
IEEE Real-Time Embedded System Workshop, Dec. 3, 2001

1

Integration Testing of Fixed Priority
Scheduled Real-Time Systems

Henrik Thane, Anders Pettersson, and Hans Hansson
{hte,apo,han}@mdh.se

Mälardalen Real-Time Research Center, Department of Computer Engineering,
Mälardalen University, Västerås, Sweden

Abstract-- In order to achieve reproducible and
deterministic functional integration testing of real-time
systems software it is essential to consider inputs, outputs, and
the order in which the tasks communicate and synchronize
with each other. In this paper we present a method for
deterministic integration testing of strictly periodic fixed
priority scheduled real-time systems. Essentially it is a
structural white box testing method applied on the system
level rather than the individual programs of the tasks. The
method includes a reachability technique for deriving all
possible orderings of task starts, preemptions and completions
for tasks executing in a system where synchronization is
resolved using the Priority Ceiling Emulation Protocol (PCEP)
or offsets. The method also includes a structural testing
strategy for achieving full coverage with respect to the derived
execution orderings. The testing strategy also allow test
methods for sequential programs to be applied, since each
identified ordering can be regarded as a sequential program.
In the presented analysis and testing strategy, we consider task
sets with recurring release patterns, and take into account the
effects of variations in start and execution times of the
involved tasks, as well as the variations of the arrival and
duration of the critical sections.

Index Terms—Testing, integration testing, real-time systems,
test coverage, priority ceiling emulation protocol, fixed
priority scheduling, reachability analysis, determinism

1 INTRODUCTION

I n this paper we extend the method for achieving
deterministic testing of distributed real-time systems by
Thane and Hansson [14][13]. They addressed task sets

with recurring release patterns, executing in a distributed
system, where the scheduling on each node was handled by
a fixed priority driven preemptive scheduler supporting
offsets. The method transformed the non-deterministic
distributed real-time systems testing problem into a set of
deterministic sequential programs testing problems. This
was achieved by deriving all the possible execution
orderings of the individual nodes in the distributed real-
time system, and regarding each ordering as a sequential
program. Full test coverage (if needed) was then achieved
by testing all obtained scenarios (using monitoring during

run-time) until a required level of secondary coverage was
achieved. For each individual scenario/program, the
secondary coverage criteria were defined by the testing
technique applied, e.g., white or black box testing.

This work is founded by the national Swedish Real-Time Systems research
initiative ARTES (www.artes.uu.se), supported by the Swedish Foundation
for Stratetgic Research.

This method assumed that all synchronization was
resolved offline, e.g., by a static scheduler, which assigned
offsets and priorities to all tasks in the distributed system.
That is, general use of semaphores was not allowed. All
tasks in the system were also assumed to receive all input
immediately at their start, and to produce all output at their
termination. These limitations were quite severe, although
the analysis proved that even statically scheduled systems
could yield enormous numbers of different scenarios, when
subjected to preemption and jitter (execution time-,
communication time-, and interrupt induced jitter),
especially when the system is of multi-rate character.

In this paper we elaborate on the approach presented in
[14][13] and expand the task model to also include critical
sections, governed by the Priority Ceiling Emulation
Protocol (PCEP) [2], a.k.a. the immediate inheritance
protocol and immediate priority ceiling protocol. Since
tasks may synchronize/communicate via critical sections,
we will also relax Thane’s and Hansson’s input output
assumption. Our extension is however only valid for the
individual nodes in the distributed real-time system, unless
we assume a global PCEP, which is quite complex to
achieve [10]. The subsequent analysis in this paper is hence
focused on a single node. The results by Thane and
Hansson [13][14] on how to derive global execution
ordering scenarios can however successfully be applied if
global scheduling is relying on offsets between tasks on
different nodes, but this is outside the scope of this paper.

1.1 The problem of testing real-time software
Reproducible and deterministic testing of sequential

programs can be achieved by controlling the sequence of
inputs and the start conditions [9]. That is, given the same
initial state and inputs, the sequential program will
deterministically produce the same output on repeated
executions, even in the presence of systematic faults [11].
Reproducibility is essential when performing regression
testing or cyclic debugging, where the same test cases are
run repeatedly with the intent to validate that either an error
correction had the desired effect, or simply to make it
possible to find the error when a failure has been observed
[7]. However, trying to directly apply test techniques for

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001

2

sequential programs on real-time systems is bound to lead
to non-determinism and non-reproducibility, because
control is only forced on the inputs, disregarding the
significance of order and timing of the executing and
communicating tasks. Any intrusive observation of a real-
time system can in addition incur a temporal probe-effect
[4] that subsequently will affect the temporal and functional
behavior of the system.

