
Multi-Criteria Software Component Allocation on a Heterogeneous

Platform

Ivan Švogor1, Ivica Crnković2, and Neven Vrček1

1University of Zagreb, Faculty of Organization and Informatics, Pavlinska 2, 42000 Varaždin, Croatia
2Mälardalen University, School of Innovation, Design and Engineering, Box 883, 72123 Västerås

E-mail(s): isvogor@foi.hr, ivica.crnkovic@mdh.se, nvrcek@foi.hr

Abstract. A recent development of

heterogeneous platforms (i.e. those containing

different types of computing units such as

multicore CPUs, GPUs, and FPGAs) has

enabled significant improvements in perfo-

rmance processing large amount of data in

realtime. This possibility however is still not fully

utilized due to a lack of methods for optimal

configuration of software; the allocation of

different software components to different

computing unit types is crucial for getting the

maximal utilization of the platform, but for more

complex systems it is difficult to find ad-hoc a

good enough or the best configuration. In this

paper we present an approach to find a feasible

and locally optimal solution for allocating

software components to processing units in a

heterogeneous platform.

Keywords. Software components, heterogeneous

platform, component allocation.

1. Introduction

The computer systems today are becoming

heterogeneous; alongside multicore Central

Processing Units (CPU), Graphical Processing

Units (GPU) and Field Programmable Gate

Array (FPGA) are gaining an important role [1].

Such systems consist of different types of

computing units, where each unit can be

dedicated for a particular type of computation.

This is already a proved approach in high-

performance computer systems, in which GPUs

process highly parallel computation, and in

which cores from multicore CPUs perform

different tasks in parallel. This is also becoming

of significant importance in embedded systems

where such systems enable processing of large

amounts of data streams in real time. However

this great potential for increased performance is

still not fully utilized due to a lack of software

methods for an efficient and optimal placement

of software to the heterogeneous platform by

which an optimal, or sufficiently good

performance is obtained. Different software

allocation results in different performance, due to

a type of computation, and communication

between software components that are allocated

on different units. It is not obvious which

allocation would enable the best performance. In

addition, a possibly best allocation might not be

allowed due to different constraints; this can be

due to limitation of resources of a particular unit

(such as memory or communication capacity), or

due to some architectural decisions related to

specific requirements (such as a requirement that

two components are not allowed to be allocated

to the same physical node). A “trial and error”

method by repeated allocation and measurement

is inefficient, in particular when the software

implementation may depend on which platform

will be executed. For this reason, an allocation

method in an early development phase is desired.

The main goal of this paper is to define a

model for the software allocation optimization on

computing units in heterogeneous systems.

We assume that we are dealing with

component-oriented systems, so each software

component1 can be allocated to a computing unit.

Further we define a model that can be used in an

early phase of the development lifecycle, in the

early architectural design of the system. The

components may already be implemented, or we

can use models, not yet implemented, but

specified, and in which case each component is

defined by a set of attributes, estimated or

obtained in a certain way. The result of the

model is a proposed deployment configuration

that is optimal, or nearly optimal for the overall

system performance.

 The rest of the paper is organized as follows.

In the second chapter we define the problem and

its formal description. In the third chapter we

present our solution for the allocation problem

1 In further text when we refer to a component we mean

“software component”

using genetic algorithm. Chapter 4 illustrates the

model on an example. Chapter 5 briefly

discusses the related work, and finally Chapter 6

concludes the paper.

2. Software Allocation Optimization

Model

Our model is composed of a Software

System 𝑆, which consist of components, and a

hardware platform 𝐻 which consist of a set of

computing units as shown in Figure 1.

