
Fast Linux Bootup using Non-Intrusive Methods for
Predictable Industrial Embedded Systems

Mikael Åsberg and Thomas Nolte
MRTC/Mälardalen University

Västerås, Sweden
{mikael.asberg,thomas.nolte}@mdh.se

Mikael Joki, Jimmy Hogbrink and Saher Siwani
Eskilstuna Elektronikpartner AB

Eskilstuna, Sweden
{mikael.joki,jimmy.hogbrink,saher.siwani}@eepab.com

Abstract—Fast kernel boot-time is one of the major concerns
in industrial embedded systems. Application domains where boot
time is relevant include (among others) automation, automotive,
avionics etc. Linux is one of the big players among operating
system solutions for general embedded systems, hence, a relevant
question is how fast Linux can boot on typical hardware plat-
forms (ARM9) used in such industrial systems. One important
constraint is that this boot-time optimization should be as non-
intrusive as possible. The reason for this comes from the fact
that industrial embedded systems typically have high demands
on reliability and stability. For example, adding, removing or
changing critical source-code (such as kernel or initialization
code) is impermissible.

This paper shows the steps towards a fast-booting Linux
kernel using non-intrusive methods. Moreover, targeting
embedded systems with temporal constraints, the paper shows
how fast the real-time scheduling framework ExSched can be
loaded and started during bootup. This scheduling framework
supports several real-time scheduling algorithms (user defined,
multi-core, partitioned, fixed-priority periodic tasks etc.) and
it does not modify the Linux kernel source code. Hence,
the non-intrusive bootup optimization methods together with
the un-modified Linux kernel and the non-patched real-time
scheduler module offers both reliability and predictability.1

Index Terms—real-time systems, embedded systems, linux,
hierarchical scheduling

I. INTRODUCTION

So why use Linux in industrial embedded systems with re-
quirements on predictable timing? Lets look at the alternatives;
common alternative solutions include Microsoft Windows or
pure Real-Time Operating Systems (RTOS) like VxWorks,
FreeRTOS, µC/OS-II, OSE etc. Embedded system platforms
vary a lot in hardware setup (processor, devices etc.) and
requirements (power consumption, memory/disk usage, real-
time responsiveness etc.). Add to this that new hardware
devices and chipsets emerge in rapid pace which must be
supported by OS developers making device-driver, architecture
and Board Support Package (BSP) development a heavy bur-
den. This variation in hardware/software is not well suited for
General Purpose Operating Systems (GPOS) like Windows.
RTOS are more fit for these kind of variations and they
also offer a high degree of reliability. However, the lack of
standardization (i.e., “roll-your-own” software) of software

1The work in this paper is supported by the Swedish Foundation for
Strategic Research (SSF), via the research programmes SYNOPSIS and
PRESS.

stacks and inability to keep up with emerging technologies
makes it tough for these vendors as well. Linux has a modular
kernel which can be scaled down to less than one megabyte.
It has a solid reputation of being reliable and it has many
developers around the world that evolve the code base every
single day. Above all, it is open source, making all of this
possible [1].

The favorable aspects of using Linux are many. The most
important reasons are kernel stability and cutting down de-
velopment costs of embedded systems [2]. These properties
hold in Linux due to its supreme degree of distributed kernel
development and rich software stack.

Fast bootup time is important in industrial embedded sys-
tems such as those found in vehicles, i.e., a car should be
ready to start short after the user has inserted the key into
the ignition. Real-time responsiveness is without a doubt an
important property as well. Take for example the actuation
of an Antilock Brake System (ABS) or the precise fuel
and air injection in a combustion engine [3]. The reliability
and stability of these systems are highly prioritized since
these products are expected to run for a long time without
errors [1] (the product brand is at stake which has a huge
economical impact). Getting real-time responsiveness of native
Linux solutions is equally important in mobile phones [2].
A handheld device is also expected to run forever without
errors and to get good real-time performance from Linux for
its multimedia and voice processing.

There is no doubt that real-time is needed in most embedded
systems applications. However, the degree of real-time may
of course vary since the term real-time could be considered
relative. For example, for an airbag system in a car to be
correct the airbag may never be released too early or too late.
Compare this to the playback of a movie on a smartphone that
should be perfect, although no human injury will occur if one
or two movie frames are missed.