In theory it is possible to reproduce the behavior of a
real-time system if we can reproduce the exact trajectories
of the inputs to the system with an exact timing. The inputs,
and state, of the tasks dictates the control flow paths taken,
which in turn dictates the execution time of the tasks, which
in the end dictates the preemption pattern (for strictly
periodic systems). Trying to perform exhaustive black-box
testing of individual programs is in the general case
infeasible, due to the large number of possible inputs, e.g.,
two 32 bit inputs yields 264 possible input combinations, not
considering state. For a multitasking real-time system the
number of possible inputs is similarly bordering on the
ludicrous. However, just as individual program’s control
flow structure can be derived and used for white-box
testing of the control-flow paths (which usually are
significantly fewer than the number of possible inputs), we
can for a set of multi-tasking real-time tasks test the
different interleavings of task executions on the system
level.

1.2 Contribution
The contribution of this paper is a white-box system

level integration testing method that includes:
• A white-box reachability technique for deriving all

possible orderings of task starts, preemptions and
completions for tasks executing in a system where
synchronization is resolved using offsets or the priority
ceiling emulation protocol (PCEP).

• A testing strategy for achieving any required level of
coverage, with respect to the derived execution
orderings. The testing strategy also allows test methods
for sequential programs to be applied, since each
identified ordering can be regarded as a sequential
program.

The results in this paper substantially extends the

applicability of the results by Thane and Hansson [14][13],
since we now can handle systems with on-line
synchronization, for which it is actually more likely that
errors have been caused by implementation and
synchronization problems. Also, PCEP has been adopted in
industry standards like POSIX, ADA95, and OSEK, for its
implementation simplicity [12][6].

Paper outline: Section 2 presents our system model.
Section 3 formalizes the concept of execution orderings and
presents the algorithm for identifying all the possible
execution orderings in a single node real-time system.
Section 4 presents a testing strategy for deterministic full
coverage testing. Section 5 discusses the relation between

jitter and testability. Finally, in Section 6, we conclude and
give some hints on future work.

2 THE SYSTEM MODEL
We assume that the real-time systems software consists

of a set of concurrent tasks, communicating by message
passing or shared memory. All synchronization, precedence
or mutual exclusion, is resolved either offline by assigning
different release times and priorities, or during runtime by
the use of semaphores which have Priority Ceiling
Emulation Protocol semantics (PCEP) [2].

2.1 Task model
We assume a fairly general task model that includes both

preemptive scheduling of statically generated schedules
[18] and fixed priority scheduling of strictly periodic tasks
[1][8]:
• The system contains a set of jobs J, i.e. invocations of

tasks, which are released in a time interval [t,t+TMAX] ,
where TMAX is typically equal to the Least Common
Multiple (LCM) of the involved tasks period times, and
t is an idle point within the time interval [0, TMAX]
where no job is executing. The existence of such an
idle point, t, simplifies the model such that it prevents
temporal interference between successive TMAX
intervals. To simplify the presentation we will
henceforth assume an idle point at 0.

• Each job j∈ J has a release time rj, worst case
execution time (WCETj), best case execution time
(BCETj), a deadline Dj, and a unique base priority bpj.
J represents one instance of a recurring pattern of job
executions with period TMAX, i.e., job j will be released
at time rj, rj+ TMAX, rj+ 2 TMAX, etc.

• The system is preemptive and jobs may have identical
release times.

2.2 Synchronization using PCEP
For PCEP we assume that:

• Each job j∈ J has a current priority pi that may be
different from the statically allocated base priority, bpj,
if the job is subject to priority promotion when granted
a resource.

• Each resource R, used by a set of jobs SR, has a
statically computed priority ceiling defined by the
highest base priority in SR increased by one, i.e., pR =
MAX(bpi | i ∈ SR) + 1.

• Each job, j, that enters a critical section protecting a
resource R is immediately promoted to the statically
allocated priority ceiling of the resource, if pR > pj then
pj = pR.

• Each job, j, that is executing and releases a resource R
is demoted immediately to the maximum of the base
priority bpj, and the ceilings of the remaining resources
held by the job.

• Each critical section, k, has a worst case execution time
(WCETk) and a best case execution time (BCETk).

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001

3

• Each critical section, k, has a release time interval [erk,
lrk) ranging from the earliest release time to the latest
release time.

• All resources are claimed in the same order for all
paths through the program in a job.

Note that we here, compared to other ceiling priority
models, can take more detailed information of the time
when the resources are allocated into account.

2.3 Side effects
Related to the task model we assume that the jobs may

have functional and temporal side effects due to
preemption, message passing or shared memory.
• Data is sent at the termination of the sending job and

received data is available when job start to execute.
• Access to shared memory or I/O is guarded by

semaphores, or offsets.

2.4 Fault hypothesis
The fault hypothesis is that errors can only occur due to

erroneous outputs and inputs to jobs, and/or due to
synchronization errors, i.e., jobs can only interfere via
specified interactions. This means that interleaving failures,
e.g., memory corruptions are not considered. To handle
interleaving failures other techniques need to be applied,
e.g., deterministic replay debugging [15].

3 EXECUTION ORDER ANALYSIS
In this section we present a technique for identifying all

the possible orders of execution for sets of jobs conforming
to the task model of section 2. We first begin with a
definition of execution orderings, then continue with a
definition of the execution order graph, and finally presents
an algorithm that generates this graph.

