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§ Institute for Technical Informatics, Graz University of Technology, Graz, Austria, brenner@tugraz.at

Abstract—When designing a distributed computing-system,
the communication networks are a key determining factor for
system’s performance. A common approach is to minimize
bandwidth-consumption, while other important objectives – main-
tainability, extensibility, robustness – get less attention in the
literature. In this work we provide a design-methodology how
to efficiently balance these conflicting objectives. We build an
initial network configuration by applying heuristics. Then, we
refine this configuration by using optimization strategies which
address the multi-objective optimization problem. By doing so,
the network configuration not only satisfies the requirements of
the current communication-demand, but it is also prepared to
handle additional future communication-demand. Experimental
results from an automotive case-study show that extensibility can
be significantly improved (up to 44%) while trading only a little
bandwidth-efficency (1% deteriation).

Keywords-real-time systems; frame packing; scheduling; auto-
motive; extensibility; minimize bandwidth demand;

I. INTRODUCTION

Industrial embedded systems are usually in operation for a
long life-span. During that time, it is not unusual that they are
gradually upgraded in order to meet new requirements. Thus,
maintainability and extensibility are key issues when initially
designing these systems.

For distributed embedded systems, where applications are
executed on different processing units and data is exchanged via
communication networks, the configuration of these networks
is a key determining factor for maintainability and extensibility.
This is because the networks act as global variables for data
exchange between the connected processing units.

Automotive systems are a typical example of distributed
embedded real-time systems. Their networks use different arbi-
tration protocols (e.g. LIN, CAN, FlexRay) and are themselves
interconnected via gateways. For automotive systems, the re-
quirements for maintainability and extensibility mainly stem
from the evolutionary development approach. A “new” version
of an automotive system is largely based on an “older” version
which is extended / adapted towards the “new” requirements
[1]. Thus, planing towards future modifications is crucial.

A. Scope, Contribution & Outline

In this work we address the engineering task of building
a network configuration. The challenge faced is the trade-off
between resource efficiency and extensibility of the network
configuration.

The contributions of this work to the community are:
• provide a set of change-scenarios which are most likely to

occur during the system’s life-span
• develop a set of strategies to address these scenarios when

building the network configuration
• provide a methodology to balance the conflicting opti-

mization objectives
The work is structured as follows: First, we describe the

system model and define the network configuration engineering
tasks. A motivation-example is used to highlight the associ-
ated challenges. Second, we provide change-scenarios which
are likely to occur during the system’s life-span, and derive
strategies how these scenarios can be tackled. These strategies
are then combined into an optimization framework which bal-
ances the conflicting objectives. Third, we present experimental
results that show the efficiency of our approach. After reviewing
related works, we finally draw our conclusions and identify
future research aspects.

II. NETWORK CONFIGURATION

A set of processing units are interconnected via a com-
munication network. Each processing unit executes a set of
applications. An application reads data (either from sensors
or the network), performs computations, and outputs data (ei-
ther to actuators or the network). Data which is exchanged
between applications is referred to as application-messages.
These messages may either be exchanged processor-internally
or via the network, depending on where the receiver-application
is located.

A. System Model

The network configuration problem is driven by the network
communication specification: A set of application-messages
which need to be sent via the network. A message is defined
by its data size, the period at which data-values are generated,
the deadline at which the message must arrive at the receiver-
processor, and its sender-processor.

A message cannot be transmitted “raw” via the network.
It has to be packed into a network frame. A frame consists
of a header (which contains information needed for network
arbitration and frame routing), the payload (i.e. the messages),
and a tail (used for checking data integrity). Header and tail
are referred to as overhead. According to the network protocol,
the payload is of variable size, up to a defined max. payload.



Like messages, each frame also has period, deadline, sender-
and receiver-processors.
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Fig. 1. Structure of Network Frame

In this work we assume that the data size of a message is
smaller than the max. payload of a frame, thus several messages
can be packed into one frame. This assumption is true for
automotive systems (which are our main interest), but may also
be true for other domains (such as rail, automation, aerospace,
etc.) of embedded systems.