This paper presents non-intrusive methods for both fast
booting of Linux, and in conjunction with support for timing
predictability. The timing predictability is enabled by including
a specialized real-time module called ExSched [4] in the boot
process. We give a more detailed description of ExSched in
Section II-B. This module does not modify Linux in any way
and includes a rich variety of real-time scheduling algorithms.
Hence, we have chosen to include this module since it is
100% non-intrusive and does not add significantly much to

the overall boot time.
Note that non-intrusiveness is something that we prioritize

since it has many advantages that are related to the main
philosophy of Linux:

“Of course, you could also dive in and modify Linux
to convert it into a real-time operating system, since its
source is openly available. But if you do this, you will be
faced with the severe disadvantage of having a real-time Linux
that can’t keep pace, either features-wise or drivers-wise,
with mainstream Linux. In short, your customized Linux won’t
benefit from the continual Linux evolution that results from
the pooled efforts of thousands of developers worldwide.” [1].

Contribution The main contributions of this paper are:
1) We present a detailed description and evaluation of non-

intrusive methods for achieving a fast boot-time of Linux
in an industrial embedded-system setup.

2) This study also considers real-time aspects since we
focus on a real-time adapted kernel by including the
real-time scheduler module ExSched in the boot process.
This real-time capability is of course non-intrusive since
it does not alter the Linux kernel in any way.

Outline The outline of this paper is as follows: Section II
presents the background and preliminaries, and Section III
outlines the related work in the area of Linux boot-time
reduction. Section IV shows the non-intrusive methods used
for reducing the boot time, and finally, Section V concludes
our work.

II. PRELIMINARIES

This section explains the main steps of the boot process of
Linux in order for the user to fully understand the enhance-
ments that we have made for minimizing the boot time. We
will also give a description of the ExSched framework.

A. The Linux boot process

We will give a description of the boot process in Linux
and where, in this process, there are possibilities to reduce
time [5], [6].

First of all, we will start by defining what we, in this paper,
mean by boot time. It is not uncommon that embedded systems
never power down, i.e., the system looks like it is off while it
in fact is in low power-mode with the operational status saved
in memory. When power-on is applied, it is really just a resume
from a suspended state (referred to as warm boot). Some cell
phones never do a full boot unless the battery is removed and
inserted again. In this case, the operational status is lost (i.e.,
the suspend state is lost) so the device is forced to boot from
non-volatile memory and conduct all initializations (both in
software and hardware). When a device boots in this way we
refer to it as a cold boot. We are interested in the total boot
time from power-on, i.e., cold boot.

Upon pressing the power-on button, the hardware spends a
small amount of time in waiting for stabilization of clocks etc.

and after that the bootloader starts to execute immediately. The
hardware finds the bootloader in non-volatile memory such
as NOR or SD card flash. The user has to specify where the
hardware should look for the bootloader. This is typically done
by setting some pins on the hardware platform (or set it in the
BIOS if the platform is a typical desktop computer). When
the bootloader starts it copies itself from non-volatile memory
to DRAM and continues to execute there. In DRAM the
bootloader initializes the hardware (memory controller etc.).
The bootloader is configured by the user where it should look
for the Linux kernel image. When it finds the kernel image it
copies it from the storage it is residing in to DRAM memory.
After the copy is done the bootloader passes the control to the
kernel by calling the Linux kernel function start kernel(). If
the kernel is in compressed form (GZIP, LZO etc.) then the
kernel will uncompress itself (before start kernel()) using a
small bootstrap decompression loader that is appended to the
compressed kernel. The bootstrap loader is appended to the
image automatically at the end of the Linux kernel compilation
process. Once the kernel starts it will initialize itself, load
modules/drivers, locate and mount a root filesystem (where
user initialization scripts reside) and execute these scripts. The
kernel boot is the most dynamic step along the whole boot
process, i.e., it is difficult to describe the boot steps after the
kernel starts because there might be so many steps in the kernel
boot. The amount of steps can also be very small, it depends
on how many modules/packages the kernel is configured with.
This relates to the kernel compilation step where the user
can chose which modules that should reside in the kernel.
Depending on how many modules that are chosen, the kernel
image size can very from less than one megabyte to several
megabytes.

Some basic steps that are important when optimizing the
kernel boot time are described in the literature [5]:

1) Keeping the Linux kernel small is probably the most
efficient way of decreasing the boot time. Smaller kernel
images require less time to load to memory and they
decompress faster. The kernel boot process will also be
faster since less modules are needed to be loaded.