3.1 Execution Orderings
In identifying the execution orderings of a job set we will

only consider the following major events of job executions:
• The start of execution of a job or a critical section, i.e.,

when the first instruction is executed. We will use S(J)
to denote the set of start points for the jobs in a job set
J; S(J) ⊆ J × [0, TMAX] × J ∪ {_}, that is S(J) is the set
of triples (j1, time, j2), where j2 is the job that is
o Preempted by the start of j1 at time, or possibly the

idle job “_” if no j2 job exists.
o Promoted to a higher priority due to the arrival of a

critical section, j1 at time, i.e., the same job
continues executing, but at higher priority.

o Preempted by j1 when j2 exits a critical section at
time and demotes its priority. ∑

∈∪∈)}(),,'(|),,'({ X)}{s(j, ev
ev.t) -ev.t).t (Nxt(X,

JEjtjjtj• The end of execution of a job or critical section, i.e.,
when the last instruction is executed. We will use E(J)
to denote the set of end points (termination points) for
jobs in a job set J; E(J) ⊆ J × [0, TMAX] × J ∪ {_}, that
is E(J) is a set of triples (j1, time, j2), where j2 is the job

o That is resuming its execution at the termination of
higher priority job j1, or possibly the idle job “_” if
no such job exists.

o That is demoted to a lower priority when exiting a
critical section, j1, i.e., the same job continues
executing, but at lower priority.

We will now define an execution to be a sequence of job
starts and job terminations, using the additional notation
that
• ev denotes an event, and Ev a set of events.
• ev.t denotes the time of the event ev,
• Ev\I denotes the set of events in Ev that occur in the

time interval I,
• Prec(Ev, t) is the event in Ev that occurred most

recently at time t (including events that occurs at t).
• Nxt(Ev, t) denotes the next event in Ev after time t.
• First(Ev) and Last(Ev) denote the first and last event in

Ev, respectively.
Definition 3-1. An Execution of a job set J is a set of

events X ⊆ S(J) ∪ E(J), such that
1. For each j∈ J, there is exactly one start and termination

event in X, denoted s(j,X) and e(j,X) respectively, and
s(j,X) precedes e(j,X), i.e. s(j,X).t ≤ e(j,X).t, where
s(j,X) ∈ S(J) and e(j,X) ∈ E(J).

2. For each (j1, t, j2) ∈ S(J), pj1 > pj2, i.e., jobs are only
preempted by higher priority jobs, or promoted to a
higher priority when entering a critical section.

3. For each j∈ J, s(j,X).t ≥ rj, i.e., jobs may only start to
execute after being released. After its release, the start
of a job may only be delayed by intervals of executions
of higher priority jobs, i.e., using the convention that
X\[j.t, j.t)=∅ , for each job j∈ J each event
ev∈ X\[Prec(X,rj).t, s(j,X).t) is either

• A start of the execution of a higher priority job,
i.e. ev = s(j’, X) and pj’>pj

• A priority promotion, due to arrival of a higher
priority critical section, i.e. ev = s(j’, X) and
pj’>pj

• A priority demotion, due to the exit from a
critical section, at which a higher priority job
resumes its execution, i.e., ev = (j’, t, j”), where
pj”>pj

• A job termination, at which a higher priority job
resumes its execution, i.e., ev = (j’, t, j”), where
pj”>pj

4. The sum of execution intervals of a job j∈ J is in the
range [BCET(j), WCET(j)], i.e.,

BCET(j) ≤ ≤ WCET(j)

That is, we are summing up the intervals in which j starts

or resumes its execution.
We will use EXt(J) to denote the set of timed executions

of the job set J. Intuitively, EXt(J) denotes the set of
possible executions of the job set J within [0,TMAX].

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001

4

Assuming a dense time domain EXt(J) is only finite if
BCET(j)= WCET(j) for all j∈ J. However, if we disregard
the exact timing of events and only consider the ordering of
events we obtain a finite set of execution orderings for any
finite job set J.

Using ev{x/t} to denote an event ev with the time
element t replaced by the undefined element “x”, we can
formally define the set of time abstracted execution
orderings EX(J) as follows:

Definition 3-2. The set of Execution orderings EX(J) of a
job set J is the set of sequences of events such that ev0{x/t},
ev1{x/t}, ..., evk{x/t} ∈ EX(J) iff there exists an X∈ EXt(J)
such that
• First(X) = ev0
• Last(X) = evk
• For any j∈ [0..(k-1)]: Nxt(X,evj.t) = evj+1

Intuitively, EX(J) is constructed by extracting one
representative of each set of equivalent execution orderings
in EXt(J), i.e., using a quotient construction EX(J) = EXt(J)\
~, where ~ is the equivalence induced by considering
executions with identical event orderings to be equivalent.
This corresponds to our fault hypothesis, with the overhead
of keeping track of preemptions and resumptions, although
not exactly where in the program code they occur. This
overhead means that we can capture more than what our
fault hypothesis is supposed to capture. We could thus
reduce the number of execution orderings further if we
define EX(J) = EXt(J)\ ≈, where ≈ is the equivalence
induced by considering executions with identical job start
and job stop orderings to be equivalent. In the process of
deriving all the possible execution orderings we need
however to keep track of all preemptions, i.e., EXt(J)\ ~, but
after having derived this set we can reduce it to EXt(J)\ ≈.
Even further reductions could be of interest, for instance to
only consider orderings among tasks that are functionally
related, e.g., by sharing data.