Every component 𝑠𝑖 ∈ 𝑆, 𝑖 = 0, … , 𝑛 needs

to be allocated to a computing unit ℎ𝑖 ∈ 𝐻, 𝑖 =
0, … , 𝑚. All possible allocations of software

components to computing units is 𝑚𝑛

(permutation with repetition). This number

increases rapidly with number of the components

and the platforms, so to find the optimal

component allocation with a respect to a

particular goal is (at least) very time-consuming

if the process is performed manually. For this

reason we provide a theoretical model for finding

an optimal (or locally-optimal) allocation with a

respect to a particular system property for given

characteristics of the software systems,

components and the hardware platform.

Figure 1. Software components allocation to
heterogeneous hardware platform

Our model is defined as follows.

a) A node provides a set of resources for the

components being executed on it, e.g. CPU

power, or available memory. The capacity, i.e.

the amount of the resources of each node must

satisfy the needs for the component resources.

b) We enable components’ mapping to the

nodes, and try to find the optimal distribution

with a respect to a cost function. I this case our

cost function will be performance, i.e. the

minimal average execution time of the system.

In our model we take some assumptions, which

might be a simplification, but which still may

lead towards a local optimization of software

allocation. We assume (a) the system is built of

set of components that are characterized as

computational and deployable units (i.e a

component cannot be distributed over several

nodes), (b) components have the property of

isomorphism, i.e. each component can be

deployed on every computing unit. However we

can provide additional constraints by which one

can specify whether a particular component is

supposed to be (or not to be) mapped to a

particular node.

The more formal specification that will

enable the automatic allocation computation is

the following.

First, we define a set of resources that each

computing unit can provide (e.g. total execution

time, static memory, dynamic memory, etc.):

Definition 1: ℛ = [𝑟𝑖𝑗]
𝑚×𝑙

 is a computing unit

resource matrix where 𝑟𝑖𝑗 represents 𝑗-th

resource of a 𝑖-th computing unit.

Each component will be defined by a set of

properties, where each property can have a

different value (i.e. different resource demand)

on different node. Therefore we define a 3-

dimensional matrix with information about

resource demand for every component allocated

on every computing unit:

Definition 2: With 𝑛 software components, 𝑚

computing units and 𝑙 different resources, 𝒯 =

[𝑡𝑖𝑗𝑑]
𝑛×𝑚×𝑙

 is a resource consumption matrix

where 𝑡𝑖𝑗𝑑 represents the amount of d-th

resource of the 𝑖-th software component

allocated on the 𝑗-th computing unit.

In addition to the resource demands, we also

need information about communication channel

cost between computing units. This is because

the computing units are heterogeneous, so they

vary in clock frequency, synchronization,

performance, processing type etc, and they can

be connected via different type of

communication channels (e.g. Ethernet, CAN-

bus, Wi-Fi, etc). [10]. To specify this

communication cost we define the matrix 𝒞:

Definition 3: 𝒞 = [𝑐𝑖𝑗]
𝑚×𝑚

 is a platform

communication cost matrix where 𝑐𝑖𝑗 represents

a communication cost between computing 𝑖-th

and 𝑗-th computing unit. For 𝑖 = 𝑗, 𝑐𝑖𝑗 = 0.

The total communication cost between the

components does not only depend on the

characteristics of the communication channels

between the platforms, but also on the

communication between components defined by

their internal logic; components which

communicate intensively between computing

units with high communication cost will have a

larger impact on overall performance than those

communicating sporadically with less data

exchange. To express this dependency we define

the communication intensity matrix:

Definition 4: 𝒦 = [𝑘𝑖𝑗]
𝑛×𝑛

 is a communication

intensity matrix where 𝑘𝑖𝑗 represents a

communication intensity between 𝑖-th and 𝑗-th

software component.

In Definition 4, if components 𝑖 and 𝑗 are not

communicating then 𝑘𝑖𝑗 = 0, also notice that 𝒦

is symmetric.

Finally, we need to define a set of all the

possible allocations of components to computing

units.

Definition 5: Let 𝑝𝑖 = (𝑝1, … , 𝑝𝑛) ∈ 𝒫 be one

allocation from 𝑆 to 𝐻, with 𝑖 = 1, … , 𝑚𝑛.

