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Abstract-- In order to achieve reproducible and 
deterministic functional integration testing of real-time 
systems software it is essential to consider inputs, outputs, and 
the order in which the tasks communicate and synchronize 
with each other. In this paper we present a method for 
deterministic integration testing of strictly periodic fixed 
priority scheduled real-time systems. Essentially it is a 
structural white box testing method applied on the system 
level rather than the individual programs of the tasks. The 
method includes a reachability technique for deriving all 
possible orderings of task starts, preemptions and completions 
for tasks executing in a system where synchronization is 
resolved using the Priority Ceiling Emulation Protocol (PCEP) 
or offsets. The method also includes a structural testing 
strategy for achieving full coverage with respect to the derived 
execution orderings. The testing strategy also allow test 
methods for sequential programs to be applied, since each 
identified ordering can be regarded as a sequential program. 
In the presented analysis and testing strategy, we consider task 
sets with recurring release patterns, and take into account the 
effects of variations in start and execution times of the 
involved tasks, as well as the variations of the arrival and 
duration of the critical sections.  
 
Index Terms—Testing, integration testing, real-time systems, 
test coverage, priority ceiling emulation protocol, fixed 
priority scheduling, reachability analysis, determinism 

1 INTRODUCTION 

I n this paper we extend the method for achieving 
deterministic testing of distributed real-time systems by 
Thane and Hansson [14][13]. They addressed task sets 

with recurring release patterns, executing in a distributed 
system, where the scheduling on each node was handled by 
a fixed priority driven preemptive scheduler supporting 
offsets. The method transformed the non-deterministic 
distributed real-time systems testing problem into a set of 
deterministic sequential programs testing problems. This 
was achieved by deriving all the possible execution 
orderings of the individual nodes in the distributed real-
time system, and regarding each ordering as a sequential 
program. Full test coverage (if needed) was then achieved 
by testing all obtained scenarios (using monitoring during 

run-time) until a required level of secondary coverage was 
achieved. For each individual scenario/program, the 
secondary coverage criteria were defined by the testing 
technique applied, e.g., white or black box testing.  

This work is founded by the national Swedish Real-Time Systems research 
initiative ARTES (www.artes.uu.se), supported by the Swedish Foundation 
for Stratetgic Research. 
 

This method assumed that all synchronization was 
resolved offline, e.g., by a static scheduler, which assigned 
offsets and priorities to all tasks in the distributed system. 
That is, general use of semaphores was not allowed. All 
tasks in the system were also assumed to receive all input 
immediately at their start, and to produce all output at their 
termination. These limitations were quite severe, although 
the analysis proved that even statically scheduled systems 
could yield enormous numbers of different scenarios, when 
subjected to preemption and jitter (execution time-, 
communication time-, and interrupt induced jitter), 
especially when the system is of multi-rate character.  

In this paper we elaborate on the approach presented in 
[14][13] and expand the task model to also include critical 
sections, governed by the Priority Ceiling Emulation 
Protocol (PCEP) [2], a.k.a. the immediate inheritance 
protocol and immediate priority ceiling protocol. Since 
tasks may synchronize/communicate via critical sections, 
we will also relax Thane’s and Hansson’s input output 
assumption. Our extension is however only valid for the 
individual nodes in the distributed real-time system, unless 
we assume a global PCEP, which is quite complex to 
achieve [10]. The subsequent analysis in this paper is hence 
focused on a single node. The results by Thane and 
Hansson [13][14] on how to derive global execution 
ordering scenarios can however successfully be applied if 
global scheduling is relying on offsets between tasks on 
different nodes, but this is outside the scope of this paper. 

1.1 The problem of testing real-time software 
Reproducible and deterministic testing of sequential 

programs can be achieved by controlling the sequence of 
inputs and the start conditions [9]. That is, given the same 
initial state and inputs, the sequential program will 
deterministically produce the same output on repeated 
executions, even in the presence of systematic faults [11]. 
Reproducibility is essential when performing regression 
testing or cyclic debugging, where the same test cases are 
run repeatedly with the intent to validate that either an error 
correction had the desired effect, or simply to make it 
possible to find the error when a failure has been observed 
[7]. However, trying to directly apply test techniques for 
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sequential programs on real-time systems is bound to lead 
to non-determinism and non-reproducibility, because 
control is only forced on the inputs, disregarding the 
significance of order and timing of the executing and 
communicating tasks. Any intrusive observation of a real-
time system can in addition incur a temporal probe-effect 
[4] that subsequently will affect the temporal and functional 
behavior of the system.  