In the remainder we will use the terms execution
scenario and execution ordering interchangeably.

3.2 Deriving the Execution Orderings
This section outlines a technique for deriving the set of

execution orderings EX(J) for a set of jobs J, complying
with definitions 3-1 and 3-2. We will later (in section 3.3)
present an algorithm implementing the technique. In
essence, our approach is to make a reachability analysis by
simulating the behavior of a real-time kernel conforming to
our task model during one [0,TMAX] period for the job set J.

The algorithm we are going to present generates, for a
given schedule, an Execution Order Graph (EOG), which is
a finite tree for which the set of possible paths from the root
contains all possible execution scenarios.

But before delving into the algorithm we describe the
elements of an EOG. Formally, an EOG is a pair <N, A>,
where
• N is a set of nodes, each node being labeled with a job,

the job’s current priority, and a continuous time
interval, i.e., for a job set J: N⊆ J ∪ {“_”} × P ×

I(TMAX), where {“_”} is used to denote a node where no
job is executing. P is the set of priorities, and I(TMAX) is
the set of continuous intervals in [0, TMAX].

• A is the set of edges (directed arcs; transitions) from
one node to another node, labeled with a continuous
time interval, i.e., for a set of jobs J: A ⊆ N × I(TMAX) ×
N.

Intuitively, an edge, corresponds to the transition (task-
switch) from one job to another, or when a job enters or
leaves a critical section. The edge is annotated with a
continuous interval of when the transition can take place, as
illustrated in Figures 3-1 and 3-2, showing EOGs for
simple jobs without critical sections.

[a, b) [a’, b’) [a, b)
A:pA B:pB

Figure 3-2. Two transitions, one to
job A and one from job A to job B.

Figure 3-1. A Transition.

The interval of possible start times [a’, b’) for job B, in
Figure 3-2, is defined by:
 a’ = MAX(a, rA) + BCETA (3-1)
 b’ = MAX(b, rA) + WCETA

The MAX functions are necessary because the calculated
start times a and b can be earlier than the scheduled release
of the job A. A node represents a job annotated with a
continuous interval of its possible execution time, [α,β), as
depicted in Figure 3-3.

[α, β)
[a, b)

A:pA

Figure 3-3. A job annotated with its possible execution,
 start time and current priority.

We define the interval of execution, [α, β) as the interval
in which job A can be preempted:
 α = MAX(a, rA) (3-2)
 β = MAX(b, rA) + WCETA

3.2.1 Critical sections

Critical sections will be introduced by transforming the
job set, such that a job with critical sections is partitioned
into a set of jobs corresponding to the different critical
sections and executions in between. We assume that each
job i ∈ J, which has a set of critical sections CSi, is split
into an ordered list of sub jobs, SJi, such that every time
there is a change in the job’s effective priority a new sub
job is added (as illustrated in Figure 3-4). Each sub job si ∈
SJi of original job i has a release time interval [ers, lrs)
ranging from its earliest release time to its latest release
time. The release time interval for a sub job si is given in
terms of execution time run by the immediately preceding
sub job, qi, before it enters the critical section represented
by sub job si, rather than in terms of the system clock tick.
This means that all BCETs and WCETs for all sub jobs are
calculated such that they represent execution time before

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001

5

entering the immediately succeeding critical section except
the last sub job, which runs till termination.

The interval of possible start times [a’, b’] for the sub job
si, as illustrated in Figure 3-5, is defined relative to its
predecessor, qi, by:
 a’ = MAX(a, ri) + BCETq (3-3)
 b’ = MAX(b, ri) + WCETq

The MAX function in Equation 3-3 is needed since the
sub job cannot be released earlier than scheduled release of
the original job i. The transition interval can represent a
promoted priority, denoted [a’, b’], or a demoted priority,
denoted [a’, b’).

A node represents a sub job in the same manner as a
node represents a job, i.e., the node is annotated with a
continuous interval of its possible execution and a priority,
in this case the priority ceiling of the critical section.