2) Keep the bootloader image size small since this will
decrease the load time between non-volatile storage and
memory. Also, it will initialize faster.

3) Having the kernel in compressed or uncompressed form
has a big impact on the boot time. There is a tradeoff
here because an uncompressed kernel takes more time to
load from non-volatile storage to memory compared to
a compressed version, however, the decompression step
is completely removed when having an uncompressed
kernel. Hence, it depends on the hardware and kernel
size which of these two variants are faster. Hardware
with slow processor and fast transfer time between
storage and memory probably gains more by having an
uncompressed kernel.

4) Remove initrd/initramfs from the kernel configuration
since it is rarely appropriate to use it in embedded sys-
tems. It can support a wide variety of configurations by

providing various device drivers, hence, this makes the
kernel more portable without the need to re-configure it.
Embedded systems don’t usually have this requirement
so it can in most cases be left out.

5) During the kernel boot-process a timer loop-calibration
is done which can take several hundreds of millisec-
onds. The loop counts how many loop iterations can
be executed during a time unit called jiffy. This loop-
iteration count is constant for each processor, hence, the
user can simply observe this value during the boot and
then just pass it as a boot argument at the next boot.
The command lpj is used as boot argument and this will
force the kernel to skip the calibration step.

6) The choice of filesystem algorithm used by the kernel
affects the boot time. CRAMFS is usually recommended
since it is read-only and hence compact and fast.

B. ExSched

ExSched [4] is a loadable real-time scheduler framework
designed to work with the POSIX-compliant SCHED FIFO
scheduling policy. ExSched is a scheduling framework which
does not require any modifications to the Linux kernel.
ExSched supports real-time scheduling capabilities which does
not exist in the native Linux kernel. The frameworks base
scheduler supports fixed-priority periodic tasks which can be
scheduled in a preemptive manner. ExSched is composed
of kernel modules and a user-space library for easy instal-
lation (Figure 2). ExSched supports both an interface to
the users in user space, e.g., a task specific interface like
rt_wait_for_period() (Figure 1), as well as in the
kernel space.

1: main(timeval C, timeval T, timeval D, int prio, int nr jobs) {
2: .
3: .
4: .
5: rt set server(1);
6: rt run(0);
7: for (i = 0; i < nr jobs; i++) {
8: / ∗ User′s code. ∗ /
9: rt wait for period();
10: }
11: rt exit();
12:}

Fig. 1. Example of a task using the ExSched API.

The kernel space API can be used by developers to develop
their own schedulers. A user developed scheduler in ExSched
is basically a kernel module which uses the API exported
by the ExSched kernel module. This makes the framework
modular without the need to actually modify anything in the
ExSched source code and you get reusability of scheduling
functionality through the API. User defined scheduling mod-
ules can of course also export an API to other modules.

ExSched has in total 7 scheduling algorithms and one mod-
ule which can record task execution for debugging purposes.
Three of these algorithms are multicore schedulers; global,

Scheduler

Linux Kernel

Kernel Space

User Space

Application
ExSched

Library

ExSched APIs

ioctl()

schedule()

sched_setscheduler()
Timers

etc.

wake_up_process()

set_cpus_allowed_ptr()

ExSched

Module

ExSched

Plugins

Fig. 2. The ExSched framework.

partitioned and semi-partitioned scheduling. Two of the sched-
ulers can schedule tasks on uni-core; Fixed-Priority Preemp-
tive Scheduling (FPPS) of periodic tasks and Earliest Deadline
First (EDF) scheduling of periodic tasks. ExSched also has
two diffrent two-level hierarchical schedulers (uni-core). Any
scheduler (at any level) can schedule either FPPS or EDF.
Our boot process includes loading and starting ExSched and
the FPPS hierarchical scheduler. Hierarchical scheduling [7],
[8], [9] is used when tasks (or groups of tasks) must be strictly
scheduled in a encapsulated way. Each task or group of tasks
may only execute in their pre-defined time-slots which gives a
clear runtime separation in the time domain. This will protect
tasks from using the CPU more than intended so that they
do not impact other tasks or groups. This type of scheduling
is mostly used where predictability is important. Figure 3
illustrates hierarchical scheduling. The global scheduler is
responsible for starting partitions (servers) and suspending
them. The frequency at which partitions run and the time
length of each run is defined in the partition interface. The
priority of a partition is included in the interface in case of
priority based global scheduling. A partition can consist of
one or several tasks. The local scheduler is responsible for
scheduling tasks that reside in the same partition during the
execution of a partition. The scheduling algorithm of the local
schedulers can be arbitrary. Hierarchical scheduling can be
found in ARINC653 [10], [11] compliant operating systems
and these are commonly found in the avionics industry. The
ARINC653 standard defines a time partitioning of applications
(similar to ExScheds hierarchical schedulers) as well as mem-
ory partitioning. This will guarantee that applications will not
interfere with eachother (in a unpredictable way) in terms of
both CPU and memory. Hence, this will make the system
more predictable.