B. Problem Statement

The engineering task of building a network configuration
consists of two main steps: frame packing and frame schedul-
ing. All decisions taken within these steps define a network
configuration.

The frame packing problem (FPP) is defined as follows: A
set of messages M = {m1,m2, ...,mn} which are output by a
processor via a network interface, must be packed into a set of
frames F = {f1, f2, ..., fm} subject to the constraints that the
frames’ max. capacity are not exceeded by the messages’ data
sizes, and the messages’ deadlines are met.

Frame packing will define the frames’ structure. Based
on this, a schedule must be derived according to which the
frames are transmitted. The frame scheduling problem (FSP)
is defined as follows: A set of frames F = {f1, f2, ..., fm}
transmitted on a network must be scheduled. For time-triggered
networks (such as LIN or FlexRay), a set of time-slots T =
{t1, t2, ..., tu} are defined, each time-slot is assigned to a
processor, and the outgoing frames of each processor are as-
signed to the time-slots. For priority-based networks (such as
CAN), each frame is assigned an unique priority-level P =
{p1, p2, ..., pm}. All these design decisions must be taken in a
way so that the messages which are packed in the frames meet
their deadlines.

C. Design & Optimization Objectives

Since network bandwidth is a limited and valuable resource,
frame packing is driven by the requirement to minimize band-
width consumption of the frame-set [2], [3]. The bandwidth
consumption of a frame-set is calculated according to equa-
tion (1). Both the frame’s payload payf and overhead ohf have
to be transmitted at the frame’s period Tf .

bw =
∑
f∈F

payf + ohf

Tf
(1)

The period has to be set to satisfy the periods of all packed-in
messages, according to equation (2).

Tf = min
m∈f
{Tm} (2)

For distributed systems, where communication is performed
via networks, the delay that is introduced by the network has
significant impact on the end-to-end delay of an application.
Therefore, frame scheduling is often driven by the requirement
to minimize end-to-end delays [4].

Tackling these issues at the same time leads to a conflicting
multi-objective optimization problem. In order to minimize
end-to-end delays, frames need to be sent at shortest possible
periods. On the other hand, short periods increase the band-
width demand.

The optimization problem becomes even more challenging if
maintainability and extensibility needs to be addressed as well.
Here, the network configuration not only has to satisfy the cur-
rent communication specification, but it should also be capable
of incorporating future modifications and extensions. Thus, we
define extensibility as follows: The ability of a distributed real-
time system to incorporate additional elements (i.e. messages
and frames) later on, while maintaining the initial schedule. For
time-triggered networks this implies that the initial time-slot
assignment must not be modified. For priority-based networks
it implies that the initial priorities must not be modified. In
addition it implies that the initial frame packing is not modified.

D. Example

Let us take a look at two small examples in order to highlight
the trade-offs at hand. First, let us consider frame packing.

Frame Packing

Assume a processing-unit that outputs 3 messages which
need to be packed into frames before being transmitted via the
network. We assume a max. payload of 8 byte, and 64 bit frame
overhead (as applies to LIN and CAN).
• m1: 8 bit, 50 ms
• m2: 16 bit, 100 ms
• m3: 32 bit, 150 ms

A: min. bandwidth B: extensibility

f1: 8+16+32 bit, 50 ms 2400 b/s f1: 8 bit, 50 ms 1440 b/s
f2: 16+32 bit, 100 ms 1120 b/s

2400 b/s 2560 b/s

At first it seems obvious that bandwidth-minimizing frame
packing is the better approach. However, this changes if we take
a look at what happens if a change occurs in the future. Assume
an additional message needs to be packed.
• m4: 16 bit, 100 ms

extending A extending B

f1: 8+16+32 bit, 50ms 2400 b/s f1: 8 bit, 50 ms 1440 b/s
f2: 16 bit, 100 ms 800 b/s f2: 16+32+16 bit, 100ms 1280 b/s

3200 b/s 2720 b/s

Due to the dense packing which is needed to achieve band-
width minimization, additional messages do not fit the existing
frame. Thus, a new frame needs to be created which causes



additional overhead. However, if extensibility has been taken
into consideration earlier, existing frames provide free space
left, and additional messages can be added without needing to
create new frames. Thus, no additional overhead is induced.