Now we have all the necessary elements required

to find the optimal component allocation, i.e. all

possible allocations, component resource

demand and communication cost. We define the

cost function 𝑤 that evaluates one allocation 𝑝.

𝑤 = (∑ 𝑓𝑑 ∑ 𝑡𝑖𝑝𝑖𝑑

𝑛

𝑖=1

𝑙

𝑑=1

+ 𝑓𝑐 ∑ 𝑘𝑖𝑗 ∙ 𝑐𝑝𝑖𝑝𝑗

𝑖≤𝑗

) ∙ 𝑎

where 𝑎 = {
0, ∑ ∑ (𝑡𝑖𝑝𝑖𝑑) < ∑ 𝑟𝑝𝑖𝑗

𝑙
𝑗=1

𝑙
𝑑=1

𝑛
𝑖=1

1, ∑ ∑ (𝑡𝑖𝑝𝑖𝑑)𝑙
𝑑=1

𝑛
𝑖=1 ≥ ∑ 𝑟𝑝𝑖𝑗

𝑙
𝑗=1

The cost function 𝑤 consists of two main sums;

the first one considers computing unit resource

constraints and the second one considers the

communication cost between allocated

components. Notice that in first sum we defined

a vector 𝐹 = [𝑓𝑖]𝑙. It is used as a tradeoff weight

factor by which we define which resource is of

greater importance for the application. For

instance, in our consideration the execution time

is more important than the memory allocation, it

would get a higher value of 𝑓. The factor 𝑓𝑐

denotes the weight factor for the node

intercommunication cost.

Parameter 𝑎 is used to verify whether the

particular allocation is allowed. The solution is

not allowed if the current allocation does not

have sufficient resources (the sum of demanded

resources exceeds the available resources).

To find the optimal software allocation we

need to compare all the solutions from the set 𝒫

and select the one with the smallest 𝑤 (greater

than 0). However, a problem emerges from the

size of |𝒫| = 𝑚𝑛 which is not searchable in a

polynomial time.

3. Evolving Allocation with Genetic

Algorithm

We are dealing an optimization problem

where the goal is to minimize the cost function

with large number of variables, in this case 𝑤.

Since it is not feasible to search the entire

solution space we propose using a heuristic (e.g.

greedy algorithm) or metaheuristic (e.g. genetic

algorithm, particle swarm optimization,

simulated annealing) which will find a semi-

optimal solution.

Genetic Algorithm (GA) comes from the

field of artificial intelligence and it is used for

optimization problems by mimicking the process

of evolution. The evolution of solution is done

by crossover between different solutions (genes)

and mutation. Bad solutions (genes) die out and

good solutions are reinforced. The solutions need

to be comparable, and since we have a 𝑤

function, GA is a good starting point. For our

implementation we used Python and Pyevolve

library with the following settings:

Table 1: GA settings, the execution

environment was a server ran by Intel Xeon
E7-4830 and 8GB of memory

Generations 50

Mutation rate 0,05

Crossover rate 0,95

Population size 80

Selection algorithm Roulette wheel

With settings from table 1, the process of

evolving the solution converges to the exact

solution with average deviation of 3%. The exact

solution was calculated by brute force (BF)

algorithm which tested all possible allocations.

Figure 2 shows the comparison between results

of BF and GA, and confirms that the GA is a

good method for solving the allocation problem.

During the test of GA we also measured

execution time. Figure 3 shows that initially BF

was faster, however with slow growth of inputs

search space and time grow exponentially and

GA was more efficient as expected.

Figure 2: Comparison of solutions from

genetic algorithm and brute force search
(logarithmic scale)

Figure 3: Execution time comparison

(logarithmic scale)

There are two issues with generating solutions.