In theory it is possible to reproduce the behavior of a 
real-time system if we can reproduce the exact trajectories 
of the inputs to the system with an exact timing. The inputs, 
and state, of the tasks dictates the control flow paths taken, 
which in turn dictates the execution time of the tasks, which 
in the end dictates the preemption pattern (for strictly 
periodic systems). Trying to perform exhaustive black-box 
testing of individual programs is in the general case 
infeasible, due to the large number of possible inputs, e.g., 
two 32 bit inputs yields 264 possible input combinations, not 
considering state. For a multitasking real-time system the 
number of possible inputs is similarly bordering on the 
ludicrous. However, just as individual program’s control 
flow structure can be derived and used for white-box 
testing of the control-flow paths (which usually are 
significantly fewer than the number of possible inputs), we 
can for a set of multi-tasking real-time tasks test the 
different interleavings of task executions on the system 
level.  

1.2 Contribution 
The contribution of this paper is a white-box system 

level integration testing method that includes:  
• A white-box reachability technique for deriving all 

possible orderings of task starts, preemptions and 
completions for tasks executing in a system where 
synchronization is resolved using offsets or the priority 
ceiling emulation protocol (PCEP).  

• A testing strategy for achieving any required level of 
coverage, with respect to the derived execution 
orderings. The testing strategy also allows test methods 
for sequential programs to be applied, since each 
identified ordering can be regarded as a sequential 
program. 

 
The results in this paper substantially extends the 

applicability of the results by Thane and Hansson [14][13], 
since we now can handle systems with on-line 
synchronization, for which it is actually more likely that 
errors have been caused by implementation and 
synchronization problems. Also, PCEP has been adopted in 
industry standards like POSIX, ADA95, and OSEK, for its 
implementation simplicity [12][6]. 

Paper outline: Section 2 presents our system model. 
Section 3 formalizes the concept of execution orderings and 
presents the algorithm for identifying all the possible 
execution orderings in a single node real-time system. 
Section 4 presents a testing strategy for deterministic full 
coverage testing. Section 5 discusses the relation between 

jitter and testability. Finally, in Section 6, we conclude and 
give some hints on future work. 

2 THE SYSTEM MODEL 
We assume that the real-time systems software consists 

of a set of concurrent tasks, communicating by message 
passing or shared memory. All synchronization, precedence 
or mutual exclusion, is resolved either offline by assigning 
different release times and priorities, or during runtime by 
the use of semaphores which have Priority Ceiling 
Emulation Protocol semantics (PCEP) [2].  

2.1 Task model 
We assume a fairly general task model that includes both 

preemptive scheduling of statically generated schedules 
[18] and fixed priority scheduling of strictly periodic tasks 
[1][8]: 
• The system contains a set of jobs J, i.e. invocations of 

tasks, which are released in a time interval [t,t+TMAX] , 
where TMAX is typically equal to the Least Common 
Multiple (LCM) of the involved tasks period times, and 
t is an idle point within the time interval [0, TMAX] 
where no job is executing. The existence of such an 
idle point, t, simplifies the model such that it prevents 
temporal interference between successive TMAX 
intervals. To simplify the presentation we will 
henceforth assume an idle point at 0. 

• Each job j∈ J has a release time rj, worst case 
execution time (WCETj), best case execution time 
(BCETj), a deadline Dj, and a unique base priority bpj. 
J represents one instance of a recurring pattern of job 
executions with period TMAX, i.e., job j will be released 
at time rj, rj+ TMAX, rj+ 2 TMAX, etc.  

• The system is preemptive and jobs may have identical 
release times. 

2.2 Synchronization using PCEP 
For PCEP we assume that: 

• Each job j∈ J has a current priority pi that may be 
different from the statically allocated base priority, bpj, 
if the job is subject to priority promotion when granted 
a resource.  

• Each resource R, used by a set of jobs SR, has a 
statically computed priority ceiling defined by the 
highest base priority in SR increased by one, i.e., pR = 
MAX(bpi | i ∈ SR ) + 1. 

• Each job, j, that enters a critical section protecting a 
resource R is immediately promoted to the statically 
allocated priority ceiling of the resource, if pR > pj then 
pj = pR. 

• Each job, j, that is executing and releases a resource R 
is demoted immediately to the maximum of the base 
priority bpj, and the ceilings of the remaining resources 
held by the job.  

• Each critical section, k, has a worst case execution time 
(WCETk) and a best case execution time (BCETk). 
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• Each critical section, k, has a release time interval [erk, 
lrk) ranging from the earliest release time to the latest 
release time.  

• All resources are claimed in the same order for all 
paths through the program in a job. 

Note that we here, compared to other ceiling priority 
models, can take more detailed information of the time 
when the resources are allocated into account. 

2.3 Side effects 
Related to the task model we assume that the jobs may 

have functional and temporal side effects due to 
preemption, message passing or shared memory.  
• Data is sent at the termination of the sending job and 

received data is available when job start to execute.  
• Access to shared memory or I/O is guarded by 

semaphores, or offsets. 