Frame Scheduling

Second, let us focus on frame scheduling. Assume 3 frames
which need to be scheduled on a network. We assume a CAN
network (which uses a priority-based arbitration schema). We
further assume each frame’s transmission time is 1ms.
• f1: period=10 ms, deadline=4 ms
• f2: period=10 ms, deadline=7ms
• f3: period=10ms, deadline=9ms
It is well known that for a set of independent frames deadline

monotonic priority ordering (DMPO) is the optimal scheduling
approach. Thus, f1 would get higher priority than f2 and f3.
However, this only determines the priority ordering, but it does
not state anything about absolute priority-levels.
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Fig. 2. 3 frames trying to arbitrate an idle CAN network simultaneously

Figure 2 shows how the 3 frames try to arbitrate the CAN
network simultaneously. High priority frames (top) will win
the arbitration process. Low priority frames (bottom) will be
delayed accordingly.

A: dense priority-levels B: extensibility

f1: priority=0 (highest) 1ms f1: priority=0 (highest) 1ms
f2: priority=1 2ms f2: priority=5 2ms
f3: priority=2 3ms f3: priority=10 3ms

At first it seems irrelevant which absolute priority-levels
are assigned to the frames. In both cases the deadlines are
met. However, the impact of the choice becomes clear if an
additional frame must be scheduled.
• f4: period=10ms, deadline=6ms

extending A extending B

f1: priority=0 (highest) 1ms f1: priority=0 (highest) 1ms
f4: priority=1 2ms f4: priority=3 2ms
f2: priority=2 3ms f2: priority=5 3ms
f3: priority=3 4ms f3: priority=10 4ms

According to DMPO the new frame f4 needs to get a priority
between f1 and f2. If there is no empty priority-level left
between f1 and f2 (see case A) the priority-levels must be
re-assigned. This may cause a significant number of changes
which need to be propagated to all effected processors. In
contrast, if the priority-levels are initially assigned in a way

that there are empty priority-levels left (see case B) additional
frames can be added without causing any priority-level re-
assignments.

III. OPTIMIZING NETWORK CONFIGURATION

The goal of this work is to address the delicate trade-
off between resource efficiency and extensibility of a network
configuration. Efficient resource usage is needed to satisfy
the current communication specification, whereas extensibility
tackles future changes thereof.

A. Scenarios for Future Changes

Clearly, it is impossible to exactly predict which changes will
occur in the future. However, by analyzing previous changes,
reasonable estimations can be derived. Based on insight from
our industrial partners, a set of likely change-scenarios are
derived:

E-1: add a message
E-2: modify (increase) the data size of a message
E-3: modify (decrease) the period and/or deadline of a mes-

sage
E-4: modify (add) receiver-processors of a message
E-5: add a frame
E-6: modify (decrease) the period and/or deadline of a frame
E-7: modify (add) receiver-processors of a frame

These scenarios are in alignment with modifications which
may occur at the application level (e.g. adding software-
components) and hardware level (e.g. adding processing-units).
The change-scenarios can be grouped into 2 classes:
• modifications of messages: This will mainly have an im-

pact on frame packing.
• modifications of frames: This will mainly have an impact

on frame scheduling.

B. Strategies for addressing Future Changes

Ideally, future modifications will cause few (or no) changes
on the network configuration. Modifying existing messages
and/or adding new messages will not result in the need to add
additional frames. Modifying the timing-attributes of messages
(and frames) will neither cause deadline-violations nor the need
to re-build the schedule. Also, adding additional frames can be
achieved with only minor changes to the schedule.

Based on the estimation of future change-scenarios, a set
of strategies are derived which aim at achieving this ideal
situation.

