
End-to-end Timing Challenges in Seamless Tool Chain Development for Vehicular
Embedded Real-Time Systems

Saad Mubeen∗†, Jukka Mäki-Turja∗† and Mikael Sjödin∗
∗ Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Västerås, Sweden

† Arcticus Systems AB, Järfälla, Sweden
saad.mubeen@mdh.se

Abstract—Often, there exists mismatch among tools that
are used for structural, functional, and execution modeling of
vehicular embedded real-time systems in the industry. Build-
ing a seamless tool chain to support model- and component-
based development of these systems with different, and some-
times independent, tools is challenging. Within this context,
we investigate the challenges related to modeling, analyzing,
and exchanging end-to-end timing information. We target
domain specific models like EAST-ADL supplemented by the
Timing Augmented Description Language; and component
and execution models that are already used in the industry
such as the Rubus Component Model.

Keywords-Automotive embedded real-time systems; tim-
ing model; component-based real-time systems; model- and
component-based development; timing analysis.

I. INTRODUCTION

The industrial requirements on embedded real-time sys-
tems are constantly evolving. With the flexibility offered
by software, the complexity of system designs and the
amount of advanced computer controlled functionality in
products is increasing. Historically, developers of embed-
ded real-time systems have used low level programming
languages to guarantee full control of the system behavior.
Hence, many embedded real-time systems have become
overly complex and hard to manage during functionality
or technology shifts. The variety of functionality in to-
day’s embedded real-time systems requires development
methods and tools that support flexible and efficient de-
velopment.

Within the business segment of construction-equipment
vehicles (and similar segments for heavy special-purpose
vehicles), model-based development of software architec-
tures for embedded real-time systems has had a surge
the last few years. The idea is to use models to describe
functions, structures and other design artifacts. This is in
contrast to the previously used text documents. Benefits
that are sought by this transition in design technology
include simplified communication amongst engineers and
other stake holders, use of precise and unambiguous
notations to describe complex features, faster turn-around
times in early design phases, possibilities to automatically
perform timing analysis and derive test cases, and possi-
bilities to automatically generate code.

In practice, existing tools and languages for model-
based software design for embedded real-time systems
imposes many hinders with respect to information flow
between different abstraction levels and project phases. In
industry, productivity is hampered by incompatible tools

and file formats, in conjunction with the need for non-
trivial, manual and tedious translations between different
model formats. Moreover, these translations are done
in ad hoc fashion making the result of the translation
unpredictable and potentially altered in terms of semantics.
Thus, there is a strong need to investigate how to work
with existing modeling languages and tools in an effective
and efficient way. A solution must entail possibilities to
make tools inter-operable to allow automated (and semi-
automated) translations between modeling languages and
tools with preserved model semantics.

A. Motivation and contribution

The motivation for this work comes from the industrial
needs at the partner companies. Different tools are used for
structural, functional, and execution modeling of vehicular
embedded real-time systems. The translations between
different models of the systems are done manually and in
ad hoc fashion. Hence, there is a need to develop a seam-
less tool chain that should support structural, functional,
and execution modeling of vehicular embedded real-time
systems.

In this paper we identify and discuss the challenges
related to modeling, analyzing, and exchanging the end-to-
end timing information during the development of a seam-
less tool chain for these systems. We focus on the models
and related tools that support model- and component-
based development of these systems in the segment of
construction-equipment vehicles such as EAST-ADL [1],
Timing Augmented Description Language (TADL2) [2],
Rubus Component Model [3] and Rubus-ICE [4].

B. Outline

The rest of the paper is organized as follows. In Sec-
tion II, we discuss the background and related work. In
Section III, we discuss the research challenges. Section IV
discusses the current work.

II. BACKGROUND AND RELATED WORK

A. Structural and functional modeling of vehicular real-
time systems

The structural modeling is concerned with the structure
definition of requirements and high-level architectural
objects. Whereas, the functional modeling refers to the
structured way of representing software functions for the
system to be modeled. In this work, we consider the
structural and functional modeling support of EAST-ADL



which supports domain-specific modeling concepts for
modeling product lines of automotive control systems.
Basically, it is an architecture description language that
tends to describe, capture and model the engineering
information of the automotive electronic systems in a
standardized way. It describes the functionality of the
vehicle at four vertical levels of abstraction starting from
requirements capturing to the system implementation as
shown in Figure 1.

B. Execution modeling of vehicular real-time systems

The execution modeling [5] is concerned with the
modeling of run-time properties and/or requirements (e.g.,
end-to-end deadlines and jitter) of software functions.
For example, in resource-constrained and safety-critical
embedded systems, it is simply not enough to have a
high-level view of the system in the models. Instead, the
models need to capture what goes on at the execution
level. The modeling of these systems should extend down
to the execution level to allow precise control of resource
utilization, avoid violation of timing requirements when
the system is executed, and certify systems toward safety
standards [6]. In this work, we focus on the component-
based software development technologies that provide
execution modeling support in vehicular domain and are
actually used in the industry such as the Rubus Component
Model.

