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Abstract. A recent development of 

heterogeneous platforms (i.e. those containing 

different types of computing units such as 

multicore CPUs, GPUs, and FPGAs) has 

enabled significant improvements in perfo-

rmance processing large amount of data in 

realtime. This possibility however is still not fully 

utilized due to a lack of methods for optimal 

configuration of software; the allocation of 

different software components to different 

computing unit types is crucial for getting the 

maximal utilization of the platform, but for more 

complex systems it is difficult to find ad-hoc a 

good enough or the best configuration. In this 

paper we present an approach to find a feasible 

and locally optimal solution for allocating 

software components to processing units in a 

heterogeneous platform. 
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1. Introduction 

The computer systems today are becoming 

heterogeneous; alongside multicore Central 

Processing Units (CPU), Graphical Processing 

Units (GPU) and Field Programmable Gate 

Array (FPGA) are gaining an important role [1]. 

Such systems consist of different types of 

computing units, where each unit can be 

dedicated for a particular type of computation. 

This is already a proved approach in high-

performance computer systems, in which GPUs 

process highly parallel computation, and in 

which cores from multicore CPUs perform 

different tasks in parallel. This is also becoming 

of significant importance in embedded systems 

where such systems enable processing of large 

amounts of data streams in real time. However 

this great potential for increased performance is 

still not fully utilized due to a lack of software 

methods for an efficient and optimal placement 

of software to the heterogeneous platform by 

which an optimal, or sufficiently good 

performance is obtained. Different software 

allocation results in different performance, due to 

a type of computation, and communication 

between software components that are allocated 

on different units. It is not obvious which 

allocation would enable the best performance. In 

addition, a possibly best allocation might not be 

allowed due to different constraints; this can be 

due to limitation of resources of a particular unit 

(such as memory or communication capacity), or 

due to some architectural decisions related to 

specific requirements (such as a requirement that 

two components are not allowed to be allocated 

to the same physical node).  A “trial and error” 

method by repeated allocation and measurement 

is inefficient, in particular when the software 

implementation may depend on which platform 

will be executed. For this reason, an allocation 

method in an early development phase is desired. 

The main goal of this paper is to define a 

model for the software allocation optimization on 

computing units in heterogeneous systems.  

We assume that we are dealing with 

component-oriented systems, so each software 

component1 can be allocated to a computing unit. 

Further we define a model that can be used in an 

early phase of the development lifecycle, in the 

early architectural design of the system. The 

components may already be implemented, or we 

can use models, not yet implemented, but 

specified, and in which case each component is 

defined by a set of attributes, estimated or 

obtained in a certain way. The result of the 

model is a proposed deployment configuration 

that is optimal, or nearly optimal for the overall 

system performance.  

 The rest of the paper is organized as follows. 

In the second chapter we define the problem and 

its formal description. In the third chapter we 

present our solution for the allocation problem 

                                                 
1 In further text when we refer to a component we mean 

“software component” 



using genetic algorithm. Chapter 4 illustrates the 

model on an example. Chapter 5 briefly 

discusses the related work, and finally Chapter 6 

concludes the paper.  

2. Software Allocation Optimization 

Model 

Our model is composed of a Software 

System 𝑆, which consist of components, and a 

hardware platform 𝐻 which consist of a set of 

computing units as shown in Figure 1.  

Every component 𝑠𝑖 ∈ 𝑆, 𝑖 = 0, … , 𝑛 needs 

to be allocated to a computing unit ℎ𝑖 ∈ 𝐻, 𝑖 =
0, … , 𝑚. All possible allocations of software 

components to computing units is 𝑚𝑛 

(permutation with repetition). This number 

increases rapidly with number of the components 

and the platforms, so to find the optimal 

component allocation with a respect to a 

particular goal is (at least) very time-consuming 

if the process is performed manually. For this 

reason we provide a theoretical model for finding 

an optimal (or locally-optimal) allocation with a 

respect to a particular system property for given 

characteristics of the software systems, 

components and the hardware platform. 

