation of ECs using the proposed clock synchro-
nization mechanism depends on the synchronization



Message Trans. Time (µs)
EC 2000

TM and asynchTM 24
GTM, SIG and asynchSIG 7

PDelay req and PDelay Resp 7
TRD 200

Table 1. The Network Example Parameters

accuracy, however we assume ε = 1µs for all mas-
ters in this example as it is achievable according to
the IEEE 1588 standard. Also, the other network
parameters are shown in Table 1.

The deviation among ECs for both synchronization
methods is illustrated in Figure 7-a. The deviation
using the proposed clock synchronization mechanism
depends on the clock accuracy, yet it is assumed to
be 1µs in this example. However, this deviation is
significantly large in the method using a GTM, in
particular for large networks.
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Figure 7. Synchronization Performance

In addition, the data bandwidth utilization for
both synchronization methods, using a GTM and the
proposed clock synchronization, is depicted in Fig-
ure 7-b. As a consequence of the ECs deviation de-
picted in Figure 7-a, the bandwidth utilization using
the proposed clock synchronization decreases slightly
by increasing the levels in the network hierarchy.

In contrast, the bandwidth utilization using a
GTM decreases sharply. This evaluation shows that,
even though there is a Sync Guard consuming the
EC in the clock synchronization protocol, it still per-
forms better in particular for a network having more
than 3 levels in the network hierarchy. Moreover, al-
though the bandwidth utilization for small networks
is less in the method using clock synchronization, the

deviation of ECs is very small which enhance the per-
formance of the FTT-SE protocol.

5 UPPAAL Verification Model

Experience shows that reasoning about the tempo-
ral behavior of a distributed real-time system is not
straightforward. Whenever this system is organized
as a multicluster architecture, in which every cluster
uses its own scheduler and its own clock-master, then
the analysis can hardly be performed without some
kind of computer support. In this section we use a
number of UPPAAL models (i.e. models based on
networks of timed automata) to provide evidence for
the analysis discussed in Section 4. The presented
models will show three important aspects of FTT-
SE. The first model will illustrate the problems asso-
ciated to having unsynchronized clusters and hence
unsynchronized EC. The second model will show how
the GTM signaling mechanism may solve the pre-
vious problem, but at the cost of lower utilization.
The third model will show that implementation of
the IEEE 1588 clock synchronization protocol solves
the problem with better bandwidth utilization.

The rationale of our models follows the approach
described in [15], which encourages a clear separation
between the modeling of application aspects and the
modeling of temporal aspects.

5.1 Unsynchronized ECs Model

In order to model the behavior in which the ECs
of the master nodes are not synchronized, we define
4 automata per each node: 1) MasterNode models
the operation of a master node, and therefore corre-
sponds to the application aspects; 2) InitWinTimer

models the waiting time during the initialization time
window of each EC; 3) DataTransTimer models the
timer that measures the data transmission window; 4)
MsgTransmission models the transmission of a data
message, including its associated network delay. Note
that the last three automata only model temporal as-
pects of the system.

Each automata uses an input parameter of type
integer (i) for identifying the specific instance of the
template. All the automata that relate to the same
node, do share the same value of i. This guarantees
proper use of the UPPAAL synchronization channels.

The MasterNode automaton (depicted in Figure
8) starts in location Initial and immediately tran-
sits to location InitWindow as it is a committed lo-
cation. This transition activates InitWinTimer au-
tomaton via channel initTimerSet[i]. Then, the
automaton stays in location InitWindow until the ex-
piration of the timer InitWindow, signaled via chan-
nel initTimerExp[i]. After that, the automaton
goes through locations L1 and L2 to reach location
DataTransWindow. During the passed edges two au-



tomata are triggered through channels set[i] and
InitMsgTrans[i]. The former starts the timer that
measures the data transmission window whereas the
latter actually triggers the message transmission.

MasterNode stays in location DataTransWindow

for some time. If the message transmission ends
(sendMsg[i] is activated) the automaton stays in the
same location, but the variable flag[i] takes the
value 1 (true), meaning that the transmission was
successful. As soon as the timer for data transmission
window expires (this is signaled by DataTransTimer

through expire[i]), the automaton steps into loca-
tion flagCheck.