2.4 Fault hypothesis 
The fault hypothesis is that errors can only occur due to 

erroneous outputs and inputs to jobs, and/or due to 
synchronization errors, i.e., jobs can only interfere via 
specified interactions. This means that interleaving failures, 
e.g., memory corruptions are not considered. To handle 
interleaving failures other techniques need to be applied, 
e.g., deterministic replay debugging [15]. 

3 EXECUTION ORDER ANALYSIS  
In this section we present a technique for identifying all 

the possible orders of execution for sets of jobs conforming 
to the task model of section 2. We first begin with a 
definition of execution orderings, then continue with a 
definition of the execution order graph, and finally presents 
an algorithm that generates this graph. 

3.1 Execution Orderings 
In identifying the execution orderings of a job set we will 

only consider the following major events of job executions:  
• The start of execution of a job or a critical section, i.e., 

when the first instruction is executed. We will use S(J) 
to denote the set of start points for the jobs in a job set 
J; S(J) ⊆  J × [0, TMAX] × J ∪ {_}, that is S(J) is the set 
of triples (j1, time, j2), where j2 is the job that is 
o Preempted by the start of j1 at time, or possibly the 

idle job “_” if no j2 job exists.  
o Promoted to a higher priority due to the arrival of a 

critical section, j1 at time, i.e., the same job 
continues executing, but at higher priority. 

o Preempted by j1 when j2 exits a critical section at 
time and demotes its priority. ∑

∈∪∈  )}(),,'(|),,'({  X)}{s(j, ev
ev.t) -ev.t).t   (Nxt(X,

JEjtjjtj• The end of execution of a job or critical section, i.e., 
when the last instruction is executed. We will use E(J) 
to denote the set of end points (termination points) for 
jobs in a job set J; E(J) ⊆  J × [0, TMAX] × J ∪ {_}, that 
is E(J) is a set of triples (j1, time, j2), where j2 is the job 

o That is resuming its execution at the termination of 
higher priority job j1, or possibly the idle job “_” if 
no such job exists. 

o That is demoted to a lower priority when exiting a 
critical section, j1, i.e., the same job continues 
executing, but at lower priority. 

We will now define an execution to be a sequence of job 
starts and job terminations, using the additional notation 
that  
• ev denotes an event, and Ev a set of events. 
• ev.t denotes the time of the event ev,  
• Ev\I denotes the set of events in Ev that occur in the 

time interval I,  
• Prec(Ev, t) is the event in Ev that occurred most 

recently at time t (including events that occurs at t). 
• Nxt(Ev, t) denotes the next event in Ev after time t. 
• First(Ev) and Last(Ev) denote the first and last event in 

Ev, respectively. 
Definition 3-1. An Execution of a job set J is a set of 

events X ⊆  S(J) ∪  E(J), such that 
1. For each j∈ J, there is exactly one start and termination 

event in X, denoted s(j,X) and e(j,X) respectively, and 
s(j,X) precedes e(j,X), i.e. s(j,X).t ≤ e(j,X).t, where 
s(j,X) ∈  S(J) and e(j,X) ∈  E(J). 

2. For each (j1, t, j2) ∈  S(J), pj1 > pj2, i.e., jobs are only 
preempted by higher priority jobs, or promoted to a 
higher priority when entering a critical section. 

3. For each j∈ J, s(j,X).t ≥ rj, i.e., jobs may only start to 
execute after being released. After its release, the start 
of a job may only be delayed by intervals of executions 
of higher priority jobs, i.e., using the convention that 
X\[j.t, j.t)=∅ , for each job j∈ J each event 
ev∈ X\[Prec(X,rj).t, s(j,X).t) is either 

• A start of the execution of a higher priority job, 
i.e. ev = s(j’, X) and pj’>pj 

• A priority promotion, due to arrival of a higher 
priority critical section, i.e. ev = s(j’, X) and 
pj’>pj 

• A priority demotion, due to the exit from a 
critical section, at which a higher priority job 
resumes its execution, i.e., ev = (j’, t, j”), where 
pj”>pj 

• A job termination, at which a higher priority job 
resumes its execution, i.e., ev = (j’, t, j”), where 
pj”>pj 

4. The sum of execution intervals of a job j∈ J is in the 
range [BCET(j), WCET(j)], i.e., 

 
BCET(j) ≤ ≤ WCET(j) 

 
 
That is, we are summing up the intervals in which j starts 

or resumes its execution. 
We will use EXt(J) to denote the set of timed executions 

of the job set J. Intuitively, EXt(J) denotes the set of 
possible executions of the job set J within [0,TMAX]. 
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Assuming a dense time domain EXt(J) is only finite if 
BCET(j)= WCET(j) for all j∈ J. However, if we disregard 
the exact timing of events and only consider the ordering of 
events we obtain a finite set of execution orderings for any 
finite job set J. 