C. Abstraction levels during the development of vehicular
real-time systems

In this work, we consider four abstraction levels that
are described by EAST-ADL. These levels are shown in
the Figure 1.

1) Vehicle or end-to-end level: At the vehicle level,
requirements, functionality and features of the vehicle
are captured in an informal (often textual) and solution-
independent way. Basically, this level captures the infor-
mation regarding what the system should do [7]. In the
segment of construction-equipment vehicles, this abstrac-
tion level is better known as end-to-end level because
features and requirements on the end-to-end functionality
of the machine or vehicle are captured in an informal way.

2) Analysis level: At the analysis level, the require-
ments are captured in a formal way. Functionality of
the system is defined based on requirements and features
without implementation details. A high-level analysis may
also be performed for functional verification.

3) Design level: The artifact developed at the analysis
level is refined into design functions at the design level.
The resulting artifact at this level also contains middle-
ware abstraction and hardware architecture. In addition,
software functions to hardware allocation may be present.

4) Implementation level: At the implementation level,
the design-level artifact is refined to software-based im-
plementation of the system functionality. The EAST-ADL
methodology defines the system at this level in terms of
AUTOSAR elements. However, in this work, our focus
is on using the Rubus Component Model and its develop-
ment environment Rubus-ICE at the implementation level.

Hence, the artifact at this level consists of the software
architecture of the system defined in terms of Rubus com-
ponents and their interactions. We choose Rubus instead
of AUTOSAR at the implementation level because of
industrial needs at the partner companies.

Implementation 
level

Design level

Analysis level

End-to-end 
level

Rubus-ICE

SE Tool

Vehicle or End-to-end level

Rubus Component Model 
and Rubus-ICE

EAST-ADL and TADLAnalysis level

Design level

Implementation level

Figure 1. Abstraction levels considered during the development

D. The Rubus concept
Rubus is a collection of methods and tools for model-

and component-based development of dependable embed-
ded real-time systems. Rubus is developed by Arcticus
Systems [4] in close collaboration with several academic
and industrial partners. Rubus is today mainly used for
the development of control functionality in vehicles by
several international companies [8], [9], [10], [11]. The
Rubus concept is based around the Rubus Component
Model (RCM) and its development environment Rubus-
ICE which includes modeling tools, code generators,
analysis tools and run-time infrastructure. The overall
goal of Rubus is to be aggressively resource efficient
and to provide means for developing predictable, tim-
ing analyzable and synthesizable control functions in
resource-constrained embedded systems. The timing anal-
ysis supported by Rubus-ICE includes distributed end-to-
end response-time and delay analysis [12], [13].

E. AUTOSAR, TIMMO, and TADL
AUTOSAR (AUTomotive Open System ARchitecture)

[14] is an industrial initiative to provide standardized
software architecture for the development of software in
the automotive domain. It can be viewed as a standard-
ized distributed component model [15]. In AUTOSAR,
the application software is defined in terms of Software
Components (SWCs). The virtual function bus handles
the distribution of SWCs, their virtual integration and
communication at design time. Furthermore, it hides the
low-level implementation and communication details at
the design time. AUTOSAR provides same interfaces and
services to the connected SWCs irrespective of the type
of communication (intra- or inter-ECU).

TIMing MOdel (TIMMO) [16] is a large EU research
project and serves as an initiative to provide AUTOSAR
with a timing model. It describes a predictable method-
ology and a language Timing Augmented Description
Language (TADL) [17] to express timing requirements
and timing constraints in all design phases during the
development of automotive embedded systems. TIMMO-
2-USE [2] is the follow-up project to TIMMO. It defines
TADL2 language that includes a major redefinition of
TADL.



F. AUTOSAR vs RCM

When AUTOSAR was being developed, there was no
focus placed on its ability to specify and handle timing-
related information such as real-time requirements and
properties. On the other hand, such requirements and capa-
bilities were taken into account right from the beginning
during the development of RCM. AUTOSAR describes
embedded software development at a relatively higher
level of abstraction compared to RCM. The software
component in RCM more resembles to the runnable entity
compared to AUTOSAR SWC. The runnable entity is
schedulable part of AUTOSAR SWC.

As compared to AUTOSAR, RCM clearly distinguishes
between the control flow and the data flow among the
software components in a node or Electronic Control Unit
(ECU). AUTOSAR hides the modeling of the execution
environment. On the other hand, RCM explicitly allows
the modeling of execution requirements, e.g., jitter and
deadlines, at an abstraction level close to the functional
specification while abstracting the implementation details.
The Sender Receiver communication mechanism in AU-
TOSAR is very similar to the pipe-and-filter communica-
tion mechanism for component interconnection in RCM.