The first one concerns same platform solutions

where all software components get allocated to

only one processing unit. This is in practice

solved as usually some of the components are

pre-allocated on particular node, and some of

components cannot be executed on a particular

node. The second issue concerns the optimal

solution. GA provides one solution which is not

necessary the optimal (in difference to the BF

solution). Anyhow, each GA solution provides a

solution that is sufficiently good. A multiple

execution of GA would give a possibility to get

different solutions and select between the

optimal one.

4. Example setting

The example on which we demonstrate the

approach is the software model of an

autonomous underwater robot (AUR) that is

being developed in RALF3 project [2], and that

competes on the annual RoboSub contest

(AUVSI Fundation) [3]. One of the challenges in

the competition is recognition of particular

objects while interacting with them in a real-

time. A high and accurate performance is the key

challenge in the competition. To meet these

challenges a best utilization of a heterogeneous

platform is needed. The system uses multicore

CPU, GPU, two FPGA units. We present a

simplified software and hardware architecture to

perform the allocation of software components.

Figure 4: Simplified software architecture

Figure 4 shows the software architecture. It

consists of 11 following components; (1-UI) user

interface used for manual control and displaying

data from sensors and camera, (2-CH)

communication handler is used to handle the

communication between the user interface and

the data from sensory, (3-MP) message parser is

used to translate internal communication e.g. to

convert user input into the commands for

movement, (4-MD) manual drive enables driving

the robot and communicating with movement,

vision and actuators, (5-MM) mission manager is

used for autonomous mode and it contains the

behavior model, (6-MC) movement control is

used on the low level to translate high level

commands to low level commands for motors,

(7-RV) rudimentary vision for object

recognition, (8-AC) actuator control, (9-S1)

sensor set 1 (sonar, orientation), (10-S2) sensor

set 2 (depth), (11-SF) video stream filtering form

camera.

Figure 5: Simplified hardware architecture

Figure 5 shows hardware architecture with 4

computing units; (1) Multicore CPU which is

intended to handle logics of the robot, (2, 3)

FPGA is intended for use in camera image

processing, (4) GPU is intended for object

recognition.

0

20

40

60

80

100

120

140

160

125 625 3125 15625 78125 390625

So
lu

ti
o

n
 (

m
in

im
u

m
)

Search space

BF Res GA Res

0

10

20

30

40

50

60

70

80

100 1000 10000 100000 1000000

Ti
m

e
 (

se
co

n
d

s)

Search space

BF time GA time

Figure 6: The input matrices

To find the solution we need matrices 𝒦, 𝒞 and

𝒯. Since this is currently a work in progress, we

do not yet have access to actual parameters, so

for this purpose we will make an assumption

about them, while keeping the proportions

realistic. In Figure 6, (a) is the component

communication matrix 𝒦. Numbers from the

matrix caption row and column represent the

components from Figure 4. Since the resource

consumption matrix is three dimensional

(components, computing units, resources) we

used two matrices to display two different

resources (3rd dimension); (b) processing time

and (c) memory. Matrix (d) is the platform

communication matrix 𝒞, (e) is the resource

availability matrix ℛ, and (f) is the trade-off

vector by which we indicate that for this

calculation processing time is ten times more

important than memory.

Table 2 shows the results from five subsequent

GA executions on the input data from the Figure

6. There are some small deviations in different

solutions and the best ones are from the first and

second execution. Notice that in certain solutions

some computing units are not even selected for

the deployment of the components. Depending

on the preference you can choose the solution.

This preference should consider (a) which

components should be together, (b) which

components should not be together and (c) which

component must be on a particular computing

unit, (d) development time. Since we want to use

all the computing units and the vision component

on the GPU, we select the solution 1.

From matrix 𝒯 you can notice that most of

the components have a good execution time for

FPGA unit (column 2, 3), so as expected, most of

the software gets allocated to those units. In the

next segment we will present the related work,

after which we will discuss the results of this

example.