Using ev{x/t} to denote an event ev with the time 
element t replaced by the undefined element “x”, we can 
formally define the set of time abstracted execution 
orderings EX(J) as follows: 

Definition 3-2. The set of Execution orderings EX(J) of a 
job set J is the set of sequences of events such that ev0{x/t}, 
ev1{x/t}, ..., evk{x/t} ∈  EX(J) iff there exists an X∈  EXt(J) 
such that 
• First(X) = ev0 
• Last(X) = evk 
• For any j∈  [0..(k-1)]: Nxt(X,evj.t) = evj+1   

Intuitively, EX(J) is constructed by extracting one 
representative of each set of equivalent execution orderings 
in EXt(J), i.e., using a quotient construction EX(J) = EXt(J)\ 
~, where ~ is the equivalence induced by considering 
executions with identical event orderings to be equivalent. 
This corresponds to our fault hypothesis, with the overhead 
of keeping track of preemptions and resumptions, although 
not exactly where in the program code they occur. This 
overhead means that we can capture more than what our 
fault hypothesis is supposed to capture. We could thus 
reduce the number of execution orderings further if we 
define EX(J) = EXt(J)\ ≈, where ≈ is the equivalence 
induced by considering executions with identical job start 
and job stop orderings to be equivalent. In the process of 
deriving all the possible execution orderings we need 
however to keep track of all preemptions, i.e., EXt(J)\ ~, but 
after having derived this set we can reduce it to EXt(J)\ ≈. 
Even further reductions could be of interest, for instance to 
only consider orderings among tasks that are functionally 
related, e.g., by sharing data.  

In the remainder we will use the terms execution 
scenario and execution ordering interchangeably.  

3.2 Deriving the Execution Orderings 
This section outlines a technique for deriving the set of 

execution orderings EX(J) for a set of jobs J, complying 
with definitions 3-1 and 3-2. We will later (in section 3.3) 
present an algorithm implementing the technique. In 
essence, our approach is to make a reachability analysis by 
simulating the behavior of a real-time kernel conforming to 
our task model during one [0,TMAX] period for the job set J.  

The algorithm we are going to present generates, for a 
given schedule, an Execution Order Graph (EOG), which is 
a finite tree for which the set of possible paths from the root 
contains all possible execution scenarios.  

But before delving into the algorithm we describe the 
elements of an EOG. Formally, an EOG is a pair <N, A>, 
where  
• N is a set of nodes, each node being labeled with a job, 

the job’s current priority, and a continuous time 
interval, i.e., for a job set J: N⊆  J ∪ {“_”} × P × 

I(TMAX), where {“_”} is used to denote a node where no 
job is executing. P is the set of priorities, and I(TMAX) is 
the set of continuous intervals in [0, TMAX]. 

• A is the set of edges (directed arcs; transitions) from 
one node to another node, labeled with a continuous 
time interval, i.e., for a set of jobs J: A ⊆  N × I(TMAX) × 
N. 

Intuitively, an edge, corresponds to the transition (task-
switch) from one job to another, or when a job enters or 
leaves a critical section. The edge is annotated with a 
continuous interval of when the transition can take place, as 
illustrated in Figures 3-1 and 3-2, showing EOGs for 
simple jobs without critical sections. 

[a, b) [a’, b’) [a, b) 
A:pA B:pB 

Figure 3-2. Two transitions, one to 
job A and one from job A to job B. 

Figure 3-1. A Transition. 

The interval of possible start times [a’, b’) for job B, in 
Figure 3-2, is defined by:  
 a’ = MAX(a, rA) + BCETA  (3-1) 
 b’ = MAX(b, rA) + WCETA 

The MAX functions are necessary because the calculated 
start times a and b can be earlier than the scheduled release 
of the job A. A node represents a job annotated with a 
continuous interval of its possible execution time, [α,β), as 
depicted in Figure 3-3. 

[α, β) 
[a, b) 

A:pA 

Figure 3-3. A job annotated with its possible execution, 
 start time and current priority. 

