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Abstract—Multiprocessor platforms are becoming increasingly
more popular. Providing more computation capacity on a single
hardware platform, multiprocessors make it possible to integrate
previously federated real-time systems onto a single platform.
Multiprocessor hierarchical scheduling techniques provide the
ground for composing real-time components, while guaranteeing
the timing correctness of the composed system. A considerable
deal of compositional real-time systems are embedded systems
that operate on battery power. In such systems, reducing the
power consumption is of paramount importance to increase the
system lifetime.

In this paper, we present our idea on reducing the energy
consumption when performing hierarchical scheduling on mul-
tiprocessors. We formulate the problem, present the model and
sketch the outline of the solution. Finally, we present a number
of challenges which will be addressed in our work.

I. INTRODUCTION

Hierarchical scheduling is a technique used for composing
real-time time software components on a shared underlying
processor platform [1], [2]. In this technique, based on the
processor requirements of each component, a sufficient portion
of the processor capacity is assigned to the component. The
processor portions are often represented using a processor
supply model which abstracts the amount of processor capacity
available for the component.

The Multiprocessor Periodic Resource (MPR) Model [5] is
a processor supply model that abstracts the processor supply
of underlying multiprocessor platforms. In this model, each
component is assigned a share of the multiprocessor platform.
The MPR model specifies a common period P , total budget
Q and maximum number of available processor at each time
m. However, the exact allocation of the processors to the
components is not specified in this model. All assignments
that are compliant with the MPR interface are allowed to be
utilized by the component during run-time.

On the other hand, energy-aware scheduling is widely
studied for flat systems, i.e non-hierarchical systems (e.g., [3],
[4]). However, energy-aware scheduling is also applicable in
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hierarchical scheduling when the total processor capacity is
not utilized by the components.

In this paper, assuming that the underlying multiprocessor
platform allows us to modify the number of active processors
as well as their operation frequencies during run-time, we want
to (i) model the relation between the processor frequency and
the component’s processor requirements (ii) provide a light-
computation algorithm for selecting the most energy efficient
component interfaces during run-time.

We are aiming to utilize both Dynamic Voltage Scaling
(DVS) and Dynamic Power Management (DPM) techniques
for managing the energy consumption. Hence, the processor
speeds and the number of active processors are altered during
run-time. To this end, we will first introduce an extended
version of MPR model called Energy-aware MPR (EMPR)
model that suits our goal. Thereafter, we will give an outline
of our online algorithm which reduces the EMRP model to the
MPR model.

II. SYSTEM MODEL

We assume multiprocessor systems with M processors in
which a number of real-time components (Al) are composed
on the same multiprocessor platform. The components may
join and leave the system during run-time.

A. Processor speed model

We assume the processor frequencies and thus the proces-
sor speeds are discrete values and know a priori. The set of all
available speeds are denoted using S. The processor speed is
calculated through dividing the processor frequency f by the
maximum processor frequency fmax:

s =
f

fmax
. (1)

B. Component model

Each real-time component is composed of n implicit dead-
line periodic tasks {τ1, . . . , τn}. Tasks have a constant arrival
time Ti, however depending on the processor speed s tasks
will run for Ci(s) time units at each arrival.



C. Execution time model

For modeling the task execution times, we use a similar
approach introduced by Marinoni and Buttazzo in [6]. In this
model, the execution time is a function of the processor speed:

Ci(s) =
φiCimax

s
+ (1− φi)Cimax , (2)

where Cimax and φi are the execution time at the maximum
speed and the percentage of the task code that scales with the
processor speed. This parametric execution time captures both
the part of task execution which scales with the processors
frequency e.g., computation intensive task code, and the part
that does not scale with the processor frequency e.g., memory
access code.

D. Component demand model

The component demand is calculated based on the paramet-
ric execution times of the component’s inner tasks (Ci(s)). The
demand bound function (dbfs(t)) represents the worst case
processor demand of the tasks in a given time interval t when
the component’s allocated processors are operating at speed s.

E. Resource supply model

Energy-aware Multiprocessor Periodic Resource (EMPR)
model Γ = 〈P,Q(s),m〉 indicates that when operating at
speed s, at each P time units, m processors collectively
provide Q(s) time units to the corresponding component.

The processor supply to component Ai is calculated using
the component’s EMPR interface Γi. We will use the supply
bound function (sbfs(t)) for calculating the supply to the
components. The sbfs(t) specifies the minimum processor
supply to each component in a given time interval t when
the component’s allocated processors are operating at speed
s. Assuming that the component periods are known, we
will provide an analysis to derive the minimum number of
processors m and also minimum amount of budget Q that a
component can guarantee the schedulability of its inner tasks.
The budget that is derived using this analysis should fulfill the
following condition:

∀t sbfs(t) ≥ dbfs(t).

This analysis is performed offline and the result is saved
in the memory as a table to be used by the resource manager.
Table I illustrates an example parametric budget for a system
with four processors where the processors can operate in
three processor speeds (S1 > S2 > S3). At each processor
speed sj , Q(s) represent the minimum budget that guarantees
the schedulability of the component’s inner tasks. The table
indicates that the component requires two processors at speed
s1 and s2, while it requires three processors at speed s3.

At each energy management event, we will run our re-
source manager algorithm (explained in Section III) and we
will choose one of the records of this table for each component.

PPPPPm
s

s1 s2 s3

1 - - -
2 Q(s1) Q(s2) -
3 - - Q(s3)
4 - - -

TABLE I: An example of the parametric budget in EMPR.

III. RESOURCE MANAGER ALGORITHM

The input to the algorithm is a number of EMPR interfaces
Γi. The steps that the algorithm will take is as follows.

1) The algorithm first derives the minimum number of
processors (M ′) that the can guarantee the schedulability
of the components.

2) Afterwards, the algorithm chooses the minimum proces-
sor speed (s′) in which all components are schedulable.
Hence, for each component one record from its budget
table will be selected. Therefore, at the end of this step,
the EMPR model is reduced to the MPR model.

3) Switches off M −M ′ processors.
4) Switches the processor speeds to s′.

IV. CHALLENGES

We will address the following challenges in our proposed
solution.

First of all, we will identify some points in time that the
resource manager algorithm should be triggered. For instance,
the resource management can be performed when a new
component is joining or leaving the system.

Secondly, we would like to make it possible for the
system to change its operation mode, i.e the number of active
processors and their speed, while the components are running.
In doing so, one part of the task execution will be performed in
the first operation mode while the rest will be executed in the
second mode. Hence, we should provide a safe mode change
protocol.
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