
Mälardalen University Dissertations

No. 4

Towards A Static Cache Analysis for
Whole Program Analysis

Xavier Vera

2002

Department of Computer Engineering

Mälardalen University

ii

Copyright c© Xavier Vera, 2002

ISBN number: 91-88834-32-8

Printed by Arkitektkopia, Väster̊as, Sweden

Distribution: Mälardalen University Press

iii

A DISSERTATION

PRESENTED TO THE FACULTY

OF MÄLARDALENS HÖGSKOLA

IN CANDIDACY FOR THE DEGREE

OF LICENTIATE IN ENGINEERING

c© Copyright 2002 by XAVIER VERA

iv

v

With every waking breath I breathe
I see what life has dealt to me

With every sadness I deny
I feel a chance inside me die

Give me a taste of something new
To touch, to hold, to pull me through
Send me a guiding light that shines
Across this darkened life of mine

Breathe some soul in me
Breathe your gift of love to me

Breathe your life to lay ’fore me
Breathe to make me breathe

For every man who built a home
A paper promise for his own

He fights against an open flow
Of lies and failures we all know

To those who have and who have not
How can you live with what you’ve got

Give me a touch of something sure
I could be happy ever more

Breathe some soul in me
Breathe your gift of love to me

Breathe your life to lay ’fore me
Breathe to make me breathe
Breathe your honesty to me

Breathe your innocence to me
Breathe your word and set me free

Breathe to make me breathe

This life prepares the strangest things
The dreams we dream of, what life brings

The highest highs can turn around
To sow love’s seeds on stony ground

Midge Ure – “breathe”

’cause time is what you make of it

vi

vii

To Helen, Anna and Marta

without whom this would not have been possible.

viii

Abstract

Data caches have become very popular to overcome the gap between

main memories and processors performance. Caches work well for pro-

grams with sufficient locality. Unfortunately, there are many programs

that do not take advantage of them, thereby suffering large number of

misses. Small modifications in the source code may change memory pat-

terns, thereby altering the cache behaviour. If the code is modified prop-

erly, we can expect a high cache performance improvement. A detailed

information about the number of misses and their causes is necessary to

devise effective transformations. However, this information is very hard

to obtain. This thesis describes a new method for describing the cache

behaviour of whole programs.

Based on a new characterisation of data reuse across multiple loop

nests, we present a method, a prototyping implementation and some

experimental results for analysing the cache behaviour of whole programs

with regular computations. Validation against cache simulation using

real codes shows the efficiency and accuracy of our method. Our method

can be used to guide compiler locality optimisations and improve cache

simulation performance.

x

Acknowledgments

I sincerely thank my main supervisor Björn Lisper for giving me the

chance to be a member of his research group. I also appreciate his

support and his patience with my lousy English. Besides Björn, I would

also like to especially thank Jan Gustafsson, my secondary advisor, for

his useful comments on this document.

Special credit is due to Jingling Xue for his great hospitality during

my visit. I learnt so much from our meetings and discussions.

I would like to express my gratitude to my roommates, Jan Carlson

and Nerina Bermudo, for cheering me up in all those days when I am

in bad mood, especially grumbling about the Swedish weather. I am

grateful to Baran and Rikard, whose friendship was very important to

me in those early days in Väster̊as.

Finally, I thank my parents and family. My gratitude to them is

beyond what words can express.

Väster̊as, February 2002

Xavier Vera

xii

Agräıments

Finalment! Quan un arriba aqúı vol dir que tot el dif́ıcil ja està fet. . . Creu-

t’ho això. Posat amb el LATEX, babel i els accents en català, i anyoraràs el

Word i començaràs a preguntar-te a qui li pot interessar uns agräıments

en català.

Però em feia gràcia, ves, per allò de ser diferent. Aix́ı que després de

fer més recerca per escriure aquestes quatre ĺınies que per tota la tesi,

un va i. . . comença a traduir els que tenia en anglès!!! Que lleig!!!

Au, torna a pensar mentires i afalagaments. Us pot semblar molt

fàcil, però us asseguro que no ho és. A veure, per qui començo? El

Toni? Per què l’hauria de posar? Perquè s’ha llegit la tesi? Perquè és

collonut i ha estat l’únic que ha vingut a veure on rodaven ”Doctor en

Alaska”? Pels n-mil mails donant-me ànims quan vaig marxar, perquè

és sempre genial tornar-lo a veure? No, si sembla que śı. . .

El Manel si que val. Ell sempre tan útil :-). Us puc assegurar que

sense ell no crec que hagués arribat aqúı (entre altres, perquè no tindria

ni idea de LATEX). O el Xavi, sempre preocupat en la distància (serà que

les sueques li fan por), donant-me ànims i ajudant-me en els moments

dif́ıcils que sempre tenim.

Ara que torno a rellegir el que he escrit (es que el LATEX és d’un

xiv

intüıtiu!), m’adono que tot són pol** (qui deia que a Suècia no hi havia

censura!?). Ben pensat, potser haver fet infermeria si només volia posar

Maries i Cristines, no? Gràcies, Marta, per donar-me una altra opor-

tunitat i ajudar-me a reestablir la comunicació H(o)uston-Marte. I a

l’altra Marta (śı, aqúı un d’idees fixes), per sempre trobar un moment

entre panyals i potitos per escriure un correu. I la Julia, sempre tan

comunicativa. O la Clara, per trobar-me i no perdre’m la pista després

de milers de quilòmetres amunt i avall.

No voldria oblidar-me de tots aquells companys que vaig deixar a la

UPC. A l’Antonio, per tot el que em va ensenyar i per la seva manera

especial de motivar-me a millorar cada dia. Una abraçada a qui és un

amic de debò: Jaume.

Ara només queda esperar que el del tribunal no parli català. Perquè

ja sabem que deia l’eslògan: ”Catalans, som 5.999.999. . . i el del tri-

bunal!!”.

I a tu. Per tot. Per res. Pels teus somriures. Per tot el que em

dones i el que em prens, per fer que les il.lusions no siguin un miratge.

Pel Temps. Perquè un dia la pluja ens acompanyarà.

JamagradariaBarcelona, Febrer 2002

Xavier Vera

Oz Acknowledgments

I couldn’t believe it. I had the chance of visiting Australia! That country

which is in the top of the world, where people only drink VB and play

rugby without helmet. This was around September 2000 and I was out

of words. First I’d like to thank Jingling Xue for inviting me. We’d

never met before, but he believed we could get some work done. Second,

my advisor Björn Lisper, for letting me go and letting me follow my

hunches.

Those days in Sydney were something very special. I skipped the

Swedish winter to dive into an oz summer and walk on those amazing

beaches of Maroubra and Coogee. Did I forget to mention research?

I want to express my gratitude to all people from Warrane College.

They made life in Sydney remarkable and a very pleasant experience. I

can’t write down all names, but I wish to thank R.V and Dave Curran

(there’s no way to understand an Irishman early in the morning... ac-

tually, there’s no way to understand an Irishman) for their help during

my first days. I’m especially glad of having met Lui, Jim, Joe, Steve,

Marek and Richard (nice trip to Manly!). Some friendships go beyond

the distance: Eugene, Max and Tino. Y no, no me olvido de ti, Nick

Santucci. Espero verte algún dia en Barcelona.

xvi

Many thanks to all the administrative staff at UNSW, and in partic-

ular to the ss guys for helping me with the usual (too many) problems I

have with computers.

Go Wallabies !

Väster̊as, February 2002

Contents

1 Introduction 1

1.1 Cache Behaviour and Real Time Systems 3

1.2 Contributions . 5

1.3 Organisation . 7

2 Underlying Model 9

2.1 Cache-Architecture Model 10

2.2 Program Model . 10

2.3 Analysis Model . 11

2.3.1 Loop Sinking . 12

2.3.2 Loop Nest Normalisation 13

2.3.3 Iteration Vectors 13

2.3.4 Reference Iteration Spaces 15

2.4 Statistical Model . 17

2.4.1 Discrete random variables 18

2.4.2 Modelling the Cache Behaviour with Random Vari-

ables . 19

2.4.3 Estimation of Parameters 20

xviii CONTENTS

3 Call Statements 23

3.1 Gentle Introduction to FORTRAN Subroutines 24

3.2 Abstract Inlining . 24

4 Reuse Vectors 31

4.1 Uniformly Generated References 32

4.2 Recalling Reuse Vectors 33

4.3 Group Reuse Among Different RISs 35

4.4 Discussion . 37

5 Cache Behaviour Analysis 39

5.1 Forming Equations . 40

5.1.1 Cold Equations . 41

5.1.2 Replacement Equations 41

5.2 Finding Cache Misses . 43

5.2.1 Overview . 43

5.3 FindMisses and EstimateMisses 46

6 Validation 49

6.1 Prototyping Implementation 50

6.2 Analysing IF Conditionals 51

6.2.1 Loop Nest Kernels 51

6.3 Whole Program Analysis 56

6.3.1 Multiple Loop Nest Kernels 56

6.3.2 Whole Programs 58

7 Cache Compiler Optimisations 61

7.1 Genetic Algorithms . 62

7.1.1 Genetic Algorithm Parameters 63

CONTENTS xix

7.2 Parametric Miss Equations 65

7.3 Automatic Near-Optimal Padding 65

7.3.1 Inter-variable padding 66

7.3.2 Adding intra-variable padding 67

7.3.3 Padding Model . 68

7.3.4 Performance Evaluation for the SPECfp95 69

8 Related Work 73

8.1 Analytical Methods . 76

8.2 Cache Compiler Optimisations 78

9 Conclusions 81

9.1 Future Work . 83

A Background 85

A.1 Memory Hierarchy . 86

A.1.1 Cache Memories 87

A.1.2 Cache Organisation 88

A.1.3 Replacement Policies 90

A.1.4 Writing to the Cache 91

A.2 Locality Analysis . 92

A.2.1 Terminology . 92

A.2.2 Reuse Vectors . 93

A.2.3 Different Reuse for Different Locality 94

A.2.4 Example . 95

B Codes 97

Bibliography 103

List of Figures

2.1 Sink transformation. 12

2.2 The iteration vectors for statements. 15

2.3 Some commonly occurring RISs (in dotted areas). 16

2.4 A running example. 16

2.5 RISs of the three z references in Figure 2.4. 17

3.1 Abstract inlining of a subroutine call. 25

3.2 Propagation and renaming of actual parameters. All ac-

tuals but the last are propagated. The last actuals in

both calls are renamed to B1 and B2, respectively. After

inlining, @B = @B1 = @B2. 30

4.1 Spatial reuse across array columns (Ls=4). 36

4.2 Derivation of group-reuse vectors. 37

5.1 The interference sets with the three z references when

Rc = Rp = Ref1 along ~r = (1, 0) for the running ex-

ample. For illustration purposes, the point ~ı ∈ RISRef1

being analysed is chosen such that ~ı 6∈ RISRef2
and ~ı 6∈

RISRef3
. In each case, the interference set consists of the

solid line(s) and ~ı or ~ı− ~r if the corresponding point is a

fat point. 42

5.2 Studying iteration points through a reuse vector. 45

5.3 Two algorithms for computing the cache misses from the

cold and replacement miss equations. 47

6.1 A framework for analysis and evaluation. 50

7.1 Simple Genetic Algorithm. 62

7.2 Schematic of simple crossover. 64

7.3 Data layout: (a) before inter-variable padding, (b) af-

ter inter-variable padding (c) before padding, (d) after

padding, (e) 2-D array, (f) 2-D array after intra-variable

padding . 67

7.4 Miss ratio before and after inter-variable padding for dif-

ferent cache sizes. 69

7.5 (a) Miss ratio for different Tomcatv loop nests before and

after inter- and intra-variable padding (b) Miss ratio for

the Tomcatv and Swim loop nests for the Pentium 4 L1

cache. 71

A.1 Memory hierarchy. 87

A.2 How data is stored in both main memory and cache. . . . 88

A.3 Mapping of such a 2-way associative cache. 89

A.4 Example of loop nest and its iteration space. 93

A.5 Example of locality described by means of a reuse vector. 94

A.6 Example of reuse . 95

B.1 Three examples (with original and transformed programs):

LU (without pivoting) is taken from Lapack, LWSI is a

4-D imperfect loop nest from LWSI and MM is from Liv-

ermore kernels. 98

B.2 Three kernels. 99

List of Tables

3.1 Statistics for the actual parameters and calls in SPECfp95

and Perfect benchmarks. 26

6.1 Cache misses for (Cs, Ls) =(32KB,32B) and execution times

for FindMisses (F.M.). 52

6.2 Miss ratios for (Cs, Ls) =(32KB,32B) and execution times

of EstimateMisses (E.M.) (c = 95% and w = 0.05). . . . 54

6.3 Cache misses for three different cache configurations and

execution times of EstimateMisses (E.M.) (c = 95% and

w = 0.05). 55

6.4 Cache miss ratios for 32KB caches with a 32B line size

from FindMisses and a cache simulator. 57

6.5 Cache misses from EstimateMisses for 32KB caches with

a 32B line size (c = 95% and w = 0.05). 58

6.6 Three whole programs. 59

6.7 Cache misses from EstimateMisses for 32KB caches with

a 32B line size (c = 95% and w = 0.05). 59

8.1 Comparison with Fraguela et al’s probabilistic method us-

ing MMT. ∆p denotes the relative error between the es-

timated and real miss ratios for the probabilistic method

and ∆E for our EstimateMisses. 76

Chapter 1

Introduction

We introduce our work in the context of high-performance computer ar-

chitecture. We present the reason why we decided to address this thesis,

and the main goals we plan to achieve. Besides, we show how our current

approach may fit in a real-time context. Finally, we state our contribu-

tions and give a road map of the rest of the document.

2 CHAPTER 1. INTRODUCTION

Use of recent architectural features such as pipelines, branch pre-

dictors and caches may result in significant performance improvements.

However, their unpredictable nature results in an unpredictable beha-

viour. For instance, it is very hard to predict the execution time of a

program with the presence of a cache memory, and it may even happen

that a program runs faster without the cache rather than with it. Infor-

mation such as the number of misses and where they occur would allow

computing the execution time. If we went one step further and knew the

causes behind those misses, we could optimise the code in such a way

the program could take plenty advantage of the cache.

Data caches are widely used to bridge the increasing gap between pro-

cessors and main memories speed. The effectiveness of a cache memory

depends not only on the hardware structure, but also on the code gener-

ated by the compiler. Both programmers and compiler transformations

often restructure the code to improve the performance of the memory

system. While a large number of locality enhancement transformations

exist [79], the models used for evaluating their benefits are often heuristic

or approximate. For example, tiling [11, 37, 43, 61, 81, 82] and padding

[39, 58] can reduce cache misses if appropriate tile sizes and pad sizes

are chosen. However, even in these simple cases, no model has emerged

as a widely acceptable solution. It is well-known that the optimal tile

and pad sizes are sensitive to the problem size, array base addresses and

cache parameters. We need better models that can determine not only

the number of cache misses but also help us understand the causes be-

hind these misses. These models can then be employed to guide various

optimisations to reduce cache misses in a systematic manner.

Several approaches for analysing cache behaviour can be identified.

Analysis has been performed traditionally either at compile-time using

Cache Behaviour and Real Time Systems 3

heuristics or at run-time by means of simulators. Cache simulation tech-

niques are very accurate and report a rich source of information. Based

usually on trace-driven approaches [66], they are both time- and space-

consuming and do not provide insights about the causes of the misses.

Hardware counters [4], although fast and accurate, are architecture-

dependent and do not provide too many insights about the causes of

cache misses.

In the last few years, several compile-time analytical methods have

been proposed to statically predict the cache behaviour of a program [13,

22, 28, 29, 69]. At this early stage, all these research efforts have focused

on loop-oriented programs operating on arrays. Such a method consists

of (a) a procedure for setting up mathematical formulas to characterise

the cache misses in a program and (b) an algorithm for finding cache

misses (and their causes, if required) from these formulas. These for-

mulas describe the relationships among loop indices, array sizes, base

addresses and the cache parameters for cache misses in the program.

The better understanding of the causes of the misses helps reduce them

in a systematical way, reasoning about the causes of the interferences.

Some compiler-optimisations such as padding and tiling have been de-

scribed by these methods [29, 68].

1.1 Cache Behaviour and Real Time Sys-

tems

In order to exploit these new architectural improvements in hard real-

time systems, it is very important to know tight and safe upper bounds

of the worst-case time (WCET) of tasks to be executed.

4 Cache Behaviour and Real Time Systems

Calculation of a tight WCET bound of a program involves difficulties

that come from the very characteristics of data caching. Even though

some progress has been done when studying processors with instruction

caches [5, 34, 47], few steps have done towards analysing data caches.

Alt, Ferdinand et al [3, 19] provide an estimation of WCET by means

of abstract interpretation. As well as the usual drawbacks from abstract

analysis (i.e., code-explosion and lack of accuracy), they only analyse

memory references which are scalar variables. When providing experi-

mental results, they only deal with instruction caches. White et al [73]

propose a method for direct-mapped caches based on static simulation.

They categorise static memory accesses into (i) first miss, (ii) first hit,

(iii) always miss and (iv) always hit. Array accesses whose addresses

can be computed at compile-time are analysed, but they fail to describe

conflicts which are always classified as misses. Lim et al [48] present a

method that tries to compute the WCET taking in account data caching.

However, they only analyse static memory references (i.e., scalars), fail-

ing to study real codes with dynamic references (i.e., arrays and point-

ers). Kim et al [42] propose a method that extends and improves the

previous method extending the analysis that classifies references as ei-

ther static or dynamic. However, they deal neither with arrays nor with

pointers (i.e., only detecting temporal locality). Besides, it is limited to

basic blocks, without taking in account possible reuse among different

subroutines or loop nests.

While this work aims to model cache behaviour in such a way we can

devise cache compiler optimisations, we plan in the future to extend our

analysis to fill the current gap in cache analysis for real-time systems.

Our approach yields probabilistic cache miss ratios, which we expect to

use for soft real-time software with large regular data (such as multi-

Contributions 5

media applications and MPEG decoders). Furthermore, we introduce a

feasible way of dealing with caches in WCET analyses where they are

not currently considered.

1.2 Contributions

The Cache Miss Equations (CMEs) [28], by Ghosh et al., represent an

analytical method for analysing the cache behaviour of loop-oriented

programs. These programs typically spend a considerable amount of

time operating on arrays in loop nests. The CMEs describe the rela-

tionships among loop indices, array sizes, base addresses and the cache

parameters for cache misses in a loop nest using a set of Diophantine

equations. This characterisation makes it possible not only to obtain

the number of misses but to understand the causes behind cache misses,

and helps reduce these misses in a systematic manner. Besides, it allows

analysing isolated iteration points without simulating all the previous.