 

Figure 1. Software components allocation to 
heterogeneous hardware platform 

Our model is defined as follows. 

a)  A node provides a set of resources for the 

components being executed on it, e.g. CPU 

power, or available memory. The capacity, i.e. 

the amount of the resources of each node must 

satisfy the needs for the component resources. 

b)  We enable components’ mapping to the 

nodes, and try to find the optimal distribution 

with a respect to a cost function. I this case our 

cost function will be performance, i.e. the 

minimal average execution time of the system.  

In our model we take some assumptions, which 

might be a simplification, but which still may 

lead towards a local optimization of software 

allocation. We assume (a) the system is built of 

set of components that are characterized as 

computational and deployable units (i.e a 

component cannot be distributed over several 

nodes), (b) components have the property of 

isomorphism, i.e. each component can be 

deployed on every computing unit. However we 

can provide additional constraints by which one 

can specify whether a particular component is 

supposed to be (or not to be) mapped to a 

particular node. 

The more formal specification that will 

enable the automatic allocation computation is 

the following. 

First, we define a set of resources that each 

computing unit can provide (e.g. total execution 

time, static memory, dynamic memory, etc.): 

Definition 1: ℛ = [𝑟𝑖𝑗]
𝑚×𝑙

 is a computing unit 

resource matrix where 𝑟𝑖𝑗 represents 𝑗-th 

resource of a 𝑖-th computing unit.  

Each component will be defined by a set of 

properties, where each property can have a 

different value (i.e. different resource demand) 

on different node. Therefore we define a 3-

dimensional matrix with information about 

resource demand for every component allocated 

on every computing unit: 

Definition 2: With 𝑛 software components, 𝑚 

computing units and 𝑙 different resources, 𝒯 =

[𝑡𝑖𝑗𝑑]
𝑛×𝑚×𝑙

 is a resource consumption matrix 

where 𝑡𝑖𝑗𝑑 represents the amount of d-th 

resource of the 𝑖-th software component 

allocated on the 𝑗-th computing unit.  

In addition to the resource demands, we also 

need information about communication channel 

cost between computing units. This is because 

the computing units are heterogeneous, so they 

vary in clock frequency, synchronization, 

performance, processing type etc, and they can 

be connected via different type of 

communication channels (e.g. Ethernet, CAN-

bus, Wi-Fi, etc). [10]. To specify this 

communication cost we define the matrix 𝒞: 

Definition 3: 𝒞 = [𝑐𝑖𝑗]
𝑚×𝑚

 is a platform 

communication cost matrix where 𝑐𝑖𝑗 represents 

a communication cost between computing 𝑖-th 

and 𝑗-th computing unit. For 𝑖 = 𝑗, 𝑐𝑖𝑗 = 0.  

The total communication cost between the 

components does not only depend on the 

 



characteristics of the communication channels 

between the platforms, but also on the 

communication between components defined by 

their internal logic; components which 

communicate intensively between computing 

units with high communication cost will have a 

larger impact on overall performance than those 

communicating sporadically with less data 

exchange. To express this dependency we define 

the communication intensity matrix: 

Definition 4: 𝒦 = [𝑘𝑖𝑗]
𝑛×𝑛

 is a communication 

intensity matrix where 𝑘𝑖𝑗 represents a 

communication intensity between 𝑖-th and 𝑗-th 

software component.  

In Definition 4, if components 𝑖 and 𝑗 are not 

communicating then 𝑘𝑖𝑗 = 0, also notice that 𝒦 

is symmetric.  

Finally, we need to define a set of all the 

possible allocations of components to computing 

units.  

Definition 5: Let 𝑝𝑖 = (𝑝1, … , 𝑝𝑛) ∈ 𝒫 be one 

allocation from 𝑆 to 𝐻, with 𝑖 = 1, … , 𝑚𝑛.  

Now we have all the necessary elements required 

to find the optimal component allocation, i.e. all 

possible allocations, component resource 

demand and communication cost. We define the 

cost function 𝑤 that evaluates one allocation 𝑝.  