III. RELATED WORK

There has been work on non-intrusive techniques for mini-
mizing the Linux boot time. In [5] the author describes both
the Linux boot process in depth and general methods to reduce
the boot time. A similar work to our paper is presented in [12].
They also focus on non-intrusive methods but their application
is different. Their focus is on the more powerful ARM11
architecture which is more specialized for multimedia. The
authors focus is on Android. They present a Linux kernel
boot-time of 1.1 seconds and 10.1 seconds in total for the

Sy
ste

m
CPU

Global scheduler

Partition Partition Partition

Local
scheduler

Local
scheduler

Interface Interface Interface

.

… … … …

Task

Fig. 3. Hierarchical/partitioned scheduling.

Android application. The main difference from our work is
that we focus on industrial embedded systems (ARM9) which
has higher demands on predictability and this is something that
is considered in our boot process. Moreover, we evaluate more
methods and we show a more detailed evaluation of all the
methods. [6] also describes many non-intrusive optimization
techniques such as quiet, lpj, probing, Execute In Place (XIP)
etc. The author also describes the Linux kernel boot activities
in detail. XIP means that the kernel is never loaded into main
memory but instead executes from non-volatile storage. The
boot process is faster but the kernel will execute slower since
it resides in disk. This is not a solution that is sufficient for
our application.

There is also a lot of work on intrusive techniques for
minimizing the Linux boot time. The work in [13], [14], [15]
use the snapshot technique. An image of the kernel is saved
during runtime and then saved to flash. At the next bootup,
this image is used and this decreases the total boot time. The
disadvantages are that it is time consuming to create images of
the running kernel and this technique requires modifications
to the bootloader and the kernel. A similar work [16] uses
hibernation. This has been done in mobile handsets to improve
the user perceived boot time.

The authors in [17] describe a unique technique for min-
imizing the Linux boot time. They develop a hybrid root-
filesystem (combining CRAMFS and JFFS2) which gives
performance improvements at runtime (in the aspect of disk
usage) but it does not boot faster than CRAMFS.

IV. BOOT-TIME IMPROVEMENTS

We used a Freescale I.MX28 EVK board equipped with a
454 MHz ARM926-EJ core processor and 128 MB DRAM.
We used the Linux kernel version 2.6.35.3 together with the
U-boot (2009.08) bootloader. The kernel and the bootloader
were stored in a SDHC memory card of class 2 (4GB) prior to

the bootup. We used the Buildroot [18] cross-compiler tools
to compile ExSched for our I.MX28 board and a Freescale
version of the LTIB2 tool for compiling the Linux kernel
and the bootloader. A LTIB script was used to create a
bootable SD card with our configured kernel and bootloader.
We used a C-program3 to measure the boot time. This tool
is similar to Grabserial4 which timestamps incoming UART
messages from the microcontroller. There exists other op-
tions as well such as Kernel Function Instrumentation (KFT).
However, this instrumentation method requires modifications
to the kernel which we want to avoid. Another solution for
measuring boot time is a kernel configuration option called
CONFIG PRINTK TIME which can be found in the Kernel
Hacking section. This option will append timestamps to printk
log messages which are printed during the whole Linux boot
process. However, one boot time optimization method called
quiet (which we have used) can suppress boot log-messages
and thereby save hundreds of milliseconds. Hence, if quiet is
used then CONFIG PRINTK TIME will not have any effect.

All measured values presented in this paper represent the
average value of three sampled values.