We define the execution interval, [α’, β’) for a sub job si:
 α’ = MAX(a, ri) (3-4)
 β’ = MAX(b, ri) + WCETs

That is, the interval, [α’, β’), specifies the interval in
which sub job si with priority ps can be preempted by a
higher priority job.
3.2.2 Transitions for a system with no critical sections

(base case)
From each node in the execution order graph there can be

one or more transitions, representing one of four different
situations (assuming no critical sections) as illustrated by
Figure 3-4:

1. The job is the last job scheduled in this branch of the
tree. In this case the transition is labeled with the
interval of finishing times for the node, and has the
empty job “_” as destination node, as exemplified in
Figure 3-6.

j
Priority

2. The job has a WCET such that it definitely completes
before the release of any higher priority job. In this
case we have two possible modes of transition:

WCETi Mark
critical sections

Priority sjd
sjc a. No high priority job succession. One single outgoing

transition labeled with the interval of finishing times
for the job, [a’, b’). Exemplified by (1) in Figure 3-
6.

sjb sje
sja

Create a sub job
for every priority

change
WCETi

b. High priority job succession. If a higher priority job
is immediately succeeding at [b’,b’] while b’ > a’,
and there are lower priority jobs ready, or made
ready during [α,β), then we have two possible
transitions: One branch labeled with the interval of
finishing times [a’,b’), representing the immediate
succession of a lower priority job, and one labeled
[b’, b’), representing the completion immediately
before the release of the higher priority job.
Exemplified by (2) in Figure 3-6.

Priority
sj2 sj6

sj1 sj3 sj7 sj5
sj0 sj4 sj8

WCETi

Figure 3-4. A job split into a set of sub jobs, in order of changes
in effective priority. The sub jobs sj0, sj4, and sj8 represent the
base priority job.

3. The job has a BCET such that it definitely is preempted
by another job U. In this case there is a single outgoing
transition labeled with the preemption time rU,
expressed by the interval [rU, rU], as exemplified by (3)
in Figure 3-6.

4. The job has a BCET and WCET such that it may either
complete or be preempted before any preempting job U
is released. In this case there can be two or three
possible outgoing edges depending on if there are any
lower priority jobs ready. One branch representing the
preemption, labeled with the preemption time [rU, rU],
and depending on if there are any lower priority jobs
ready for execution we have two more transition
situations:

[α’,β’) [α’’,β’’) [α, β)

a. No jobs ready. Then there is one branch labeled [a’,
rU) representing the possible completion prior to the
release of the higher priority job. Exemplified by (4)
in Figure 3-6.

b. Lower priority jobs ready. If β > α then there is one
branch labeled [a’, t) representing the immediate
succession of a lower priority job, and one labeled
[rU, rU) representing the completion immediately
before the release of the preempting job.
Exemplified by (5) in Figure 3-6.

3.2.3 Additional transitions for a system with critical
sections

5. A sub job, HI, succeeds a lower priority sub job, LO,
before the release of any higher priority job, U. That is
if b’ < rU, and pHI > pU > pLO, we have one single
outgoing transition labeled with the start interval, [a’,
b’], of the sub job HI. Exemplified by (6) in Figure 3-
7.

Figure 3-5. Three transitions, one to sub job qi, one demoting
transition from sub job qi to sub job si, and one promoting
transition from sub job si to sub job zi.

[a, b) [a’, b’) [a’’, b’’] qi:pq si:ps zi:pz

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001

6

6. A sub job, LO, succeeded by a higher priority sub job,
HI, before the release of any higher priority job, U, or
is preempted by U. That is, a’ < rU < b’, and pHI > pU >
pLO. Then we have two outgoing transitions: one
labeled with the possible start interval of the sub job HI
[a’, rU], and another representing the preemption by U
at [rU, rU]. Exemplified by (7) in Figure 3-7.

7

7. A sub job, HI, succeeded by a lower priority sub job,
LO (if there is one), before the release of any higher
priority job, U. That is a’ < rU. Then, LO is entered
into the set of ready jobs and then governed by
transition rule 4, above.

6

Example 3-1
Figure 3-6 and Figure 3-7 give examples of EOGs, using

the above notation and the attributes in Tables 3-1 and 3-2
respectively. Figure 3-7 illustrates the use of critical
sections. In Figure 3-6 and Figure 3-7, all paths from the
root node to the “_” nodes correspond to the possible

execution order scenarios during one instance of the
recurring release pattern.

5

3

2

Figure 3-7. The resulting execution order graph for the job set in
Table 3-2.

4

Table 3-2. A job set for a schedule where job B accesses a shared
resource, and when entering the critical section boost its priority
to 7. B is split into 3 sub jobs.
Task r p WCET BCET

B 0 2 4 2
 - 7 4 4
 - 2 9 7

C 3 4 5 1

1

Figure 3-6. The resulting execution order graph for the job set in
Table 3-1.

3.3 The EOG algorithm Table 3-1. A job set for a schedule with a LCM of 400 ms.

Task r p WCET BCET

A 0 4 39 9
B 40 3 121 39
C 40 2 59 49
A 100 4 39 9
A 200 4 39 9
A 300 4 39 9
D 350 1 20 9

We will now define an algorithm for generating the
EOG. Essentially, the algorithm simulates the behavior of a
strictly periodic fixed priority preemptive real-time kernel,
complying with the previously defined task model and
EOG primitives. In defining the algorithm we use the
following auxiliary functions and data structures:
1. Rdy: the set of jobs ready to execute.
2. Next_release(I): returns the earliest release time of a

job j∈ J within the interval I. If no such job exists then
∞ is returned . Also, we will use I.l and I.r to denote
the extremes of I.