In conclusion, AUTOSAR is more focussed on the func-
tional and structural abstractions, hiding the implementa-
tion details about execution and communication. Whereas,
RCM is all about modeling, analysis and synthesis of the
execution environment of software functions. Basically,
AUTOSAR hides the details that RCM highlights.

III. RESEARCH CHALLENGES

There are several different types of challenges that are
faced during the development of a seamless tool chain to
support model- and component-based development of em-
bedded real-time systems in the segment of construction-
equipment vehicles. In this section, we identify and discuss
only those challenges that are concerned with the model-
ing, analyzing, and exchanging of the end-to-end timing
information.

A. Mismatch between design and implementation levels

When RCM is used instead of AUTOSAR at the imple-
mentation level, there exists an incompatibility between
the design and implementation levels. We believe, the
main reason behind this incompatibility is the concept of
virtual function bus in AUTOSAR. At the implementation
level, EAST-ADL relies on virtual function bus for the dis-
tribution of software components, their virtual integration
and communication. Further, virtual function bus hides the
low-level implementation and communication details. At
the design time, the components are considered at the same
level irrespective of the communication they need, i.e.,
intra- or inter-ECU.

In RCM, there is no concept of virtual function bus.
It differentiates between intra- and inter-ECU communi-
cation among its software components. It uses network
interface components for inter-ECU communication; oth-
erwise, the components communicate with each other via

data and trigger ports. Hence, the communications should
be explicitly modeled when RCM is used at the imple-
mentation level. Moreover, the timing related information
on the communications should be explicitly specified in
order to perform the end-to-end timing analysis at the
implementation level [18].

The problem is that the design-level model does not dif-
ferentiate between intra- and inter-ECU communications,
whereas these communications are explicitly modeled at
the implementation level when RCM is used. The timing-
related information on communications is also explicitly
available at the implementation level when RCM is used.
One of the main challenges is to make the design and
implementation levels compatible with respect to commu-
nications and the end-to-end timing information.

B. Refinement and translation of timing requirements and
constraints

The timing requirements and constraints on vehicle
features that are captured at the top level may be refined
and broken down into more than one requirement and
constraint at the lower levels. For example, a timing
constraint specified on the braking system feature of the
vehicle requires the brakes to be applied within three mil-
liseconds from the time when the brake paddle is pressed.
This timing constraint may be refined into more than one
constraint at the lower levels. At the implementation level,
these (sub) constraints may be specified on several event
chains that may be distributed over several ECUs that
may be connected to one or more networks. The timing
requirements and constraints should be unambiguously
refined and translated along all abstraction levels without
any loss of timing information.

EAST-ADL supplemented by TADL2 supports the re-
finement and translation of timing requirements and con-
straints along all abstraction levels. However, the EAST-
ADL methodology assumes that the implementation level
is handled by AUTOSAR. When AUTOSAR is replaced
by RCM at the implementation level, the refinement and
translation of timing information between the design and
implementation levels does not hold. Within this context,
the challenge is to unambiguously refine and translate the
timing requirements and constraints between the design
and implementation levels with preserved semantics.

C. Tracing of timing requirements and their verification

Another challenge that we have identified is the need
to support traceability of timing requirements from the
implementation-level entities to the vehicle-level entities,
i.e., following the bottom-up approach. The tracing of
timing requirements is important to perform full coverage
analysis of the requirements and their verification. Often,
a timing requirement at vehicle level may be broken down
into several timing requirements at the implementation
level. If implementation-level timing requirements are sat-
isfied, the corresponding timing requirement at the vehicle
level is considered verified. Hence, the traceability of
timing requirements among all abstraction levels should
be supported by the tool chain.



The traceability of timing requirements is supported
by EAST-ADL from the implementation-level entities to
the vehicle level entities. The support for traceability
does not hold when AUTOSAR is replaced by RCM at
the implementation-level. When RCM and Rubus-ICE are
used at the implementation level, the tracing of the timing
requirements from Rubus components to the design-level
entities arises as another challenge.

The support for traceability of timing requirements is
also important for change management. For example, the
user of the tool chain may be interested in finding out how
do changes in timing requirements, constraints, or budgets
at the higher abstraction levels impact on the entities at
the lower abstraction levels. This type of support in the
tool chain may also be useful to perform design-space
exploration during the development of the systems.

D. Raising the end-to-end timing analysis at higher ab-
straction level

The safety-critical nature of many vehicular embedded
real-time systems require evidence that each action by
the systems is taken in timely manner. For this purpose,
the end-to-end response-time and delay analysis [19], [13]
should be supported by the tool chain. In order to perform
the timing analysis, the end-to-end timing model1 should
be extracted from the architecture of the system under
development. The Rubus-ICE tool suite supports the end-
to-end response-time and delay analysis.