Figure 8. Master Node Timed Automaton

If the automaton reaches location flagCheck

and the flag is true, it means that the delay
for message transmission (MsgTransmission) was
shorter than the timer for data transmission window
(DataTransTimer), i.e., the message is transmitted
successfully before finishing of the EC. Then, the au-
tomaton directly transits to Initial location. If the
message transmission was not successful during the
data transmission window, the flag is false. In this sit-
uation the message transmission is aborted through
channel abortMsg[i].

InitWinTimer automaton, depicted in Figure 9(a),
contains two locations, Initial and waiting, and
a clock variable x. The model starts in location
Initial and transits to location waiting whenever
it is activated through channel initTimeSet[i]. In
this transition the clock x is reset to zero. Afterwards,
the timed automaton stays in location waiting for
exactly T init time units due to the invariant and
the guard defined over clock x. Whenever clock x
reaches the value T init, the transition to Initial

location is initiated and is signaled through channel
initTimeExp[i]. The value of T init is the duration
of the initialization time within an EC; it is defined
in the variable declaration.

The second timed automaton, see Figure 9(b), is
called DataTransTimer and measures the data trans-
mission window of the EC. Similarly to the previ-
ous timed automaton, DataTransTimer starts in lo-
cation Initial and goes to location waiting when
channel set[i] is activated. During this transi-
tion, clock x is reset. The model stays in location
waiting for an amount of time that varies within the
range [T trans − eps[i], T trans + eps[i]]. The value
T trans is constant and corresponds to the nominal

data transmission time, which is defined in the vari-
able declaration.

(a) InitWinTimer (b) DataTransTimer 

(c) MsgTransmission 

Figure 9. Timer automatons

The deviation with respect to the nominal dura-
tion varies in the range [−eps[i],+eps[i]] and is also
defined in the variable declaration. In the transition
from location waiting to location Initial, channel
expire[i] is signaled. This is interpreted by the cor-
responding MasterNode as the end of the EC. Note
that as a consequence of the introduced drift, each
master may notify the ending of the EC with a cer-
tain deviation from the other masters.

The third timed automaton, depicted in Figure
9(c), is called MsgTrasmission and models the be-
havior of a message transmission. It starts in loca-
tion Initial and steps into location MessageSending

whenever channel InitMsgTrans[i] is activated by
MasterNode. The timed automaton leaves location
MessageSending after some delay [0, T trans], where
T trans is the nominal data transmission window.

For completeness, the variable declaration for this
model is shown in Listing 1, except channel declara-
tion due to the space limit.

Listing 1– Variable Declaration

const i n t EC = 500 ;
const i n t T i n i t = 100 ;
const i n t T trans = EC − T i n i t ;
const i n t N = 2 ; //number o f nodes
i n t eps [N] = {0 , 2} ;
bool f l a g [N] = {0 , 0} ;

This model allows us to verify that communication
is correct only as long as the assumption of having
perfectly synchronized clocks holds. This is verified
with the following properties, which are satisfied only
if eps = 0 .

A [ ] not deadlock
A [ ] MasterNode ( 1 ) . f lagCheck imply

( f l a g [0]==1)

The first property proves that the model does not
get stuck in any deadlock which is satisfied for this



model. The second property is more important, as
it checks whether both masters always successfully
transmit within the same EC. When this property is
not satisfied, as it may happen if eps > 0, it means
that Master 1 can finish its EC, i.e. reach loca-
tion flagCheck before the other Master has actually
transmitted its data message.

5.2 GTM signaling Model

In order to add the GTM signaling to the previ-
ous model, we extend it with an additional timer for
keeping track of the GTM transmission delay.

As it is explained earlier, the GTM delay depends
on the level of the node in the hierarchy. Thus, the
timer for GTM signaling (Figure 10) counts based on
(7), where level[i] is the level of node i and sw delay
is the switching delay, both are defined in the variable
declaration.

The initialization time automaton is similar to
the previous one, as illustrated in Figure 9(a). The
timers for data transmission window (DataTransWin)
and message transmission (MsgTransmission) use
the same automata as in Figure 9(b) and (c), al-
though now the timer boundaries are defined to count
until the end of EC, which in this case is defined as
T trans− (level[i]− 1)× sw delay.