A. Compressed versus uncompressed kernel image

Several sources [5], [12], [17] report that uncompressed
Linux kernels boot faster in the general case. During our
experiments we found that the differences in boot time was
enormous. However, it was the compressed kernel that was
superior in fast bootup. The kernel size (∼1MB compressed
and ∼2MB uncompressed) is also a typical size found in the
literature related to fast booting Linux systems. Hence, our
setup is general regarding both hardware and software but our
results contradict previous studies.

We used a non-optimized version of U-boot (we use an
optimized version in our final results) in order to compare the
boot time of an uncompressed and a Lempel-Ziv-Oberhumer
(LZO) compressed kernel. The reason for using this bootloader
version was because it displayed more log messages. This
made it possible to determine the amount of time spend in
the boot loader and in the decompression stage of the kernel.
We are dependent on log messages from the microcontroller
in order to measure the boot time since our host application
timestamps incoming UART messages. We could conclude
that only 80 ms of time was spend on decompressing the
918716 bytes large compressed kernel. The uncompressed
version of Linux was 1804192 bytes large and the bootloader
spend a staggering 555 ms more time (to transfer the image
from disk to memory) than the compressed version. Hence,
the uncompressed Linux version took in total 475 ms more
time to boot than the LZO compressed image. We of course
have to consider that this difference (555ms) would have
been smaller if we would have used the optimized bootloader
version. However, it would most likely not be smaller than 80
ms.

2LTIB http://ltib.org
3tstamp.c http://processors.wiki.ti.com/index.php/Measuring Boot Time
4Grabserial http://elinux.org/Grabserial

B. Kernel compression algorithms

The literature does not elaborate about the time reductions
that can be done by choosing an efficient compression algo-
rithm for the kernel. In this section we present our findings in
this topic.

Table I shows the compression size and the total boot-
time of the Gnu ZIP (GZIP), LZO and Lempel-Ziv-Markov
chain (LZMA) compression algorithms. The Linux image was
1804192 bytes large in an uncompressed format.

Algorithm Image size (bytes) Boot time (ms)
GZIP 845376 1160
LZO 918716 1128

LZMA 635276 1993

TABLE I
COMPRESSION ALGORITHMS.

It is interesting to note that the LZMA boot time is almost
twice as long as LZO.

The LZO algorithm is known to be fast in decompression
compared to GZIP so the results are not surprising. In total,
there is a gain of 32 ms (with a small kernel) when using
LZO instead of the default compression algorithm GZIP. It
takes 80 ms of boot time to decompress the Linux kernel (of
size 918716 bytes) using LZO, i.e, only 7% of the total boot
time is spend on decompression which is a small part.

C. File systems

The choice of filesystem is well elaborated in the liter-
ature [2], [5], [12], [17]. All papers favor the filesystem
CRAMFS. The reason for this is because it is compact due
to that it is a read-only filesystem (fast boot time). We
have experimented with different filesystem options using the
LTIB configuration. We measured the total boot time using 5
different file systems. Table II shows the results.

File system Boot time (ms)
CRAMFS 1128

JFFS2 1132
EXT2.GZ 1128

INITRAMFS 1132
NFS 1132

TABLE II
FILE SYSTEMS.

We did not note any significant difference in terms of boot
time among these filesystems. However, we want to delimit
these results since we have only tried one configuration tool
(LTIB).

D. Results

The main goal of this work has been to reach 1 second
total (cold) boot time. The smallest observed boot time that we
obtained was 1.128 seconds. However, a “useful” kernel will
most probably be larger than the one we obtained. The kernel
that we configured lacks many packages, i.e., it is stripped

down to a very small set of functionalities. Considering that
more kernel packages might be needed, more optimizations
must be done.

We used 7 non-intrusive methods for achieving a 1.128
second boot time:

1) Removing unnecessary packages from the kernel and
converting necessary packages to loadable kernel mod-
ules (they can be loaded later after the kernel boot
process). In total, 185 kernel configuration options were
either removed or converted to loadable kernel modules.
This is the most time consuming method but it is also
the most efficient way to minimize the boot time.

2) Optimizing the bootloader saves a lot of time as well.
Suppressing log messages from the bootloader is one
way of decreasing the execution time.

3) The boot argument that minimized the boot time the
most was without doubt the quiet option. It decreased
the total boot time with a staggering 9%.

4) The second most efficient boot argument was the lpj
option.