𝑤 = (∑ 𝑓𝑑 ∑ 𝑡𝑖𝑝𝑖𝑑

𝑛

𝑖=1

𝑙

𝑑=1

+ 𝑓𝑐 ∑ 𝑘𝑖𝑗 ∙ 𝑐𝑝𝑖𝑝𝑗

𝑖≤𝑗

) ∙ 𝑎 

 

where 𝑎 = {
0, ∑ ∑ (𝑡𝑖𝑝𝑖𝑑) < ∑ 𝑟𝑝𝑖𝑗

𝑙
𝑗=1

𝑙
𝑑=1

𝑛
𝑖=1

1, ∑ ∑ (𝑡𝑖𝑝𝑖𝑑)𝑙
𝑑=1

𝑛
𝑖=1 ≥ ∑ 𝑟𝑝𝑖𝑗

𝑙
𝑗=1

 

 

The cost function 𝑤 consists of two main sums; 

the first one considers computing unit resource 

constraints and the second one considers the 

communication cost between allocated 

components. Notice that in first sum we defined 

a vector 𝐹 = [𝑓𝑖]𝑙. It is used as a tradeoff weight 

factor by which we define which resource is of 

greater importance for the application. For 

instance, in our consideration the execution time 

is more important than the memory allocation, it 

would get a higher value of 𝑓. The factor 𝑓𝑐 

denotes the weight factor for the node 

intercommunication cost. 

Parameter 𝑎 is used to verify whether the 

particular allocation is allowed. The solution is 

not allowed if the current allocation does not 

have sufficient resources (the sum of demanded 

resources exceeds the available resources).   

To find the optimal software allocation we 

need to compare all the solutions from the set 𝒫 

and select the one with the smallest 𝑤 (greater 

than 0). However, a problem emerges from the 

size of |𝒫| = 𝑚𝑛 which is not searchable in a 

polynomial time.  

3. Evolving Allocation with Genetic 

Algorithm 

We are dealing an optimization problem 

where the goal is to minimize the cost function 

with large number of variables, in this case 𝑤. 

Since it is not feasible to search the entire 

solution space we propose using a heuristic (e.g. 

greedy algorithm) or metaheuristic (e.g. genetic 

algorithm, particle swarm optimization, 

simulated annealing) which will find a semi-

optimal solution.  

Genetic Algorithm (GA) comes from the 

field of artificial intelligence and it is used for 

optimization problems by mimicking the process 

of evolution. The evolution of solution is done 

by crossover between different solutions (genes) 

and mutation. Bad solutions (genes) die out and 

good solutions are reinforced. The solutions need 

to be comparable, and since we have a 𝑤 

function, GA is a good starting point. For our 

implementation we used Python and Pyevolve 

library with the following settings: 

 
Table 1: GA settings, the execution 

environment was a server ran by Intel Xeon 
E7-4830 and 8GB of memory 

Generations 50 

Mutation rate 0,05 

Crossover rate 0,95 

Population size 80 

Selection algorithm Roulette wheel 

 

With settings from table 1, the process of 

evolving the solution converges to the exact 

solution with average deviation of 3%. The exact 

solution was calculated by brute force (BF) 

algorithm which tested all possible allocations. 

Figure 2 shows the comparison between results 

of BF and GA, and confirms that the GA is a 

good method for solving the allocation problem. 

During the test of GA we also measured 

execution time. Figure 3 shows that initially BF 

was faster, however with slow growth of inputs 

search space and time grow exponentially and 

GA was more efficient as expected.  

   



 
Figure 2: Comparison of solutions from 

genetic algorithm and brute force search 
(logarithmic scale) 

 
Figure 3: Execution time comparison 

(logarithmic scale) 
 

There are two issues with generating solutions. 

The first one concerns same platform solutions 

where all software components get allocated to 

only one processing unit. This is in practice 

solved as usually some of the components are 

pre-allocated on particular node, and some of 

components cannot be executed on a particular 

node. The second issue concerns the optimal 

solution. GA provides one solution which is not 

necessary the optimal (in difference to the BF 

solution). Anyhow, each GA solution provides a 

solution that is sufficiently good. A multiple 

execution of GA would give a possibility to get 

different solutions and select between the 

optimal one.  

