
Fostering Reuse within Safety-critical Component-based Systems

through Fine-grained Contracts

Irfan Sljivo, Jan Carlson, Barbara Gallina, and Hans Hansson

Mälardalen Real-Time Research Centre, Mälardalen University,

Väster̊as, Sweden

{irfan.sljivo,jan.carlson,barbara.gallina,hans.hansson}@mdh.se

Abstract

Our aim is to develop a notion of safety contracts
and related reasoning that supports the reuse of
software components in and across safety-critical
systems, including support for certification related
activities such as using the contract reasoning in
safety argumentation.

In this paper we introduce a formalism for spec-
ifying assumption/guarantee contracts for compo-
nents developed out of context. We are utilising
the concepts of weak and strong assumptions and
guarantees to customise fine-grained contracts for
addressing a broader component context and spec-
ification of properties for specific alternative con-
texts. These out of context contracts can be con-
veniently instantiated to a specific context, thereby
providing support for component reuse.

1 Introduction

Most standards for certification of safety-critical
systems are formulated from the perspective of de-
veloping a new system from scratch. However, soft-
ware is typically not developed completely from
scratch. Instead, as much as possible is reused
from previous projects, in order to reduce devel-
opment time and take advantage of existing knowl-
edge. This reuse can be in the form of architectural
patterns, platforms, or code implementing common
functionalities. There are also many methods that
facilitate software reuse by making it more struc-
tured and systematic. For example, component-
based software engineering is a method according
to which software is developed by composing pre-
existing or newly developed components, i.e., in-

dependent units of software, with a well-defined in-
terface capturing communication and dependencies
towards the rest of the system.

Our work addresses safety and certification of
component-based system, i.e., systems developed
using component-based reasoning that need to be
certified according to a specific safety standard.
Examples of such systems are found in domains
such as automotive, railway or avionics.

Certification is (except for rare cases) performed
with respect to a specific system, describing how
the particular hazards of this system have been
identified and how the system is constructed to re-
duce the risks or consequences of these hazards to
acceptable levels. The basic idea behind our work is
that, although originally formulated in the context
of a particular system, some parts of this reasoning
would apply also in other settings. For example, in
case the chain of events (fault, error propagation,
failure, etc.) that leads to a hazard can unambigu-
ously be identified and in case detection as well
as recovery mechanisms have been designed and
allocated onto a specific composite component, if
that component is reused within a system that is
characterised by a similar chain of events, its fault-
tolerant behaviour is still valid in meeting the haz-
ard avoidance goal.

In particular, when the system is developed us-
ing a component-based approach, it would be worth
identifying parts of the reasoning that address only
a particular component, and making no or few as-
sumptions about the rest of the system. If such
information can be associated with the component,
and any assumptions be explicitly formulated, it
could be reused whenever the component is reused
in a new system. To capture this reusable informa-

1



tion, we propose a contract-based approach, since
this provides support for capturing not only the
properties guaranteed by the component, but also
under what context assumptions that these prop-
erties can in fact be guaranteed.

In addition to assumptions and guarantees of
the component, captured by the contracts, we also
want to reuse the argumentation why this infor-
mation is trustworthy. For instance, if evidence
is available (e.g. verification and validation results
coming from testing or other verification activi-
ties) to support the claim that the above men-
tioned fault-tolerant component is actually meeting
its hazard avoidance requirement, the fragment of
argumentation used to show that a certain hazard
has been avoided/mitigated can be reused.

The main contribution of this paper is that
it provides an adaptation of the assump-
tion/guarantee contracts introduced by [3] to con-
veniently support reuse of components between
products. We are specifically proposing a fine-
grained assume/guarantee contract formalism that
supports contract specification for out-of-context
component types. The proposed approach assumes
broader contexts and eases reuse in different con-
texts by allowing for the specification of mandatory
properties and additional properties for specific al-
ternative contexts. The broader contexts enables
capturing of certification-relevant information that
are needed for specification of safety contracts.

The rest of the paper is organised as follows: In
Section 2 we present a short overview of key notions
and related work we build upon. In Section 3 we
present the key features of our contracts and define
the proposed format and operations that can be
performed on the contracts. Conclusion and future
work are presented in Section 4.

2 Background and related
work

In this section we briefly present some back-
ground information concerning safety-critical sys-
tems, component-based software engineering and
contracts.

