
IEEE Real-Time Embedded Systems Workshop, Dec. 3, 2001

Abstract-- This paper investigates the level of pessimism of
traditional schedulability analysis for the Controller Area
Network (CAN). Specifically, we investigate the effects of
considering bit-stuffing distributions instead of worst case bit-
stuffing. This allows us to obtain bus utilisation values more
close to reality. On the other hand, since our analysis is based
on assumptions concerning distributions of stuffed bits, our
response times will only be met with some probability.

We introduce a model and a method, that relaxes the
pessimism of the worst-case analysis, and we show the effect of
our method by considering both an artificial traffic model and
samples of real CAN traffic. Our conclusion from this
investigation is that actual frame sizes, with a very high
probability, is in the order of 10% smaller than the worst
cases used in traditional analysis. Also, we propose a simple
coding scheme, which substantially reduces the number of
stuffed bits in the considered real traffic.

Index Terms—controller area network, CAN, bit-stuffing,
reliability analysis, modelling

1 INTRODUCTION
uring the last decade real-time researchers have
extended schedulability analysis to a mature technique

which for non-trivial systems can be used to determine
whether a set of tasks executing on a single CPU or in a
distributed system will meet their deadlines or not [1][2][9]
[13]. The essence of this analysis is to investigate if
deadlines are met in a worst-case scenario. Whether this
worst case actually will occur during execution, or if it is
likely to occur, is not normally considered.

In contrast with schedulability analysis, reliability
modelling involves study of fault models, characterisation
of distribution functions of faults and development of
methods and tools for composing these distributions and
models in estimating an overall reliability figure for the
system.

This separation of deterministic (0/1) schedulability
analysis and stochastic reliability analysis is a natural
simplification of the total analysis. The schedulability
analysis is, however, quite pessimistic, since it assumes that
a missed deadline in the worst case is equivalent to always
missing the deadline for all instances of a task, whereas the
stochastic analysis extends the knowledge of the system by

 Thomas Nolte, Hans Hansson, and Christer Norström are with the
Department of Computer Engineering, Mälardalen University, Västerås,
Sweden. Email: {thomas.nolte, hans.hansson, christer.norstrom}@mdh.se.
Sasikumar Punnekkat is from Vikram Sarabhai Space Centre, Trivandrum,
India

providing information on how often a deadline is violated.
Furthermore, the failure semantics could be extended
allowing the system to miss some deadlines and still not
classify it as a failure.

There are many other sources of pessimism in the
analysis, including considering worst-case execution times
and worst-case phasings of executions, as well as the usage
of pessimistic fault models.

In our previous work [8], we proposed a model for
calculating worst-case latencies of Controller Area Network
(CAN) [7] frames (messages) under error assumptions. This
model is pessimistic, in the sense that there are systems that
the analysis determines unschedulable, even though
deadlines will only be missed in extremely rare situations
with pathological combinations of errors.

In [5][6] we have reduced the level of pessimism by
introducing a better fault model, and in [4] we also consider
variable phasings between message queuings, in order to
make the model more realistic.

In this paper we will focus on another source of
pessimism, namely bit-stuffing of CAN frames. We will
use distributions of frame lengths after stuffing instead of
the traditional worst-case stuffed frame lengths. We will
look into two different scenarios:

1. Bit-stuffing distributions based on assuming
independent bit-values of the data before encoding, i.e.,
equal probability of a bit having value 1 or 0. With this
information we create a model for making assumptions
about the number of stuffed bits in a packet of data.

2. Bit-stuffing distributions extracted from real CAN-bus
traffic.

Since the number of stuffed bits in the real traffic is
substantially larger than that of our model, we additionally
propose a simple (and efficient) method to align the real
traffic data with the model. The result is a substantial
reduction of the number of stuffed bits in the real traffic.

The outline of the article is as follows. Section 2
specifically discusses the scheduling of frame sets in
Controller Area Networks under a general fault model.
Further, it describes the theory behind bit-stuffing and we
present the effects of bit-stuffing distributions along with
our model. In section 3 we investigate some real CAN
traffic and in Section 4 we give a proposal of how to align
the real traffic to our model. Finally, Section 6 presents our
conclusions and future work.