We define the interval of execution, [α, β) as the interval 
in which job A can be preempted: 
 α = MAX(a, rA)    (3-2) 
 β = MAX(b, rA) + WCETA  
  
3.2.1 Critical sections 

Critical sections will be introduced by transforming the 
job set, such that a job with critical sections is partitioned 
into a set of jobs corresponding to the different critical 
sections and executions in between. We assume that each 
job i ∈  J, which has a set of critical sections CSi, is split 
into an ordered list of sub jobs, SJi, such that every time 
there is a change in the job’s effective priority a new sub 
job is added (as illustrated in Figure 3-4). Each sub job si ∈  
SJi of original job i has a release time interval [ers, lrs) 
ranging from its earliest release time to its latest release 
time. The release time interval for a sub job si is given in 
terms of execution time run by the immediately preceding 
sub job, qi, before it enters the critical section represented 
by sub job si, rather than in terms of the system clock tick. 
This means that all BCETs and WCETs for all sub jobs are 
calculated such that they represent execution time before 
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entering the immediately succeeding critical section except 
the last sub job, which runs till termination. 

The interval of possible start times [a’, b’] for the sub job 
si, as illustrated in Figure 3-5, is defined relative to its 
predecessor, qi, by: 
 a’ = MAX(a, ri) + BCETq   (3-3) 
 b’ = MAX(b, ri) + WCETq 

The MAX function in Equation 3-3 is needed since the 
sub job cannot be released earlier than scheduled release of 
the original job i. The transition interval can represent a 
promoted priority, denoted [a’, b’], or a demoted priority, 
denoted [a’, b’). 

A node represents a sub job in the same manner as a 
node represents a job, i.e., the node is annotated with a 
continuous interval of its possible execution and a priority, 
in this case the priority ceiling of the critical section. 

We define the execution interval, [α’, β’) for a sub job si: 
 α’ = MAX(a, ri)       (3-4) 
 β’ = MAX(b, ri) + WCETs  

That is, the interval, [α’, β’), specifies the interval in 
which sub job si with priority ps can be preempted by a 
higher priority job. 
3.2.2 Transitions for a system with no critical sections 

(base case) 
From each node in the execution order graph there can be 

one or more transitions, representing one of four different 
situations (assuming no critical sections) as illustrated by 
Figure 3-4: 

1. The job is the last job scheduled in this branch of the 
tree. In this case the transition is labeled with the 
interval of finishing times for the node, and has the 
empty job “_” as destination node, as exemplified in 
Figure 3-6.  

j 
Priority 

2. The job has a WCET such that it definitely completes 
before the release of any higher priority job. In this 
case we have two possible modes of transition: 

WCETi Mark 
critical sections

Priority sjd 
sjc a. No high priority job succession. One single outgoing 

transition labeled with the interval of finishing times 
for the job, [a’, b’). Exemplified by (1) in Figure 3-
6. 

sjb sje 
sja

Create a sub job  
for every priority 

change 
WCETi 

b. High priority job succession. If a higher priority job 
is immediately succeeding at [b’,b’] while b’ > a’, 
and there are lower priority jobs ready, or made 
ready during [α,β), then we have two possible 
transitions: One branch labeled with the interval of 
finishing times [a’,b’), representing the immediate 
succession of a lower priority job, and one labeled 
[b’, b’), representing the completion immediately 
before the release of the higher priority job. 
Exemplified by (2) in Figure 3-6.  

Priority 
sj2 sj6 

sj1 sj3 sj7 sj5 
sj0 sj4 sj8 

WCETi 

Figure 3-4. A job split into a set of sub jobs, in order of changes 
in effective priority. The sub jobs sj0, sj4, and sj8 represent the 
base priority job.  

3. The job has a BCET such that it definitely is preempted 
by another job U. In this case there is a single outgoing 
transition labeled with the preemption time rU, 
expressed by the interval [rU, rU], as exemplified by (3) 
in Figure 3-6. 

4. The job has a BCET and WCET such that it may either 
complete or be preempted before any preempting job U 
is released. In this case there can be two or three 
possible outgoing edges depending on if there are any 
lower priority jobs ready. One branch representing the 
preemption, labeled with the preemption time [rU, rU], 
and depending on if there are any lower priority jobs 
ready for execution we have two more transition 
situations: 

[α’,β’) [α’’,β’’) [α, β) 

a. No jobs ready. Then there is one branch labeled [a’, 
rU) representing the possible completion prior to the 
release of the higher priority job. Exemplified by (4) 
in Figure 3-6.  

b. Lower priority jobs ready. If β > α then there is one 
branch labeled [a’, t) representing the immediate 
succession of a lower priority job, and one labeled 
[rU, rU) representing the completion immediately 
before the release of the preempting job. 
Exemplified by (5) in Figure 3-6. 

3.2.3 Additional transitions for a system with critical 
sections 

5. A sub job, HI, succeeds a lower priority sub job, LO, 
before the release of any higher priority job, U. That is 
if b’ < rU, and pHI > pU > pLO, we have one single 
outgoing transition labeled with the start interval, [a’, 
b’], of the sub job HI. Exemplified by (6) in Figure 3-
7. 