However, obtaining the exact number of cache misses from the CMEs is

computationally expensive.

Our work generalises and extends Ghosh’s CMEs to make whole pro-

gram analysis possible.

The thesis is divided in the following sections. First, we summarise a

statistical method to speed up the process of solving the equations, for

both direct-mapped and set associative caches [69]. Second, we present

an analytical method for analysing the cache behaviour of perfectly

nested loops1 containing IF statements with compile-time-analysable

conditionals. These conditionals can contain ABS, MOD, MIN and

1Perfectly nested while-loops with bounded iterations for each while can be trans-

formed into loop nests, thus they are also analysable.

6 Contributions

MAX operators. In particular, we describe (for the first time) how to

find required reuse vectors in the presence of IF statements and some

complications that may arise when group reuse vectors are derived. We

demonstrate how our method can also be used to analyse those imper-

fect loop nests that are sinkable by loop sinking. Third, we extend our

analysis for predicting the cache behaviour of complete programs (i.e.,

multiple loop nests, call statements and subroutines) with regular com-

putations [71]. Finally, we give some insights about how our analytical

method can be used to implement different cache compiler optimisations,

such as padding [68] and blocking [1].

The overall contributions are:

Reuse Analysis and Representation. By generalising traditional con-

cepts such as iteration vectors and uniformly generated references

for perfect loop nests, we introduce reuse vectors for quantifying

reuse between references contained in multiple nests with the pres-

ence of IF statements. Our reuse representation includes Wolf and

Lam’s reuse vectors [77] as a special case, allowing potentially ex-

isting reuse-driven optimisations to be applied to multiple nests.

Whole-Program Analysis. We can handle programs with regular com-

putations consisting of subroutines, call statements, IF statements

and arbitrarily nested loops. In order to predict a program’s

cache behaviour statically, these programs must be free of data-

dependent constructs such as variable loop bounds, data-dependent

IF conditionals, indirection arrays and recursive calls.

Prototyping Implementation. Our prototyping system consists of

components on normalising loop nests, inlining calls (abstractly),

generating reuse vectors, sampling memory accesses and forming

Organisation 7

and solving the equations for cache misses. The inlining compo-

nent has not been implemented. In our experiments, the calls in

all programs (if any) are inlined by hand.

Validation and Experimental Results. We have validated our me-

thod against cache simulation using programs from SPECfp95,

Perfect Suite, Livermore kernels, Linpack and Lapack. The largest

program we have analysed, Applu from SPECfp95, has 3868 lines

of FORTRAN code, 16 subroutines and 2565 references. Assuming

a 32KB (direct-mapped, 2-way and 4-way, resp.) cache with a 32B

line size, our method obtains the miss ratios with absolute errors

(0.78%, 0.82% and 0.84%, resp.) in about 128 seconds while the

cache simulation runs for nearly 5 hours on a 933MHz Pentium III

PC. In comparison with the three recent compile-time analytical

methods reported in [13, 22, 28], our method is the only one capa-

ble of analysing this scale of programs efficiently with accuracy.

1.3 Organisation

Chapter 2 presents the underlying model on which this work is based. We

explain the different transformations we apply to the codes in such a way

we get a new version suitable for our analysis. Some important concepts

that help us to keep trace of the order in which the memory accesses are

done are described. Finally, we introduce some basic statistical notions

that are used to model the number of misses.

Once all the memory references are identified, we introduce our new

approach to analyse whole program cache behaviour in the following

chapters. Chapter 3 explains how we deal with call statements and sub-

routines. Chapter 4 describes the new characterisation of the reuse vec-

8 Organisation

tors, whereas Chapter 5 shows how we formulate and solve the equations

that yield detailed information about cache behaviour.

We present the results of our validation in Chapter 6, with extensive

evaluations of different kernels and three whole programs. We have eval-

uated both the accuracy and feasibility of our analysis. Furthermore,

we show in Chapter 7 how our model can be used to develop automatic

cache compiler optimisations.

Finally, Chapter 8 discusses some related work. Chapter 9 contains a

summary of the important results of this works. It also points out some

future work that may be addressed using this thesis as a starting point.

At the end of the document, we have included some appendices that

try to give some more insights for those readers that are not familiar

with the high-performance architecture world. Appendix A is a com-

plete background to cache memories from the point of view of high-

performance. Cache memories are introduced as a solution to bridge the

gap between main memories and processors performance, always from

the point of view of achieving better and better performance. Some

cache architectures are presented. Next, some terminology for program

analysis used in this work is presented. Finally, we give the basic defi-

nitions that are necessary to understand locality analysis and the reuse

vectors.

Appendix B contains some codes from the benchmarks we have used

to evaluate our approach.

Chapter 2

Underlying Model

This chapter introduces how we represent the programs in order to anal-

yse them. First, we show how we transform them, keeping the semantics,

in such a way that we can extract all memory references and the order

in which they are executed. Based on the iteration vectors, we describe

how we compute the iteration space and how we attach subsets of it to

the references. Finally, we model the cache behaviour using a statistical

technique.

10 Program Model

2.1 Cache-Architecture Model

We assume a uniprocessor with a k-way set associative data cache using

LRU replacement (see Appendix A). In the case of write misses, we

assume a fetch-on-write policy so that writes and reads are modelled

identically. Our current analysis assumes a cache indexed using virtual

addresses. Some systems index caches with physical addresses, making

cache behaviour strongly dependent on page placement.

In a k-way set associative cache, a cache set contains k distinct cache

lines. Cs and Ls denote the cache size and line size (in array elements),

respectively. A memory line refers to a cache-line-sized block in the

memory while a cache line refers to the actual block in which a memory

line is mapped.

2.2 Program Model

Presently, we restrict ourselves to analysing FORTRAN77 programs with

regular computations. FORTRAN has been the programming language

used to write numerical applications for quite a few years. It does not

allow recursion, and all the parameters in call statements are passed by

reference. Unlike C, it stores arrays in memory in column-major order

and it does not have pointers.

We can handle programs made up of subroutines consisting of possi-

bly IF statements, call statements and arbitrarily nested loops. In order

to predict at compile time a program’s cache behaviour, the following

restrictions are imposed:

• All loop bounds and array subscript expressions must be affine in

terms of the enclosing loops.

Analysis Model 11

• The base addresses of all non-register variables including actual

parameters (scalars or arrays) must be known at compile time.

• The sizes of an array in all but the last dimension must be known

statically.

Our analytical method can deal with any IF conditionals involving

loop indices and compile-time constants. In loop-oriented programs with

regular computations, almost all data-independent conditionals are affine

expressions of loop indices and compile-time constants involving pos-

sibly operators such as ABS, MOD, MAX and MIN. In all programs

that we have analysed from SPECfp95, Perfect Suite, Livermore Ker-

nels, Linpack and Lapack, we have not found any single IF conditional

that is data-independent but not also affine. Our program model ex-

cludes all and only data-dependent constructs (e.g., variable bounds,

data-dependent IF conditionals and indirection arrays).

2.3 Analysis Model

Our model works for codes that have all the memory references in in-

nermost loop nests. Besides, it needs all the innermost loops to have the

same depth. In order to transform user codes in such a way they are

suitable for being analysed, we first apply loop sinking, which moves all

references to innermost loop nests. Thereafter, we apply loop normali-

sation, which adds dummy loop nests in order to have all the innermost

loop nests in the same depth.

12 Analysis Model

DO I1=L1, U1
S1
DO I2=L2, U2
S2

DO I3=L3, U3
…
ENDDO

S2'
ENDDO
S1'

ENDDO

DO I1=L1, U1
DO I2=L2, U2

DO I3=L3, U3
IF (I2=L2 & I3=L3) THEN S1
IF (I3=L3) THEN S2
…
IF (I3=U3) THEN S2’
IF (I2=U2 & I3=U3) THEN S1’

ENDDO
ENDDO

ENDDO

(a) Before sinking (b) After sinking

Figure 2.1: Sink transformation.

2.3.1 Loop Sinking

We present a strategy to analyse a subset of imperfectly nested loops.

CMEs could only deal with perfectly nested loops. Thus, there are many

important imperfectly nested loops that can not be analysed (as matrix

multiplication with initialisation). Our strategy focuses on transform-

ing imperfectly nested loops into perfectly nested loops with condition-

als [76]. The loop nests we consider are those without two loops at the

same level. Figure 2.1.a shows the form of those loop nests.

The technique consists in sinking all the statements to the innermost

loop, obtaining a perfectly nested loop. Then, the statements are en-

closed within an IF statement following Abu-Sufah’s non-basic-to-basic-

loop transformation [2]. The code obtained is shown in Figure 2.1.b. In

the case code is already protected by an IF statement, this is another

constraint that is taken in account. A loop transformation is called legal

when the transformed code produces the same output as the original one.

In order to obtain a loop nest semantically equivalent to the original one,

the following conditions must hold [80]:

Analysis Model 13

• The order of the references must be preserved.

• The innermost loop nest must be executed at least once, so if an

iteration of a statement would have executed, then it is executed

in the transformed program.

This transformation may change the sequence in which memory ref-

erences are executed. Moreover, it may introduce some new memory

references that are necessary to evaluate the new conditionals. In order

to obtain the cache behaviour of the original program, we only analyse

the original memory references and assume loop indices are register al-

located. Thus, we apply this transformation for analysis purpose, but

we do study the original code.

2.3.2 Loop Nest Normalisation

Loop normalisation consists in adding different DO statements that iter-

ate only one iteration, in such a way that all innermost loop nests have

the same depth. After normalisation, all loop nests are n-dimensional,

and, in addition, all loop variables at depth k are normalised to Ik.

Unlike loop sinking, there is no restriction for applying this trans-

formation, since the new statement cannot modify the semantics of the

program.

2.3.3 Iteration Vectors

After applying loop normalisation, we have statements distributed among

innermost loops. Unlike the case where all statements are in the same

nest (the execution order of the statements is given by the order we find

them in the code), now we need a special mechanism to describe their

execution order.

14 Analysis Model

A particular instance of a statement S (known as an iteration or it-

eration point) of the enclosing loop nest is identified by a 2n-dimensional

iteration vector of the form ~ı = (`1, I1, `2, I2, . . . , `n, In), where

• ~L = (`1, `2, · · · , `n) is the loop label (vector) for the innermost loop

containing S, and

• ~I = (I1, I2, . . . , In) is the index vector consisting of the indices of

the n loops enclosing S.

Figure 2.2 lists the iteration vector for each statement in the example.

It is not difficult to see how the iteration vectors are derived in general.

Let ~̀
L be the loop label for loop nest L. Since we have applied loop

normalisation, all the loop labels are n-dimensional, where n is the depth

of the deepest loop nest. The i-th entry of the loop label, if defined, is

the order of the loop nest in the i-depth1. Using this formulation, we

obtain the following loop labels for the example in Figure 2.2:

L1: ~̀
L1
=(1,*)

L2: ~̀
L2
=(1,1)

L3: ~̀
L3
=(1,2)

L4: ~̀
L4
=(2,*)

L5: ~̀
L5
=(2,1)

As usual, the set of all iterations for a particular loop nest is called

the iteration space of that nest (see Appendix A, Section A.2.1).

In a sequential execution, all iteration points are executed in lexico-

graphical order. The usual lexicographic order operators ≺, ¹, Â and

º are used later.

1This can be seen as the numbering of sections and subsections in a paper.

Analysis Model 15

L1: DO I1 = . . . Iteration Vector

L2: DO I2 = · · ·

S1: B(I2 − 1, I1) = · · · (1, I1, 1, I2)

L3: DO I2 = . . .

S2: · · · = B(I2, I1) (1, I1, 2, I2)

L4: DO I1 = · · ·

L5: DO I2 = · · ·

S3:B(I1, I2) = · · · (2, I1, 1, I2)

Figure 2.2: The iteration vectors for statements.

2.3.4 Reference Iteration Spaces

The reference iteration space (RIS) of a reference R, denoted RISR, is

defined as the set of iteration points where the reference is accessed. If a

reference is not guarded by a conditional, its RIS is the entire iteration

space of the enclosing loop nest. Otherwise, the RIS can be a subspace

of that iteration space.

While we can analyse complex IF conditionals (resulting in non-

convex RISs), the RISs in practical programs are found to be simple.

In all programs analysed from SPECfp95, Perfect Suite, Livermore Ker-

nels, Linpack and Lapack, we have not found a single case that is not

affine.

If a reference is guarded by affine conditionals (containing possibly

.AND., .OR. or .NOT. operators), the corresponding RIS can always

be expressed as a finite union of convex polytopes in Zn. Such a RIS

can be manipulated by the Omega library [56] and its volume computed

using methods [14, 33, 56] for various purposes. Figure 2.3 depicts three

commonly occurring cases. An example is given in Figure 2.4. The three

highlighted z references will be used later for illustrations. Ref1 is not

16 Analysis Model

IF (e1) THEN

· · ·

ENDIF

e1

(a)

IF (e1 .AND. e2) THEN

· · ·

ENDIF

e1 e2

(b)

IF (e1 .OR. e2) THEN

· · ·

ENDIF

(c)

e1 e2

Figure 2.3: Some commonly occurring RISs (in dotted areas).

PROGRAM COND

PARAMETER (N = 512, M = 512)

REAL*8 a(N+1,M+1), b(N+1,M+1), z(N+1,M+1)

REAL*8 vnew(N+1,M+1), unew(N+1,M+1)

DO I1 = 1,N

DO I2 = 1,M

a(I1+1,I2) = b(I1+1,I2)+ z(I1+1,I2+1) , Ref1

IF (I1+I2.GE.200) THEN

vnew(I1,I2+1) = 1+ z(I1,I2+1) , Ref2

ENDIF

IF (I1.LE.100) THEN

unew(I1,I2) = b(I1,I2)+ z(I1,I2) , Ref3

ENDIF

ENDDO

ENDDO

END

Figure 2.4: A running example.

Statistical Model 17

I2

I1

(a) Ref3 (b) Ref1 (c) Ref2

I
1 +

I
2 >

200

I 1
6

10
0

Figure 2.5: RISs of the three z references in Figure 2.4.

guarded while Ref2 and Ref3 are guarded by conditionals that are affine

expressions of loop indices.

Figure 2.5 displays the RISs for the three z references highlighted in

Figure 2.4, which are all convex.

Our analytical method can deal with any IF conditionals involving

loop indices and compile-time constants. These are the conditionals that

can be analysed at compile-time without relying on any runtime infor-

mation about the conditionals involved. However, data-dependent con-

ditional expressions such as a(i,j).EQ.0 are beyond our current method

and their analysis is part of our future work (see Section 9.1).

2.4 Statistical Model

We use a statistical approach to determine the cache behaviour. This

allows us to obtain accurate results in a feasible time.

First we will present the basic statistical concepts used to model the

cache behaviour, and secondly the model itself.

18 Statistical Model

2.4.1 Discrete random variables

Let S = (Ω,A, P) be a probability space (where Ω is the sample space,

A ⊂ ℘(Ω)2, and P is the probability function). We may define random

variables (RV) [16] X : Ω → R over S. We review two of most studied

discrete RV which have been used in our model.

Let X be a real discrete random variable:

• We say that it follows a Bernoulli distribution (X ∼ B(p)) when

the image set has only two elements. Bernoulli RVs describe the

random experience in which only two things can happen: success

or miss. We define T ⊂ Ω as the set of results obtained that we

consider as ’success’. Thus:

X : Ω −→ R

ω 7−→







0 ⇐⇒ w /∈ T

1 ⇐⇒ w ∈ T

The probability P [X = 0] is p. Therefore, the probability P [X = 1]

is q = 1− p, since p + q must be 1.

• Binomial distribution (represented by X ∼ Bin(n, p)) models phe-

nomena where n different and independent experiments modelled

by Bernoulli-RV take place. This RV represents the number of

successes.

Once T ⊂ Ω is defined, we obtain:

X : Ωn −→ R

(ω1, . . . , ωn) 7−→ card{i|ωi ∈ T }

2℘(X), the power set of X, is the set of all the possible subsets of X

Statistical Model 19

The probability P [X = k], k = 0 . . . n represents the probability

that k experiments over the n succeed. Thus,

P [X = k] =




n

k



 pk(1− p)(n−k).

2.4.2 Modelling the Cache Behaviour with Random

Variables

We are interested in finding the number of misses that a program results

in (said #misses). In order to compute it, we model the problem in

the following way: for each reference we define a RV that returns the

number of misses.

We may model the behaviour of a reference using a Binomial-RV,

where the different experiments consist in taking an iteration point and

checking whether it results in a miss.

Next, we prove that this RV actually follows a Binomial distribution.

For each memory instruction, we may define a Bernoulli-RV X ∼ B(p)

as follows:

X : Iteration Space −→ R

~ı 7−→ {0, 1}

such that X(~ı) = 1 if the memory instruction results in a miss for iter-

ation ~ı, X(~ı) = 0 otherwise. Note that X describes the experiment of

choosing an iteration point and checking whether the memory instruc-

tion produces a miss for it, and p is the probability of success. The

value of p is p = #m
N

, where N is the number of times this instruction is

executed and #m the number of misses.

20 Statistical Model

Then, we repeat the experiment N times, using different iteration

points in each experiment, obtaining X1, . . . , XN different RV-variables.

We note that:

• All the Xi, i = 1 . . . N have the same value of p.

• All the Xi, i = 1 . . . N are independent3.

The variable Y =
∑

Xi represents the total number of misses in all

N experiments. This new variable follows a binomial distribution with

parameters Bin(N,p) [16] and it is defined over all the reference iteration

space.

2.4.3 Estimation of Parameters

Although a random variable describes a certain property, it may some-

times happen that it is impossible to obtain the parameters that define

the RV. This may happen in the cases where population is very large, as

in our case, where RISs may have millions of iteration points. In order

to overcome this limitation, a subset of the population we try to describe

can be analysed and the results obtained can be inferred to the popula-

tion. Now, we explain how the parameters that describe a Binomial-RV

can be inferred.

Let X ∼ Bin(n, p), and assume that p (the probability of success) is

unknown. We obtain an approximation of p evaluating the behaviour of

a subset of the population (called sample). The RV that describes the

property we are interested in is then computed for the sample. Finally,

we infer the sample-RV parameters to the population-RV.

3We assume that the iteration space is sampled in an independent way.