1) At the frame level growth margins must be planned. This
means that frames are not fully packed with messages.
Instead, a defined fraction of the frame’s capacity is re-
served for future demands. This reserve accounts for (a)
adding additional messages, and (b) increasing message’s
data size.

2) At the schedule level growth margins must be planned
as well. For priority-based networks (such as CAN) this
means that not all priority-levels are used. For TDMA-
based networks (such as LIN or FlexRay) this means that
a set of non-used time-slots are added to the schedule, in



order to reserve resources for future demands. This reserve
accounts for adding additional frames (which could be
emitted by additional processing-units).

3) In order to account for modifications of timing-attributes
(such as period and deadline) the schedule should be built
in a way that it is robust against timing-uncertainties. This
can be achieved by minimizing sensitivity.

In order to determine the extensibility of a network configu-
ration (and thus, how close we can get towards the desired
situation) a set of metrics are needed.
• Frame growth potential – The ability of adding additional

messages or increasing the data size of messages can be
used to determine the extensibility at the frame level. This
metric measures this ability by analyzing the free space
that is left in a frame.

gpf =
payload freef
payload maxf

(3)

Since this gives a growth potential for each frame, an
overall value is desirable. A reasonable estimation can be
derived if the average growth potential is calculated.

gpF = avg {gpf}∀f∈F (4)

If the minimum would be used, the entire configuration
would be judged by a single frame only. This would be a
overly pessimistic estimation.

• Schedule growth potential – The ability to add additional
frames into a schedule has to be measured protocol-
specific. For TDMA-based protocols, the number of non-
assigned time slots can be used.

gpTDMA =
‖slotsfree‖
‖slots‖

(5)

FlexRay-specific metrics which are tailored to the dynamic
segment can be found in [5].
For priority-based protocols (like CAN) the number of
additional frames which can be added before the system
becomes un-schedulable can be used as a metric.

gpCAN =
‖Fadded‖
‖F‖

(6)

Thereby, the frames’ attributes (period, deadline, payload,
priority) should be set randomly, but within specified
ranges (such as: low, medium, high) derived from previous
change-scenarios.

• Robustness of schedule against timing-uncertainties –
Robustness analysis can be applied in order to ensure
that schedulability is still guaranteed even if parameter-
uncertainties exist. Uncertain transmission time (C) is
linked to the frame’s payload, and thus can be tackled by
the frame growth potential (see above). Thus, the focus
here is on uncertainties for periods (T) and deadlines (D).
In order to determine the configuration’s robustness, T
and D of messages (and consequently also of frames) are
decreased until the system becomes un-schedulable. This
accounts for higher sampling rates and tighter deadlines.

The more these parameter-values can be decrease the
higher is the robustness.

r =
∆Df

Df
∀f∈F (7)

C. Balancing of Objectives

The goal of this work is to build a network configuration
which trades-off the conflicting objectives of resource efficiency
and extensibility. Extensibility can only be achieved if non-used
resources (e.g. empty frame payload) are planned. However,
this reduces resource efficiency. Both objectives have to be
balanced accordingly. Thus, our optimization goal is as follows:
Find a network configuration which satisfies all constraints,
minimizes the bandwidth consumption, while it maximizes
the extensibility and maximizes the robustness against timing-
uncertainties.

A well-known approach to balance conflicting objectives
is by combining them into a single objective-function. Here,
the individual objectives are combined using a normalized
weighted sum.

c =

∑
i

ci · wi∑
i

wi
(8)

Normalization is used so that each objective is within the same
range (i.e. 0 to 1). Weights represent the importance to the
individual objectives.
• c1: bandwidth consumption of frame-set, according to

equation (1)
• c2: frame growth potential, according to equation (4)
• c3: schedule growth potential, according to equation (5)

and (6)
• c4: robustness of schedule against timing-uncertainties,

according to equation (7)
Weights for the objectives (see table I) were derived in

accordance to discussions with our industrial partners. Min.
bandwidth consumption and max. frame growth potential are
equally balanced. This represents the trade-off between re-
source efficiency and extensibility. Max. schedule growth po-
tential gets slightly less importance. This accounts for the
following: Higher frame growth potential enables us to add
additional messages without the need to generate additional
frames for them, thus there is no impact on frame scheduling.
Only if the existing frames can no longer incorporate additional
messages, new frames must be generated. Max. robustness gets
even less importance, since it is estimated that changes in period
and/or deadlines are few.