When RCM is used at the implementation level, another
challenge is to raise the end-to-end timing analysis support
provided by Rubus-ICE to the design level (i.e., lifting the
analysis one level above). For this purpose, the end-to-
end timing model should also be provided at the design
level. The analysis framework of Rubus-ICE supports the
extraction of end-to-end timing models at the implementa-
tion level. However, raising these timing models one level
above at the design level is another challenge that we have
identified.

IV. CURRENT WORK

Currently, we are conducting questionnaire and inter-
views at the partner companies to identify the patterns,
styles of expression, and subsets of the full expressiveness
of EAST-ADL that are used by the designers during
the development of embedded real-time systems in the
segment of construction-equipment vehicles. During the
identification of these patterns, styles and subsets, we con-
sider only first three abstraction levels which are vehicle,
analysis, and design. After their identification, they will be
integrated with the Rubus-ICE at the implementation level
for the development of seamless tool chain. During the
integration and implementation, we will attack the timing
related challenges that we discussed above.

Currently, we are also identifying the most suitable
use case at the partner companies for the verification
and validation of the tool chain. We specified several
requirements on the selection of the use case. That is,

1[18] should be referred for the details about end-to-end timing model

it should be a distributed real-time system and it should
employ, at least, one CAN bus for communication among
ECUs. Whereas, each ECU should have at least one mode
and three software components (i.e., two components for
network input and output interfaces and at least one
component implementing the functionality).

ACKNOWLEDGEMENT

This work is supported by the Swedish Knowledge
Foundation (KKS) within the projects FEMMVA and
SythSoft. The authors would like to thank the industrial
partners Arcticus Systems and Volvo Construction Equip-
ment (VCE), Sweden.

REFERENCES

[1] “EAST-ADL Domain Model Specification, Deliverable D4.1.1,”
http://www.atesst.org/home/liblocal/docs/ATESST2 D4.1.1 EAST-
ADL2-Specification 2010-06-02.pdf.

[2] “TIMMO-2-USE,” http://www.timmo-2-use.org/.

[3] K. Hänninen et.al., “The Rubus Component Model for Resource
Constrained Real-Time Systems,” in 3rd IEEE International Sym-
posium on Industrial Embedded Systems, June 2008.

[4] “Arcticus Systems,” http://www.arcticus-systems.com.

[5] J. Mäki-Turja, K. Hänninen, and M. Nolin, “Towards efficient
development of embedded real-time systems, the component based
approach,” in International Conference on Embedded Systems &
Applications (ESA), 2006, June 2006.

[6] “ISO 26262-1:2011: Road vehicles Functional safety.
http://www.iso.org/.”

[7] “Hans Blom et. al. EAST-ADL- An Architecture Description Lan-
guage for Automotive Software-Intensive Systems. White paper,
Version M2.1.10, 2012, http://www.maenad.eu.”

[8] “BAE Systems Hägglunds,” http://www.baesystems.com/hagglunds.

[9] “Volvo Construction Equipment,” http://www.volvoce.com.

[10] “Mecel,” web page, http://www.mecel.se.

[11] “Knorr-bremse,” web page, http://www.knorr-bremse.com.

[12] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for Holistic
Response-time Analysis in an Industrial Tool Suite: Implementation
Issues, Experiences and a Case Study,” in 19th IEEE Conference
on Engineering of Computer Based Systems (ECBS), April 2012,
pp. 210 –221.

[13] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-to-end
response-time and delay analysis in the industrial tool suite: Issues,
experiences and a case study,” Computer Science and Information
Systems, ISSN: 1361-1384, vol. 10, no. 1, 2013.

[14] “AUTOSAR Techincal Overview, Version 2.2.2. AUTOSAR – AU-
Tomotive Open System ARchitecture, Release 3.1, The AUTOSAR
Consortium, Aug., 2008,” http://autosar.org.

[15] H. Heinecke et al., “AUTOSAR – Current results and preparations
for exploitation,” in Proceedings of the 7th Euroforum Conference,
ser. EUROFORUM ’06, May 2006.

[16] “TIMMO Methodology , Version 2,” TIMMO (TIMing MOdel),
Deliverable 7, October 2009, The TIMMO Consortium.

[17] “TADL: Timing Augmented Description Language, Version 2,”
TIMMO (TIMing MOdel), Deliverable 6, Oct. 2009, The TIMMO
Consortium.

[18] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Extraction of end-
to-end timing model from component-based distributed real-time
embedded systems,” in Time Analysis and Model-Based Design,
from Functional Models to Distributed Deployments (TiMoBD)
Workshop. Springer, October 2011, pp. 1–6.

[19] K. Tindell and J. Clark, “Holistic schedulability analysis for
distributed hard real-time systems,” Microprocess. Microprogram.,
vol. 40, pp. 117–134, April 1994.