5) The default kernel memory allocation unit is called
SLUB. It is actually a replacement of an older allocator
called SLAB. It is difficult to claim any difference in
performance between them since there is little documen-
tation about these modules. However, the SLUB alloca-
tor is recommended by the literature [2], [12] because
it shrinks the platform footprint. We experimented with
both SLUB and SLAB and surprisingly found that (the
non-default allocator) SLAB obtained about 32 ms less
boot time than SLUB.

6) Linux allocates and pre-initializes all of the DRAM
memory in its heap during the kernel bootup. Less
memory to pre-initialize means less boot time. We used
the mem boot argument to specify how much memory
the kernel should allocate during the boot process. In
our case, 16 megabytes was sufficient for the system to
function properly and it decreased the boot time with 32
ms.

7) The third most efficient boot argument is init. The last
step in the Linux kernel boot-process is to start the
first task (called process in Linux terms). This task
is called init and a subset of its source-code is shown
in Figure 4. The function of init is to run initialization
scripts (lines 11-14, Figure 4). These scripts will start
various system processes and initialize serial ports, set
the clock, check filesystems etc. However, the user can
tell init to execute another process (lines 8-9) instead
of its default processes (and hence skip all user-space
initialization steps). This can be done with the init
boot argument. We set init to execute an ash shell
(init=/bin/ash) and this saves 31 ms.

Udev is a module that can detect devices and automatically
load their drivers. The literature [5] points out that there is
potential boot-time improvements that can be done related
to minimizing its functionality. We found that removing this
module did not affect the boot time at all. Hence, udev itself

1. /*
2. * We try each of these until one succeeds.
3. *
4. * The Bourne shell can be used instead of init if we are
5. * trying to recover a really broken machine.
6. */
7.
8. if (execute command)
9. run init process(execute command);
10.
11. run init process(”/sbin/init”);
12. run init process(”/etc/init”);
13. run init process(”/bin/init”);
14. run init process(”/bin/sh”);
15.
16. panic(”No init found. Try passing init= option to kernel.”);

Fig. 4. Kernel source-code from init/main.c.

does not affect the boot time if no devices are detected.
The Read Copy Update (RCU) subsystem is a synchroniza-

tion primitive that allows fast access to shared resources in
the Linux kernel. It is recommended to use “UP-only-small-
memory-footprint RCU” for small uni-processor systems in-
stead of the default option since it is less resource demanding.
This option reduced the kernel size with about 3000 bytes
which is quite impressive. However, it does not give any
improved boot times. On the contrary, it increased the boot
time in the average case.

Figure 5 illustrates how much each optimization method
(described previously) decreased the total boot time. As can
be seen, the original boot time of the Linux 2.6.35.3 kernel
was 6197 ms. Its interesting to note that the Linux kernel
that was shipped with the I.MX28 board had a boot time of
26 seconds. Removing (and converting) 185 kernel packages
resulted in a 49% decrease of the boot time. Improvements to
the bootloader resulted in a 19% decrease of time while the
4 boot arguments quiet, lpj, mem and init together with the
SLAB memory allocator resulted in a total improvement of
14%.

E. Booting ExSched

We compiled the ExSched framework including the FPPS
hierarchical scheduler plugin (HSF-FP) for the Linux 2.6.35.3
ARM platform using the Buildroot [18] ARM cross-compiler.
Figure 7 shows the boot log-messages that were displayed
when we booted the system with the ExSched and HSF-FP
scheduler modules. As can be seen, the HSF-FP scheduler
creates an example system of 3 servers (which is the runtime
definition of a partition) and their parameters are shown in
Table III. The parameters show for example that the first
partition (Server0), which has the highest priority, is started
every 12 time units and that it executes for 4 time units at each
release. A task (or a set of tasks) can be installed inside any
of these 3 partitions which would give a runtime temporal
protection against any task that would violate its assumed
execution time.

The ExSched and HSF-FP module add only 80 ms to the
bootup time, i.e., we get a total (cold) bootup time of 1208
ms. Figure 8 shows the execution trace of the 3 partitions

scheduled by the HSF-FP hierarchical scheduler. The trace
was visualized using the Grasp [19] tool and we used the HSF
recorder [20] to record this trace on the I.MX28 platform. The
native Linux trace-recorder Ftrace [21] can also be used to
trace the task execution but we skipped this module in order
to minimize the kernel size and hence also the boot time.