Safety-Critical Systems (SCS) are systems that
may result in harm or loss of human life when they
fail to perform their function [6]. In some SCS do-

mains, e.g. automotive, railway or avionics, the sys-
tems must be certified according to a set of domain
specific safety standards. As a part of certifica-
tion, a safety case in form of an explained and well-
founded (i.e. valid evidence supporting the safety
goals) structured argument [5] is often required to
show that the system is acceptably safe to operate.
Building a safety case is based on human reason-
ing and expert judgement and is mainly manual or
semi-automatic work.

The use of off-the-shelf (OTS) items in SCS has
been debated for many years [8]. Some of the OTS
items, as recognised by the standards, are commer-
cial off the shelf items and software of unknown
pedigree. While the first are developed by the stan-
dards, the latter are not developed to bespoke stan-
dards. The safety standards are providing more
and more support for the use of OTS items and
usually require evidence both that the product is
safe and that the process used for development is
as rigorous as the one mandated by a specific stan-
dard. These strict requirements limit the number
of OTS items that can be reused, because of lack
of evidence to prove that they are acceptably safe.

Component-Based Software Engineering (CBSE)
aims at enabling rapid composition of a sys-
tem from independently developed components by
specifying contractual obligations that components
must satisfy in order to achieve the system pre-
dictability [1]. One of the major goals of CBSE is
to facilitate reuse of pre-developed components in
order to reduce both time and cost of system de-
velopment. A component is an independent unit
of software, with a well-defined interface captur-
ing communication and dependencies towards the
rest of the system. A component model defines how
components should be implemented and specified,
as well as how components can be composed to
form a system.

Applying CBSE for development of SCS poses
particular challenges [4]. From the perspective of
safety and certification, addressing these challenges
is even more important when trying to apply CBSE
notions within SCS, because of their strict safety
demands.

Since simple interfaces are not expressive enough
to capture the contractual obligations that specify
dependencies towards the rest of the system, a no-
tion of contract is introduced as a means for speci-
fying and capturing functional and extra-functional

2



properties. In its basic form, contracts were intro-
duced within the Eiffel programming language as a
set of pre and post conditions between a caller and
a method, and class invariants [7].

This idea is further extended in form of assump-
tion/guarantee contracts with basic form C=(A,
G), where A and G are assertions (assumptions
and guarantees); a component makes assumptions
regarding its context, required to hold for the guar-
antees to be provided [2]. The contracts are built
around the notion of rich components that include
contracts on different aspects (e.g. functional, tim-
ing, safety) of the component.

An extended form of A/G contracts is provided
in [3], where strong and weak types of assumptions
and guarantees are defined. The extended contract
is defined as C=(A, B; G, H) where A and G are
strong, and B and H are weak assumptions and
guarantees. While the strong assumptions must
hold in order for the contract to be satisfied, the
weak assumptions are not required to hold. If they
hold, then the weak guarantees are offered, other-
wise the weak guarantees are disregarded.

3 Customising weak and
strong reasoning with con-
tracts

In our work we address certification of SCS de-
veloped using CBSE. In particular, we envision a
CBSE approach that uses a rich component concept
encompassing implementation, interface descrip-
tion, extra-functional properties, contracts, and ar-
gument fragments. We also assume clear separa-
tion between out-of-context component types and
in-context component instances. Moreover, we as-
sume a hierarchical component model, where a
component type can either be primitive (directly
implemented by code) or composite (implemented
by interconnected subcomponents).

Component contracts will be specified with A/G
reasoning in mind and will make a clear distinction
between strong and weak assumptions and guaran-
tees. In the traditional A/G contracts, assumptions
are used to express constraints on the environment
of the component, i.e., on other components con-
nected to its interface. We propose to broaden the
scope of assumptions to include not only the com-

ponent environment in terms of other connected
components, but also usage context (e.g. frequency
of a service usage), hardware context (e.g. available
memory), development context (e.g. compilers) and
system context (e.g. system hazards). For exam-
ple, within component instance contracts we can
have timing contract specifying some low-level tim-
ing properties (e.g. worst case execution time) for
which we assume timing properties of other compo-
nents. For moving this information to a component
type level (i.e., out-of-context) we need to broaden
the scope of our assumptions to e.g. hardware plat-
form and assume properties such as processor type
or its frequency.