Figure 10. GTM Timer automaton (GTMTimer)

The master node automaton is depicted in Fig-
ure 11. It is similar to the previous model, except
for an additional location, GTMwaiting for modeling
the GTM delay. After leaving the Initial location,
it stays in GTMwaiting for the time defined in the
GTMTimer automaton. The other process is the same
as in the previous explanation.

Figure 11. Master Node Timed Automaton
with GTM signaling

Formal verification of the properties of this model
requires definition of a specific Observer automaton;
it is depicted in Figure 12(a). Figure 12(b) shows
a trivial timed automaton, called Dummy, which is
required to make Observer evolve over time. Note

that Observer transits to location check as soon as
n becomes greater than zero. The variable n is in-
creased by any MasterNode automaton that passes
the GTM delay. Observer stays in location check

until all nodes have passed to GTMwaiting location
(n >= N). The amount of time that Observer stays
in location check gives the time distance between the
fastest and the slowest masters, therefore the maxi-
mum deviation of ECs.

(a) Observer (b) Dummy 

Figure 12. Observer Automaton

The variable declaration is the same as Listing 1,
with some additions that are presented in Listing 2.

Listing 2– GTM Synchronization Model

const i n t sw delay = 2 ;
const i n t N = 5 ;
i n t eps [N] = {0 , 1 , 2 , 3 , 3} ;
i n t l e v e l [N] = {1 , 2 , 2 , 3 , 3} ;
bool f l a g [N] = {0 , 0 , 0 , 0 , 0} ;
chan abortMsg [N ] ;
chan GTM[N] , GTMRec[N ] ;

The verification of successful message transmission
is satisfied using the same two properties discussed
for the previous model. Moreover, in this model it
is also possible to verify the worst-case variation of
ECs, with the following property.

A [ ] Observer . check imply ( Observer . x
<= ( l e v e l [4 ]−1) ∗ sw delay )

This property is satisfied when there are 5 nodes in
the network (N = 5) and it shows that the worst-case
deviation is the delay of receiving the GTM suffered
by the deepest node in the network hierarchy.

Note that, it is possible to verify larger networks
and for doing so we need to change N and level[N ]
respectively. Therefore, the property would be al-
tered to check if Observer.x is equal or greater than
level([N − 1]− 1) ∗ sw delay.

5.3 Clock Synchronization Model

The third model serves to study the synchroniza-
tion among ECs when using a particular bandwidth,
SyncGuard, at the beginning of an EC. The model is
the same as the GTM signaling model, except that
we define another timer, called SyncTimer, to keep
track of SyncGuard, instead of the GTM timer. An-
other difference is that SyncTimer does not have any
input parameter and it is unique for all nodes using
broadcast channels.



SyncTimer is presented in Figure 13(a). It is acti-
vated through broadcast channel syncMess, stays in
location waiting for exactly Tsync and signals its
expiration via channel transInit.

The data transmission timer (DataTransTimer) in
this model differs from the one in the previous models,
as shown in Figure 13(b). The basic difference is that
the timer deviation is calculated when the timer is
initiated (using devFind(i) function). The deviation
of each node depends on the position in the level of
network hierarchy and is calculated according to (5).

(a) SyncTimer (b) DataTransTimer 

Figure 13. Timer automatons

The automaton for modeling message transmis-
sion (MsgTransmission) is similar to the one in the
previous models, but the upper bound now becomes
x < T trans − Tsync − dev[i], where dev[i] is calcu-
lated in the DataTransTimer process.

The master node automaton is depicted in Fig-
ure 14. In this model and without losing generality,
we assume node(0) as the reference clock. There-
fore, node(0) initiates the SyncTimer and the other
nodes are waiting in location syncGuard until the
SyncTimer expires through channel transInit. This
procedure makes all nodes synchronized after the
syncGuard window. Therefore, it does not model
clock synchronization in itself, but the effect of having
clock synchronization. This is a common abstraction
technique, see [15]. The other locations and transi-
tions of the master node are similar to the previous
node models, and they are therefore not explained.