Table 2: The results of multiple execution of
GA (score: less is better)

5. Related work

There are a lot of component-oriented

frameworks for modeling the software

architecture listed in [4], that enable reasoning

about extra-functional properties (e.g Palladio

component model and performance [5], or

ProCom component model and worse-case

execution time [6] where software components

are allocated on virtual nodes, and later those

virtual nodes to physical nodes [7], or and in

some cases managing deployment, but without

optimization [8]). A trade-off analysis of

utilization of different resources in real-time

system is discussed in [9]. However, not a lot of

work addresses component-oriented frameworks

targeted for heterogeneous platform, and

specifically allocating software components to

heterogeneous computing units. Several works

relate to tasks allocation to different processing

units with some resource constraints and to

searching for an optimal load balancing across

the system [10],[11] or a good average-case

performance [12], but they do not address

heterogeneous platforms. The second group

relates to frameworks where software component

allocation is part of the deployment process.

Problems related to heterogeneous platforms and

challenges in components synchronization

between the platforms is described in [13]. In

[14], a dynamic reallocation is enabled in

combination with performance monitoring.

Our method enables efficient placement of

software components on computing units of a

heterogeneous platform. It considers multiple

criteria and results in semi-optimal software

allocation.

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 1 2 3 4

1 0 1 0 0 0 0 0 0 0 0 0 1 1 9 9 5 1 5 20 20 10

2 0 5 0 2 0 0 0 0 0 0 2 5 2 2 7 2 10 20 20 15

3 0 5 2 0 0 0 0 0 0 3 3 2 2 7 3 8 20 20 15

4 0 0 1 8 2 0 0 0 4 1 4 4 7 4 5 14 14 15

5 0 9 9 2 0 0 0 5 2 4 4 7 5 7 14 14 15

6 0 0 0 8 8 0 6 2 4 4 5 6 7 14 14 5

7 0 0 0 0 8 7 9 5 5 1 7 18 16 16 5

8 0 0 0 0 8 2 2 2 7 8 13 12 12 15

9 0 0 0 9 2 1 1 7 9 5 5 5 15

10 0 0 10 2 1 1 7 10 5 5 5 15

11 0 11 9 1 1 3 11 18 8 8 7

(a) (b) (c)

1 2 3 4 1 2 3 4 1

1 1 5 5 4 1 20 10 10 10 1 10

2 1 2 3 2 30 20 20 50 2 1

3 1 3

4 1

(d) (e) (f)

1 2 3 4 5

1-UI mCPU mCPU mCPU mCPU mCPU

2- CH FPGA 1 FPGA 1 FPGA 2 FPGA 1 FPGA 1

3-MP FPGA 2 FPGA 2 FPGA 1 FPGA 2 FPGA 2

4-MD mCPU mCPU mCPU FPGA 1 mCPU

5-MC FPGA 1 FPGA 1 FPGA 2 FPGA 1 FPGA 2

6-MV FPGA 2 FPGA 2 FPGA 1 FPGA 2 FPGA 1

7-RV GPU GPU GPU FPGA 2 FPGA 1

8-AC mCPU mCPU FPGA 1 FPGA 2 FPGA 2

9-SS1 FPGA 1 FPGA 1 FPGA 2 FPGA 1 FPGA 2

10-SS2 FPGA 1 FPGA 1 FPGA 2 FPGA 1 FPGA 2

11-SF FPGA 2 FPGA 1 FPGA 1 FPGA 1 FPGA 2

SCORE 526 526 519 512 527

6. Discussion and future work

In this paper we have presented a model for

optimization of component allocation to

heterogeneous embedded platform. Our solution

provides a semi-optimal allocation model which

uses genetic algorithm. Although the presented

model provides a good theoretical basis, it still

needs further refinement due to some initial

assumptions, e.g. deriving input parameters.

The resource consumption matrix can be

acquired by measurements, calculation or

empirically. For instance the execution time can

be measured as a time which passes from the

moment when the input signal arrives to the

component until the output signal exits the

component (i.e. for non-preemptive scheduling)

and the task is finished with execution

(preemptive scheduling).