4. Example setting  

The example on which we demonstrate the 

approach is the software model of an 

autonomous underwater robot (AUR) that is 

being developed in RALF3 project [2], and that 

competes on the annual RoboSub contest 

(AUVSI Fundation) [3]. One of the challenges in 

the competition is recognition of particular 

objects while interacting with them in a real-

time. A high and accurate performance is the key 

challenge in the competition. To meet these 

challenges a best utilization of a heterogeneous 

platform is needed. The system uses multicore 

CPU, GPU, two FPGA units. We present a 

simplified software and hardware architecture to 

perform the allocation of software components.  

 

Figure 4: Simplified software architecture 

Figure 4 shows the software architecture. It 

consists of 11 following components; (1-UI) user 

interface used for manual control and displaying 

data from sensors and camera, (2-CH) 

communication handler is used to handle the 

communication between the user interface and 

the data from sensory, (3-MP) message parser is 

used to translate internal communication e.g. to 

convert user input into the commands for 

movement, (4-MD) manual drive enables driving 

the robot and communicating with movement, 

vision and actuators, (5-MM) mission manager is 

used for autonomous mode and it contains the 

behavior model, (6-MC) movement control is 

used on the low level to translate high level 

commands to low level commands for motors, 

(7-RV) rudimentary vision for object 

recognition, (8-AC) actuator control, (9-S1) 

sensor set 1 (sonar, orientation), (10-S2) sensor 

set 2 (depth), (11-SF) video stream filtering form 

camera.  

 

Figure 5: Simplified hardware architecture 

 

Figure 5 shows hardware architecture with 4 

computing units; (1) Multicore CPU which is 

intended to handle logics of the robot, (2, 3) 

FPGA is intended for use in camera image 

processing, (4) GPU is intended for object 

recognition. 
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Figure 6: The input matrices 

To find the solution we need matrices 𝒦, 𝒞 and 

𝒯. Since this is currently a work in progress, we 

do not yet have access to actual parameters, so 

for this purpose we will make an assumption 

about them, while keeping the proportions 

realistic.  In Figure 6, (a) is the component 

communication matrix 𝒦. Numbers from the 

matrix caption row and column represent the 

components from Figure 4. Since the resource 

consumption matrix is three dimensional 

(components, computing units, resources) we 

used two matrices to display two different 

resources (3rd dimension); (b) processing time 

and (c) memory. Matrix (d) is the platform 

communication matrix 𝒞, (e) is the resource 

availability matrix ℛ, and (f) is the trade-off 

vector by which we indicate that for this 

calculation processing time is ten times more 

important than memory.  

Table 2 shows the results from five subsequent 

GA executions on the input data from the Figure 

6. There are some small deviations in different 

solutions and the best ones are from the first and 

second execution. Notice that in certain solutions 

some computing units are not even selected for 

the deployment of the components. Depending 

on the preference you can choose the solution. 

This preference should consider (a) which 

components should be together, (b) which 

components should not be together and (c) which 

component must be on a particular computing 

unit, (d) development time. Since we want to use 

all the computing units and the vision component 

on the GPU, we select the solution 1.    

From matrix 𝒯 you can notice that most of 

the components have a good execution time for 

FPGA unit (column 2, 3), so as expected, most of 

the software gets allocated to those units. In the 

next segment we will present the related work, 

after which we will discuss the results of this 

example. 
 

Table 2: The results of multiple execution of 
GA (score: less is better) 

 

 

5. Related work 

There are a lot of component-oriented 

frameworks for modeling the software 

architecture listed in [4], that enable reasoning 

about extra-functional properties (e.g Palladio 

component model and performance [5], or 

ProCom component model and worse-case 

execution time [6] where software components 

are allocated on virtual nodes, and later those 

virtual nodes to physical nodes [7], or and in 

some cases managing deployment, but without 

optimization [8]). A trade-off analysis of 

utilization of different resources in real-time 

system is discussed in [9]. However, not a lot of 

work addresses component-oriented frameworks 

targeted for heterogeneous platform, and 

specifically allocating software components to 

heterogeneous computing units. Several works 

relate to tasks allocation to different processing 

units with some resource constraints and to 

searching for an optimal load balancing across 

the system [10],[11] or a good average-case 

performance [12], but they do not address 

heterogeneous platforms. The second group 

relates to frameworks where software component 

allocation is part of the deployment process. 