3. P(t): Returns the highest priority of the jobs that are
released at time t. Returns -1 if t = ∞.

4. Make_ready(t, rdy): adds all jobs that are released at
time t to rdy. Returns ∅ if t=∞, else the set.

5. X(rdy): Extracts the job with highest priority in rdy.

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001

7

/* n- previous node, rdy- set of ready jobs, RI – release interval, SI – the
considered interval. */
Eog(n, rdy, RI, SI)
{

/* When is the next job(s) released? */
t = Next_release(SI)

if (rdy = ∅)
rdy = Make_ready(t, rdy)

if(rdy ≠ ∅)
Eog (n, rdy, RI, (t,SI.r])
else Arc(n, RI, _)

else

/* Extract the highest priority job in rdy. */
T = X(rdy)

[α,β) = [max(rT, RI.l), max(rT, RI.l)+WCETT)

a’ = α + BCETT

b’ = β
n’ = Make_node(T, [α,β)) Arc(n, RI, n’)

/* Add all lower priority jobs that are released before T's termination, or
before a high priority job is preempting T. */

while((t < β) ∧ (P(t) < pT))
rdy = Make_ready(t, rdy)
t = Next_release((t, SI.r])

/* Does the next scheduled job preempt T? */

if((pT < P(t)) ∧ (t < β))
/* Can T complete prior to the release of the next job at t? */
if(t > a’)

/* Enter a critical section? */
cs_job = Get_nextCS(T)

if(Is_CS(T) ∧ Is_lock(T , cs_job))

Eog(n’, rdy+ {cs_job}, [a’,t], (t,SI.r]) /* Enter */
else if(Is_CS(T))

/* One branch for the next critical section */

Eog(n’, rdy+ {cs_job}, [a’,t), [t,SI.r]) /* Leave */

/* One branch for the immediate succession of a higher priority job */
Eog(n’, Make_ready(t,rdy), [a’,t), [t,SI.r])

else /* No, T was not a critical section */
Eog (n’, rdy, [a’,t), [t,SI.r])

if(rdy ≠ ∅)
Eog(n’,Make_ready(t,rdy),[t,t),(t,SI.r])

else if(t = a’)
Eog(n’, Make_ready(t, rdy), [t,t), (t,SI.r])

/* Add all jobs that are released at time t.*/
rdy = Make_ready(t, rdy)

/* Best and worst case execution prior to preemption? */
BCETT = max(BCETT - (t–(max(rT, RI.l)),0)
WCETT = max(WCETT - (t–(max(rT, RI.r)),0)
Eog(n’, rdy + {T}, [t,t], (t,SI.r])

/* No preemption */

else if(t = ∞) /* Have we come to the end of the simulation? */

Eog(n’, rdy, [a’,b’),[∞,∞]) /* Yes, no more jobs to execute */

else /* More jobs to execute */

/* Enter a critical section? */
cs_job = Get_nextCS(T)

if(Is_CS(T) ∧ Is_lock(T , cs_job))

Eog(n’, rdy+ {cs_job}, [a’,t], (t,SI.r]) /* Enter */
else if(Is_CS(T))

Eog(n’, rdy+ {cs_job}, [a’,t), [t,SI.r]) /* Leave */

else /* No, T was not a critical section */

/* Is there a possibility for a high priority job to succeed
immediately, while low priority jobs are ready? */

if(rdy ≠ ∅ ∧ t = β) /* Yes, make one branch for this

transition */
Eog(n’, Make_ready(t, rdy),[t,t),(t,SI.r])

if(a’ ≠ b’) /* And one branch for the low priority job */
else Eog(n’, rdy, [a’,b’),[t, SI.r))

/* The regular succession of the next job (low or high priority) */
else Eog(n’, rdy, [a’,b’),[t, SI.r))

}/* End */

Figure 3-8. The Execution Order Graph algorithm.

6. Arc(n, I, n’): Creates an edge from node n to node n’
and labels it with the time interval I.

7. Make_node(j, XI): Creates a node and labels it with the
execution interval XI and the id of job j.

8. Get_nextCS(T): Returns the next sub job from an
ordered list of sub jobs.

9. Is_CS(T): Determines if job T is a sub job, i.e., a
critical section

10. Is_lock(T , cs_job): Determines if the priority of the
sub job is promoted.

The execution order graph for a set of jobs J is generated
by a call Eog(ROOT, {}, [0, 0], [0, TMAX]) to the function
given in Figure 3-8, i.e., with a root node, an empty ready
set, the initial release interval [0,0], and the considered
interval [0, TMAX] as input parameters.

4 THE INTEGRATION TESTING PROCEDURE
The identified execution orderings can be used for

determining coverage in integration testing of real-time
systems. Our testing method relies on two types of
coverage criteria, one defined by the derived execution
orderings, and one defined by the actual sequential testing
technique applied. In the latter case criteria defined by, e.g.,
statistical black box testing or structural white box testing
[3].