TABLE I
BALANCING OF OPTIMIZATION OBJECTIVES

Objective Weight

min. bandwidth consumption 10
max. frame growth potential 10
max. schedule growth potential 8
max. robustness against timing-uncertainties 5



D. Optimization
During designing a distributed real-time system, building a

network configuration is performed only one (or a few) time. It
is not a task that is performed on a day-to-day basis. Thus, the
time it takes to build the network configuration is not the key
issue. One of our industrial partners stated: “We don’t care if it
takes the entire night, as long as we get good results.”

Based on these boundary-conditions, we decide to ap-
ply solving methodologies which produce high-quality results
within reasonable time. Thus we apply stochastic optimization.
This class provides a set of search strategies, such as genetic
algorithm, particle swarm optimization, and many more. Our
choice is simulated annealing (SA), due to two reasons. First, it
has proven well in related works [6] and second, it can easily be
tailored to specific problems, since the user only has to set a few
parameters (initial temperature, cooling factor, stop-criteria).

It is well known that the performance of SA depends on the
starting point within the search space. In order to generate a
reasonably good starting point, we apply initial solving heuris-
tics. The initial network configuration is built as follows:
• bandwidth-minimizing frame packing [3]
• frames are scheduled according to DMPO

Bandwidth-minimizing frame packing according to [3] is used,
since it represents the best-performing starting point (details
will be presented in section IV-C). This initial network config-
uration is fed into the SA framework, within which it is refined.
SA takes a network configuration, applies a modification to it,
and evaluates if this modification improves the network con-
figuration. This is repeated until the search converges towards
an optimum. Evaluation is performed by applying the multi-
objective objective-function, which was presented earlier. A
modification between two network configurations is generated
by applying one of the following neighbour moves:
• Move a message into another frame – Randomly choose

a message, and then move it into another frame that
originates from the same processor. If the original frame
becomes empty by moving the message, the frame can be
removed.

• Move a message into a new/empty frame – Randomly
choose a message, and then move it into a new/empty
frame with the same source-processor. The new frame is
given a priority-level, close to the priority of the original
frame. Either one above or one below.

• Swap two messages between two frames – Randomly
choose a message. Randomly choose another message
that originates from the same processor. Then, swap the
packing of the two messages.

• Swap the priority of two frames – Randomly choose two
frames. Then swap the priorities of the two frames.

These moves are performed according to the probabilities
listed in table II. All neighbour moves which change the pack-
ing configuration are followed by an update-step where timing
attributes (period, deadline, jitter) of the affected frames are
refreshed.

After the search has converged towards an optimum, the best
obtained network configuration is returned. In a final step, the

TABLE II
PROBABILITIES OF NEIGHBOUR MOVES

Neighbour move Probability

move message into other frame 0.60
move message into new/empty frame 0.16
swap two messages between two frames 0.14
swap priority of two frames 0.10

frames’ priority ordering is mapped to actual frame priority-
levels (in case of CAN, these are determined by the IDs).
In order to maximize the schedule’s extensibility, the used
priorities are evenly spread out across the available priority-
levels (i.e. the ID-range) while maintaining their ordering. E.g.
50 priorities are spread out across 2048 IDs.

Fig. 3. Two-phased Solving Approach for Building a Network Configuration

Figure 3 depicts the entire solving approach. Note that it is
demonstrated for priority-based networks (such as CAN). In
case of TDMA-based networks, the scheduling-related aspects
have to be adapted accordingly: Not priorities are modified, but
time-slot assignments.