Statistical Model 21

Let Q ⊂ Ωn be the sample, N = card(Ωn) and k = card(Q). The

value p̂ is defined as

p̂ =
successes ∈ Q

k

If the sample is randomly chosen among the population, the RV that

describes the behaviour of the sample is Y ∼ Bin(k, p̂), and we have

that4:
(p̂− p)
√

pq
k

∼ N(0, 1)

provided that the sample does not contain repeated elements and the

following conditions hold [16]:

• k
N
≤ 0.05

• p̂k ≥ 5 and 1− p̂k ≥ 5

• k ≥ 30

Once a confidence level5 is chosen, a confidence interval for the value of

p is given by the following expression6:

p ∈ p̂± zα
2

√

p̂(1− p̂)

k

4Z∼N(0,1) is the Normal or Gauss distribution
5e.g: if the percentage is 95%, it represents that for 95 out of every 100 different

samples, p̂ will belong to the confidence interval
6α = 1-confidence

22 Statistical Model

Chapter 3

Call Statements

In the previous chapter we have shown how we obtain all the necessary

information to analyse codes with multiple loop nest. Since we want to

analyse whole programs, we should deal with call statements and subrou-

tines. This chapter introduces our Abstract Inlining Technique, which

applied to all different calls, allows us to analyse whole programs.

24 Abstract Inlining

3.1 Gentle Introduction to FORTRAN Sub-

routines

FORTRAN supports two kind of procedures, which must not be recur-

sive. Subroutines begin with subroutine name(arg1, arg2,...). There-

after, the types of all arguments and local variables should be declared.

Subroutines are called from another routine with the command call

name(arg1, arg2,...).

Functions begin with function name(arg1, arg2,...), then the types

of name, all arguments and local variables should be declared.

All arguments are passed using “call by reference” (like VAR arg

in Pascal or &arg in C/C++). Changing the value of an argument in

the subroutine changes the value of the corresponding variable in the

calling program. Actual arguments in the calling program may have

different type or dimensioning from in the declaration in the function or

subroutine. No type checking is done during compiling or run time.

Arguments in a function or subroutine can be declared as arrays with

variable size. This means that the address of the first array element is

passed to the subroutine, and calls to subsequent array elements access

subsequent memory addresses. For two dimensional arrays the first array

index must be known. Local variables cannot be arrays with variable size

(since FORTRAN does not have dynamic memory allocation).

3.2 Abstract Inlining

In an attempt to analyse exactly a program containing call statements,

we perform an abstract inlining for a call whenever possible. We do

not actually generate the inlined code. We only need to obtain the in-

Abstract Inlining 25

· · ·

CALL f(A, B)

· · ·

⇒

· · ·

Stack[BP] = RetAddr

Stack[BP + 4] = @A

Stack[BP + 8] = @B

. . . = Stack[BP − 4]

. . . = Stack[BP − 8]

f’s code body (with the formals

replaced by actuals or renamed)

RetAddr = Stack[BP − 12]

· · ·

Figure 3.1: Abstract inlining of a subroutine call.

formation required for analysing the inlined code. Each subroutine is

associated with an abstract function consisting of the information about

the memory accesses to the run-time stack, its code body (i.e., its loop

nests with references), and local variable and formal parameter declara-

tions. As shown in Figure 3.1, every call to a subroutine is abstractly

inlined by replacing the call with the information in the abstract function

associated with the subroutine.

The calling conventions used for a program are compiler- and archi-

tecture-dependent. Figure 3.1 depicts one such a convention for 32

bit machines. Stack denotes the run-time stack modelled as a one-

dimensional array of an infinite size. If SP is 0 initially, its value is

known at compile time at every call site due to the absence of recursive

calls. The base address of Stack, if unknown at compile time, has to

be obtained at run time. Then Stack is treated just like an ordinary

array reference. For large programs, the impact of these stack accesses

is insignificant.

Not every call can be inlined according to Table 3.1. To analyse a call

26 Abstract Inlining

Actual Parameters Calls
Program

P-able R-able N-able Total A-able

Tomcatv 0 0 0 0 0

swim 0 0 0 5 5

su2cor 503 87 0 150 150

hydro2d 122 0 19 82 82

mgrid 68 0 35 23 2

applu 79 0 0 23 23

apsi 1601 0 210 186 118

fppp 83 0 3 17 16

turb3D 759 0 75 111 86

wave5 591 2 110 171 127

CSS 2489 0 8 965 965

LWSI 140 0 19 28 18

MTSI 186 0 2 63 63

NASI 236 0 237 75 41

OCSI 620 0 48 244 209

SDSI 189 18 49 129 103

SMSI 321 0 41 53 38

SRSI 242 0 176 50 13

TFSI 137 0 91 44 13

WSSI 836 127 7 185 179

TOTAL 9202 234 1130 2604 2251

% 87.09 2.21 10.89 100 86.44

Table 3.1: Statistics for the actual parameters and calls in SPECfp95

and Perfect benchmarks.

Abstract Inlining 27

exactly, our method needs to know at compile time the base addresses of

all its actual parameters. Let AP be an actual parameter that is either

a scalar or an array variable or a subscripted variable with an affine data

access expression and FP be its matching formal parameter.

AP is propagateable if, after inlining, every reference to FP can be

replaced by a reference to AP . This allows the reuse to AP both in

the caller and in all the callees to be potentially exploited. In Col-

umn “P-able”, we consider AP as propagateable if FP is a scalar, or

one-dimensional array or if both AP and FP are arrays of the same

dimensionality with matching sizes in all but the last dimension.

Example. Let {A(N,M), A(I1,I2)} be the actual parameter (A is an

array whose dimensions are N and M), and {S(N,M), S(I3,I4+1)} the

formal parameter. We are interested in the memory address accessed by

the formal parameter. Let SOF be the size of the elements of the array.

The memory address is given by the expression

@S + (I3− 1) ∗ SOF + (I4 + 1− 1) ∗ SOF ∗N

Since parameters are passed by reference, @S is the memory address of

the actual parameter. This is, @A+(I1−1)∗SOF +(I2−1)∗SOF ∗N .

Substituting, we obtain

@A+(I1−1)∗SOF+(I2−1)∗SOF∗N+(I3−1)∗SOF+(I4+1−1)∗SOF∗N

Finally, grouping, we obtain that it is analysable:

@A+(I1+I3−2)∗SOF+(I2+I4−1)∗SOF ∗N = A(I1+I3−1, I2+I4)

End Example.

AP is renameable if, after inlining, every reference to FP can be

replaced by a reference to AP ′ such that AP and AP ′ have the same

28 Abstract Inlining

base address (i.e., @AP = @AP ′). The propagateable actuals are not

also classified as renameable. In Column “R-able”, we consider AP as

renameable if the sizes of all but the last dimension for AP and FP are

known statically. This still allows the reuse between the references to

FP in the same subroutine to be exploited.

Example. Let {A(N,M), A(I1,I2)} be the actual parameter (A is an

array whose dimensions are N and M), and {S(N’,M’,P), S(I3,I4,2)} the

formal parameter. We are interested in the memory address accessed by

the formal parameter. Let SOF be the size of the elements of the array.

The memory address is given by the expression

@S + (I3− 1) ∗ SOF + (I4− 1) ∗ SOF ∗N ′ + (2− 1) ∗ SOF ∗N ′ ∗M ′

Since parameters are passed by reference, @S is the memory address of

the actual parameter. This is, @A+(I1−1)∗SOF +(I2−1)∗SOF ∗N .

Substituting, we obtain

@A+(I1−1)∗SOF+(I2−1)∗SOF∗N+(I3−1)∗SOF+(I4−1)∗SOF∗N ′+

+(2− 1) ∗ SOF ∗N ′ ∗M ′

Finally, grouping and renaming S by S1, we obtain:

@A + (I1− 1 + (I2− 1) ∗N + I3− 1) ∗ SOF + (I4− 1) ∗ SOF ∗N ′+

+(2− 1) ∗ SOF ∗N ′ ∗M ′ =

= S1(I1− 1 + (I2− 1) ∗N + I3, I4, 2)

End Example.

Abstract Inlining 29

In Column “N-able”, the actuals that are neither propagateable nor

renameable, known as non-analysable, are represented. The propagate-

able and renameable actuals are potentially analysable since all references

to FP can be analysable if affine.

A call can be abstractly inlined, i.e., is potentially analysable, if all

its actuals are analysable. Table 3.1 shows that we can inline 86.44%

of calls from SPECfp95 and Perfect benchmarks. These statistics are

obtained by examining only a call and its callee.

Figure 3.2 serves to illustrate the inlining of a code segment (which

may have out of array bound accesses if loop bounds are not chosen

properly). The inlined code does not compile (dimensions of the arrays

declared in the main program should be statically known) but can be

analysed by our method. Hence, the name abstract inlining.

Finally, system calls (to I/O subroutines and intrinsic functions) are

not inlined. The memory accesses inside are not accounted for. These

calls can be inlined if their abstract functions are known.

30 Abstract Inlining

REAL*8 X,A,B

DIMENSION A(10, 10), B(20, 20)

DO I1 = . . .

DO I2 = . . .

A(I1, I2) = · · ·

CALL f(X,A,B,B(I1, I2))

CALL g(A(I1, I2), A(1, I2), B)

SUBROUTINE f(Y,C,D, S)

REAL*8 Y,C,D, S

DIMENSION C(10, 10), D(400), S(10, 10, ∗)

DO I3 = . . .

DO I4 = . . .

C(I3, I4 − 1) = Y +D(I3 − 1 + 20 ∗ (I4 − 1))

S(I3, I4, 2) = · · ·

SUBROUTINE g(E,F, T)

· · ·

REAL*8 E,F, T

DIMENSION E(10, 10), F (10), T (100, 4)

DO I3 = . . .

DO I4 = . . .

E(I3, I4) = F (I4)− T (I3, I4)

⇓

REAL*8 X,A,B,B1, B2

DIMENSION A(10, 10), B(20, 20)

C THE FOLLOWING LINE DOES NOT COMPILE

DIMENSION B1(10, 10, ∗), B2(100, 4)

DO I1 = . . .

DO I2 = . . .

A(I1, I2) = · · ·

DO I3 = . . .

Do I4 = . . .

A(I3, I4−1) = X +B(I3−1 + 20 ∗ (I4−1))

B1(I1 + 10 ∗ (I2 − 1) + I3 − 1, I4, 2) = · · ·

DO I3 = . . .

Do I4 = . . .

A(I1+I3−1, I2+I4−1) = A(I4, I2)−B2(I3, I4)

Figure 3.2: Propagation and renaming of actual parameters. All actuals

but the last are propagated. The last actuals in both calls are renamed

to B1 and B2, respectively. After inlining, @B = @B1 = @B2.

Chapter 4

Reuse Vectors

Once we have all the references identified and the different RISs built,

it is time to analyse the locality of the program. In this chapter we ex-

plain how we devise the new reuse vectors, describing the locality among

different RISs.

32 Uniformly Generated References

Caches are effective only when programs exhibit sufficient data lo-

cality in their memory accesses. Therefore, accurate approaches that

estimate the locality are very useful. Different approaches provide trade-

offs between: accuracy, speed, flexibility (i.e., adaptability to different

memory configurations) and information provided.

In this chapter, the concept of reuse vectors is introduced (for a

more intuitive introduction, see Appendix A) and some previous work

on computing reuse vectors recalled. Then we describe how we compute

reuse vectors. We generalise Wolf and Lam’s reuse framework [77, 82]

to calculate reuse vectors across different RISs, including multiple nests

and conditionals. We also add additional spatial reuse vectors to capture

the reuse spanning two adjacent columns of an array. Finally, some

discussions on our approach are provided.

Mem LineR(~ı) (Cache SetR(~ı)) (see Section A.1.2 in Appendix A)

denotes the memory line (cache set) to which the memory address ac-

cessed by reference R at iteration ~ı is mapped.

Let Mem AddrR(~ı) be the memory address of the reference R at

iteration ~ı. We have:

Mem LineR(~ı) = bMem AddrR(~ı)/Lsc

Cache SetR(~ı) = Mem LineR(~ı) mod N

where Ls is the cache line size (in bytes) and N = Cs/k is the number

of cache sets.

4.1 Uniformly Generated References

We recall the definition of uniformly generated reference [77]. Let n be

the depth of a loop nest, and d be the dimensions of an array R. Two

Recalling Reuse Vectors 33

references R(f(~ı)) and R(g(~ı)), where f and g are indexing functions

Z
n → Z

d, are called uniformly generated if

f(~ı) = H~ı + ~cf g(~ı) = H~ı + ~cg

where H is a linear transformation and ~cf and ~cg are constant vectors.

After loop nest normalisation (see Section 2.3.2), ~I = (I1, I2, . . . , In)

is the index vector of all n-dimensional loop nests. The concept of uni-

formly generated references for perfect loop nests [24, 77] can be carried

over to multiple nests. All z references in our running example (see

Figure 2.4) are uniformly generated, whereas there are two uniformly

generated reference sets in Figure 2.2: {B(I2 − 1, I1), B(I2, I1)} and

{B(I1, I2)}.

4.2 Recalling Reuse Vectors

The concept of reuse vectors was introduced by Wolf and Lam in [77] as

a mathematical representation to determine the direction and distance

of data reuse between uniformly generated references. Let Rp (p for ‘pro-

ducer’) and Rc (c for ‘consumer’) be two uniformly generated references

A(H~ı+~cp) and A(H~ı+~cc), respectively. Let ~r º ~0 be an integer vector.

Rc at iteration ~ı (with the memory access A(H~ı+~cc)) reuses potentially

from Rp at ~ı− ~r (with the memory access A(H(~ı− ~r) + ~cc)) if

Mem LineRc(~ı) = Mem LineRp(~ı− ~r)

Then ~r is said to be a reuse vector. It represents a potential reuse in the

cache between the two memory accesses since the memory line touched

in the cache at the first access (at ~ı−~r) may have been evicted from the

cache before it gets reused at the second access (at ~ı). As is customary,

34 Recalling Reuse Vectors

~r is temporal (reusing the same element) if the following equality also

holds:

Mem AddrRc(~ı) = Mem AddrRp(~ı− ~r)

and spatial (reusing the same cache line but not the same element) oth-

erwise. In addition, the reuse is said to be a self-reuse if Rc and Rp

are identical and a group-reuse otherwise. Thus, there are four kinds of

reuse: self-temporal, group-temporal, self-spatial and group-spatial.

Wolf and Lam [77] discuss how to compute reuse vectors for perfect

loop nests with straight-line assignments, assuming all RISs are the entire

iteration space. By quantifying the reuse of a loop nest using a vector

space spanned by (elementary) reuse vectors, they apply unimodular

and tiling transformations to improve parallelism and locality in the

nest. Later, Xue and Huang [82] describe an extension to allow non-

elementary reuse vectors to be represented exactly. If the columns of

every array are aligned at the memory line boundaries, Wolf and Lam’s

reuse framework provides all reuse vectors required. Otherwise, some

extra reuse vectors are needed to represent cross-column reuse cases.

Consider our running example (see Figure 2.4), where z is a 2-D

array of size (N + 1) × (M + 1). Suppose that a cache line has four

array elements and that z(N − 1, 1), z(N, 1), z(N + 1, 1) and z(1, 2)

resides in a common memory line in that order. For Ref3, i.e., z(I1, I2),

the access z(N − 1, 1) at iteration (N − 1, 1) may potentially reuse this

memory line in the cache touched by the access z(1, 2) at the earlier

iteration (1, 2). This reuse is described by the self-spatial reuse vector

(N−1, 1)−(1, 2) = (N−2,−1), which is not captured by Wolf and Lam’s

framework. For details on computing Wolf and Lam’s reuse vectors, see

[77].

Group Reuse Among Different RISs 35

4.3 Group Reuse Among Different RISs

Let Rp and Rc be two uniformly generated references. Let Rp be the

producer A(M~I + ~mp) nested inside the innermost loop labelled by

(`p
1, `

p
2, · · · , `p

n) (see Section 2.3.3) and Rc be the consumer A(M~I + ~mc)

nested inside the innermost loop labelled by (`c
1, `

c
2, · · · , `c

n), where
~I =

(I1, I2, . . . , In).

Consider temporal reuse between Rp and Rc. Iterations ~ı1 of Rp and

~ı2 of Rc reference the same data whenever M~ı1 + ~mp = M~ı2 + ~mc, that

is, when M(~ı1 −~ı2) = ~mp − ~mc.

Let ~x = (x1, x2, . . . , xn) be a solution to:

M~x = ~mp − ~mc (4.1)

and

~rt = (`c
1 − `p

1, x1, `
c
2 − `p

2, x2, . . . , `
c
n − `p

n, xn)

such that ~rt º 0. Then ~rt is a temporal reuse vector from Rp to Rc.

In FORTRAN, all arrays are column-major. Let ~y = (y1, y2, . . . , yn)

be a solution to:

M ′~y = ~m′
p − ~m′

c

|M1~y| < Ls

(4.2)

but not a solution to (4.1), where M1 is the first row of M , and every

primed term is obtained from its corresponding term in (4.1) with its

first row or entry removed. Let

~rs = (`c
1 − `p

1, y1, `
c
2 − `p

2, y2, . . . , `
c
n − `p

n, yn)

such that ~rs º 0. Then ~rs is a spatial reuse vector from Rp to Rc.

If a memory line spans two adjacent columns of an array, we will add

spatial reuse vectors to capture such reuse. The spatial reuse vectors of

36 Group Reuse Among Different RISs

� B(N-1,i1)� B(N,i1)� B(1,i1+1)� B(2,i1+1)�

Rp�accessed�when�(I1,I2)=(i1,N)�

Rc�accessed�when�(I1,I2)=(i1+1,1)�

One�Memory�Line�

Figure 4.1: Spatial reuse across array columns (Ls=4).

this second kind are added individually depending on the iteration space

shapes and cache parameters used.