4.1 Test rig assumptions
In order to perform integration testing of an embedded

real-time system we require the following: A monitoring
mechanism that can extract sufficient information from the
target system. This includes, task switches, and inputs-
outputs from the jobs. This monitoring mechanism can
either be implemented using non-intrusive hardware,
intrusive software, or hybrids. If the software approach is
chosen then monitors/probes must remain in the target
system in order eliminate the probe effect [16][9][4].

 Process
Ordering

 Output
Test

Oracle
Node

4.2 Test Strategy
The test strategy consists of the following steps:

1. Identify the set of execution orderings by performing
execution order analysis of the job set.

2. Test the system using any testing technique of choice,
and monitor for each test case, which execution
ordering is run during the interval [0, TMAX]. Where
TMAX typically equals the global LCM in the distributed
real-time system case.

C
orrectness

Input

Result
Database

Figure 4-1. The resulting test rig with the coverage of the
execution orderings illustrated. Monitoring is implemented in
software.

Required coverage

Execution ordering (6) (7) (9) (8) (10) (1) (2) (4) (3) (5)

No. Test cases

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001

8

3. Map the test case and output onto the correct execution
ordering, based on observation.

4. Repeat 2-3 until required coverage is achieved.
Complete primary coverage would be to execute all

identified execution orderings, complete secondary
coverage would be to test all identified orderings with a
certain number of unique test-cases defined by the testing
method applied. For example, assuming statistical black
box testing, with a reliability requirement of 10-6
failure/test-case with confidence 0.99, would require
(according to probable correctness theory [5]) 4,600,000
test cases per scenario. For the system in Figure 4-1 with
10 scenarios the total number of test cases would amount to
4,600,000 × 10 = 46,000,000 test cases.

5 JITTER, TESTABILITY AND COMPLEXITY
We will now outline some specifics of the execution

order analysis with respect to jitter, scheduling, testability,
and complexity. In defining the EOG, and in the presented
algorithms, we take the effects of several different types of
jitter into account:
• Execution time jitter, i.e., the difference between

WCET and BCET of a job, or a critical section.
• Start jitter, i.e., the inherited and accumulated jitter due

to execution time jitter of preceding higher priority
jobs.

• Entry jitter, i.e., the inherited and accumulated jitter
due to execution time jitter before entering a critical
section.

The complexity/testability of the EOG, i.e., the number
of scenarios, is proportional to the number of preemption
points and the jitter in the system. This complexity is not
inherent to the EOG but rather a reflection of the system it
represents. For the original model by Thane and Hansson
[13] a rough estimate of the maximum number of execution
orderings of a system, is 3n⋅p, where n is the number of jobs
(excluding sub jobs defined by critical sections) and p the
average number of preemptions for each task instance. The
base 3 in the expression comes from the possibility for a
task to be preempted, the possibility for completion
immediately before the start of a higher priority task, or the
possibility of completion such that a lower priority task
may succeed. These possibilities are strictly dependent on
the execution time jitter and the start time jitter of tasks in
the system. Consequently if there exists no jitter there will
be only one possibility (1n⋅p). The number of preemption
points, p, is also strictly dependent on the jitter in the
system. There is thus an exponential relation between the
complexity and the jitter in the system.

For a system with synchronization using semaphores the
above complexity metric is still valid for the original
(entire) jobs, not the partitioned sub-jobs. If the metric was
applied to the sub-jobs the number of preemption points, p,
would have to be reduced since the window of execution
where a sub-job could be preempted by a higher priority
job decreases.

Since any reduction of the jitter reduce the preemption
and release intervals, the preemption “hit” windows
decrease and consequently the number of execution order
scenarios decreases. Suggested actions for reducing jitter is
to have fixed start times, or to force each job to always
maximize its execution time, e.g. by inserting (padding) “no
operation” instructions where needed. Fixed start times are
easier to achieve for offset synchronized systems than
mixed systems with offset and on-line synchronization. In
order to achieve fixed start times of entry into critical
sections we cannot usually make use of regular kernel
primitives since the granularity of the system timer tick is
not sufficiently fine (due to the prohibitive kernel overhead
a too frequent timer tick would cause). We must thus resort
to execution time equalization using padding unless some
ingenious technique is used.

6 CONCLUSIONS
In this paper we have present a method for deterministic

integration testing of strictly periodic fixed priority
scheduled real-time systems with offsets, using on-line
synchronization, complying with the Priority Ceiling
Emulation Protocol (PCEP) [2] (a.k.a., the immediate
inheritance protocol). The paper extends the results by
Thane and Hansson [14][13] with handling of online
synchronization. This substantially increases the
applicability of the method, since it is more likely that
errors are caused by synchronization and implementation
problems, but also that industry standards like POSIX,
ADA95, and OSEK have adopted PCEP [12][6].