IV. EXPERIMENTAL EVALUATION

In order to evaluate the proposed methodology, it is applied
to an industrial case study: an automotive in-vehicle network.
Based on the communication specification, a network configu-
ration is built. The results are analyzed and compared to state-
of-the-art solving approaches.



A. Case Study: Vehicle CAN

The network specification is taken from a compact execu-
tive class (D-segment) car. The vehicle CAN operates at 500
kb/s and uses CAN version 2a (which uses 11 bit frame
IDs). 25 processing-units are connected to the CAN. Some
of these processing-units represent smart sensors/actuators.
The processing-units exchange 251 messages (which engineers
would pack into 46 frames).

The communication specification can be described by the
following statistics: Data size of messages is between 1 and
32 bits. 20% are boolean. 35% represent physical varialbes,
encoded into 8, 12, 16, 24 or 32 bits. This is typical for
embedded systems, where data encoding is in alignment with
the accuracy of sensors and IOs. 55% are state/status variables,
encoded into 2 to 7 bits. Figure 4 shows the histogram.

Signals: Size
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Fig. 4. Data Size of Messages

Messages are generated at rates between 10 and 400 ms. Ta-
ble III shows that periods are not evenly distributed across this
range, but only a set of dedicated periods are used. Messages’
deadlines are equal to their periods.

TABLE III
PERIOD OF MESSAGES

Period Probability

10 ms 0.17
20 ms 0.27

100 ms 0.22
200 ms 0.17
400 ms 0.17

B. Results of Optimization Methodology

As outlined earlier, an initial network configuration is built
by applying heuristics. This initial configuration is then re-
fined by applying the optimization strategies. While the initial
configuration is generated within seconds, the optimization

takes about 2.0 to 3.3 hours. During the optimization, about
30 000 configurations have been evaluated. About 95% of the
time is consumed by the schedulability-tests [7]. A significant
number of schedulability-test runs are needed for determining
the schedule growth potential of a network configuration.

By comparing the initial configuration (which is tailored
towards min. bandwidth consumption only) to the optimized
configuration, we can determine by how much we can improve
the network configuration. Table IV summarizes the results.

TABLE IV
IMPROVEMENTS ACHIEVED BY OPTIMIZATION

Metric Difference

min. bandwidth consumption 1.0% deteriation
max. frame growth potential 3.3% improvement
max. schedule growth potential 44.4% improvement
max. robustness against timing-uncertainties 0.7% deteriation

As expected, the refinement towards extensibility comes at
a certain cost in resource efficiency. The bandwidth consump-
tion increases by 1%. At the same time, robustness against
timing-uncertainties decreases by 0.7%. Balancing this, both
frame and schedule growth potential increase. What we did
not expect is the way in which they increase. According to
the weights, we expected a bigger increase for frames than
for the schedule. However, schedule growth potential increases
significantly. This means that the schedule can incorporate a
significant number of additional frames, but only few additional
messages inside the existing frames.

One reason for the unexpected low increase of the frame
growth potential may be rooted in the ratio between frame
overhead and max. frame payload. For CAN both are 64 bit.
Thus, not filling up frames causes a poor payload-to-data ratio,
which again increases bandwidth demand.

TABLE V
INITIAL VS OPTIMIZED NETWORK CONFIGURATION

Metric init. opt.

bandwidth consumption [%] 60.17 61.17
frame growth potential 0.703 0.679
schedule growth potential 0.552 0.307
robustness against timing-uncertainties 0.549 0.553

Table V provides deeper insight into the results. It compares
the network configuration before and after optimization, bro-
ken down to the individual metrics. Note that all metrics are
normalized between 0 and 1, whereas 0 represents the best and
1 represents the worst. For bandwidth consumption we scaled
it to percent of the network’s baudrate.

To provide a deeper insight in how frame growth potential is
improved, the frames’ payload can be analyzed. Figure 5 shows
the frame payload histograms: according to the bandwidth-
minimizing heuristic, and after refinement by the optimization
strategies.

In the initial configuration frames are quite evenly filled.
However, only few frames use 1 byte, and none used 8 bytes.