Let us derive reuse vectors for the first two references to B in Fig-

ure 2.2. Let Rp be B(I2 − 1, I1) nested in the inner loop labelled by

~Lp = (1, 1) and Rc be B(I2, I1) nested inside the inner loop labelled by

~Lc = (1, 2). The subscript expressions for both references are affine:

M~I + ~mp = [0 1
1 0]

[
I1

I2

]
+

[
−1
0

]

M~I + ~mc = [0 1
1 0]

[
I1

I2

]
+ [00]

In this case, the equation (4.1) becomes:

[0 1
1 0] [

x1
x2

] =
[
−1
0

]

which has the unique solution (0,−1). Thus, the unique temporal reuse

vector from B(I2 − 1, I1) to B(I2, I1) is (0, 0, 1,−1). To find the spatial

reuse vectors spanning a single column of B, we solve:

[1 0] [y1
y2] = 0

[0 1] [y1
y2] < Ls

Discussion 37

DO I1 = 0,400

DO I2 = 0,140

IF (I1.LE.30) THEN

R1: A(I2)

ENDIF

IF (I1 + I2.GE.200) THEN

R2: A(I2)

ENDIF

ENDDO

ENDDO

I1

I2

(170, 0)

(30, 0)

RIS for R1

RIS for R2

(a) Code (b) RISs

Figure 4.2: Derivation of group-reuse vectors.

which is the instance of the equation (4.2) for this case. Thus, all these

vectors have the form (0, y2). We would add the following spatial reuse

vectors:

(0, 0, 1,−2), (0, 0, 1,−3), . . . , (0, 0, 1,−(Ls − 1))

Finally, we would need reuse vectors (0, 1, 0, 1 − N) to capture the

reuse for the elements at the end of one array column and the beginning

of the next column. This is illustrated in Figure 4.1.

4.4 Discussion

If a reference is guarded by an IF conditional, its RIS may not be the

entire iteration space of the enclosing loop nest. This causes complica-

tions only in the derivation of group temporal reuse vectors. The self

38 Discussion

temporal and spatial reuse vectors for a reference are defined and de-

rived without a need to refer to its RIS. As for the group reuse vectors

from Rp to Rc, a possible way to handle irregular RISs is to generate all

potential ones conservatively. In the case of group temporal reuse, there

can be infinitely many reuse vectors to from some facets of RISRp to

some facets of RISRc .

Consider an extreme example illustrated in Figure 4.2. R2 (the

reusing reference) at every point (I1, I2) on the left boundary of its RIS

may reuse R1 (the reused reference) at the point (30, I2) on the right

boundary of R1’s RIS along the symbolic group-reuse vector (I1−30, 0).

If we ignore the two conditionals to analyse the reuse between the two

references, the group-reuse vector ~r = (0, 0) will describe correctly the

reuse from R1 to R2. When the miss equations for R2 are formulated,

the two conditionals must be taken into account. Then this reuse vec-

tor will be ignored since the two RISs do not overlap. As a result, the

number of cache misses for R2 on the left boundary of its RIS may be

over-estimated. For practical applications, such an over-estimation is

negligible because (a) the over-estimation occurs only on a facet of a

RIS (e.g., the left boundary of R2’s RIS) and (b) the underlying refer-

ence may reuse on the facet via other reuse vectors. In the example, R2

may reuse from itself along the self-spatial reuse vector (1,−1). Thus,

only a small fraction of these boundary points are mis-predicted.

In our implementation, these reuse vectors are ignored. Our extensive

validation confirm that an overestimation of cache misses thus caused is

negligible since (a) we overestimate only on some facets of RISRc and

(b) Rc may reuse on the facets by other reuse vectors (usually self reuse

vectors).

Chapter 5

Cache Behaviour

Analysis

Reuse vectors describe the locality and potential reuse among different

references. But reuse does not necessarily result in a hit. This chapter

shows how we describe cache behaviour based on the reuse description.

First, we set up a collection of equations that characterise those iteration

points that do not result in a miss. Secondly, we present two different

methods that yield the miss ratio from those equations.

40 Forming Equations

Following the same classification as the CMEs, we divide our miss

equations into two groups : compulsory or cold (miss) equations and

replacement (miss) equations. Cold misses represent the first time a

memory line is touched while replacement misses are those accesses that

result in misses because the cache lines that would have been reused were

evicted from the cache before they get reused. Note that replacement

equations represent both capacity and interference misses.

In this section, we present the miss equations as a specification of

the cache misses in a loop nest. We then discuss two algorithms for

finding cache misses from these equations. In particular, our replacement

miss equations are formulated and solved differently from those in the

CMEs [28] since the involved RISs can be different. We also describe

an algorithm for computing efficiently the volume of a RIS for sampling

purposes.

5.1 Forming Equations

Let ~r be a reuse vector from the producer reference Rp to the consumer

reference Rc. We want to find out if Rc at iteration~ı can reuse the cache

line accessed by Rp at ~ı − ~r. Let Ri be an intervening reference such

that the access of Ri at some iteration point ~ between ~ı− ~r and ~ı1 may

be mapped to the same cache set as the access of Rp at ~ı − ~r. If that

happens, a set contention occurs between the access of Rp at ~ı − ~r and

the access of Ri at ~. In a k-way set associative cache, it takes k distinct

set contentions to evict the cache line touched by the access of Rp at

~ı− ~r.

We give below the miss equations that can be further analysed to

1In lexicographical order.

Forming Equations 41

determine if the access of Rc at ~ı is a miss or hit, assuming the single

reuse vector ~r from Rp to Rc and the single intervening reference Ri.

5.1.1 Cold Equations

The cold equations for Rc along ~r represent the iteration points where

the memory lines are brought to the cache for the first time:

~ı ∈ RISRc

and
(
~ı − ~r 6∈ RISRp

or

Mem LineRc(~ı) 6= Mem LineRp(~ı − ~r)
)

If ~r is temporal, the inequality is false and thus redundant.

5.1.2 Replacement Equations

The replacement equations for Rc along ~r are to investigate if Rc at

iteration ~ı can reuse the cache line that Rp accessed at iteration ~ı − ~r

subject to the set contentions caused by the memory accesses from Ri.

This equations only describe cache set contentions, and we rely on the

solver to check whether they result in a miss or not. Ri may cause a

cache set contention at all intervening points executed between ~ı−~r and

~ı:

Mem LineRc(~ı) = Mem LineRp(~ı − ~r)

~ı ∈ RISRc

~ı − ~r ∈ RISRp

Cache SetRc(~ı) = Cache SetRi(~)

~ ∈ JRi

42 Forming Equations

~ı−~r
~ı

I1

I2

~ı−~r
~ı

~ı−~r
~ı

(a) Ri = Ref3 (b) Ri = Ref1 (c) Ri = Ref2

Figure 5.1: The interference sets with the three z references when Rc =

Rp = Ref1 along ~r = (1, 0) for the running example. For illustration

purposes, the point ~ı ∈ RISRef1
being analysed is chosen such that

~ı 6∈ RISRef2
and ~ı 6∈ RISRef3

. In each case, the interference set consists

of the solid line(s) and ~ı or ~ı−~r if the corresponding point is a fat point.

where JRi denotes the set of all these intervening iteration points, called

the interference set for Rc along ~r, and is specified precisely by:

JRi = {~ ∈ RISRi | ~ ∈ ¿~ı− ~r,~ı À}

where ‘¿’ is ‘[’ if Ri is lexically after Rp and ‘(’ otherwise and ‘À’

is ‘]’ if Ri is lexically before Rc and ‘)’ otherwise. A reference is neither

lexically before nor lexically after itself. Figure 5.1 shows the interference

sets with the three z references (see our running example in Figure 2.4)

when Ref1 is analysed along its self-spatial reuse vector ~r = (1, 0).

Finding Cache Misses 43

5.2 Finding Cache Misses

Miss equations contain precise information about cache behaviour, but

obtaining the information such as number and causes of the misses is not

straightforward. In the following sections, we recall some ways to inter-

pret the miss equations and present two methods that give the number

of misses of a reference.

5.2.1 Overview

Each equation represents a convex polyhedron2 in R
n [9, 26], where n

depends on the type of equation. The integer points inside each convex

polyhedron represent the potential cache misses. We may consider two

different ways of computing them, either by solving the equations or

checking whether a point is solution or not.

Analytical method

In this section we will give an analytical description of the solution set

of the original CMEs. This solution set represents the cache misses of

a reference, and its volume the number of misses. The method is based

on the following two theorems [26]:

• Theorem 1: The set of all misses of a reference along a reuse

vector is given by the union of all the solution sets of the equations

corresponding to that reuse vector.

Given a reference and a reuse vector, an iteration point produces a miss

if it is either a compulsory or a replacement miss.

2The original work only deals with convex iteration spaces. In our approach this

is not true anymore.

44 Finding Cache Misses

• Theorem 2: The set of all miss instances of a reference is given

by the intersection of all the miss-instance sets along the reuse

vectors.

Given a reference, an iteration point results in a hit if it exploits the

locality of at least one of the reuse vectors.

Thus, given a reference R with m reuse vectors and nk equations

for the kth reuse vector, the polyhedron that contains all the iteration

points that result in a miss is [26]:

Set Misses = ∩m
k=1 ∪

nk
j=1 Solution Set Equationj

The number of polyhedra that must be counted is 2s [69], making

this problem infeasible due to its huge computing time.

Traversing the iteration space

The second method is based on the fact that every iteration point can

be studied independently from the rest of the iteration space.

Given a reference, all iteration points are tested independently, study-

ing the equations in order: from the equations generated for the shortest

reuse vector to the equations generated by the longest one [27].

Let us consider a reference R. We study the reuse vectors in a lex-

icographical ascendent order. After one reuse vector has been treated,

some iteration points will be identified as resulting in a miss or a hit.

Others rest undetermined. The iteration points are studied as follows:

• If an iteration point is a solution to a cold equation, the reuse

along the reuse vector ~r is not realised in this iteration point, but

we cannot take any definitive decision about the character of this

Finding Cache Misses 45

�

hit�

miss�

�
�

�
Iteration�
Points�

Cold��
�

Misses�

�
MISSES�

�
HITS�

Cold�
Equations�

Replacement�
Equations�

To�Next�Reuse�
Vector�

Figure 5.2: Studying iteration points through a reuse vector.

iteration point until all reuse vectors have been studied. Thus, this

point will be considered as undetermined.

• If an iteration point is not a solution to any of the cold equations,

it will be declared as a miss if it is a solution to a replacement

equations, and as a hit if it is no solution to any equation either.

The algorithm stops when all iteration points have been characterised.

Figure 5.2 shows the analysis for a particular reuse vector.

Counting the total number of solution is a very time-consuming pro-

cess, since we may expect very large RISs. This makes it rather imprac-

tical to be included in product-compilers. However, we can use sampling

techniques (see Section 2.4) to capture the distribution of misses and use

the relative results for both guiding compiler-optimisations and obtain-

ing the number of misses.

46 FindMisses and EstimateMisses

5.3 FindMisses and EstimateMisses

Figure 5.3 gives two algorithms for obtaining the cache misses from a

whole program, consisting of multiple references and reuse vectors in

multiple loop nests. Both FindMisses and EstimateMisses analyse each

reference by going through its reuse vectors in lexicographical order ≺.

If an iteration point is a solution to the cold equations along the cur-

rent reuse vector ~r, its behaviour is indeterminate and will be examined

further using the other reuse vectors later in the list. Otherwise, the it-

eration point is classified either as a hit or a miss using the replacement

equations along ~r. After all reuse vectors have been tried, the remaining

indeterminate iteration points are cold misses.

Our replacement equations represent only cache set contentions. In

a k-way set associative cache, it takes k distinct cache set contentions

to cause a cache line to be evicted from the cache set. There will be a

cache miss only when k distinct solutions are found [28, 70].

FindMisses analyses all iteration points in a RIS and is practical only

for programs of small sizes [28, 70]. EstimateMisses analyses a sample of

a RIS and is capable of analysing programs significantly more efficiently

with a controlled degree of accuracy. EstimateMisses expects the user

to enter values to the two parameters: the confidence percentage c and

the confidence width w, where 0% < c 6 100% and 0 < w < 1 (see

Section 2.4). The two input values determine the size of the sample

taken from RISR and also impose a lower bound on |RISR|. If a RIS

is too small to achieve (c, w), we either use the default values (c′, w′) =

(90%, 0.15) (which requires a sample size of 72 points and |RISR| > 1440

[69]) or analyse all points in RISR (when |RISR| < 1440). The meanings

of c and w are such that if we run EstimateMisses many times, the

FindMisses and EstimateMisses 47

Algorithm MissAnalyser

for each reference R

Sort its reuse vectors in increasing order ≺

HR = ∅ // Hits for R

RMR = ∅ // Replacement misses for R

CMR = S(R) // Cold misses for R initially

for each reuse vector ~r of R in the sorted list

CM ′
R = solutions of R’s cold miss along ~r

for each ~ı ∈ (CMR − CM ′
R)

if ~ı is a ”replacement” hit along ~r

HR = HR ∪ {~ı}

else

RMR = RMR ∪ {~ı}

CMR = CM ′
R

Miss Ratio(R) =
|CMR|+|RMR|

|S(R)|

Loop Nest Miss Ratio =
∑

R |RISR|×Miss Ratio(R)
∑

R |RISR|

Algorithm FindMisses
for each reference R (in no particular order)
S(R) = RISR // analyse all points

MissAnalyser

Algorithm EstimateMisses
c is the confidence percentage from the user
w is the confidence interval from the user
for each reference R (in no particular order)
compute the volume of RISR
if RISR is too small to achieve (c, w)

if RISR is large enough to achieve the default

(c′, w′) = (90%, 0.15)

S(R) = a sample (c′, w′) of RISR
else

S(R) = RISR // analyse all points
else

S(R) = a sample (c, w) of RISR
MissAnalyser

Figure 5.3: Two algorithms for computing the cache misses from the

cold and replacement miss equations.

48 FindMisses and EstimateMisses

real miss ratio for each R obtained in c of these runs will lie in the

interval [Miss Ratio(R) − w/2,Miss Ratio(R) + w/2]. However, this

interpretation does not apply to the miss ratio for the entire loop nest

given in line 15. In all our experiments, real and estimated miss ratios

are close (see Chapter 6).

Thus, the statistical sampling technique used requires the size of ev-

ery RIS to be calculated. Our algorithm for computing the volume of

a RIS is described as follows. If the IF conditions guarding a refer-

ence form a union of convex polyhedra, then the corresponding RIS is

a union of convex polyhedra because the iteration space is convex. The

number of points contained in such a RIS is calculated by slicing the

RIS recursively into regions of lower and lower dimensions until even-

tually every region is either empty or a (one-dimensional) union of line

segments so that the points in the region can be counted easily. This

algorithm, while exponential in terms of the dimension of the iteration

space, is very efficient for practical programs with simple loop bounds

and affine conditionals. Other methods for computing the volume of a

convex polytope also exist [14, 56].

If a reference R is guarded by some non-affine conditionals, then

RISR can be arbitrarily complex. There is not any general method for

computing the volume of RISR. In our implementation, we compute

the volume of such a RIS by proceeding as before with all non-affine

conditionals ignored and then count only those points that satisfy all

non-affine conditionals. This simple extension has not been used in our

experiments since we have not found any data-independent conditionals

that are not affine in any programs analysed.

Chapter 6

Validation

In this chapter we evaluate extensively our approach. We present results

for different kernels, isolating IF conditionals and multiple loop nests

in different tests. Finally, we put everything together and we show the

accuracy and feasibility of our approach for analysing whole programs.

50 Prototyping Implementation

Input Program

The Polaris IR

Load/Store Level IROpts

Abstract Call Inlining

Loop Nest Normalisation

Obtaining Reuse Vectors, Base

addresses, and access order of refs

Forming Eqs

Solving Eqs

FindMisses

or

EstimateMisses

Cache Simulator

?

Cache Parameters

instrumentation

Figure 6.1: A framework for analysis and evaluation.

6.1 Prototyping Implementation

Figure 6.1 depicts the structure of our prototyping system for finding

cache misses and validating the accuracy of our method against a cache

simulator. We have implemented our method in the Coyote Miss Equa-

tions solver [8]. The component Opts optimises the program and al-

locates variables to registers or memory. The reuse vectors, the base

Analysing IF Conditionals 51

addresses of variables and the relative access order of memory references

are obtained from a load-store low-level internal representation (IR),

which is produced from the Polaris1 IR [18] of the program using Icti-

neo2 [6]. The inlining component is currently being implemented. The

same information obtained is fed to both our algorithms and the cache

simulator used.

6.2 Analysing IF Conditionals

We have analysed a range of programs from SPECfp95, Perfect Suite,

Livermore Kernels, Linpack and Lapack. We report our experimental

results for four single loop nests.

Unless otherwise specified, we assume a 32KB cache with a 32B cache

line size. The execution times are all obtained on a 933MHz PentiumIII

PC. All simulation results are obtained using a trace-driven simulator.

6.2.1 Loop Nest Kernels

We present our experimental results for our running example (see Fig-

ure 2.4) and the three loop nests given in Appendix B. The problem

sizes are those as specified in the programs. In all cases, we assume a

cache of Cs=32KB with Ls=32B bytes per cache line and 8 bytes per

array element. Therefore, every cache line has four array elements.

1The Polaris compiler takes a Fortran77 program as input. It can transform this

program so that it runs efficiently on a parallel computer.
2Ictineo library is built on the top of Polaris. Its high-level internal representation

allows doing both high and low-level transformations and optimisations in a unified

way.

52 Analysing IF Conditionals

#Cache Misses Miss Ratio Abs. Exe.T (secs)
Prog. Cache Sim. F.M. Sim. F.M. Err Sim. F.M.

direct 1164004 1164004 81.69 81.69 0.00 0.53 55.62

COND2-way 1157335 1157335 81.22 81.22 0.00 0.58 105.00

4-way 1157335 1157335 81.22 81.22 0.00 0.58 180.64

direct 81440 85193 6.13 6.41 0.28 0.32 67.09

LU 2-way 57441 70643 4.32 5.31 0.99 0.33 71.04

4-way 61278 77461 4.61 5.83 1.22 0.34 77.83

direct 287697 287700 7.17 7.17 0.00 1.02 55.24

MM 2-way 262699 262702 6.55 6.55 0.00 1.04 59.31

4-way 262699 262702 6.55 6.55 0.00 1.10 65.01

direct 802 816 0.16 0.16 0.00 0.17 1.50

LWSI 2-way 802 816 0.16 0.16 0.00 0.17 14.36

4-way 802 816 0.16 0.16 0.00 0.17 30.69

Table 6.1: Cache misses for (Cs, Ls) =(32KB,32B) and execution times

for FindMisses (F.M.).

FindMisses

This algorithm finds the cache misses from the miss equations by analysing

all iteration points (i.e., all memory accesses) in the loop nest. It is com-

putationally expensive for large iteration spaces since it performs essen-

tially a compile-time cache simulation of the loop nest. However, this

algorithm can be used ideally to evaluate the accuracy of our method,

in particular, our reuse vector analysis. Table 6.1 compares FindMisses

and a cache simulator for caches of different associativities. The absolute

error between the miss ratios in both cases in all examples is negligible.