Figure 3-5. Three transitions, one to sub job qi, one demoting 
transition from sub job qi to sub job si, and one promoting 
transition from sub job si to sub job zi.  

[a, b) [a’, b’) [a’’, b’’] qi:pq si:ps zi:pz 
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6. A sub job, LO, succeeded by a higher priority sub job, 
HI, before the release of any higher priority job, U, or 
is preempted by U. That is, a’ < rU < b’, and pHI > pU > 
pLO. Then we have two outgoing transitions: one 
labeled with the possible start interval of the sub job HI 
[a’, rU], and another representing the preemption by U 
at [rU, rU]. Exemplified by (7) in Figure 3-7. 

7 

7. A sub job, HI, succeeded by a lower priority sub job, 
LO (if there is one), before the release of any higher 
priority job, U. That is a’ < rU. Then, LO is entered 
into the set of ready jobs and then governed by 
transition rule 4, above. 

6 

Example 3-1 
Figure 3-6 and Figure 3-7 give examples of EOGs, using 

the above notation and the attributes in Tables 3-1 and 3-2 
respectively. Figure 3-7 illustrates the use of critical 
sections. In Figure 3-6 and Figure 3-7, all paths from the 
root node to the “_” nodes correspond to the possible 

execution order scenarios during one instance of the 
recurring release pattern. 

5 

3 

2 

Figure 3-7. The resulting execution order graph for the job set in 
Table 3-2. 

4 

Table 3-2. A  job set for a schedule where job B accesses a shared 
resource, and when  entering the critical section boost its priority 
to 7. B is split into 3 sub jobs. 
Task r p WCET BCET 

B 0 2 4 2 
 - 7 4 4 
 - 2 9 7 

C 3 4 5 1 
 

1 

Figure 3-6. The resulting execution order graph for the job set in
Table 3-1. 

3.3 The EOG algorithm Table 3-1. A  job set for a schedule with a LCM of 400 ms. 
 
Task r p WCET BCET 

A 0 4 39 9 
B 40 3 121 39 
C 40 2 59 49 
A 100 4 39 9 
A 200 4 39 9 
A 300 4 39 9 
D 350 1 20 9 

 

We will now define an algorithm for generating the 
EOG. Essentially, the algorithm simulates the behavior of a 
strictly periodic fixed priority preemptive real-time kernel, 
complying with the previously defined task model and 
EOG primitives. In defining the algorithm we use the 
following auxiliary functions and data structures: 
1. Rdy: the set of jobs ready to execute.  
2. Next_release(I): returns the earliest release time of a 

job j∈ J within the interval I. If no such job exists then 
∞ is returned . Also, we will use I.l and I.r to denote 
the extremes of I. 

3. P(t): Returns the highest priority of the jobs that are 
released at time t. Returns -1 if t = ∞. 

4. Make_ready(t, rdy): adds all jobs that are released at 
time t to rdy. Returns ∅  if t=∞, else the set. 

5. X(rdy): Extracts the job with highest priority in rdy. 



IEEE Real-Time Embedded System Workshop, Dec. 3, 2001 
 

7

/* n- previous node, rdy- set of ready jobs, RI – release interval, SI – the
considered interval. */
Eog(n, rdy, RI, SI)
{

/* When is the next job(s) released? */
t = Next_release(SI)

if (rdy = ∅ )
rdy = Make_ready(t, rdy)

if( rdy ≠ ∅ )
Eog (n, rdy, RI, (t,SI.r] )
else Arc(n, RI, _ )

else

/* Extract the highest priority job in rdy. */
T = X(rdy)

[α,β) = [max(rT, RI.l), max(rT, RI.l)+WCETT)

a’ = α + BCETT

b’ = β
n’ = Make_node(T, [α,β) ) Arc(n, RI, n’)

/* Add all lower priority jobs that are released before T's termination, or
before a high priority job is preempting T. */

while((t < β) ∧ (P(t) < pT))
rdy = Make_ready(t, rdy)
t = Next_release((t, SI.r])

/* Does the next scheduled job preempt T? */

if((pT < P(t)) ∧ (t < β))
/* Can T complete prior to the release of the next job at t? */
if(t > a’)

/* Enter a critical section? */
cs_job = Get_nextCS( T )

if( Is_CS( T ) ∧ Is_lock( T , cs_job ) )

Eog(n’, rdy+ {cs_job}, [a’,t], (t,SI.r]) /* Enter */
else if( Is_CS( T ))

/* One branch for the next critical section */

Eog(n’, rdy+ {cs_job}, [a’,t), [t,SI.r]) /* Leave */

/* One branch for the immediate succession of a higher priority job */
Eog(n’, Make_ready( t,rdy), [a’,t), [t,SI.r])

else /* No, T was not a critical section */
Eog ( n’, rdy, [a’,t), [t,SI.r] )

if(rdy ≠ ∅ )
Eog(n’,Make_ready(t,rdy),[t,t),(t,SI.r])

else if(t = a’)
Eog(n’, Make_ready(t, rdy), [t,t), (t,SI.r])