Using bit-stuffing distributions in CAN analysis
Thomas Nolte, Student member, IEEE, Hans Hansson, Member, IEEE, Christer Norström, Member,

IEEE, Sasikumar Punnekkat, Member, IEEE

D

IEEE Real-Time Embedded Systems Workshop, Dec. 3, 2001

2 TRADITIONAL SCHEDULABILITY ANALYSIS OF CAN
FRAMES

The Controller Area Network (CAN) [7] is a broadcast
bus designed to operate at speeds of up to 1 Mbps. Data is
transmitted in frames containing between 0 and 8 bytes of
data and 47 control bits. Among those control bits there is
an 11-bit identifier associated with each frame. The
identifier is required to be unique, in the sense that two
simultaneously active frames originating from different
sources must have distinct identifiers. The identifier serves
two purposes: (1) assigning a priority to the frame, and (2)
enabling receivers to filter frames.

CAN is a collision-detect broadcast bus, which uses
deterministic collision resolution to control access to the
bus. The basis for the access mechanism is the electrical
characteristics of a CAN bus: if multiple stations are
transmitting concurrently and one station transmits a ‘0’
then all stations monitoring the bus will see a ‘0’.
Conversely, only if all stations transmit a ‘1’ will all
processors monitoring the bus see a ‘1’. During arbitration,
competing stations are simultaneously putting their
identifiers, one bit at the time, on the bus. By monitoring
the resulting bus value, a station detects if there is a
competing higher priority frame and stops transmission if
this is the case. Because identifiers are unique within the
system, a station transmitting the last bit of the identifier
without detecting a higher priority frame must be
transmitting the highest priority queued frame, and hence
can start

2.1 Classical CAN bus analysis

Tindell et al. [10] [11] [12] present analysis to calculate
the worst-case latencies of CAN frames. This analysis is
based on the standard fixed priority response time analysis
for CPU scheduling [1].

Calculating the response times requires a bounded worst
case queuing pattern of frames. The standard way of
expressing this is to assume a set of traffic streams, each
generating frames with a fixed priority. The worst-case
behaviour of each stream, in the sense of network load, is to
assume that each frame is periodically queued. In analogue
with CPU scheduling, we obtain a model with a set S of
streams (corresponding to CPU tasks). Each Si ε S is a
triple < Pi, Ti, Ci >, where Pi is the priority (defined by the
frame identifier), Ti is the period and Ci the worst-case
transmission time of frames sent on stream Si. The worst-
case latency Ri of a CAN frame sent on stream Si is defined
by

iiii CqJR ++= (1)

where Ji is the queuing jitter of the frame, i.e., the
maximum variation in queuing time relative Ti, inherited
from the sender task which queues the frame, and qi
represents the effective queuing time, given by:

()
()iij

ihpj j

bitji
ii CqEC

T
Jq

Bq ++










 ++
+= ∑

∈

τ
 (2)

where the term Bi is the worst-case blocking time of frames
sent on Si, hp(i) is the set of streams with priority higher
than Si, τbit (the bit-time) caters for the difference in
arbitration start times at the different nodes due to
propagation delays and protocol tolerances, and E(qi + Ci)
is an error term denoting the time required for error
signalling and recovery. The reason for the blocking factor
is that transmissions are non-pre-emptive, i.e., after a bus
arbitration has started, the frame with the highest priority
among competing frames will be transmitted till
completion, even if a frame with higher priority gets
queued before the transmission is completed. However, in
case of errors a frame can be interrupted/pre-empted during
transmission, requiring a complete retransmission of the
entire frame. The extra cost for this is catered for in the
error term E above.

2.2 Effects of Bit-stuffing, worst case

In CAN, six consecutive bits of the same polarity
(111111 or 000000) is used for error signalling. To avoid
these special bit patterns in transmitted frames, a bit of
opposite polarity is inserted after five consecutive bits of
the same polarity. By reversing the procedure, these bits are
then removed at the receiver side. This technique, which is
called bit-stuffing, implies that the actual number of
transmitted bits may be larger than the size of the original
frame, corresponding to an additional transmission delay
which need to be considered in the analysis.