Frames: Payload

payload [byte]

P
ro

ba
bi

lit
y

1 2 3 4 5 6 7

0.
00

0.
05

0.
10

0.
15

(a) bandwidth-minimizing packing by heuristicFrames: Payload

payload [byte]

P
ro

ba
bi

lit
y

2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

(b) optimized packing by search framework

Fig. 5. Refinement of Packing – Impact on Frame Payload

After the optimization the frames fill-level have significantly
changed. More frames only use a few bytes (1 to 3). The
probability of using more bytes (4 to 7) decreases. This way,
there is more free space left inside the frames. Consequently,
these frames can incorporate additional messages in the future,
thus they are more extensible. Interestingly – since unexpected
– some frames even use 8 bytes.

C. Impact of Initial Packing Heuristic

It is well known that the performance of SA is dependent
on the starting position. This is why we investigate different
heuristics for building the initial network configuration, and
how this impacts on the best obtained solution found by SA.

Knowing that DMPO is already the optimal solution for
scheduling independent frames, we focus on variations for
frame packing only.

Bandwidth-minimizing Packing [2]

By applying bandwidth-minimizing frame packing accord-
ing to [2] similar results than the ones discussed above can be
achieved.

TABLE VI
INITIAL VS OPTIMIZED NETWORK CONFIGURATION

Metric init. opt. Difference

bandwidth consumption [%] 66.25 67.21 0.95% deter.
frame growth potential 0.953 0.750 21.3% impr.
schedule growth potential 0.618 0.425 31.3% impr.
robustness against timing-uncertainties 0.627 0.643 2.5% deter.

Table VI shows the comparison between the initial and
optimized network configuration. Again, slight deterioration in
bandwidth efficiency and robustness are traded against signif-
icant improvements in extensibility. However, if we compare
the absolute numbers to the previous results, we see that [3]
outperforms [2].

Figure 6 shows the frame payload histograms. We see that
in the initial packing 65% of the frames are densely packed
(using 6 to 8 bytes), leaving only few free space for future
growth. After the optimization, this is shifted towards less dense
packing, and thus increased growth potential.
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Fig. 6. Refinement of Packing – Impact on Frame Payload



Simple Packing

Simple frame packing is a widely used approach in the liter-
ature. It refers to putting each message into a separate frame.
Clearly, this way the frame growth potential is maximized.
However, this approach features a set of problems: The network
is highly utilized (in our case it is even overloaded) and a high
number of deadlines are missed.

TABLE VII
INITIAL VS OPTIMIZED NETWORK CONFIGURATION

Metric init. opt. Difference

bandwidth consumption [%] 154.63 60.61 94% impr.
deadlines missed [%] 73.6 3.9 69.7% impr.
frame growth potential 0.141 0.648 361% deter.
schedule growth potential - - -
robustness against timing-uncertainties - - -

Table VII shows the comparison between the initial and the
optimized network configuration. Although the SA manages to
improve bandwidth consumption, the final network configura-
tion still misses some deadlines, and thus is infeasible. Since
the system is not schedulable, schedule growth potential and
robustness cannot be evaluated. Instead, we assumed the worst
value (i.e. 1).

Figure 7 shows the frame payload histograms. Simple pack-
ing results in 80% of the frames only using 1 byte. After the
optimization, this number drops to 40%. The remaining frames
use 2 to 7 bytes.

Lessons learned

Bandwidth-minimizing frame packing according to [3] com-
bined with DMPO is the best performing heuristic to build an
initial network configuration for a priority-based network. This
configuration represent a reasonably good starting point for
the refinement-phase, performed by the SA framework. Simple
packing is a poor choice. It produces infeasible configurations,
which even the optimization-phase cannot fix.

V. RELATED WORK

The research on robustness of real-time systems mainly
focuses on the sensitivity of a system to uncertainties, changes
and failures. The seminal work in this area is that of Punnekkat
[8]. Punnekkat looked at by how much can individual tasks
have their worst-case execution-time (WCET) increased before
the system is no longer schedulable and which task is the most
sensitive, i.e. which task’s deadline is exceeded. He also looked
at the number of re-executions, due to failures, that could be
performed before the system was no longer schedulable.