/* Add all jobs that are released at time t.*/
rdy = Make_ready(t, rdy)

/* Best and worst case execution prior to preemption? */
BCETT = max(BCETT - (t–(max(rT, RI.l)),0)
WCETT = max(WCETT - (t–(max(rT, RI.r)),0)
Eog( n’, rdy + {T}, [t,t], (t,SI.r])

/* No preemption */

else if(t = ∞ ) /* Have we come to the end of the simulation? */

Eog(n’, rdy, [a’,b’),[∞,∞]) /* Yes, no more jobs to execute */

else /* More jobs to execute */

/* Enter a critical section? */
cs_job = Get_nextCS( T )

if( Is_CS( T ) ∧ Is_lock( T , cs_job ) )

Eog(n’, rdy+ {cs_job}, [a’,t], (t,SI.r]) /* Enter */
else if(Is_CS( T ))

Eog(n’, rdy+ {cs_job}, [a’,t), [t,SI.r]) /* Leave */

else /* No, T was not a critical section */

/* Is there a possibility for a high priority job to succeed
immediately, while low priority jobs are ready? */

if(rdy ≠ ∅ ∧ t = β) /* Yes, make one branch for this

transition */
Eog(n’, Make_ready(t, rdy),[t,t),(t,SI.r])

if(a’ ≠ b’) /* And one branch for the low priority job */
else Eog(n’, rdy, [a’,b’),[t, SI.r))

/* The regular succession of the next job (low or high priority) */
else Eog(n’, rdy, [a’,b’),[t, SI.r))

}/* End */

Figure 3-8. The Execution Order Graph algorithm. 

6. Arc(n, I, n’): Creates an edge from node n to node n’ 
and labels it with the time interval I. 

7. Make_node(j, XI): Creates a node and labels it with the 
execution interval XI and the id of job j. 

8. Get_nextCS(T): Returns the next sub job from an 
ordered list of sub jobs. 

9. Is_CS(T): Determines if job T is a sub job, i.e., a 
critical section 

10. Is_lock(T , cs_job ): Determines if the priority of the 
sub job is promoted.  

The execution order graph for a set of jobs J is generated 
by a call Eog(ROOT, {}, [0, 0], [0, TMAX])  to the function 
given in Figure 3-8, i.e., with a root node, an empty ready 
set, the initial release interval [0,0], and the considered 
interval [0, TMAX] as input parameters.  

4 THE INTEGRATION TESTING PROCEDURE 
The identified execution orderings can be used for 

determining coverage in integration testing of real-time 
systems. Our testing method relies on two types of 
coverage criteria, one defined by the derived execution 
orderings, and one defined by the actual sequential testing 
technique applied. In the latter case criteria defined by, e.g., 
statistical black box testing or structural white box testing 
[3].  

4.1 Test rig assumptions 
In order to perform integration testing of an embedded 

real-time system we require the following: A monitoring 
mechanism that can extract sufficient information from the 
target system. This includes, task switches, and inputs-
outputs from the jobs. This monitoring mechanism can 
either be implemented using non-intrusive hardware, 
intrusive software, or hybrids. If the software approach is 
chosen then monitors/probes must remain in the target 
system in order eliminate the probe effect [16][9][4]. 

 Process 
Ordering 

   Output 
Test 

Oracle
Node

4.2 Test Strategy 
The test strategy consists of the following steps:  

1. Identify the set of execution orderings by performing 
execution order analysis of the job set.  

2. Test the system using any testing technique of choice, 
and monitor for each test case, which execution 
ordering is run during the interval [0, TMAX]. Where 
TMAX typically equals the global LCM in the distributed 
real-time system case.  

C
orrectness 

Input 

Result 
Database 

Figure 4-1. The resulting test rig with the coverage of the 
execution orderings illustrated. Monitoring is implemented in 
software. 

Required coverage 

Execution ordering (6) (7) (9) (8) (10) (1) (2) (4) (3) (5) 

No. Test cases 
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3. Map the test case and output onto the correct execution 
ordering, based on observation. 

4. Repeat 2-3 until required coverage is achieved.  
Complete primary coverage would be to execute all 

identified execution orderings, complete secondary 
coverage would be to test all identified orderings with a 
certain number of unique test-cases defined by the testing 
method applied. For example, assuming statistical black 
box testing, with a reliability requirement of 10-6 
failure/test-case with confidence 0.99, would require 
(according to probable correctness theory [5]) 4,600,000 
test cases per scenario. For the system in Figure 4-1 with 
10 scenarios the total number of test cases would amount to 
4,600,000 × 10 = 46,000,000 test cases. 