According to the CAN standard [7], the total number of
bits in a CAN frame before bit-stuffing is:

478 +s (3)

where s is the number of bytes of payload data (s є[0, 8])
and 47 is the number of control bits in a CAN frame. The
frame layout is defined such that only 34 of these 47 bits
are subject to bit-stuffing. Therefore the total number of
bits after bit-stuffing can be no more than:





 −+

++
4

1834478 ss (4)

Intuitively the above formula captures the number of
stuffed bits in the worst case scenario, shown in Figure 1.

111110000111100001111....before stuffing

stuffed bits

11111000001111100000111110....after stuffing
Figure 1: The worst case scenario when stuffing bits.

IEEE Real-Time Embedded Systems Workshop, Dec. 3, 2001

0

0,1

0,2

0,3

0,4

1 5 9 13 17 21 25 29 34 42 50 58 66 74 82 90 98

Size of frame in bits

Pr
ob

ab
ili

ty
 (%

)

Number of data bytes in frame
0 1 2 3 4 5 6 7 8

Exactly 1 bit stuffed

Exactly 2 bits stuffed

Exactly 4 bits stuffed

Exactly 3 bits stuffed

...

Figure 2: Probability of a specific number of stuffed bits in a frame, assuming our probabilistic frame model. The 9 lengths are
marked as vertical lines.

Let τbit be the worst case time taken to transmit a bit on

the bus – the so called bit time. The time taken to transmit a
given frame i is therefore:

bit
i

ii
s

sC τ











 −+

++=
4

1834
478 (5)

If we put si = 8 into the equation, and assume a bus speed
of 1Mbit/sec (τbit = 1 µs), we get Ci = 135µs. This is a good
figure to remember: the largest frame takes 135 bit times to
send.

2.3 Independent bit-stuffing model

If we look into how bit stuffing actually transforms the
data instead of using the worst-case method as presented
above, we will get a very different result. The length of a
frame, before bit-stuffing, can be at most 111 bits (8 bytes
data and 47 control bits), and among them 98 bits are
exposed to bit stuffing. By assuming equal probability of
bit-value 1 and 0 among the bits and no dependency among
bits, we can calculate the actual probabilities of having a
certain frame length after bit-stuffing. These probabilities
are for different frame sizes (number of bits) shown in

Figure 2. The graph is the result of an exhaustive analysis
of all possible frame patterns. The nine different frame
lengths (0-8 bytes of data) are visualised in the graph as
vertical lines. Note that only the first 8 cases of stuffed bits
(1-8 bits stuffed in the frame) are visible in the graph, since
the probability of getting more than 8 bits stuffed is very
low. For example, the probability of getting exactly 10, 15
and 20 bits stuffed never exceeds 10-4, 10-9, and 10-17,
respectively.

3 CASE STUDY: REAL CAN TRAFFIC

In real industrial situations the 50/50 ratio does not
apply, since we can not always assume independence
among bits. In order to make the above reasoning more
realistic we have gathered some traffic from a real
automotive system developed by one of our industrial
partners.

What we know by experience is that the probability of
having consecutive 0:s or 1:s in real frames is quite high,
since the data sent often are low integer numbers or frames
used for control, e.g. coded as 0 or -1, thus leaving a large
number of consecutive bits with the same polarity. For
example if we use a 16 bit integer representation and send a

IEEE Real-Time Embedded Systems Workshop, Dec. 3, 2001

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of stuffed bits

Pr
ob

ab
ili

ty
 (%

)

50/50
Real traffic
Real traffic using XOR

Figure 3: Probability density functions, PDF:s, showing the number of stuffed bits in a 64 bit frame. We show here our

independent 50/50 model, the real CAN traffic and the manipulated real CAN traffic.

‘1’, we will send “0000000000000001”, i.e., 15
consecutive 0:s.

The conclusion of this is that the actual number of stuff-
bits in our real traffic is higher compared to the previous
section where we assumed a 50/50 ratio between 1:s and
0:s.