The execution times in all cases indicate that analysing all points is too

expensive to be used at compile-time in guiding compiler optimisations.

Some further discussions are provided below.

Analysing IF Conditionals 53

COND Both FindMisses and the simulator yield the same results in all

cache configurations.

LU FindMisses over-estimates the cache misses in all cache configu-

rations used. The mis-predictions are due to the lack of reuse

vectors to describe the reuse that exists among the non-uniformly

generated references: a(j,i), a(i,i), a(j,k) and a(i,k). For exam-

ple, a(i,i) accesses a(1,1) and a(j,i) accesses a(2,1) at the same

iteration (1, 1, 2). Both accesses are to the same cache line. The

lack of a reuse vector to describe this particular reuse results in

the memory access a(1, 1) to be classified incorrectly as a miss. To

validate this assumption, we ran FindMisses by adding four ad-

ditional group-spatial reuse vectors: (0, 0, 0) from a(j, i) to a(i, i),

(0, 1, 0) from a(i, i) to a(j, i), (0, 0, 0) from a(j, k) to a(i, k) and

(0, 1, 0) from a(i, k) to a(j, k). The cache misses obtained for the

“direct”, “2-way” and “4-way” cases have been reduced to 81553,

64704 and 71200, respectively. As a result, the absolute errors in

these cases have been reduced to 0.00, 0.55 and 0.75, respectively.

MM FindMisses over-estimates the number of misses in all three cases

by a margin of three. The three mis-predictions are due to the lack

of reuse vectors to describe the spatial reuse between references

b(i,k) and c(k,j). The base addresses for b and c are 230136 and

310136, respectively. Thus, the memory addresses of b(98, 100),

b(99, 100), b(100, 100) and c(1, 1) are 310112, 310120, 310128 and

310136, respectively. This implies that all four elements reside in

the same memory line (starting at 475). A simple analysis shows

that the access b(i, 100) at iteration (i, 1, 100) reuses this memory

line brought into the cache by the access c(1, 1) at iteration (i, 1, 1),

54 Analysing IF Conditionals

Miss Ratio Abs. Exe.T (secs)
Prog. Cache Sim. E.M. Err Sim. E.M.

direct 81.69 81.29 0.40 0.53 0.40

COND 2-way 81.22 80.92 0.30 0.58 0.64

4-way 81.22 80.92 0.30 0.58 0.97

direct 6.13 6.49 0.36 0.32 0.68

LU 2-way 4.32 5.18 0.86 0.33 0.70

4-way 4.61 5.73 1.12 0.34 0.69

direct 7.17 7.18 0.01 1.02 0.12

MM 2-way 6.55 6.44 0.11 1.04 0.11

4-way 6.55 6.44 0.11 1.10 0.13

direct 0.16 0.15 0.01 0.17 0.35

LWSI 2-way 0.16 0.15 0.01 0.17 0.50

4-way 0.16 0.15 0.01 0.17 0.65

Table 6.2: Miss ratios for (Cs, Ls) =(32KB,32B) and execution times of

EstimateMisses (E.M.) (c = 95% and w = 0.05).

where 98 6 i 6 100. Due to the lack of reuse vectors, these three

accesses to b are classified as misses.

LWSI The transformed program by loop sinking consists of five con-

ditionals some of which are quite complex. In our experiments,

the five scalars (zero, wsin,wcos, z and xs) are treated as one-

dimensional arrays of single elements each, which happen to reside

in four different memory lines with other array variables. Find-

Misses over-estimates the cache misses by 14 in all three cases due

to the lack of reuse vectors to describe the reuse among all these

memory lines.

Analysing IF Conditionals 55

Miss Ratio Abs. Exe.T (secs)
Program Cache Sim. E.M Err Sim. E.M.

C#1 82.42 82.22 0.20 2.19 0.60
COND

C#2 94.15 93.82 0.33 2.22 0.63
N=M=1000

C#3 31.47 31.10 0.37 2.16 0.61

C#1 19.33 19.99 0.66 349.41 0.83
LU

C#2 44.71 44.77 0.06 387.5 2.24
N=1000

C#3 6.23 6.44 0.21 353.26 1.74

C#1 13.97 13.68 0.29 68.77 0.13
MM

C#2 50.03 50.03 0.00 74.82 0.72
N=M=400

C#3 6.33 6.04 0.29 68.21 0.14

LWSI C#1 36.79 37.29 0.50 244.7 0.59

ns=50 C#2 78.35 78.97 0.62 262.4 1.26

natoms=1000 C#3 15.27 15.37 0.10 244.32 0.3

C#1: (Cs, Ls, k) = (64KB, 16B, direct)

C#2: (Cs, Ls, k) = (32KB, 8B, 2)

C#3: (Cs, Ls, k) = (128KB, 32B, 4)

Table 6.3: Cache misses for three different cache configurations and ex-

ecution times of EstimateMisses (E.M.) (c = 95% and w = 0.05).

EstimateMisses

This algorithm finds cache misses from the miss equations of a reference

by taking a sample from its RIS. Table 6.2 shows the accuracy and

efficiency of EstimateMisses using a 95% confidence percentage with an

interval width of 0.05. In all but one case, the difference between the

estimated miss ratio and the real one is less than 1.0. The difference

in the exceptional 4-way LU case is 1.12. This is due to the lack of

reuse vectors for describing the reuse among the non-uniformly generated

references as discussed previously. To validate this assumption, we ran

56 Whole Program Analysis

EstimateMisses by adding the same four additional group-spatial reuse

vectors as before: (0, 0, 0) from a(j, i) to a(i, i), (0, 1, 0) from a(i, i) to

a(j, i), (0, 0, 0) from a(j, k) to a(i, k) and (0, 1, 0) from a(i, k) to a(j, k).

The miss ratios for the loop nest obtained for the “direct”, “2-way” and

“4-way” cases have been reduced to 6.35, 4.85 and 5.42, respectively. As

a result, the absolute errors in these cases have been reduced to 0.22,

0.53 and 0.81, respectively.

The execution times in all cases are less than a second on a 933MHz

Pentium III PC.

Table 6.3 evaluates EstimateMisses further for different problem sizes

on different cache configurations.

6.3 Whole Program Analysis

We present our results for three isolated kernels containing multiple loop

nests, and three whole programs.

6.3.1 Multiple Loop Nest Kernels

We evaluate the accuracy of our method by comparing FindMisses (which

analyses all iteration points) with a cache simulator. Table 6.4 presents

the results in both cases for caches of different associativities. In all but

one case, our method obtains exactly the same miss ratio as the simula-

tor. In the exceptional case, we overestimate slightly the miss ratio by

0.05.

Figure B.2 shows the three kernels used:

• Hydro is a 2-D explicit hydrodynamics from Livermore (kernel

18). FindMisses and the simulator yield the same results in all

Whole Program Analysis 57

#Cache Misses %Miss Ratio Abs. Execution

Program Cache Sim. F.M. Sim. F.M. Error Time (s)

Hydro direct 52603 52603 14.12 14.12 0.00 1.07

(KN=JN=100) 2-way 52603 52603 14.12 14.12 0.00 1.35

4-way 42703 42703 11.47 11.47 0.00 1.64

MGRID direct 1518879 1518879 9.49 9.49 0.00 91.29

(M=100) 2-way 1424038 1424038 8.90 8.90 0.00 99.45

4-way 1424038 1424038 8.90 8.90 0.00 100.70

MMT direct 145671 147075 4.82 4.87 0.05 43.09

(N=BJ=100 2-way 171647 172592 5.68 5.71 0.03 47.06

& BK=50) 4-way 246980 247744 8.18 8.20 0.02 57.44

Table 6.4: Cache miss ratios for 32KB caches with a 32B line size from

FindMisses and a cache simulator.

cases.

• MGRID is a 3-D loop nest from MGRID. Again FindMisses and

the simulator agree on their results in all cache configurations.

• MMT is a 3-D blocked loop nest taken from [22] that computes

the matrix multiplication A and BT . The two references to WB

are not uniformly generated due to the transposition of B. Being

unable to exploit their reuse, FindMisses over-estimates the cache

miss ratios in all three cases slightly. Due to transposition, the

degree of reuse between the two references is rather minimal. The

inaccuracy lies in the incompleteness of reuse information rather

than our method itself.

Table 6.4 indicates that FindMisses, while being capable of finding

58 Whole Program Analysis

Abs. Execution
Program Cache Error Time (secs)

Hydro direct 0.05 0.27

(KN=JN=100) 2-way 0.05 0.32

4-way 0.05 0.36

MGRID direct 0.36 0.19

(M=100) 2-way 0.32 0.22

4-way 0.32 0.22

MMT direct 0.23 0.10

(B=BJ=100 & BK=50) 2-way 0.37 0.10

4-way 0.37 0.11

Table 6.5: Cache misses from EstimateMisses for 32KB caches with a

32B line size (c = 95% and w = 0.05).

exactly cache miss numbers, does so at the expense of large execution

times.

Table 6.5 shows the accuracy and efficiency of EstimateMisses using a

95% confidence with an interval of 0.05 for all references in the program.

In all cases, the absolute errors are less than 0.4 and the execution times

less than 0.5 seconds. Note that EstimateMisses yields only the miss

ratio for a program. The actual miss ratio of each kernel is available in

Table 6.4.

6.3.2 Whole Programs

We evaluate EstimateMisses against a simulator using three programs

from SPECfp95 detailed in Table 6.6. In each case, we have succeeded

in abstractly inlining all the calls and obtained one loop nest for the

program. In addition, all actual parameters are propagateable, meaning

that the references to every actual can be potentially exploited across

Whole Program Analysis 59

Tomcatv Swim Applu

#lines 190 429 3868

#subroutines 1 6 16

#call-statements 0 6 27

#references 79 52 2565

Table 6.6: Three whole programs.

Miss Ratio Abs. Exe.T Sim.T
Program Cache Sim. E.M Err (secs) (secs)

direct 11.42 11.02 0.40 0.30 3676.2

Tomcatv 2-way 11.40 11.0 0.40 0.37 3750.3

4-way 11.41 11.0 0.41 0.58 3860.2

direct 7.26 7.01 0.25 2.47 8136.0

Swim 2-way 6.98 6.73 0.25 2.63 8281.1

4-way 7.24 6.97 0.27 3.23 8425.8

direct 6.95 7.73 0.78 127.31 17089

Applu 2-way 6.60 7.42 0.82 127.6 17155

4-way 6.56 7.40 0.84 127.5 17278

Table 6.7: Cache misses from EstimateMisses for 32KB caches with a

32B line size (c = 95% and w = 0.05).

calls. Since our inlining component is not working yet, all calls were

inlined by hand. Each program is analysed using the reference input

data. Thus, the variables in all READ statements are initialised from

the reference data and then treated as compile-time constants.

Table 6.7 presents the experimental results obtained. For a scale of

programs such as Applu, EstimateMisses obtains close to real miss ratios

in about 128 seconds. This translates into a three orders of magnitude

speedup over the cache simulator used.

60 Whole Program Analysis

Our results are further discussed below.

Tomcatv from SPECfp95. This example is used to demonstrate the

capability of of our method in analysing real codes. The num-

ber of iterations of the outermost loop is data-dependent. For the

reference input data used, the outermost loop runs for 750 itera-

tions. The only data-dependent IF conditional in the program is

always false. The memory accesses contained in this conditional

are included in our analysis.

Swim from SPECfp95. This example demonstrates that we can anal-

yse codes consisting of call statements. All calls are parameterless.

The outermost loop is an IF-GOTO construct, which has been

converted into a DO statement.

Applu from SPECfp95. This shows that our method is capable of

analysing this scale of programs efficiently with a good degree of

accuracy. All actual parameters are propagateable. In subroutine

SSOR, there are some data-dependent constructs. All but one are

guarded by a IF branch that is false at compile time and are thus

ignored. The remaining data-dependent IF construct is a WRITE

statement for a register-allocated scalar. The memory accesses in

this IF conditional are included in our analysis.

Chapter 7

Cache Compiler

Optimisations

It is not enough to obtain the cache misses. We need to reason about

those misses in order to get better codes that take advantage of the cache.

In this chapter we provide a method of using our miss equations for

cache-optimising transformations.

62 Genetic Algorithms

ALGORITHM:

Supply a population P0

i=1

while (not finish)

Pi=Selection(Pi−1)

Pi=Reproduce(Pi)

i=i+1

end

Figure 7.1: Simple Genetic Algorithm.

The effectiveness of the memory hierarchy is critical for the perfor-

mance of current processors. Memory hierarchy behaviour can be en-

hanced by means of program transformations such as padding, blocking,

etc. However, no model has been proposed as an acceptable solution. We

need models that can guide transformations in such a way that optimal

code is generated.

We present a novel approach that combines genetic algorithms and

our miss equations. First, we recall genetic algorithms and how they can

be used to optimise functions. Second, we explain how we can parame-

terise our equations in order to guide different transformations. Finally,

we explain how padding can be implemented using our technique.

7.1 Genetic Algorithms

Algorithms for function optimisation are generally limited to convex reg-

ular functions. However, there are lots of functions that are not continu-

ous, non differentiable or multi-modal. Stochastic sampling is commonly

Genetic Algorithms 63

used to solve these problems. Whereas traditional search techniques use

characteristics of the problem to determine the next sampling point (e.g

Gradient), stochastic methods use non-deterministic decision rules [17].

Genetic Algorithms (GAs) are a particular type of stochastic me-

thod [31]. They focus on hard problems with objective functions whose

properties do not allow using traditional methods. These algorithms

search in the solution space of a function simulating the Nature-based

process of evolution, that is, the survival of the fittest.

GAs simulate the evolution of a population. Figure 7.1 shows the

simplest GA. It starts from a random generated population, and it makes

the population evolve by means of basic genetic operators [31] (selection,

mutation and crossover) applied to individuals of the current population.

The aim of applying genetic operators is producing an improved next

generation.

7.1.1 Genetic Algorithm Parameters

Now, we will discuss the practical things regarding the implementation

of a GA. We will explain how the individuals may be represented and

how the evolution of the population is usually simulated.

Each individual is made up of a set of chromosomes. Usually, each

chromosome represents one variable of the function. The fitness of those

individuals is computed using the objective function (the one we plan to

optimise).

A chromosome representation is needed to represent each individual

in the population. Genetic algorithms require the natural parameter

set of the optimisation problem to be coded as a finite-length string

over some finite alphabet. Although it has been shown that using large

alphabets gives better results [52], the most used one is such as {0,1}.

64 Genetic Algorithms

Child 2Child 1
Crossing�Site

Parent 2Parent 1

Figure 7.2: Schematic of simple crossover.

Thus, each chromosome is made up of a sequence of genes from a certain

alphabet.

Genetic operators provide the basic search mechanism of the GAs,

creating new solutions based on the solutions that exist. The selection of

individuals to produce successive generations plays an extremely impor-

tant role. A common selection approach assigns probability of selection

to each individual depending on its fitness. Individuals with higher fit-

ness have a higher probability of contributing one or more offsprings to

the next generation. Then, individuals are selected depending on this

probability.

Crossover takes two individuals and produces two new individuals

with a given probability, merging the genetic material in a random point

(named cross site). In the case they do not crossover, both individuals

are added to the new population (see Figure 7.2). Mutation changes

one individual to produce a new one by flipping some of its genes. Both

crossover probability and mutation probability have to be determined

empirically, and are related to the size of the population.

The GA must be provided with an initial population (see Figure 7.1)

that is created randomly. GAs move from generation to generation, and

the usual termination criterion is the number of generations, although

Parametric Miss Equations 65

other criteria can be used [31].

7.2 Parametric Miss Equations

When implementing an automated optimisation by means of our miss

equations, we should first determine the relationship between the cache

behaviour and a set of parameters that describe the actual optimisation.

In our case, we may use the number of cache misses yielded by Estimate

Misses (see Section 5.3). Thereafter, compiler-writers use optimisation

techniques that find parameter values that optimise the equations.

Our equations are fully parameterisable. Such parameters range from

base addresses to loop bounds. Any parameter can be specified, and once

the parameter values are provided, we can get the number of misses

calling either FindMisses or EstimateMisses.

From the best of our knowledge, there exist two implementations of

compiler-optimisations following this approach. Abella et al. [1] presents

a feasible implementation of the blocking technique. In the following

section, we will recall how padding can be implemented parameterising

the miss equations. For the interested reader, we refer to [68].

7.3 Automatic Near-Optimal Padding

We will use the following terminology:

• Cs is the cache size.

• V ari is variable number i.

• Di is the number of dimensions of V ari.

66 Automatic Near-Optimal Padding

• dimij is the size of the dimension j of V ari.

• Si is the size of V ari.

• memi is the original base address of V ari.

• P Basei stands for the inter-variable padding between V ari and

V ari−1.

• P Dimij is the intra-variable padding applied to dimij .

• P Si is the size of V ari after padding (see Fig. 7.3).

• We define ∆i as P Si − Si.

In the following sections, we will first describe the appropriate parame-

ters that define inter-padding (changing variable base address) and intra-

padding (increasing array dimension size). Secondly, we will provide the

function that relates these parameters to our miss equations, along with

experimental results showing the usefulness of this approach.

7.3.1 Inter-variable padding

When inter-variable padding is applied only the base addresses of the

variables are changed. Thus, we define for each memory variable V ari,

a variable P Basei, i = 0 . . . k (where k is the number of variables):

0 ≤ P Basei ≤ Cs − 1

Note that padding a variable is equivalent to modifying the initial

addresses of the other variables (see Figure 7.3). Thus, after padding,

Automatic Near-Optimal Padding 67

Var0 Var1 Var2(a)

Var0 Var1 Var2(b)

P_Base0 P_Base1 P_Base2

Var0 Var1 Row0(c) Var1 Row1 Var1 Row2

Var0 Var1 Row0(d) Var1 Row1 Var1 Row2

P_Base1 P_Dim10 P_Dim10

V
ar1 R

ow
0

V
ar1 R

ow
1

V
ar1 R

ow
2

P_Dim10

V
ar1 R

ow
n

Dim11

D
im

10

V
ar1 R

ow
0

V
ar1 R

ow
1

V
ar1 R

ow
2

V
ar1 R

ow
n

Dim11

D
im

10
P

_D
im

10

(f)(e)

Figure 7.3: Data layout: (a) before inter-variable padding, (b) after

inter-variable padding (c) before padding, (d) after padding, (e) 2-D

array, (f) 2-D array after intra-variable padding

the memory variable base addresses are computed as follows1:

BaseAddr(V ari) = memi +

k≤i
∑

k=0

P Basek

7.3.2 Adding intra-variable padding

The result of applying both inter- and intra-variable padding is that all

base addresses and sizes of every dimension of each memory variable

may change. They are initially set according to the values given by the

compiler. For each memory variable V ari, i = 0 . . . k we define a set of

1We assume variables are stored in memory in the same order as they are num-

bered.