Problems related to heterogeneous platforms and 

challenges in components synchronization 

between the platforms is described in [13].  In 

[14], a dynamic reallocation is enabled in 

combination with performance monitoring. 

Our method enables efficient placement of 

software components on computing units of a 

heterogeneous platform. It considers multiple 

criteria and results in semi-optimal software 

allocation.  

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 1 2 3 4

1 0 1 0 0 0 0 0 0 0 0 0 1 1 9 9 5 1 5 20 20 10

2 0 5 0 2 0 0 0 0 0 0 2 5 2 2 7 2 10 20 20 15

3 0 5 2 0 0 0 0 0 0 3 3 2 2 7 3 8 20 20 15

4 0 0 1 8 2 0 0 0 4 1 4 4 7 4 5 14 14 15

5 0 9 9 2 0 0 0 5 2 4 4 7 5 7 14 14 15

6 0 0 0 8 8 0 6 2 4 4 5 6 7 14 14 5

7 0 0 0 0 8 7 9 5 5 1 7 18 16 16 5

8 0 0 0 0 8 2 2 2 7 8 13 12 12 15

9 0 0 0 9 2 1 1 7 9 5 5 5 15

10 0 0 10 2 1 1 7 10 5 5 5 15

11 0 11 9 1 1 3 11 18 8 8 7

(a) (b) (c )

1 2 3 4 1 2 3 4 1

1 1 5 5 4 1 20 10 10 10 1 10

2 1 2 3 2 30 20 20 50 2 1

3 1 3

4 1

(d) (e ) (f)

1 2 3 4 5

1-UI mCPU mCPU mCPU mCPU mCPU

2- CH FPGA 1 FPGA 1 FPGA 2 FPGA 1 FPGA 1

3-MP FPGA 2 FPGA 2 FPGA 1 FPGA 2 FPGA 2

4-MD mCPU mCPU mCPU FPGA 1 mCPU

5-MC FPGA 1 FPGA 1 FPGA 2 FPGA 1 FPGA 2

6-MV FPGA 2 FPGA 2 FPGA 1 FPGA 2 FPGA 1

7-RV GPU GPU GPU FPGA 2 FPGA 1

8-AC mCPU mCPU FPGA 1 FPGA 2 FPGA 2

9-SS1 FPGA 1 FPGA 1 FPGA 2 FPGA 1 FPGA 2

10-SS2 FPGA 1 FPGA 1 FPGA 2 FPGA 1 FPGA 2

11-SF FPGA 2 FPGA 1 FPGA 1 FPGA 1 FPGA 2

SCORE 526 526 519 512 527



6. Discussion and future work 

In this paper we have presented a model for 

optimization of component allocation to 

heterogeneous embedded platform. Our solution 

provides a semi-optimal allocation model which 

uses genetic algorithm. Although the presented 

model provides a good theoretical basis, it still 

needs further refinement due to some initial 

assumptions, e.g. deriving input parameters.  

The resource consumption matrix can be 

acquired by measurements, calculation or 

empirically. For instance the execution time can 

be measured as a time which passes from the 

moment when the input signal arrives to the 

component until the output signal exits the 

component (i.e. for non-preemptive scheduling) 

and the task is finished with execution 

(preemptive scheduling). 

Communication intensity can be measured 

by the number of function calls between two 

components, or the data type (e.g. data stream vs. 

signal data), and some values can be derived by 

estimation, e.g. component performance.  

One also must consider non-functional 

constraints, e.g. development effort. As shown in 

Table 2, fourth allocation is the best one. Most of 

the software components get to be deployed on 

FPGA since it will offer the best performance, 

however, in practice this is not a realistic due to 

development efforts. Our choice would be first or 

the second allocation, for it uses more platforms.  

To manage this we can define a new “property” 

that identifies development cost of each 

component for particular platform. This will be 

addressed in the future work. The other possible 

improvement is a more general specification of 

different constrains that have impact on the 

component allocations, for example some pre-

defined allocation definitions or mutual 

conditions for the component allocations. A next 

refinement step is analysis based on usage 

scenario and consequently defined the best 

allocation in respect to usage scenarios. 
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