5 JITTER, TESTABILITY AND COMPLEXITY 
We will now outline some specifics of the execution 

order analysis with respect to jitter, scheduling, testability, 
and complexity. In defining the EOG, and in the presented 
algorithms, we take the effects of several different types of 
jitter into account: 
• Execution time jitter, i.e., the difference between 

WCET and BCET of a job, or a critical section.  
• Start jitter, i.e., the inherited and accumulated jitter due 

to execution time jitter of preceding higher priority 
jobs. 

• Entry jitter, i.e., the inherited and accumulated jitter 
due to execution time jitter before entering a critical 
section. 

The complexity/testability of the EOG, i.e., the number 
of scenarios, is proportional to the number of preemption 
points and the jitter in the system. This complexity is not 
inherent to the EOG but rather a reflection of the system it 
represents. For the original model by Thane and Hansson 
[13] a rough estimate of the maximum number of execution 
orderings of a system, is 3n⋅p, where n is the number of jobs 
(excluding sub jobs defined by critical sections) and p the 
average number of preemptions for each task instance. The 
base 3 in the expression comes from the possibility for a 
task to be preempted, the possibility for completion 
immediately before the start of a higher priority task, or the 
possibility of completion such that a lower priority task 
may succeed. These possibilities are strictly dependent on 
the execution time jitter and the start time jitter of tasks in 
the system. Consequently if there exists no jitter there will 
be only one possibility (1n⋅p). The number of preemption 
points, p, is also strictly dependent on the jitter in the 
system. There is thus an exponential relation between the 
complexity and the jitter in the system. 

For a system with synchronization using semaphores the 
above complexity metric is still valid for the original 
(entire) jobs, not the partitioned sub-jobs. If the metric was 
applied to the sub-jobs the number of preemption points, p, 
would have to be reduced since the window of execution 
where a sub-job could be preempted by a higher priority 
job decreases. 

Since any reduction of the jitter reduce the preemption 
and release intervals, the preemption “hit” windows 
decrease and consequently the number of execution order 
scenarios decreases. Suggested actions for reducing jitter is 
to have fixed start times, or to force each job to always 
maximize its execution time, e.g. by inserting (padding) “no 
operation” instructions where needed. Fixed start times are 
easier to achieve for offset synchronized systems than 
mixed systems with offset and on-line synchronization. In 
order to achieve fixed start times of entry into critical 
sections we cannot usually make use of regular kernel 
primitives since the granularity of the system timer tick is 
not sufficiently fine (due to the prohibitive kernel overhead  
a too frequent timer tick would cause). We must thus resort 
to execution time equalization using padding unless some 
ingenious technique is used.  

6 CONCLUSIONS 
In this paper we have present a method for deterministic 

integration testing of strictly periodic fixed priority 
scheduled real-time systems with offsets, using on-line 
synchronization, complying with the Priority Ceiling 
Emulation Protocol (PCEP) [2] (a.k.a., the immediate 
inheritance protocol). The paper extends the results by 
Thane and Hansson [14][13] with handling of online 
synchronization. This substantially increases the 
applicability of the method, since it is more likely that 
errors are caused by synchronization and implementation 
problems, but also that industry standards like POSIX, 
ADA95, and OSEK have adopted PCEP [12][6]. 

Essentially the method is a structural white box testing 
method applied on the system level rather than on the 
individual tasks. The method includes a reachability 
technique for deriving all possible orderings of task starts, 
preemptions and completions for tasks executing in a 
system, together with a structural testing strategy for 
achieving full coverage with respect to the derived 
execution orderings. The testing strategy also allow test 
methods for sequential programs to be applied, since each 
identified ordering can be regarded as a sequential program. 
In the presented analysis and testing strategy, we 
considered task sets with recurring release patterns, and 
accounted for the effects of variations in start and execution 
times of the involved tasks, as well as the variations of the 
arrival and duration of the critical sections. 

The testability/complexity of a system has an exponential 
relation to the jitter, as identified by Thane and Hansson 
[14][13].  

For those that are interested we have tools for deriving 
the set of execution orderings as well as a real-time 
operating system, Asterix [17], which has the necessary 
infrastructure for monitoring, debugging [15] and testing of 
real-time systems as described in this paper. 

Future research would be to investigate how to resolve 
execution order analysis with online synchronization 
protocols, other than PCEP, and to investigate how the 
testability of those protocols relate to PCEP, and offsets. 
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Another pursuit would be to extend the analysis with global 
synchronization using global PCEP [10] in the same 
manner as Thane and Hansson did with offsets [14][13].   
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