68 Automatic Near-Optimal Padding

variables {P Basei, P Dimij}, j = 0 . . . Di

0 ≤ P Basei, P Dimij ≤ Cs − 1

After padding, memory variable base addresses are computed in the

following way (see Figure 7.3):

BaseAddr(V ari) = memi+

+
∑k<i

k=0(P Basek +∆k) + P Basei

and the size of the dimensions are:

Dimi(V arj) = dimji + P Dimji

7.3.3 Padding Model

We define f as the function that represents the number of misses for each

possible value of the padding variables. The expression is as follows:

f 7−→ #Misses (7.1)

f : [0, Cs − 1]
︸ ︷︷ ︸

P Base0

× [0, Cs − 1]
D0

︸ ︷︷ ︸

P Dim0j

× . . .× [0, Cs − 1]
︸ ︷︷ ︸

P Basek

× [0, Cs − 1]
Dk

︸ ︷︷ ︸

P Dimkj

=

= f(P Base0, P Dim0j
︸ ︷︷ ︸

D0

, . . . , P Basek, P Dimkj
︸ ︷︷ ︸

Dk

)

Note that [0, Cs−1]
Di represents the domain of the different P Dimij

of the variable V ari.

Therefore, we can define padding as the following optimisation prob-

lem:

MIN f(P Base0, P Dim0j
︸ ︷︷ ︸

D0

. . . , P Basek, P Dimkj
︸ ︷︷ ︸

Dk

)

0 ≤ P Basei, P Dimij ≤ Cs − 1

i = 0 . . . k

where f is called the objective function.

Automatic Near-Optimal Padding 69

(b)(a)

32KB Cache

0,0

5,0

10,0

15,0

20,0

25,0

Tom
ca

tv
Swim

Su2
co

r

Hyd
ro

Mgr
id

App
lu

Benchmarks

M
is

s
R

at
io

NO Padding

Inter-Padding

16KB Cache

0,0
5,0

10,0
15,0
20,0
25,0
30,0
35,0

To
mca

tv
Swim

Su2
co

r

Hyd
ro

Mgr
id

App
lu

Benchmarks

M
is

s
R

at
io

NO Padding

Inter-Padding

(c) (d)

8KB Cache

0,0
10,0
20,0
30,0
40,0
50,0
60,0
70,0

Tom
ca

tv
Swim

Su2
co

r

Hyd
ro

Mgr
id

App
lu

Benchmarks

M
is

s
ra

tio NO Padding

Inter-Padding

4KB Cache

0,0
10,0
20,0
30,0
40,0
50,0
60,0
70,0
80,0
90,0

Tom
ca

tv
Swim

Su2
co

r

Hyd
ro

Mgr
id

App
lu

Benchmarks

M
is

s
R

at
io

NO Padding

Inter-Padding

Figure 7.4: Miss ratio before and after inter-variable padding for different

cache sizes.

7.3.4 Performance Evaluation for the SPECfp95

SPECfp95 applications have a relatively small working set with respect

to current applications. Thus, the results for the smaller cache sizes may

be more representative of what we can expect today for larger caches and

bigger applications. Two sets of programs can be distinguished:

• Set1 is composed of programs Tomcatv and Swim. The miss ratio

of this set of programs is highly affected by cache size. In addition

many of the misses are due to conflicts [20].

70 Automatic Near-Optimal Padding

• Set2 is composed of programs Su2cor, Hydro, Mgrid, and Applu.

The miss ratio of this set of programs is quite insensitive to the

cache size. In addition all the programs of this set have practically

no conflict misses [20].

Since the objective of padding is to eliminate conflict misses, for Set2

we obtain a small improvement when applying inter-variable padding due

to the low number of conflicts. Su2cor, which is the program with the

highest conflict miss ratio in this set, experiences the highest improve-

ment (e.g 27% miss rate reduction for a 16Kbyte cache). In addition, an-

other source of improvement is that the proposed inter-variable padding

technique also aligns the data structures with cache lines, which reduces

compulsory misses.

On the other hand, inter-variable padding provides a huge improve-

ment in miss ratio for Set1. Note that for both programs, a small

improvement is obtained for a 32Kbyte cache (Figure 7.4.a). This is

caused by the fact that almost no conflicts arise for 32Kbyte caches or

bigger for these programs due to the relatively small working set of the

SPECfp95 applications. However, the smaller the cache the bigger the

miss ratio and the bigger the improvement that inter-variable padding

obtains.

For the Tomcatv program, the miss ratio also grows significantly

when the cache size is reduced (9.5%, 14.8%, 46.0%, and 72.1% respec-

tively for the different cache sizes). However, the miss ratio after inter-

variable padding varies significantly with the cache size (8.8%, 11.8%,

21.6%, and 52%). This variation is caused by capacity misses that grow

when the cache is reduced, and by intra-variable conflict misses (e.g.,

conflicts among distinct rows and columns of the same array) whose fre-

quency also grows when the cache is reduced. Inter-variable padding

Automatic Near-Optimal Padding 71

(a) (b)

Tomcatv

0

10

20

30

40

50

60

70

80

90

100

M
is

s�
R

at
io

NO�Padding

Inter-Padding

Intra-Padding

Fully-Assoc

��1 32 4 5 6 7 ��1 32 4 5 6 7

Cache�8KB Cache�4KB

Pentium�4�Cache

0

10

20

30

40

50

60

70

80

90

M
is

s�
R

at
io NO�Padding

Intra-Padding

Fully-Ass

SwimTomcatv

Figure 7.5: (a) Miss ratio for different Tomcatv loop nests before and

after inter- and intra-variable padding (b) Miss ratio for the Tomcatv

and Swim loop nests for the Pentium 4 L1 cache.

does not remove the latter type of conflicts, which are the target of

intra-variable padding.

Figure 7.5.a shows the miss ratio for the different loop nests of the

Tomcatv program. The figure shows the miss ratio for each loop after

applying inter- and intra-variable padding. It also shows the miss ratio

before padding and that of a fully-associative. As we observed before,

inter-variable padding does not remove all conflicts misses because there

are intra-conflict misses. Intra-variable padding achieves about the same

miss rate as the fully-associative cache, which means that the proposed

padding algorithm removes practically all conflict misses.

72 Automatic Near-Optimal Padding

Chapter 8

Related Work

This chapter discusses the different related work. We present other tools

that try, in some way or another, to analyse cache memory behaviour.

We give some details for those analytical approaches that we believe are

closer to our analysis.

74 CHAPTER 8. RELATED WORK

Programs must exhibit sufficient locality to achieve good cache per-

formance. Compiler optimisations for improving the cache behaviour

need to have detailed knowledge about the number and causes of cache

misses. Such an information can be obtained by time-consuming cache

simulation [66] and architecture-dependent hardware counters [4].

Memory simulation techniques are very accurate, flexible and can

provide rich information. They are usually based on trace-driven simu-

lation [40, 30, 53, 62, 25, 49, 32, 7, 51, 67]. However, these techniques

are very slow (usually several orders of magnitude). For instance, the

slowdown exhibited by all simulators surveyed in [66] is in the range of

45-6250. There are some innovative methods that have been proposed

with the objective of reducing the exhibited slowdown [50, 46, 75]. Nev-

ertheless, these methods provide little information (usually only miss

ratio), that is, they trade information for speed.

There are other tools based on hardware counters (e.g., [4]) provided

by some microprocessors. These tools are fast and accurate. They have

no flexibility since they can only be used to analyse the memory archi-

tecture of the actual microprocessor. In addition, they provide a limited

set of results depending on the particular counters provided by a par-

ticular machine. Information like conflict misses between two particular

memory references cannot be obtained with current hardware counters.

Analytical methods use mathematical formulas to provide a charac-

terisation of a program’s cache behaviour so that we can not only obtain

the number of cache misses but also reason about the causes of such

misses from these formulas. The ultimate goal is to develop an ana-

lytical method that can provide accurate assessments of when and why

cache misses occur using a reasonable amount of computational resources

(e.g., CPU time, memory and disk usage). Then such a method will be

75

useful in guiding various automatic memory optimisations and also in

improving the simulation times of cache simulators and profilers.

Some static analysis techniques [63] have limited accuracy, due to un-

known information at compile time. For instance, unknown loop bounds

or unknown initial addresses of data structures can degrade the accuracy

of the results.

A solution to this problem is to use hybrid techniques (which com-

bine the very best from both approaches), such as SPLAT [60]. SPLAT

is a static analysis technique improved with some profile (dynamic) in-

formation. This hybrid technique is fast, flexible and can provide many

different information like other static techniques. In addition it is accu-

rate because the information unknown at compile time is provided by

a profiling. Due to simplifications in the analysis, SPLAT is not capa-

ble of analysing interferences in applications with complex interference

patterns and can only analyse direct mapped caches.

Porterfield [54] introduces the concept of overflow iteration for pre-

dicting the miss ratio for a fully set-associative LRU cache. Ferrante,

Sarkar and Thrash [21] provide closed-form formulas to estimate the ca-

pacity misses of a loop nest. Temam, Fricker and Jalby [63] also consider

conflict misses but for a subset of array references studied in this paper.

Wolf and Lam [77] propose to use vectors to describe data reuse for uni-

formly generated references in a perfect loop nest. They also use reuse

vectors to derive an estimate of cache misses to guide their data local-

ity algorithm. Xue and Huang [82] report an improvement. Gannon et

al [24] and Wolfe [79] discuss the use of reference window for predicting

cache misses.

Recently, Weikle et al [72] introduce a trace-based idea of viewing

caches as filters. Their framework can potentially handle any programs

76 Analytical Methods

N BJ BK Cs Ls k ∆P ∆E

200 100 100 16 8 2 6.23 0.1

200 100 100 256 16 2 2.73 0.5

200 200 100 32 8 1 6.88 0.06

200 200 100 128 8 2 2.86 0.05

200 200 100 128 32 2 44.25 16

200 50 200 16 4 1 4.62 0.05

200 100 200 32 8 2 12.51 0.1

200 100 200 64 16 1 3.31 0.4

400 100 100 16 8 2 4.48 0.03

400 100 100 256 16 2 4.26 0.5

400 200 100 32 8 1 2.65 0.4

400 200 100 128 8 2 5.82 0.05

400 200 100 128 32 2 44.68 16

400 50 200 16 4 1 2.02 0.05

400 100 200 32 8 2 5.55 0.06

400 100 200 64 16 1 7.12 0.3

Table 8.1: Comparison with Fraguela et al’s probabilistic method using

MMT. ∆p denotes the relative error between the estimated and real miss

ratios for the probabilistic method and ∆E for our EstimateMisses.

consisting of any pattern of memory references.

8.1 Analytical Methods

We review in detail the three recent compile-time analytical methods for

predicting cache behaviour [13, 22, 28].

Ghosh et al [28] present their seminal work on using the CMEs to

analyse statically a program’s cache behaviour. This framework is tar-

geted at isolated perfect loop nests, consisting of straight-line assign-

Analytical Methods 77

ments, by emploiting only the reuse vectors between uniformly generated

references in the same nest. They show that the CMEs can provide in-

sights in choosing appropriate tile and padding sizes. Since analysing all

iteration points is costly, an efficient implementation of the CMEs based

on polyhedral theory and statistical sampling techniques is discussed in

[10, 69].

Fraguela et al [22] rely on a probabilistic analytical method to provide

a fast estimation of cache misses. While allowing multiple nests, they

exploit only the reuse between references contained in the same nest (as

can also be done in the CMEs.) These references differ by constants

in their matching dimensions, forming a subset of uniformly generated

references considered in the CMEs. Their experimental results using

three examples indicate that their method can achieve a good degree of

accuracy in estimating cache misses for perfect nests.

Their two perfect nest examples can be analysed by the CMEs and

are not compared here. The other one is a 3-D blocked imperfect nest

computing ABT (named MMT in Figure B.2). Table 8.1 compares their

method with ours. Our EstimateMisses produces better results in all

cases. The two largest relative errors occur since the total number of

misses is small.

Chatterjee et al [13] present an ambitious method for exactly mod-

elling the cache behaviour of loop nests. They use Presburger formulas to

specify a program’s cache misses, the Omega Calculator [55] to simplify

the formulas, PolyLib [74] to obtain an indiscriminating union of poly-

topes, and finally, Ehrhart polynomials to count the number of integer

points (i.e., misses) in each polytope [14]. They can formulate Pres-

burger formulas for a looping structure consisting of imperfect nests, IF

statements, references with affine accesses and non-linear data layouts.

78 Cache Compiler Optimisations

That is, they are not restricted to uniformly generated references and

linear array layouts. When solving their formulas, they provide only the

cache miss numbers for 20×20 and 21×21 matrix multiplication without

giving any execution times. In the case of matrix-vector product, they

give Presburger formulas for N = 100 but do not solve them.

Exact analysis is undoubtedly useful but can be too costly for realis-

tic codes to be of any use in guiding compiler optimisations to improve

performance. FindMisses can be exact if all necessary reuse vectors are

used. Our current implementation exploits only the reuse among uni-

formly generated references. One future work is to derive systematically

the reuse vectors for non-uniformly generated references.

Neither of the three methods discussed above can handle call state-

ments. In comparison with these existing techniques, our method can

analyse complete regular programs efficiently with high accuracy.

8.2 Cache Compiler Optimisations

Caches improve the speed of programs by reducing the number of ac-

cesses to the slow upper levels of the memory hierarchy. Conflict misses

may represent the majority of intra-nest misses and about half of all

cache misses for typical programs and cache architectures [51].

Many hardware techniques have been proposed to reduce conflict

misses, such as the victim cache [38] or pseudo-random placement func-

tions [65]. Software techniques are attractive because they do not in-

crease the hardware complexity and may be very effective for regular

programs where the compiler can perform an accurate locality analysis.

Moreover, they can complement hardware techniques.

Among software techniques to avoid self-interferences we can point

Cache Compiler Optimisations 79

out the tile size selection proposed by Lam et al. [44]. Coleman and

McKinley [15] improved that technique by allowing rectangular tiles.

Temam et al. [64] proposed to use a buffer where the data to be manip-

ulated is copied. Unfortunately, the copy operation itself causes cache

conflicts and has some overhead.

There are many other proposals to transform the order in which the

iteration space is traversed, such as loop interchange, loop permutation,

loop distribution, etc. [78, 12, 41]. Although these transformations may

affect the number of conflict misses, they are not specially targeted to

minimise them.

Some padding techniques have been previously proposed by other

authors. Rivera and Tseng [58, 59] propose several simple heuristics

that are addressed to eliminate conflicts in some particular cases. They

mainly focus on conflicts that occur on every loop iteration, and in some

assumptions about the effect of array column sizes and distance among

starting addresses of variables on the conflict miss ratio. These heuris-

tics may be more or less effective depending on the particular reference

pattern of each program.

On the other hand, Ghosh et al. [27] propose a padding technique

based on using the Cache Miss Equations for conflicting arrays that

have the same column size. Their technique finds the optimal padding

if there is a padding such that the total number of replacement misses

after padding is zero. However, if such a padding does not exist, their

technique does not provide any solution. Note that replacement misses

include both conflict and capacity misses and one may expect the case

where replacement misses cannot be decreased up to zero to be common.

In their experiments, this only happens for one out of the seven loops

examined but most of their benchmarks are small kernels.

80 Cache Compiler Optimisations

Chapter 9

Conclusions

We wrap up our work. We make the conclusions of the current work,

stressing the goals achieved. Finally, we present open issues that may be

tackled in the future.

82 CHAPTER 9. CONCLUSIONS

We have introduced a new characterisation of reuse vectors for quan-

tifying reuse across multiple nests. Based on these reuse vectors, we have

developed an analytical method for statically predicting the cache be-

haviour of complete programs with regular computations. We outlined

two algorithms for computing cache misses. FindMisses analyses all it-

eration points and can predict exactly the cache misses for programs of

small problem sizes. EstimateMisses analyses a sample of all memory

accesses and can achieve close to real cache miss ratios in practical cases

efficiently.

We can analyse IF statements with compile-time-analysable condi-

tionals. In the presence of these conditionals, different references may be

executed in different parts of iteration spaces, which are not necessarily

convex. We described how reuse vectors are calculated and how the miss

equations are formed and solved. Our replacement miss equations are

formulated and solved by taking into account the fact that the RISs for

different references can be different.

The experimental results obtained for three kernels and three whole

programs (one of which is Applu from SPECfp95 with 3868 lines, 16

subroutines and 2565 references) confirm the efficiency and accuracy of

our method. Our method can be used to guide compiler optimisations

and improve the speeds of cache simulators.

We have also shown how our method can guide cache-compiler op-

timisations. Combining the equations with genetic algorithms allows

performing near-optimal optimisations such as padding.

Future Work 83

9.1 Future Work

This thesis is carried out in a project group (WCET group). The ac-

tivities mainly concern issues pertaining to program flow and program

analysis, low-level simulation and analysis. It also aims to provide ac-

curate program flow-based information about cache behaviour that will

aid the cache part of the low-level analysis.

The overall goal of the WCET project is to create an automated

tool for WCET analysis of realistic codes in real-time systems. It aims

at ”real” programs as coded for embedded real-time systems. For this

reason, we will analyse full C (i.e., pointers, recursion, and unstructured

code using jumps). We plan to rely on manual annotations where our

automatic approach is insufficient.

Activities have been divided into two sub-projects. Firstly, an au-

tomated program flow analysis is indispensable. The work presented

focuses on the second part: in a later stage, the tool should be able to

analyse systems with caches with reasonable precision.

While this work represents a useful step towards a mechanical analy-

sis of complex program constructs, there are several important constructs

that are still non-analysable, including data-dependent conditionals and

pointers. We are presently working on developing an analytical method

for their efficient analysis. This includes:

Constructs Data-dependent constructs such as variable bounds,

data-dependent IF conditionals and indirection arrays are still not ana-

lysable. We plan to investigate techniques for their analysis. To go

beyond FORTRAN, we need to cope with pointers and recursive calls.

We plan to generalise our analytical method to the full C language.

Reuse Vectors The accuracy of our method strongly depends on

84 Future Work

the computation of reuse vectors. We plan to extend the basic reuse

vectors analysis, in order to express basic reuse among non-uniformly

generated references.