Essentially the method is a structural white box testing
method applied on the system level rather than on the
individual tasks. The method includes a reachability
technique for deriving all possible orderings of task starts,
preemptions and completions for tasks executing in a
system, together with a structural testing strategy for
achieving full coverage with respect to the derived
execution orderings. The testing strategy also allow test
methods for sequential programs to be applied, since each
identified ordering can be regarded as a sequential program.
In the presented analysis and testing strategy, we
considered task sets with recurring release patterns, and
accounted for the effects of variations in start and execution
times of the involved tasks, as well as the variations of the
arrival and duration of the critical sections.

The testability/complexity of a system has an exponential
relation to the jitter, as identified by Thane and Hansson
[14][13].

For those that are interested we have tools for deriving
the set of execution orderings as well as a real-time
operating system, Asterix [17], which has the necessary
infrastructure for monitoring, debugging [15] and testing of
real-time systems as described in this paper.

Future research would be to investigate how to resolve
execution order analysis with online synchronization
protocols, other than PCEP, and to investigate how the
testability of those protocols relate to PCEP, and offsets.

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001

9

Another pursuit would be to extend the analysis with global
synchronization using global PCEP [10] in the same
manner as Thane and Hansson did with offsets [14][13].

7 REFERENCES
[1] Audsley N. C., Burns A., Davis R. I., Tindell K. W. Fixed

Priority Pre-emptive Scheduling: A Historical Perspective.
Real-Time Systems journal, Vol.8(2/3), March/May, Kluwer
A.P., 1995.

[2] Baker T. Stack-based scheduling of real-time processes.
Real-Time Systems Journal, 3(1):67-99, March, 1991.

[3] Beizer B. Software testing techniques. Van Nostrand
Reinhold, 1990.

[4] Gait J. A Probe Effect in Concurrent Programs. Software –
Practice and Experience, 16(3):225-233, Mars, 1986.

[5] Hamlet R. G. Probable Correctness Theory. Information
processing letters 25, pp. 17-25, 1987.

[6] ISO/IEC. ISO/IEC 8652L 1995 (E), Information Technology
– Programming Languages – Ada, Febrary 1995.

[7] Laprie J.C. Dependability: Basic Concepts and Associated
Terminology. Dependable Computing and Fault-Tolerant
Systems, vol. 5, Springer Verlag, 1992.

[8] Lui C. L. and Layland J. W.. Scheduling Algorithms for
multiprogramming in a hard real-time environment. Journal
of the ACM 20(1), 1973.

[9] McDowell C.E. and Hembold D.P. Debugging concurrent
programs. ACM Computing Surveys, 21(4), pp. 593-622,
December 1989.

[10] Mueller F. Priority inheritance and ceilings for distributed
mutual exclusion. Proc. 20th IEEE Real-Time Systems
Symposium, pp. 340-349, Phoenix, Arizona, December 1999.

[11] Rushby J., Formal Specification and Verification for Critical
systems: Tools, Achievements, and prospects. Advances in
Ultra-Dependable Distributed Systems. IEEE Computer
Society Press. 1995. ISBN 0-8186-6287-5.

[12] Technical Committee on Operating Systems and Application
Environments of the IEEE. Portable Operating System
Interface (POSIX) – Part 1: System Application Program
Interface (API), 1996. ANSI/IEEE Std 1003.1, 1995 Edition,
including 1003.1c:Amedment 2: Threads Extension [C
Language]

[13] Thane H. and Hansson H. Testing distributed real-time
systems. Journal of Microprocessors and Microsystems
(24):463-478, Elsevier, 2001

[14] Thane H. and Hansson H. Towards Systematic Testing of
Distributed Real-Time Systems. Proc. 20th IEEE Real-Time
Systems Symposium, Phoenix, Arizona, December 1999.

[15] Thane H. and Hansson H. Using Deterministic Replay for
Debugging of Distributed Real-Time Systems. In
proceedings of the 12th Euromicro Conference on Real-Time
Systems (ECRTS’00), Stockholm, June 2000.

[16] Thane H. Monitoring, Testing and Debugging of Distributed
Real-Time Systems. Ph.D. Thesis. Royal Institute of
Technology (KTH), Stockholm, Sweden, May 2000.
www.mrtc.mdh.se.

[17] Thane H., Pettersson A., and Sundmark D. The Asterix real-
time kernel. In proceedings of the 13th Euromicro
Conference on Real-Time Systems (ECRTS’01), Industrial
Session, Delft, June 2001.

[18] Xu J. and Parnas D. Scheduling processes with release times,
deadlines, precedence, and exclusion, relations. IEEE Trans.
on Software Eng. 16(3):360-369, 1990.

	Introduction
	The problem of testing real-time software
	Contribution

	The system model
	Task model
	Synchronization using PCEP
	Side effects
	Fault hypothesis

	Execution order analysis
	Execution Orderings
	Deriving the Execution Orderings
	Critical sections
	Transitions for a system with no critical sections (base case)
	Additional transitions for a system with critical sections

	The EOG algorithm

	The Integration testing procedure
	Test rig assumptions
	Test Strategy

	Jitter, testability and Complexity
	Conclusions
	References