We plan to handle the broader context by cus-
tomising strong and weak assumptions and guaran-
tees within contracts to be able to specify a number
of weak A/G pairs on top of common strong as-
sumptions and guarantees. In such contracts, the
common strong assumptions clearly capture con-
straints that all compatible environments must ful-
fill for the contract to be satisfied, while the weak
A/G pairs support specifying different constraints
that are more environment specific.

We envision the contracts to be associated with
component types. When instantiating the com-
ponent type to a specific component instance, the
component instance contract inherits all the weak
and strong assumptions and guarantees, but typ-
ically only a subset of weak assumptions will be
satisfied, depending on the context for which the
type is being instantiated. This means that only
the subset of weak guarantees that are implied by
the satisfied weak assumptions will be guaranteed.
Besides the inherited contract, additional context-
specific contracts can be defined for the instances,
but these are not of interest from a reuse perspec-
tive. When a new component is developed for a
particular context and there is a potential for future
reuse, then those parts of the information that hold
regardless of context, or where context dependen-
cies can be clearly defined, should be “lifted” from
the component instance to the component type.

Identification of assumptions is challenging work
and requires a comprehensive approach for captur-
ing and maintaining them [9]. The formalism of
specifying contracts needs to support both formal
approaches that allow automatic operations on con-
tracts, such as checking of contract satisfaction and
if refinement between contracts hold, and plain text

3



contracts relying on human reasoning, e.g. for as-
pects that are too complex to be fully formalised.

In summary, the key features of the proposed ap-
proach are the following:

• The formalism supports both formal contracts
and contracts defined in plain text, and is con-
sistent with traditional A/G contracts.

• Both component types (corresponding to com-
ponents in isolation) and component instances
(corresponding to components used in a par-
ticular system) are supported. Component in-
stances inherit contracts from the correspond-
ing component type.

• The formalism supports specification of several
alternative contexts through strong assump-
tion and guarantee, plus a number of weak
A/G pairs, where each assumption holds in
some contexts and the corresponding guaran-
tee is only required to hold in these contexts.

3.1 Proposed contract format

The motivation for distinguishing between the
strong and weak assumptions and guarantees is
mainly methodological [3]. In order to support
the broadening of the context and reuse between
different contexts, we are proposing contracts that
specify all the properties that an environment must
satisfy separately from the guarantees and assump-
tions that are required to hold only in some con-
texts. The latter is specified as a set of weak A/G
pairs to preserve the connection between assump-
tions and guarantees, and to enable specification
of additional properties for specific alternative con-
texts. For example, consider a component Sender
that provides the operation send and requires some
other component to provide an operation encrypt.
A contract for Sender could specify that under the
strong assumption that encrypt always terminates,
the strong guarantee is that send always termi-
nates. Upon these strong assumptions and guar-
antees we can define some more context specific
(weak) assumption/guarantee pairs: (1) under the
assumptions that encrypt always terminates within
10ms when GCC compiler is used on ARM plat-
form, in return, the guarantee is that send always
terminates within 30ms and (2) under the assump-
tion that GCC compiler is used on ARM platform,

the guarantee is that Sender requires no more than
5KiB of memory .

This idea translates into a contract format where
strong assumptions and guarantees (A and G)
are defined as common for all the weak assump-
tion/guarantee pairs (B and H):

〈A,G, {〈B1, H1〉, . . . , 〈Bn, Hn〉}〉

This corresponds to the following traditional A/G
contract:

〈A, (G ∧ (B1 → H1) ∧ . . . ∧ (Bn → Hn))〉

where our strong assumptions are becoming the
only contract assumptions and guarantees are com-
posed of conjunction of strong guarantees and weak
A/G pairs. Logically, this has the meaning:

A→ (G ∧ (B1 → H1) ∧ . . . ∧ (Bn → Hn))

If the assumption A holds then G follows (must
hold), and for each weak A/G-pair Bi/Hi, the guar-
antee Hi follows (must hold) only if Bi holds. Note
in particular that if Bi does not hold, then the im-
plication holds regardless of the truth value of Hi.
This provides a mean to specify guarantees that are
required to hold only in certain contexts (i.e., Hi

must hold in all contexts satisfying Bi).
The above expression means that G follows from

A and H1 follows from A and B1, etc. Logically,
this has the meaning:

(A→ G)∧((A∧B1)→ H1)∧ . . .∧((A∧Bn)→ Hn)

but with the additional distinction that the strong
assumption A must hold, which is equivalent to:

(A∧G)∧ ((A∧B1)→ H1)∧ . . .∧ ((A∧Bn)→ Hn).