The server parameters (Table III) correspond to the exe-
cution pattern of Figure 8. For example, Server0 will often
preempt the execution of Server2 since Server2 has lower
priority. This example shows the applicability of a hierarchi-
cal scheduler in an industrial embedded-systems context and
the predictability that it contributes to. Moreover, this real-
time scheduler suite can be used in Linux without enforcing
any modifications to the kernel unlike many other real-time
solutions for Linux [22], [23], [24], [25], [26], [27], [28],
[29], [30]. Last but not least, ExSched (and all of its real-time
scheduler plugins) can be added to the Linux kernel bootup
process with little extra overhead. Figure 6 shows the boot
script used to load the ExSched modules (lines 3-4) and an
ash shell (line 5) during the bootup process.

1. #!/bin/ash
2. # ExSchedBoot.sh
3. insmod /etc/exsched.ko
4. insmod /etc/hsf-fp.ko
5. /bin/ash

Fig. 6. Boot script (ExSchedBoot.sh) used to load ExSched and HSF-FP
during bootup using the boot argument init=/ExSchedBoot.sh.

PowerPrep start initialize power
Battery Voltage = 4.25V
boot from battery. 5v input not detected
LLLCApr 16 201218:11:30
FRAC 0x92925552
memory type is DDR2
Wait for ddr ready 1power 0x00820616
Frac 0x92925552
start change cpu freq
hbus 0x00000003
cpu 0x00010001
start test memory accress
ddr2 0x40000000
finish simple test
Uncompressing Linux... done, booting the kernel.

EXSCHED: HELLO!
HSF-FP: HELLO! (4294938361)
server create: 0 Server0 4
server create: 1 Server1 4
server create: 2 Server2 8

BusyBox v1.15.0 () built-in shell (ash)
Enter ’help’ for a list of built-in commands.

/bin/ash: can’t access tty; job control turned off
/ #

Fig. 7. Boot messages.

V. CONCLUSION

This paper concludes that the total (cold) boot time of
(embedded) Linux on a typical industrial embedded systems
platform (ARM9) can be decreased to an acceptable level. We

Fig. 5. Overview of boot-time optimizations.

0 50 100 150 200 250

0

2

4

Server0

0

2

4

Server1

0

4

8

Server2

0

400

800

ServerIdle

Fig. 8. Scheduling trace of the ExSched hierarchical scheduler running on the I.MX28 platform.

Server-name Period Budget Priority
Server0 12 4 0
Server1 20 4 1
Server2 28 8 2

TABLE III
SERVER PARAMETERS.

managed to squeeze down the boot time to 1.128 seconds using
only non-intrusive methods. These methods include optimizing
the kernel and bootloader, adding the quiet, lpj, mem and init
boot arguments, and using the SLAB kernel memory allocator

instead of the default SLUB allocator. Some of these methods
are uncommon in the literature, e.g., quiet, mem, init and the
SLAB allocator. In fact, related work even recommends using
the SLUB allocator.

The comparison of compressed and uncompressed kernels
showed that compression was superior (at least in this setting)
unlike previous statements in the literature which usually favor
uncompressed kernels.

Our comparison of filesystems also resulted in surprising
results. Related work tends to favor the filesystem CRAMFS
while our experiments showed that there were almost no dif-
ference between CRAMFS, JFFS2, EXT2.GZ, INITRAMFS
and NFS.

We found no related work with regard to compression
algorithms. Our experiments showed that LZO was 32 ms
faster compared to the default algorithm GZIP.

Our experiments also showed that it took 80 ms to load
the scheduler framework ExSched and a hierarchical scheduler
during the bootup process. This resulted in a total (cold) boot
time of 1208 ms. Finally, we demonstrated the usefulness of
a hierarchical scheduler in an industrial embedded-systems
environment.

Future work includes (at least) two sources of optimizations;
remove more (unnecessary) kernel packages and use NOR
flash instead of SD card flash (faster transfer between flash
and main memory).

REFERENCES

[1] R. Lehrbaum, “Using Linux in Embedded and Real-Time Systems,”
Linux Journal, no. 75, 2000.

[2] B. Weinberg, “Mobile phones: The Embedded Linux Challenge,” Linux
Journal, no. 148, 2006.

[3] M. Åsberg, M. Behnam, F. Nemati, and T. Nolte, “Towards Hierarchical
Scheduling in AUTOSAR,” in ETFA’09, 2009.