We intend to investigate benefits and limitations of these challenging

but important research directions.

Appendix A

Background

This chapter explains some terminology that is often used in this disser-

tation. We first introduce memory hierarchy and describe different kind

of cache memories. Secondly, we give some details regarding locality

analysis, focusing on the reuse vectors methodology.

86 Memory Hierarchy

A.1 Memory Hierarchy

Many researchers call the memory system the bottleneck of current high-

performance computers, which with interconnection it is going to be the

main topic of research in 2010. The memory system limits how fast data

is brought to the processor and also how fast can data be received from

the processor.

The gap between main memories and processors performance is in-

creasing every year. Whereas processor has improved about 60% per

year, memory access time has only decreased at less than 10% per year.

This large latency, which is increasing at a rate of 45% per year, is a

primary obstacle to improve general system performance. Memory hi-

erarchy and cache memories were introduced as a hardware solution to

hide this gap, becoming more and more significant with the widening

performance difference.

Memory hierarchy consists on stowing different memories between

the processor and the main memory. The closer the memory is to the

processor, the faster it is. Since the caches are smaller than the main

memory, they can be designed using faster and more expensive tech-

niques.

The characteristic that drove the invention of cache memories, and

that make them work well in general is called locality :

Rule 90/10 90% of the memory accesses are done only by 10% of the

instructions.

Locality There exists temporal locality (i.e., it is very likely that in-

structions access data that has been already fetched), and spatial

locality (i.e., it is very likely that instructions access data nearby

data that has been already fetched).

Memory Hierarchy 87

�

Hard�Disk�

CPU�

L1�Cache�

L2�Cache�

�
�

Main�Memory�

Latency�

Figure A.1: Memory hierarchy.

Figure A.1 shows a common memory hierarchy scheme. Memory hi-

erarchy aims at having data that it is supposed to be accessed very often

in memory levels very close to the processor. Since these memories are

faster, the latency is smaller. Thus, the general performance is increased.

A.1.1 Cache Memories

Definition 1.1 Cache memory is a very fast and small memory which

contains a small subset of the data stored in a larger (and slower)

memory (see Figure A.2).

Cache memories try to capture the most frequently accessed data items.

88 Memory Hierarchy

�

Matrix�A� Memory� Cache�

Figure A.2: How data is stored in both main memory and cache.

Placed between processor and main memory, it bridges queries from the

processor. When a memory request is generated, the request is first

presented to the cache memory, and only in the case it cannot respond

is presented to the main memory. This can be summarised as follows:

1. If the cache has the data that the processor needs (cache hit), it

brings the data to the processor.

2. Otherwise, we suffer a cache miss and the main memory must be

accessed.

Let us look at the various parameters that affect to cache design. We

explain in the following sections how data is organised in the cache and

different policies that keep the coherence between main memories and

caches. The interested reader is pointed to [35].

A.1.2 Cache Organisation

Caches are characterised by the following parameters. Cache size (Cs)

defines the total number of bytes it has. Line or block is the data item

that is delivered between main memory and cache memory. The line size

(Ls) determines how many contiguous bytes are fetched from memory.

Memory Hierarchy 89

�

k=2�

Cache:�4�sets,�
2�lines�per�set�

Figure A.3: Mapping of such a 2-way associative cache.

Cache Set is a collection of cache lines. Associativity (k) is the number

of cache lines in a cache set. Depending on the location in the cache a

block from memory can reside in, we have different cache organisations.

Direct-Mapped Given a block, it can only reside in one exact location.

The cache size is

Cs = Ls ×Number Lines

k-way set associative Each memory block may reside in exactly k lo-

cations. Figure A.3 shows a 2-way set associative cache, with 4

sets.

Fully associative A block from memory can reside in any location in

the cache.

90 Memory Hierarchy

Two factors are critical at the moment of choosing an index scheme that

maps memory lines onto cache lines (sets); firstly, the chosen function

should have a cheap and easy implementation in hardware, and secondly

it is important that it has a good behaviour on any kind of regular

address patterns. Modulo function (modulo the number of cache sets)

is the most common index function used. However, alternative schemes

may help programs to take advantage of cache memories. Prime-modulus

functions [45] and skewing functions [36] have been tested successfully.

The use of XOR functions was proposed by Frailong et al. [23], and some

pseudo-random placements by Rau et al. [57].

Let Mem Addr be the memory address. We have:

Mem Line = bMem Addr/Lsc

Cache Set = Mem Line mod N

where N = Cs/k is the number of cache sets.

A.1.3 Replacement Policies

For those operations that result in a cache miss, the item is retrieved

from the main memory and copied into the cache, resulting in some other

item removed from the cache to make room for this new item. The cache

replacement policy (i.e., which item we remove from the cache) is crucial

for performance.

The following expression gives the average execution time of one

memory access:

teff = hthit + (1− h)tmiss

where h is the probability of having a hit (known as hit ratio). Let

be the main memory ten times slower than the cache. If thit = x, then

Memory Hierarchy 91

tmiss = x + 10x. Then, a decrease in the hit ratio of 0.01, results in a

roughly increase of teff of ten-percent.

Nearly all caches in commercial products have least-recently used

(LRU) replacement policy to manage the different lines we have in a set.

Other algorithms are:

Random One line is chosen randomly.

FIFO The line that was brought in the first time is replaced (even

though it may happen that it is accessed very often).

A.1.4 Writing to the Cache

Special actions should be taken in case of WRITE operations. 10-30% of

the memory accesses are WRITEs. Handling them is somewhat tricky

because of the interaction of the cache with input/output systems. Keep-

ing cache coherence with the main memory is very important. Different

solutions have been presented, depending on whether there exists a cache

miss or a cache hit.

When having a cache hit:

Write through We write the modified item both in the cache and in

the memory. Since main memory is rather slow, hardware solutions

like buffering are implemented in order to speed up the whole pro-

cess.

Copy back Data is written in the main memory only when the cache

line is replaced. Thus, the memory does not contain updated in-

formation.

In case of suffering a cache miss:

92 Locality Analysis

Write allocate The memory line is modified and it is brought to the

cache afterwards.

No write allocate The memory line is modified, but the data is not

brought to the cache.

When specifying a writing policy, both hit and miss policies should be

provided. The two most common configurations are:

• Copy back with Write allocate.

• Write through with No write allocate.

A.2 Locality Analysis

Cache memories usually present very low associativity, which may re-

sult in data being replaced before it is reused. Furthermore, there may

exist programs without sufficient locality in their access, which makes

them spend a lot of time transferring data between main memory and

cache. Improving program performance requires a clear knowledge of

the reasons behind its behaviour. Locality analysis brings this infor-

mation that can be further used by either programmers or automatic

compiler optimisations to tune the code in order to achieve better cache

performance.

A.2.1 Terminology

This section introduces some terminology that is later used.

Definition 1.2 Iteration point is each one of the different iterations of

a loop nest.

Locality Analysis 93

�

Starting�Point�

j�

i�
�DO�I=1,3�
� DO�J=1,4�
� ...�
� ENDDO�
ENDDO�

Figure A.4: Example of loop nest and its iteration space.

Definition 1.3 Iteration space is the collection of all the iteration points.

Figure A.4 shows one loop nest and its iteration space.

We present the following definition to avoid any confusion regarding

memory accesses.

Definition 1.4 Reference (memory reference) is a static read or write.

This reference will probably result in a dynamic memory access.

Our approach deals with both scalars and array accesses. The memory

address of such an access is given by the following expression. Let RA =

A[fdA−1, . . . , f1, f0] (dA stands for the number of dimensions of A) be a

reference to array variable A:

@RA[fda−1, . . . , f1, f0] = offset + f0 +
∑dA−1

k=1 (size dimk−1 × fk)

where size dimk−1 is the size of array A under dimension k. Notice that

we have used a column-major data layout, which is the one assumed for

FORTRAN codes.

A.2.2 Reuse Vectors

Reuse vectors are a mechanism to summarise memory access patterns

for loop oriented codes. They were introduced by Wolf and Lam [77]. If

94 Locality Analysis

�

j�

i�

Figure A.5: Example of locality described by means of a reuse vector.

we describe the iteration space as a subset of Z
n, we define the following

terms:

Definition 1.5 If a reference accesses the same memory line in two

different iteration points ~ı1 and ~ı2, where ~ı2 º ~ı1, we say there

exists a reuse vector ~r (see Figure A.5) and we define it as

~r =~ı2 −~ı1

We would like to point out the difference between potential reuse and

actual reuse. We say one item is actually reused when we enjoy a hit

accessing this data in different iteration points. The existence of reuse

does not imply that we enjoy a hit, since the cache line may have been

flushed out by another access before the reuse can be realised.

A.2.3 Different Reuse for Different Locality

Given a reference, we classify the reuse into four different groups [77]:

Self Temporal A reference reuses a memory line by accessing the same

data in different iteration points.

Self Spatial A reference reuses a memory line by accessing data differ-

ent from the one accessed before.

Locality Analysis 95

DO I1=1,
 DO I2=1, M

 A[I1]

 A[I2]

 A[I1+1]

 A[I2]

 ENDDO
ENDDO

(2) (3)

(1)

(4)

Figure A.6: Example of reuse

Group temporal A reference accesses the same memory line as an-

other reference by accessing exactly the same item.

Group Spatial A reference accesses the same memory line as another

reference by accessing different items contained in the same mem-

ory line accessed earlier.

If we take a closer look to these definitions, we can see that temporal

reuse is a subset of spatial reuse. Whereas the temporal locality can be

exploited as many times as we want, the possibility of exploiting spatial

locality depends on the Ls.

A.2.4 Example

We consider the code shown in Figure A.6. We show four different reuse

vectors that illustrate the previous statements.

Vector 1 Reference A[I1] has self temporal reuse in the innermost loop

96 Locality Analysis

nest, since it is accessing the same elements for iterations (I1, I2),

1 ≤ I2 ≤ M .

Vector 2 Reference A[I2] has self spatial reuse in the innermost loop

nest, since it is accessing the same memory line Ls times (assuming

data is aligned to the cache line).

Vector 3 This vector shows group spatial reuse since both references

are accessing the same cache line in the innermost loop nest.

Vector 4 Finally, this vector gives an example of group temporal reuse.

Both references are accessing, in all iteration points, the same data.

Appendix B

Codes

We show the different large codes we have used to validate our approach.

The codes come from different benchmarks used to evaluate the per-

formance of supercomputers. They consist of kernel-based applications,

which implement very intensive regular computations, such as Swim (it

solves the system of shallow water equations) or Applu (which computes

parabolic / elliptic partial differential equations).

Our benchmarks contain programs from Livermore, Linpack, Lapack,

SpecFp95 and Perfect Benchmarks.

98 APPENDIX B. CODES

PROGRAM LU

PARAMETER (N = 100)

REAL*8 a(N,N)

DO i = 1,N

DO j = i+1,N

a(j,i) = a(j,i)/a(i,i)

DO k = i+1,N

a(j,k) = a(j,k)-a(j,i)∗a(i,k)

ENDDO

ENDDO

ENDDO

END

...

DO i = 1,N

DO j = i+1,N

DO k = i+1,N

IF (k .EQ. i+1) THEN

a(j,i) = a(j,i)/a(i,i)

ENDIF

a(j,k) = a(j,k)-a(j,i)∗a(i,k)

ENDDO

ENDDO

ENDDO

END

PROGRAM MM

PARAMETER (N=100)

REAL*8 a(N,N), b(N,N), c(N,N)

DO i = 1,N

DO j = 1,N

a(i,j) = 0

DO k = 1,N

a(i,j) = a(i,j)+b(i,k)∗c(k,j)

ENDDO

ENDDO

ENDDO

END

...
DO i = 1,N

DO j = 1,N
DO k = 1,N

IF (k.EQ.1) THEN

a(i,j) = 0
ENDIF

a(i,j) = a(i,j)+b(i,k)∗c(k,j)
ENDDO

ENDDO
ENDDO
END

PROGRAM LWSI

PARAMETER (NS = 10, natoms = 100)

DOUBLE PRECISION xt, yt, xc, yc, zc

DOUBLE PRECISION zero, wsin, wcos, z, xs

DIMENSION xc(natoms, ns), yc(natoms, ns)

DIMENSION zc (natoms, ns), xt (natoms)

DIMENSION wsin(1), wcos(1), zero(1), z(1)

DIMENSION xs(1), yt (natoms)

DO i = 1, ns, 1

xt(1) = xt(2)+wcos(1)

xt(3) = xt(1)

yt(2) = zero(1)

DO j = 1, ns, 1

yt(1) = yt(2)+wsin(1)

yt(3) = yt(2)-wsin(1)

z(1) = zero(1)

DO k = 1, ns, 1

DO l = 1, natoms, 1

xc(l,k) = xt(l)

yc(l,k) = yt(l)

zc(l,k) = z(1)

ENDDO

z(1) = z(1)+xs(1)

ENDDO

yt(2) = yt(2)+xs(1)

ENDDO

xt(2) = xt(2)+xs(1)

ENDDO

END

...
DO i = 1, ns, 1
DO j = 1, ns, 1
DO k = 1, ns, 1
DO l = 1, natoms, 1

IF (j.EQ.1 .AND. k.EQ.1

.AND. l.EQ.1) THEN

xt(1) = xt(2)+wcos(1)

xt(3) = xt(1)

yt(2) = zero(1)
ENDIF

IF (k.EQ.1 .AND. l.EQ.1) THEN

yt(1) = yt(2)+wsin(1)

yt(3) = yt(2)-wsin(1)

z(1) = zero(1)
ENDIF

xc(l,k) = xt(l)

yc(l,k) = yt(l)

zc(l,k) = z(1)

IF (l.EQ.natoms) THEN

z(1) = z(1)+xs(1)
ENDIF

IF (k.EQ.ns .AND. l.EQ.natoms) THEN

yt(2) = yt(2)+xs(1)
ENDIF

IF (j.EQ.ns .AND. k.EQ.ns

.AND. l.EQ.natoms) THEN

xt(2) = xt(2)+xs(1)
ENDIF
ENDDO
ENDDO

ENDDO
ENDDO
END

Figure B.1: Three examples (with original and transformed programs):

LU (without pivoting) is taken from Lapack, LWSI is a 4-D imperfect

loop nest from LWSI and MM is from Livermore kernels.

99

PROGRAM Hydro

REAL*8 ZA, ZP, ZQ, ZR, ZM, ZB, ZU, ZV, ZZ

DIMENSION ZA(jn+1,kn+1), ZP(jn+1,kn+1), ZQ(jn+1,kn+1)

DIMENSION ZR(jn+1,kn+1), ZM(jn+1,kn+1)), ZB(jn+1,kn+1)

DIMENSION ZU(jn+1,kn+1), ZV(jn+1,kn+1), ZZ(jn+1,kn+1)

T= 0.003700D0

S=0.004100D0

DO k= 2,KN

DO j= 2,JN

ZA(j,k)=(ZP(j-1,k+1)+ZQ(j-1,k+1)-ZP(j-1,k)-ZQ(j-1,k))*(ZR(j,k)

+ZR(j-1,k))/(ZM(j-1,k)+ZM(j-1,k+1))

ZB(j,k)= (ZP(j-1,k)+ZQ(j-1,k)-ZP(j,k)-ZQ(j,k))*(ZR(j,k)

+ZR(j,k-1))/(ZM(j,k)+ZM(j-1,k))

ENDDO

ENDDO

DO k= 2,KN

DO j= 2,JN

ZU(j,k)= ZU(j,k)+S*(ZA(j,k)*(ZZ(j,k)-ZZ(j+1,k))-ZA(j-1,k)*(ZZ(j,k)-ZZ(j-1,k))

-ZB(j,k)*(ZZ(j,k)-ZZ(j,k-1))+ZB(j,k+1) *(ZZ(j,k)-ZZ(j,k+1)))

ZV(j,k)= ZV(j,k)+S*(ZA(j,k)*(ZR(j,k)-ZR(j+1,k))-ZA(j-1,k) *(ZR(j,k)-ZR(j-1,k))

-ZB(j,k) *(ZR(j,k)-ZR(j,k-1))+ZB(j,k+1) *(ZR(j,k)-ZR(j,k+1)))

ENDDO

ENDDO

DO k= 2,KN

DO j= 2,JN

ZR(j,k)= ZR(j,k)+T*ZU(j,k)

ZZ(j,k)= ZZ(j,k)+T*ZV(j,k)

ENDDO

ENDDO

END

Figure B.2: Three kernels.

100 APPENDIX B. CODES

PROGRAM MGRID

REAL*8 U,Z

DIMENSION U(M,M,M), Z(M,M,M)

DO 400 I3=2,M-1

DO 200 I2=2,M-1

DO 100 I1=2,M-1

U(2*I1-1,2*I2-1,2*I3-1)=U(2*I1-1,2*I2-1,2*I3-1)

+Z(I1,I2,I3)

100 CONTINUE

DO 200 I1=2,M-1

U(2*I1-2,2*I2-1,2*I3-1)=U(2*I1-2,2*I2-1,2*I3-1)

+0.5D0*(Z(I1-1,I2,I3)+Z(I1,I2,I3))

200 CONTINUE

DO 400 I2=2,M-1

DO 300 I1=2,M-1

U(2*I1-1,2*I2-2,2*I3-1)=U(2*I1-1,2*I2-2,2*I3-1)

+0.5D0*(Z(I1,I2-1,I3)+Z(I1,I2,I3))

300 CONTINUE

DO 400 I1=2,M-1

U(2*I1-2,2*I2-2,2*I3-1)=U(2*I1-2,2*I2-2,2*I3-1)

+0.25D0*(Z(I1-1,I2-1,I3)+Z(I1-1,I2,I3)

+Z(I1, I2-1,I3)+Z(I1, I2,I3))

400 CONTINUE

STOP

Three kernels (cont’d)

101

PROGRAM MMT

REAL*8 A, B, D, WB

DIMENSION A(N,N), B(N,N), D(N,N), WB(N.N)

DO J2 = 1,N,BJ

DO K2 = 1,N,BK

DO J=J2,J2+BJ-1

DO K=K2,K2+BK-1

WB(J-J2+1,K-K2+1)=B(K,J)

ENDDO

ENDDO

DO I = 1,N

DO K=K2,K2+BK-1

RA=A(I,K)

DO J=J2,J2+BJ-1

D(I,J)=D(I,J)+

WB(J-J2+1,K-K2+1)*RA

ENDDO

ENDDO

ENDDO

ENDDO

ENDDO

END

Three kernels (cont’d)

102 APPENDIX B. CODES

Bibliography

[1] J. Abella, A. González, J. Llosa, and X. Vera. Near-optimal loop

tiling by means of cache miss equations and genetic algorithms. In

Proceedings of 31st International Conference on Parallel Processing

(ICPP02) Workshops, Aug. 2002.