3.2 Contract operations

For a primitive component type we can check that
the implementation satisfies the contract by ensur-
ing that the code will deliver guaranteed function-
ality in all contexts satisfying the assumptions, i.e.,
that the contract implications hold.

In case of a composite component type (out-of-
context), we can check consistency of its contracts
and the contracts of the subcomponents in two sep-
arate steps: (1) by checking that all strong as-
sumptions in a subcomponent that are not satisfied

4



by the composition with other subcomponents are
ensured by the strong assumption in the compos-
ite component contract, and (2) by checking that
the composite component contract follows from the
subcomponent contracts and the interconnections.

Basic component instance (in-context) contracts
are inherited from the corresponding component
type (out-of-context) contracts. Component in-
stance contracts refine inherited basic contracts
based on information about the particular context.

Conversely, when an in-context contract is devel-
oped first and an out-of-context contract needs to
be derived, an in-context contract can be manually
“lifted” into an out-of-context contract.

4 Conclusion

We have presented our proposition for using as-
sumption/guarantee contracts to capture reusable
certification-relevant information, using a CBSE
approach to certification of SCS. In particular,
the focus was on enabling usage of contracts in
a broader context and a possibility to specify ad-
ditional properties for specific alternative contexts
in which a component can be used under certain
assumptions. We are using the extended contract
form with distinction between weak and strong as-
sumptions and guarantees. We use strong assump-
tions to clearly define the least compatible environ-
ment in which the component can be used. More-
over, we use weak assumption/guarantee pairs to
specify additional properties for specific alternative
contexts, which hold depending on the context in
which they are used.

In our future work we plan to fully develop the
theory presented in this paper. Further on, we will
work on determining certification-relevant proper-
ties that can be reused using our approach and es-
tablishing closer relation between A/G contracts
and safety argumentation.

Acknowledgements

Thanks to Patrick Graydon for fruitful discussions
and inspiration.

This work was supported by the Swedish Foun-
dation for Strategic Research (SSF) project Syn-
opsis.

References

[1] F. Bachman, L. Bass, C. Buhman, S. Comella-
Dorda, and F. Long. Technical Concepts
of Component-Based Software Engineering,
Volume 2. Software Engineering Institute,
Carnegie Mellon University, 2000.

[2] A. Benveniste, B. Caillaud, A. Ferrari,
L. Mangeruca, R. Passerone, and C. Sofronis.
Multiple Viewpoint Contract-Based Specifica-
tion and Design. In Proceedings of the Soft-
ware Technology Concertation on Formal Meth-
ods for Components and Objects (FMCO’07),
volume 5382. Springer, October 2007.

[3] A. Benveniste, J.-B. Raclet, B. Caillaud,
D. Nickovic, R. Passerone, A. Sangiovanni-
Vincentelli, T. Henzinger, and K. Larsen. Con-
tracts for the design of embedded systems, Part
II: Theory. Submitted for publication, 2012.

[4] I. Crnkovic. Building Reliable Component-
Based Software Systems. Artech House, Inc.,
Norwood, MA, USA, 2002.

[5] T. P. Kelly. Arguing Safety — A Systematic
Approach to Managing Safety Cases. PhD the-
sis, University of York, York, UK, Sept. 1998.

[6] J. C. Knight. Safety critical systems: challenges
and directions. In Proceedings of the 24th Inter-
national Conference on Software Engineering,
ICSE ’02, pages 547–550, New York, NY, USA,
2002. ACM.

[7] B. Meyer. Applying ‘Design by Contract’. IEEE
Computer, 25(10):40–51, Oct. 1992.

[8] F. Redmill. The COTS Debate in Perspective.
In Proceedings of the 20th International Confer-
ence on Computer Safety, Reliability and Secu-
rity, SAFECOMP ’01, pages 119–129, London,
UK, 2001. Springer-Verlag.

[9] M. Spiegel, P. F. Reynolds, Jr., and D. C. Bro-
gan. A case study of model context for sim-
ulation composability and reusability. In Pro-
ceedings of the Winter Simulation Conference,
pages 437–444. ACM, 2005.

5