Figure 14. Master Node Timed Automaton
with Clock Synchronization
In this model, the same Observer and Dummy au-

tomata of Figure 12 are used for measuring the de-
viation of the ECs. As it is shown in Figure 14, n
is increasing when the EC of the node expires. Since
the clock synchronization happens at the beginning,
the maximum deviation is observed at the end of the
EC. Therefore, we increase n when the EC is finished

and we measure the difference between the fastest and
slowest masters in the Observer automaton.

The variable declaration of this model is presented
in Listing 3, except the channel declaration and the
variables related to the windows duration which are
similar to Listing 1.

Listing 3– Clock Synchronization Model

const i n t N = 5 ;
const i n t Tsync = 30 ;
i n t eps [N] = {0 , 4 , 3 , 2 , 3} ;
i n t l e v e l [N] = {1 , 2 , 2 , 3 , 3} ;
i n t dev [N ] ;
bool f l a g [N] = {0 , 0 , 0 , 0 , 0} ;

The verification of successful message transmission
is similar to the first model. Moreover, to check the
worst-case deviation of ECs the following property
should be satisfied. The property is defined for 5
nodes, and in this case dev[3] and dev[4] exhibit the
greatest deviations among the nodes, because of their
depth in the hierarchy (according to (5)). This prop-
erty is checked for this model and it is satisfied.

A [ ] Observer . check imply ( Observer . x
<= dev [ 3 ] + dev [ 4 ] )

Comparing the GTM signaling verification prop-
erty and the clock synchronization verification prop-
erty, the deviation imposed by the latter technique
among the master nodes is much smaller than the
former technique considering the same architecture
as depicted in Listing 3 and 2.

6 Related Work
In the domain of network clock synchronization,

different protocols have been established such as the
NTP (Network Time Protocol), the IEEE 1588 Pre-
cision Time Protocol (PTP) and the IEEE 802.1AS.
In the following we refer to some of the more relevant
work in which these clock synchronization protocols
have been applied to switched Ethernet.

The work in [11] presents the usage of IEEE
802.1AS in the in-vehicle network Audio/Video
Bridging (AVB) switched Ethernet. The adaptation
of the protocol to support clock synchronization is
described, and the influence of different situations on
the synchronization accuracy is investigated using the
OMNeT++ simulation tool. The results show that
the network load does not significantly affect the ac-
curacy, while it can be affected by the selection of the
synchronization interval.

A synchronization technique integrating both
IEEE 1588 and NTP is presented in [17], implement-
ing it over a switched Ethernet network with traffic
smoothing. The traffic smoother classifies different
messages including the messages for clock synchro-
nization. In case of synchronization, other data mes-
sages are blocked by the traffic smoother.



The PTP is also utilized in the PROFINET proto-
col with some adaptation to that which is presented
in Annex D of the IEEE 1588 standard. In this re-
gard, an architecture to connect the devices with PTP
for clock synchronization with the PROFINET infras-
tructure is proposed in [8] in order to achieve a precise
synchronization. In addition, the evaluation of such
a clock synchronization protocol over PROFINET
IO has been performed using OMNeT++ simulation
framework in [9].

UPPAAL is a very well-known model checker
based on the theory of timed automata. It has been
successfully applied to formally verify a great number
of applications, including [7], [10] and [6], to name a
few. In this paper we use the modeling patterns that
were described in [15], which allow specification of
systems with either drifting or synchronized clocks.

7 Conclusion and Future Work

In this paper we present an implementation of a
clock synchronization protocol for the multi-master
FTT-SE network based on the IEEE 1588 standard.
We compare the effects of such a protocol on the per-
formance and the bandwidth utilization, and we com-
pare against our previous solution using GTM signal-
ing. We show that the new solution, using clock syn-
chronization, maintains a worst-case deviation that
is significantly smaller than the previous solution, in
particular for large networks.

In addition, we approached the problem of unsyn-
chronized ECs using the UPPAAL model checker.
Also, we have implemented both synchronization
techniques by means of modeling and we have for-
mally proved the efficiency of the clock synchroniza-
tion compared with the GTM signaling. Our ongoing
work aims at performing some further experiments
followed by a deployment in an industrial setting.
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