[4] M. Åsberg, T. Nolte, S. Kato, and R. Rajkumar, “ExSched: An External
CPU Scheduler Framework for Real-Time Systems,” in RTCSA’12,
2012.

[5] C. Hallinan, “Reducing Boot Time in Embedded Linux Systems,” Linux
Journal, no. 188, 2009.

[6] T. Bird, “Methods to Improve Bootup Time in Linux,” in Japan Linux
Symposium, 2004.

[7] P. Goyal, X. Guo, and H. M. Vin, “A Hierarchical CPU Scheduler for
Multimedia Operating Systems,” in OSDI’96, 1996.

[8] Z. Deng and J. W.-S. Liu, “Scheduling Real-time Applications in an
Open Environment,” in RTSS’97, 1997.

[9] J. Regehr and J. A. Stankovic, “HLS: A Framework for Composing Soft
Real-Time Schedulers,” in RTSS’01, 2001.

[10] ARINC, ARINC 653: Avionics Application Software Standard Interface
(Draft 15). Airlines Electronic Engineering Committee (AEEC), 1996.

[11] ARINC/RTCA-SC-182/EUROCAE-WG-48, “Minimal Operational Per-
formance Standard for Avionics Computer Resources.” RTCA, Incor-
porated, 1828 L Street, NW, Suite 805, Washington D.C. 20036, 1999.

[12] G. Singh, K. Bipin, and R. Dhawan, “Optimizing the Boot Time of
Android on Embedded System,” in ISCE’11, 2011.

[13] I. Joe and S. C. Lee, “Bootup Time Improvement for Embedded Linux
Using Snapshot Images Created on Boot Time,” in ICNIT’11, 2011.

[14] H. Kaminaga, “Improving Linux Startup Time Using Software Resume,”
in Japan Linux Symposium, 2006.

[15] H. Jo, H. Kim, H.-G. Roh, and J. Lee, “Improving the Startup Time of
Digital TV,” in IEEE Transactions on Consumer Electronics, 2009.

[16] D. Fuji, T. Yamakami, and K. Ishiguro, “A Fast-Boot Method for
Embedded Mobile Linux: Toward a Single-Digit User Sensed Boot Time
for Full-Featured Commercial Phones,” in WAINA’11, 2011.

[17] K. H. Chung, M. S. Choi, and K. S. Ahn, “A Study on the Packaging
for Fast Boot-up Time in the Embedded Linux,” in RTCSA’07, 2007.

[18] A. Sirotkin, “Roll Your Own Embedded Linux System With Buildroot,”
Linux Journal, no. 206, 2011.

[19] M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, and J. J.
Lukkien, “Grasp: Tracing, Visualizing and Measuring the Behavior of
Real-Time Systems,” in WATERS’10, 2010.

[20] M. Åsberg, T. Nolte, and S. Kato, “A Loadable Task Execution Recorder
for Hierarchical Scheduling in Linux,” in RTCSA’11, 2011.

[21] T. Bird, “Measuring Function Duration with Ftrace,” in Japan Linux
Symposium, 2009.

[22] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource kernels:
A Resource-Centric Approach to Real-Time and Multimedia Systems,”
in MMCN’98, 1998.

[23] V. Yodaiken, “The RTLinux Manifesto,” in Linux Conference, 1999.
[24] D. Beal, E. Bianchi, L. Dozio, S. Hughes, P. Mantegazza, and S. Pa-

pacharalambous, “RTAI: Real Time Application Interface,” Linux Jour-
nal, no. 29, 2000.

[25] K. Yaghmour, “Adaptive Domain Environment for Operating Systems,”
Opersys inc, 2001.

[26] D. Faggioli and F. Checconi, “An EDF Scheduling Class for the Linux
Kernel,” in Real-Time Linux Workshop, 2009.

[27] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson,
“LITMUSRT: A Testbed for Empirically Comparing Real-Time Mul-
tiprocessor Schedulers,” in RTSS’06, 2006.

[28] K. Lakshmanan and R. Rajkumar, “Distributed Resource Kernels: OS
Support for End-To-End Resource Isolation,” in RTAS’08, 2008.

[29] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari, “AQuoSA—
adaptive quality of service architecture,” Softw. Pract. Exper., vol. 39,
no. 1, pp. 1–31, 2009.

[30] F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari, “Hierarchical
Multiprocessor CPU Reservations for the Linux Kernel,” in OSPERT’09,
2009.