Communication intensity can be measured

by the number of function calls between two

components, or the data type (e.g. data stream vs.

signal data), and some values can be derived by

estimation, e.g. component performance.

One also must consider non-functional

constraints, e.g. development effort. As shown in

Table 2, fourth allocation is the best one. Most of

the software components get to be deployed on

FPGA since it will offer the best performance,

however, in practice this is not a realistic due to

development efforts. Our choice would be first or

the second allocation, for it uses more platforms.

To manage this we can define a new “property”

that identifies development cost of each

component for particular platform. This will be

addressed in the future work. The other possible

improvement is a more general specification of

different constrains that have impact on the

component allocations, for example some pre-

defined allocation definitions or mutual

conditions for the component allocations. A next

refinement step is analysis based on usage

scenario and consequently defined the best

allocation in respect to usage scenarios.

Acknowledgements

This work was partially supported by the

Swedish Foundation for Strategic Research via

project RALF3.

References

[1] P. Liggesmeyer, "Trends in Embedded Software

Engineering," IEEE Software, 26:3, 2009.

[2] RALF3 project [Accessed Jan 2013],

“http://www.mrtc.mdh.se/projects/ralf3/”

[3] AUVSI Foundation, [Accessed Jan 2013].

"http://www.auvsifoundation.org/foundation/com

petitions/robosub/,"

[4] Ivica Crnkovic, Séverine Sentilles, Aneta

Vulgarakis, Michel R. V. Chaudron: A

Classification Framework for Software

Component Models. IEEE Trans. Software Eng.

37(5): 593-615 (2011)

[5] S. Becker, H. Koziolek, and R. Reussner,

“Model-based performance prediction with the

Palladio component model,” the 6th international

workshop on Software and performance, 2007.

[6] Autosar D. Partnership, 1 2013. [Online].

Available: http://www.autosar.org/.

[7] J. Carlson, J. Feljan, J. Mäki-Turja and M.

Sjödin, "Deployment Modelling and Synthesis in

a Component Model for Distributed Embedded

Systems," 36th EUROMICRO Conference on

Software Engineering and Advanced

Applications (SEAA) , pp. 74-82 , 2010.

[8] S Sentilles, A Vulgarakis, T Bureš, J Carlson, I

Crnkovic, A component model for control-

intensive distributed embedded systems

Component-Based Software Engineering, pp.

310-317, 2008

[9] Johan Fredriksson, "Optimizing Resource Usage

in Component-Based Real-Time Systems,"

CBSE'05 Proceedings of the 8th international

conference on Component-Based Software

Engineering, pp. 49-65, 2005.

[10] B. L. T. Ristau and G. Fettweis, "A Mapping

Framework for Guided Design Space Exploration

of Heterogeneous MP-SoCs," Design, Auto-

mation and Test in Europe, pp. 780-783 , 2008.

[11] S. Wang, J. Merrick and K. Shin, "Component

allocation with multiple resource constraints for

large embedded real-time software design," 10th

IEEE Real-Time and Embedded Technology and

Applications Symposium , p. 2004, 219-226 .

[12] J. Feljan, J. Carlson and T. Seceleanu, "Towards

a model-based approach for allocating tasks to

multicore processors," 38th EUROMICRO

Conference on Software Engineering and

Advanced Applications, pp. 117-124 , 2012.

[13] Benaoumeur Senouci, "Multi-CPU/FPGA

Platform Based Heterogeneous Multiprocessor

Prototyping: New Challenges for Embedded

Software Designers," The 19th IEEE/IFIP

International Symposium on Rapid System

Prototyping, pp. 41-47, 2008.

[14] Malek, S., Medvidovic, N. and Mikic-Rakic, M..

"An Extensible Framework for Improving a

Distributed Software System's Deployment

Architecture." IEEE Transactions on Software

Engineering, Vol. 38, No. 1, pp 73-100,

Jan/Feb2012.