In our investigation of real CAN traffic, we considered
some 25 000 frames. Due to the format of the obtained
data, we investigated only the data part of the frames,
which in this case were 8 bytes for all frames. The rest of
the CAN frames (control fields and so on) were not
considered. The obtained distribution of stuff-bits is shown
in Figure 3 (“Real traffic”). Worth noticing is that the
actual worst case is here 13 bits, to be compared with the
worst-case result of 15 stuffed bits when applying
traditional analysis for a frame size of 64 bits. The figure
also shows the distribution obtained with our 50/50 model
(“50/50”), as well as the distribution obtained for the real-
traffic when applying the coding (“Real traffic using
XOR”) that we will present next.

4 A SIMPLE CODING SCHEME TO REDUCE BIT-STUFFING

In order to reduce the number of stuffed bits in the real-
CAN traffic, we can use some kind of bit-operation on the
original data to remove consecutive 1:s and 0:s. The

general idea of this transformation is to align the real-traffic
distribution with that of our 50/50 model.

For example, we can use a simple coding scheme in
which the original frame is XORed with a particular bit-
pattern, the bit mask. XOR is a logical operation performed
in a single operation by most CPUs. In our case we use the
bit-pattern 101010101010... in order to kill sequences of 1:s
and 0:s. On the receiving side, the same XOR operation is
performed, with the same bit mask, to decode the data.
Figure 4 illustrates the encoding/decoding process.

Our choice of bit pattern is just an example. The actual
bit-pattern needed to get the maximum reduction in the
number of stuffed bits is dependent on the characteristics of
the transferred data. In fact, it may even be desirable to use
different bit-patterns for different frames. The details of
how this can be realised is however outside the scope of
this paper.

We have applied the simple XOR-coding to our 25 000
automotive CAN frames. The result is presented in Figure 3
(“Real traffic using XOR”). Here we compare the number
of bits stuffed into a frame of size 64 bits, i.e., 8 bytes. Our
50/50 independent model give us quite good results, since
we will seldom (probability in the order of 10-5) have
frames extended with more than 8 bits, i.e., 46% smaller
than the traditional worst case figure. For the frames
obtained after the XOR transformation we did not find any
frame with more than 3 extra bits, i.e., 80% smaller than the

IEEE Real-Time Embedded Systems Workshop, Dec. 3, 2001

original frame

bit mask

encoded frame

transmitted frame

encoded frame

bit-mask

original frame1111100001101010

1010101010101010

0101001011000000

01010010110000010

1111100001101010

1010101010101010

0101001011000000

bit-

stuffing
de

-
stu

ffin
g

XOR operation

XOR operation

stuffed
bit

Figure 4: Encoding/decoding process for the proposed method.

worst case. Compared to the original real traffic, we will
now transmit one byte less. (All of this should of course be
compared with the worst-case analysis result of 15 bits.) It
should be noted that with the XOR we now have even
better performance than our previously suggested 50/50
model. The reason is that our real CAN data contains many
long sequences of consecutive 1:s and 0:s, and by masking
this data using our bit pattern, we will almost eliminate the
occurrence of bit-stuffing. But in the general case, we will
get a performance closer to the 50/50 model.

5 CONCLUSIONS

In dimensioning safety critical systems, a central activity
is to validate that sufficient resources are allocated to
provide required behavioural, timing, and reliability
guarantees. The method we present here provides
information on distributions of stuff bits in transmitted
CAN-frames. This information can be used to obtain a
more accurate reliability analysis, which by allowing
occasional deadline misses may substantially reduce the
resource demands, without violating the system
requirements. Reducing resource utilisation is essential,
since it may allow the use of cheaper solutions.

Since the validation of a system or a product typically is
based on a model of a system, it is important to reduce the
modelled utilisation, i.e., the utilisation given by the model.
This can be achieved either by more accurate modelling, or
by reducing the actual utilisation of the system. Focusing
on bit-stuffing in CAN, we have in this paper presented
both a method to increase the accuracy in the modelling,
and a coding method which reduces the actual bus
utilisation.

We achieved increased accuracy in the modelling by
taking bit-stuffing distributions into consideration. This
allowed us to reduce the frame size used when performing
timing analysis of the CAN bus. This may have dramatic

effects on the calculated response time, e.g., a system that
with traditional worst-case analysis is deemed
unschedulable may be shown to, with a very high
probability, meet its deadlines.