[2] W. Abu-Sufah. Improving the performance of virtual memory com-

puters. PhD thesis, University of Illinois at Urbana-Champaign,

Nov. 1978.

[3] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache behaviour

prediction by abstract interpretation. In Proceedings of Static

Analysis Symposium (SAS’96), Lecture Notes in Computer Science

(LNCS) 1145, pages 52–66. Springer-Verlag, September 1996.

[4] G. Ammons, T. Ball, and J.R. Larus. Exploiting hardware perfor-

mance counters with flow and context sensitive profiling. In Pro-

ceedings of ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI’97), pages 85–96, 1997.

[5] R. Arnold, F. Mueller, D. Whalley, and M. Harmon. Bounding

worst-case instruction cache performance. In Proceedings of 15th

Real-Time Systems Symposium (RTSS’94), pages 172–181, 1994.

104 BIBLIOGRAPHY

[6] E. Ayguadé, C. Barrado, A. González, J. Labarta, J. Llosa,

D. López, S. Moreno, D. Padua, F. Reig, Q. Riera, and M. Valero.

Ictineo: a tool for research on ilp. In Proceedings of Supercomputing

(SC’96), 1996. Research Exhibit “Polaris at Work”.

[7] R. Bedichek. Talismam: Fast and accurate multicomputer simula-

tion. In Proceedings of ACM Sigmetrics Conf. on Measurement and

Modeling of Computer Systems (SIGMETRICS’95), pages 14–24,

May 1995.

[8] N. Bermudo and X. Vera. Coyote project: Documentation. Tech-

nical Report MRTC Report 39/2001, Mälardalens Högskola, Oct.

2001.

[9] N. Bermudo, X. Vera, A. González, and J. Llosa. An efficient solver

for cache miss equations. In Proceedings of IEEE International

Symposium on Performance Analysis of Systems and Software (IS-

PASS’00), 2000.

[10] N. Bermudo, X. Vera, A. González, and J. Llosa. Optimizing cache

miss equations polyhedra. In 4th Workshop on Interaction between

Compilers and Computer Architectures (INTERACT-4), 2000.

[11] S. Carr and K. Kennedy. Compiler blockability of numerical algo-

rithms. In Proceedings of Supercomputing (SC’92), pages 114–124,

Minneapolis, Minn., Nov. 1992.

[12] S. Carr, K.S. McKinley, and C-W. Tseng. Compiler optimizations

for improving data locality. In Proceedings of VI Int. Conf. on

Architectural Support for Programming Languages and Operating

Systems (ASPLOS’94), pages 252–262, Oct. 1994.

BIBLIOGRAPHY 105

[13] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck. Exact

analysis of the cache behavior of nested loops. In ACM SIGPLAN

’01 Conference on Programming Language Design and Implemen-

tation (PLDI’01), pages 286–297, 2001.

[14] P. Clauss. Counting solutions to linear and non-linear constraints

through Ehrhart polynomials. In Proceedings of ACM International

Conference on Supercomputing (ICS’96), pages 278–285, Philadel-

phia, 1996.

[15] S. Coleman and K. S. McKinley. Tile size selection using cache

organization and data layout. In Proceedings of ACM SIGPLAN

Conference on Programming Language Design and Implementation

(PLDI’95), pages 279–290, Jun. 1995.

[16] M. H. DeGroot. Probability and statistics. Addison-Wesley, 1998.

[17] Y. Ermoliev and R. J.-B. Wets. Numerical Techniques for Stochastic

Optimization. Springer-Verlag, 1988.

[18] K. A. Faigin, J. P. Hoeflinger, D. A. Padua, P. M. Petersen, and

S. A. Weatherford. The Polaris internal representation. Interna-

tional Journal of Parallel Programming, 22(5):553–586, Oct. 1994.

[19] C. Ferdinand and R. Wilhelm. Efficient and precise cache behavior

prediction for real-time systems. Real-Time Systems, 17:131–181,

1999.

[20] A. Fernández. A quantitative analysis of the SPECfp95. Technical

Report UPC-DAC-1999-12, Universitat Politècnica de Catalunya,

March 1999.

106 BIBLIOGRAPHY

[21] J. Ferrante, V. Sarkar, and W. Thrash. On estimating and enhanc-

ing cache effectiveness. In 4th Workshop on Languages and Com-

pilers for Parallel Computing (LCPC’91), pages 328–343, 1991.

[22] B. B. Fraguela, R. Doallo, and E. L. Zapata. Automatic analytical

modeling for the estimation of cache misses. In Proceedings of In-

ternational Conference on Parallel Architectures and Compilation

Techniques (PACT’99), 1999.

[23] J. Frailong, W. Jalby, and J. Lenfant. XOR-schemes: a flexible data

organization in parallel memories. In Proceedings of International

Conference on Parallel Processing (ICPP’85), pages 276–283, 1985.

[24] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local

memory management by global program transformations. Journal

of Parallel and Distributed Computing, 5:587–616, 1988.

[25] J. Gee, M. Hill, D. Pnevmatikatos, and A.J. Smith. Cache perfor-

mance of the spec92 benchmark suite. IEEE Micro, pages 17–27,

Aug. 1993.

[26] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: an

analytical representation of cache misses. In Proceedings of Inter-

national Conference on Supercomputing (ICS’97), pages 317–324,

Vienna, 1997.

[27] S. Ghosh, M. Martonosi, and S. Malik. Precise miss analysis for

program transformations with caches of arbitrary associativity. In

Proceedings of International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS’98),

pages 228–239, 1998.

BIBLIOGRAPHY 107

[28] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations:

a compiler framework for analyzing and tuning memory behav-

ior. ACM Transactions on Programming Languages and Systems,

21(4):703–746, 1999.

[29] S. Ghosh, M. Martonosi, and S. Malik. Automated cache optimiza-

tions using CME driven diagnosis. In Proceedings of International

Conference on Supercomputing (ICS’00), pages 316–326, 2000.

[30] A.J. Goldberg and J. Hennessy. Performance debugging shared

memory multiprocessor programs with mtool. In Proceedings of

Supercomputing (SC’91), pages 481–490, 1991.

[31] D. E. Goldberg. Genetic algorithms in search, optimizations and

machine learning. Addison-Wesley, 1989.

[32] S. Goldschmidt and J. Hennessy. The accuracy of trace-driven simu-

lation of multiprocessors. In Proceedings of ACM Sigmetrics Conf.

on Measurement and Modeling of Computer Systems (SIGMET-

RICS’93), pages 146–157, May 1993.

[33] M. R. Haghighat and C. D. Polychronopoulos. Symbolic analy-

sis: A basis for parallelization, optimization and scheduling of pro-

grams. In 1993 Workshop on Languages and Compilers for Parallel

Computing (LCPC’93), pages 567–585, Portland, Ore., Aug. 1993.

Springer Verlag.

[34] C. A. Healey, D. Whalley, and M. Harmon. Integrating the timing

analysis of pipelining and instruction caching. In Proceedings of 16th

Real-Time Systems Symposium (RTSS’95), pages 288–297, 1995.

108 BIBLIOGRAPHY

[35] J. L. Hennessy and D. A. Patterson. Computer architecture: a

quantitative approach. Morgan Kaufman Publishers, 1996.

[36] D. T. Harper III and J. R. Jump. Vector access perfor-

mance in parallel memories. IEEE Transactions on Computers,

C(36):1440–1449, 1987.

[37] F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of

15th Annual ACM Symposium on Principles of Programming Lan-

guages, pages 319–329, San Diego, California., Jan. 1988.

[38] N. Jouppi. Improving direct-mapped cache performance by the ad-

dition of a small fully-associative cache and prefetch buffers. In

Proceedings of 17th International Symposium on Computer Archi-

tectures (ISCA’90), 1990.

[39] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. Im-

proving locality using loop and data transformations in an inte-

grated framework. In Proceedings of International Conference on

Microprogramming and Microarchitecture, pages 285–296, 1998.

[40] K. Kennedy, D. Callahan, and A. Porterfield. Analyzing and visu-

alizing performance of memory hierarchy. In Instrumentation for

Visualization. ACM Press, New York, 1990.

[41] K. Kennedy and K.S. McKinley. Maximizing loop parallelism and

improving data locality via loop fusion and distribution. Technical

Report COMP TR92-189, Rice University, August 1992.

[42] S. K. Kim, S. L. Min, and R. Ha. Efficient worst case timing analysis

of data caching. In Proceedings of IEEE Real-Time Technology and

Applications Symposium (RTAS’96), 1996.

BIBLIOGRAPHY 109

[43] I. Kodukul, N. Ahmed, and K. Pingali. Data-centric multi-level

blocking. In Proceedings of ACM SIGPLAN ’97 Conference on Pro-

gramming Language Design and Implementation (PLDI’97), pages

346–357, Las Vegas,NA, 1997.

[44] M. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance of

blocked algorithms. In Proceedings of IV International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS’91), Apr. 1991.

[45] D. Lawrie and C. Vora. The prime memory system for array access.

IEEE Trans. Computers, C(31):435–442, 1982.

[46] A.R. Lebeck and D.A. Wood. Cache profiling and the spec bench-

marks: A case study. IEEE Computer, 27(10):15–26, Oct. 1994.

[47] Y. T. S. Li, S. Malik, and A. Wolfe. Efficient microarchitecture

modeling and path analysis for real-time software. In Proceedings

of 16th Real-Time Systems Symposium (RTSS’95), pages 298–307,

1995.

[48] S. S. Lim, Y. H. Bae, G. T. Jang, B. D. Rhee, S. L. Min, C. Y. Park,

H. Shin, K. Park, and C. S. Kim. An accurate worst case timing

analysis technique for RISC processors. In Proceedings of 15th Real-

Time Systems Symposium (RTSS’94), pages 97–108, 1994.

[49] P. Magnusson. A design for efficient simulation of a multiprocessor.

In Proceedings of the Western Simulation Multiconference on Int.

Workshop on MASCOTS-93, pages 69–78, 1993. La Jolla, Califor-

nia.

110 BIBLIOGRAPHY

[50] M. Martonosi, A. Gupta, and T. Anderson. Memspy: Analyzing

memory system bottlenecks in programs. In Proceedings of ACM

SIGMETRICS Conf. on Measurement and Modeling of Computer

Systems (SIGMETRICS’92), pages 1–12, Jun. 1992.

[51] K. S. McKinley and O. Temam. A quantitative analysis of loop nest

locality. In Proceedings of VII Int. Conf. on Architectural Support

for Programming Languages and Operating Systems (ASPLOS’96),

1996.

[52] Z. Michalewicz. Genetic algorithms+Data structures=Evolution

Programs. Springer-Verlag, 1994.

[53] MIPS. RISCompiler Languages Programmer’s Guide. MIPS, 1988.

[54] A. K. Porterfield. Software Methods for improvement of cache per-

formance on supercomputer applications. PhD thesis, Department

of Computer Science, Rice University, May 1989.

[55] W. Pugh. The omega test: a fast and practical integer programming

algorithm for dependence analysis. In Communications of the ACM,

1992.

[56] W. Pugh. Counting solutions to Presburger formulas: how and why.

In Proceedings of ACM SIGPLAN ’94 Conference on Programming

Language Design and Implementation (PLDI’94), pages 121–134,

1994.

[57] B. Rau. Pseudo-randomly interleaved memories. In Proceedings

of International Symposium on Computer Architecture (ISCA’91),

pages 74–83, 1991.

BIBLIOGRAPHY 111

[58] G. Rivera and C-W. Tseng. Data transformations for eliminat-

ing conflict misses. In Proceedings of ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI’98),

pages 38–49, 1998.

[59] G. Rivera and C-W. Tseng. Eliminating conflict misses for high

performance architectures. In Proceedings of ACM Internacional

Conference on Supercomputing (ICS’98), 1998.

[60] F.J Sánchez and A. González. Fast, flexible and accurate data local-

ity analysis. In Proceedings of International Conference on Paral-

lel Architectures and Compilation Techniques (PACT’98), October

1998.

[61] Y. Song and Z. Li. New tiling techniques to improve cache temporal

locality. In Proceedings of ACM SIGPLAN ’99 Conference on Pro-

gramming Language Design and Implementation (PLDI’99), pages

215–228, May 1999.

[62] R. Sugumar. Multi-configuration simulation algorithms for the eval-

uation of computer designs. PhD thesis, University of Michigan,

1993.

[63] O. Temam, C. Fricker, and W. Jalby. Cache interference phenom-

ena. In Proceedings of ACM SIGMETRICS Conference on Mea-

surement and Modeling of Computer Systems (SIGMETRICS’94),

pages 261–271, May 1994.

[64] O. Temam, E.D. Granston, and W. Jalby. To copy or not to copy: A

compile-time technique for accessing when data copying should be

used to eliminate cache conflicts. In Proceedings of Supercomputing

(SC’93), pages 410–419, 1993.

112 BIBLIOGRAPHY

[65] N. Topham, A. González, and J. González. The design and perfor-

mance of a conflict-avoiding cache. In Proceedings of 30th Sympo-

sium on Microarchitecture (MICRO-30), 1997.

[66] R. A. Uhlig and T. N. Mudge. Trace-driven memory simulation: a

survey. ACM Computing Surveys, 29(3):128–170, Sept. 1997.

[67] E. van der Deijl, G. Kanbier, O. Temam, and E.D. Granston. A

cache visualization tool. IEEE Computer, 30(7):71–78, July 1997.

[68] X. Vera, J. Llosa, and A. González. Near-optimal padding for re-

moving conflict misses. In 15th Workshop on Languages and Com-

pilers for Parallel Computers (LCPC’02), July 2002.

[69] X. Vera, J. Llosa, A. González, and N. Bermudo. A fast and accu-

rate approach to analyze cache memory behavior. In Proceedings of

European Conference on Parallel Computing (Europar’00), 2000.

[70] X. Vera and J. Xue. Analysing cache behaviour for programs with

IF statements. Technical Report UNSW-CSE-TR0107, University

of New South Wales, May 2001.

[71] X. Vera and J. Xue. Let’s study whole program cache behaviour

analytically. In Proceedings of International Symposium on High-

Performance Computer Architecture (HPCA 8), Cambridge, Feb.

2002.

[72] D. A. B. Weikle, K. Skadron, S. A. McKee, and W. A. Wulf. Cache

as filters: a unifying model for memory hierarchy analysis. Technical

Report CS-2000-16, University of Virginia, Jun. 2000.

[73] R. T. White, F. Müeller, C. Healy, D. Whalley, and M. Harmon.

Timing analysis for data caches and set-associative caches. In Pro-

BIBLIOGRAPHY 113

ceedings of Third IEEE Real-Time Technology and Applications

Symposium (RTAS’97), pages 192–202, 1997.

[74] D. K. Wilde. A library for doing polyhedral operations. Technical

Report 785, Oregon State University, 1993.

[75] E. Witchel and M. Rosenblum. Embra: Fast and flexible machine

simulation. In Proceedings of ACM Sigmetrics Conf. on Measure-

ment and Modeling of Computer Systems (SIGMETRICS’96), May

1996.

[76] M. E. Wolf. Improving locality and parallelism in nested loops. PhD

thesis, Stanford University, Mar. 1992.

[77] M.E. Wolf and M.S. Lam. A data locality optimizing algorithm. In

Proceedings of ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI‘91), pages 30–44, Jun.

1991.

[78] M. Wolfe. Advanced loop interchanging. In Proceedings of Interna-

tional Conference on Parallel Processing (ICPP’96), 1996.

[79] M. E. Wolfe. High performance compilers for parallel computing.

Addison-Wesley, 1996.

[80] J. Xue. Unimodular transformations of non-perfectly nested loops.

Parallel Computing, 22(12):1621–1645, 1997.

[81] J. Xue. Loop Tiling for Parallelism. Kluwer Academic Publishers,

2000.

[82] J. Xue and C.-H. Huang. Reuse-driven tiling for data locality. In-

ternational Journal of Parallel Programming, 26(6):671–696, 1998.

114 BIBLIOGRAPHY

	1 Introduction
	1.1 Cache Behaviour and Real Time Systems
	1.2 Contributions
	1.3 Organisation

	2 Underlying Model
	2.1 Cache-Architecture Model
	2.2 Program Model
	2.3 Analysis Model
	2.3.1 Loop Sinking
	2.3.2 Loop Nest Normalisation
	2.3.3 Iteration Vectors
	2.3.4 Reference Iteration Spaces

	2.4 Statistical Model
	2.4.1 Discrete random variables
	2.4.2 Modelling the Cache Behaviour with Random Variables
	2.4.3 Estimation of Parameters

	3 Call Statements
	3.1 Gentle Introduction to FORTRAN Subroutines
	3.2 Abstract Inlining

	4 Reuse Vectors
	4.1 Uniformly Generated References
	4.2 Recalling Reuse Vectors
	4.3 Group Reuse Among Different RISs
	4.4 Discussion

	5 Cache Behaviour Analysis
	5.1 Forming Equations
	5.1.1 Cold Equations
	5.1.2 Replacement Equations

	5.2 Finding Cache Misses
	5.2.1 Overview

	5.3 FindMisses and EstimateMisses

	6 Validation
	6.1 Prototyping Implementation
	6.2 Analysing IF Conditionals
	6.2.1 Loop Nest Kernels

	6.3 Whole Program Analysis
	6.3.1 Multiple Loop Nest Kernels
	6.3.2 Whole Programs

	7 Cache Compiler Optimisations
	7.1 Genetic Algorithms
	7.1.1 Genetic Algorithm Parameters

	7.2 Parametric Miss Equations
	7.3 Automatic Near-Optimal Padding
	7.3.1 Inter-variable padding
	7.3.2 Adding intra-variable padding
	7.3.3 Padding Model
	7.3.4 Performance Evaluation for the SPECfp95

	8 Related Work
	8.1 Analytical Methods
	8.2 Cache Compiler Optimisations

	9 Conclusions
	9.1 Future Work

	A Background
	A.1 Memory Hierarchy
	A.1.1 Cache Memories
	A.1.2 Cache Organisation
	A.1.3 Replacement Policies
	A.1.4 Writing to the Cache

	A.2 Locality Analysis
	A.2.1 Terminology
	A.2.2 Reuse Vectors
	A.2.3 Different Reuse for Different Locality
	A.2.4 Example

	B Codes
	Bibliography