Building on top of Punnekkat’s approach, researchers used
it as part of designing systems. In [9] sensitivity was used
as an objective in a search algorithm such that robust task
allocations are obtained. Later work by Natale [10] extended
this work to look at how it could be done more efficiently using
mixed integer linear programming (MILP). In [11] a measure
of robustness is used that identifies the degree of error in key
parameters which can be accommodated when performing task
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allocation. One parameter was by how much WCETs could be
increased.

The research on extensibility of real-time systems tackles the
issue of adding extra functionality to systems (i.e. adding tasks
as well as increasing the WCET of existing tasks). Emberson
[12], [6] used a simulated annealing algorithm to design task
allocations that were robust to change. Emberson’s approach
to develop a task allocation not only satisfied the baseline,
or original, design problem but also satisfied as many poten-
tial change scenarios without any unnecessary changes. If an
unnecessary change was needed then it was minimized. An
necessary change would include adding a new task priority if
a new task was introduced.

Researchers have adopted these approaches (which have
originally been developed for task scheduling) to scheduling
of communication networks. In [13] a time-triggered system
is made robust to new frames (and tasks), and increases in
the existing frame’s worst-case transmission-times (WCTT) (as
well as task’s WCET). This work is probably the closest to ours.
However, it does not address frame packing, which introduces
additional challenges.

Research on frame packing focus on minimizing bandwidth



demand [2], maximizing schedulability [14], or maximizing re-
liability [15]. To the best of our knowledge, no work addresses
frame packing in the context of extensibility.

Open Issues in Related Work

By combining frame packing with frame scheduling, a set of
additional questions and challenges arise: Should extensibility
be incorporated into frame packing, frame scheduling, or even
both? How can we determine extensibility at the frame-level?
Can frame packing handle timing-uncertainties?

In addition, extensibility and robustness are not the only ob-
jectives that need to be considered. Thus, additional questions
arise: How to balance extensibility, robustness and resource-
efficiency? By which step (i.e. frame packing, frame schedul-
ing) can these objectives be tackled?

Our approach addresses these questions and issues by: We
build an initial packing and schedule (based on state-of-the-art
approaches), and then refine it towards balancing the conflicting
objectives using optimization strategies.

VI. CONCLUSION & FUTURE WORK

Communication networks are a key element for realizing dis-
tributed embedded systems. Building a configuration for these
networks is a challenging engineering task. Several conflicting
objectives have to be taken into account. On the one hand,
resources (i.e. the network bandwidth) have to be efficiently
utilized. On the other hand, the network configuration should
be robust against uncertain parameters, as well as extensible
towards future modifications.

In this work we presented an approach to address this trade-
offs, and an algorithm to build a network configuration. Based
on a set of potential change-scenarios, a set of strategies to ad-
dress these scenarios were derived. These strategies were then
incorporated into an optimization approach: An initial network
configuration is build by applying heuristics. This configuration
is then refined by applying our strategies (implemented in a
simulated annealing optimization framework).

Experimental evaluation on an automotive case study shows
that the proposed approach successfully addresses the trade-
offs: Extensibility can be significantly improved (up to 44%),
while almost no loss of resource efficiency and robustness
occurs (about 1%).

In this work we treated each network as a stand-alone prob-
lem. In the future we want to evaluate, how we can apply our
approach to multi-network problems, where several networks
are interconnected via gateway-nodes. In addition, we want to
evaluate how safety-related constraints [16] (e.g. two messages
are not allowed to be packed into the same frame) impact on
extensibility and robustness.

In this work we used a normalized weighted sum to balance
the multiple objectives. It might be interesting to extend our
approach, so that it not only returns a single “best” solution, but
a set of pareto-optimal solutions. This would give the user more
flexibility, and remove the need to set weights.
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