We have shown with a case study, including 25 000
messages from a real automotive system, that the observed
worst case number of stuff bits is 13 compared to the worst
case of 15 bits derived by traditional worst-case analysis.
Furthermore, our model indicated that it is relatively safe to
assume at most 8 stuff bits because the probability for more
stuff bits is very low. Additionally, by using our XOR-
coding scheme we can reduce the number of stuff bits to 3.

In our future work we plan to investigate the exact
effects of this further, including the integration of bit-
stuffing effects in our framework for analysing reliability
and timing trade-offs [4]. On a more detailed level, we will
investigate the effects of bit stuffing the control fields of
CAN frames. This includes the effects of fixed fields in the
CAN control frame, as well as the bit stuffing of the
arbitration field.

6 ACKNOWLEDGEMENTS

The authors wish to express their gratitude to Lucia Lo
Bello for useful discussions and to the anonymous
reviewers for their helpful comments. The work presented
in this paper was supported by the Swedish Science
Foundation via ARTES, the Swedish Foundation for
Knowledge and Competence Development (KK-stiftelsen),
and Mälardalen University.

7 REFERENCES

[1] N. C. Audsley, A. Burns, M. Richardson, K. Tindell, and A.
Wellings. Applying New Scheduling Theory to Static Priority
Pre-emptive Scheduling. Software Engineering Journal,
8(5):284-292, September 1993.

IEEE Real-Time Embedded Systems Workshop, Dec. 3, 2001

[2] A. Burns. Preemptive Priority Based Scheduling: An

Appropriate Engineering Approach. Technical Report YCS
214, University of York, 1993.

[3] A. Burns, S. Punnekkat, L. Strigini, and D. Wright.
Probabilistic scheduling guarantees for fault-tolerant real-
time systems. Proceedings of DCCS-7, IFIP International
Working Conference on Dependable Computing for Critical
Applications, California, January 1999.

[4] H. Hansson, T. Nolte, C. Norström, and S. Punnekkat.
Integrating reliability and timing analysis of can-based
systems. IEEE Transaction on Industrial Electronics. To
appear in a special issue on factory communication systems.

[5] H. Hansson, C. Norström, and S. Punnekkat. Integrating
Reliability and Timing Analysis of CAN-based Systems. In
Proc. 2000 IEEE International Workshop on Factory
Communication Systems (WFCS'2000), Porto, Portugal,
September 2000. IEEE Computer Society.

[6] H. Hansson, C. Norström, and S. Punnekkat. Reliability
Modelling of Time-Critical Distributed Systems. In M.
Joseph, editor, Formal Techniques in Real-Time and Fault-
Tolerant Systems, volume 1926 of Lecture Notes in
Computer Science (LNCS), 6th International Symposium,
FTRTFT 2000, Pune, India, September 2000. Springer-
Verlag.

[7] I. S. O. (ISO). Road Vehicles- Interchange of digital
information -Controller Area Network (CAN) for high-speed
communication. ISO Standard-11898, Nov 1993.

[8] S. Punnekkat, H. Hansson, and C. Norström. Response Time
Analysis under Errors for CAN. Proceedings of IEEE Real-
Time Technology and Applications Symposium (RTAS
2000), pages 258-265, June 2000.

[9] L. Sha, R. Rajkumar, and J. Lehoczky. Priority Inheritance
Protocols: An Approach to Real-Time Synchronization. IEEE
Transactions on Computers, 39(9):1175-1185, September
1990.

[10] K. W. Tindell and A. Burns. Guaranteed message latencies
for distributed safety-critical hard real-time control networks.
Technical Report YCS229, Dept. of Computer Science,
University of York, June 1994.

[11] K. W. Tindell, A. Burns, and A. J. Wellings. Calculating
Controller Area Network (CAN) Message Response Times.
Control Engineering Practice, 3(8):1163-1169, 1995.

[12] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing
Real-Time Communications: Controller Area Network
(CAN). Proceedings 15th IEEE Real-Time Systems
Symposium, pages 259-265, December 1994.

[13] J. Xu and D. L. Parnas. Priority scheduling versus pre-run-
time scheduling. Real-Time Systems Journal, 18(1), January
2000.

