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Abstract-- This paper investigates the level of pessimism of 
traditional schedulability analysis for the Controller Area 
Network (CAN). Specifically, we investigate the effects of 
considering bit-stuffing distributions instead of worst case bit-
stuffing. This allows us to obtain bus utilisation values more 
close to reality. On the other hand, since our analysis is based 
on assumptions concerning distributions of stuffed bits, our 
response times will only be met with some probability. 

We introduce a model and a method, that relaxes the 
pessimism of the worst-case analysis, and we show the effect of 
our method by considering both an artificial traffic model and 
samples of real CAN traffic. Our conclusion from this 
investigation is that actual frame sizes, with a very high 
probability, is in the order of 10% smaller than the worst 
cases used in traditional analysis. Also, we propose a simple 
coding scheme, which substantially reduces the number of 
stuffed bits in the considered real traffic.  
 
Index Terms—controller area network, CAN, bit-stuffing, 
reliability analysis, modelling 
 

1 INTRODUCTION 
uring the last decade real-time researchers have 
extended schedulability analysis to a mature technique 

which for non-trivial systems can be used to determine 
whether a set of tasks executing on a single CPU or in a 
distributed system will meet their deadlines or not [1][2][9] 
[13]. The essence of this analysis is to investigate if 
deadlines are met in a worst-case scenario. Whether this 
worst case actually will occur during execution, or if it is 
likely to occur, is not normally considered. 

In contrast with schedulability analysis, reliability 
modelling involves study of fault models, characterisation 
of distribution functions of faults and development of 
methods and tools for composing these distributions and 
models in estimating an overall reliability figure for the 
system. 

This separation of deterministic (0/1) schedulability 
analysis and stochastic reliability analysis is a natural 
simplification of the total analysis. The schedulability 
analysis is, however, quite pessimistic, since it assumes that 
a missed deadline in the worst case is equivalent to always 
missing the deadline for all instances of a task, whereas the 
stochastic analysis extends the knowledge of the system by 
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providing information on how often a deadline is violated. 
Furthermore, the failure semantics could be extended 
allowing the system to miss some deadlines and still not 
classify it as a failure. 

There are many other sources of pessimism in the 
analysis, including considering worst-case execution times 
and worst-case phasings of executions, as well as the usage 
of pessimistic fault models. 

In our previous work [8], we proposed a model for 
calculating worst-case latencies of Controller Area Network 
(CAN) [7] frames (messages) under error assumptions. This 
model is pessimistic, in the sense that there are systems that 
the analysis determines unschedulable, even though 
deadlines will only be missed in extremely rare situations 
with pathological combinations of errors. 

In [5][6] we have reduced the level of pessimism by 
introducing a better fault model, and in [4] we also consider 
variable phasings between message queuings, in order to 
make the model more realistic. 

In this paper we will focus on another source of 
pessimism, namely bit-stuffing of CAN frames. We will 
use distributions of frame lengths after stuffing instead of 
the traditional worst-case stuffed frame lengths. We will 
look into two different scenarios: 

1. Bit-stuffing distributions based on assuming 
independent bit-values of the data before encoding, i.e., 
equal probability of a bit having value 1 or 0. With this 
information we create a model for making assumptions 
about the number of stuffed bits in a packet of data. 

2. Bit-stuffing distributions extracted from real CAN-bus 
traffic. 

Since the number of stuffed bits in the real traffic is 
substantially larger than that of our model, we additionally 
propose a simple (and efficient) method to align the real 
traffic data with the model. The result is a substantial 
reduction of the number of stuffed bits in the real traffic. 

The outline of the article is as follows. Section 2 
specifically discusses the scheduling of frame sets in 
Controller Area Networks under a general fault model. 
Further, it describes the theory behind bit-stuffing and we 
present the effects of bit-stuffing distributions along with 
our model. In section 3 we investigate some real CAN 
traffic and in Section 4 we give a proposal of how to align 
the real traffic to our model. Finally, Section 6 presents our 
conclusions and future work. 

Using bit-stuffing distributions in CAN analysis 
Thomas Nolte, Student member, IEEE, Hans Hansson, Member, IEEE, Christer Norström, Member, 

IEEE, Sasikumar Punnekkat, Member, IEEE 

D



IEEE Real-Time Embedded Systems Workshop, Dec. 3, 2001 
 

2 TRADITIONAL SCHEDULABILITY ANALYSIS OF CAN 
FRAMES 

The Controller Area Network (CAN) [7] is a broadcast 
bus designed to operate at speeds of up to 1 Mbps. Data is 
transmitted in frames containing between 0 and 8 bytes of 
data and 47 control bits. Among those control bits there is 
an 11-bit identifier associated with each frame. The 
identifier is required to be unique, in the sense that two 
simultaneously active frames originating from different 
sources must have distinct identifiers. The identifier serves 
two purposes: (1) assigning a priority to the frame, and (2) 
enabling receivers to filter frames. 

CAN is a collision-detect broadcast bus, which uses 
deterministic collision resolution to control access to the 
bus. The basis for the access mechanism is the electrical 
characteristics of a CAN bus: if multiple stations are 
transmitting concurrently and one station transmits a ‘0’ 
then all stations monitoring the bus will see a ‘0’. 
Conversely, only if all stations transmit a ‘1’ will all 
processors monitoring the bus see a ‘1’. During arbitration, 
competing stations are simultaneously putting their 
identifiers, one bit at the time, on the bus. By monitoring 
the resulting bus value, a station detects if there is a 
competing higher priority frame and stops transmission if 
this is the case. Because identifiers are unique within the 
system, a station transmitting the last bit of the identifier 
without detecting a higher priority frame must be 
transmitting the highest priority queued frame, and hence 
can start 

2.1 Classical CAN bus analysis 

Tindell et al. [10] [11] [12] present analysis to calculate 
the worst-case latencies of CAN frames. This analysis is 
based on the standard fixed priority response time analysis 
for CPU scheduling [1]. 

Calculating the response times requires a bounded worst 
case queuing pattern of frames. The standard way of 
expressing this is to assume a set of traffic streams, each 
generating frames with a fixed priority. The worst-case 
behaviour of each stream, in the sense of network load, is to 
assume that each frame is periodically queued. In analogue 
with CPU scheduling, we obtain a model with a set S of 
streams (corresponding to CPU tasks). Each Si ε S is a 
triple < Pi, Ti, Ci >, where Pi is the priority (defined by the 
frame identifier), Ti is the period and Ci the worst-case 
transmission time of frames sent on stream Si. The worst-
case latency Ri of a CAN frame sent on stream Si is defined 
by  

iiii CqJR ++=              (1) 

where Ji is the queuing jitter of the frame, i.e., the 
maximum variation in queuing time relative Ti, inherited 
from the sender task which queues the frame, and qi 
represents the effective queuing time, given by: 
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where the term Bi is the worst-case blocking time of frames 
sent on Si, hp(i) is the set of streams with priority higher 
than Si, τbit (the bit-time) caters for the difference in 
arbitration start times at the different nodes due to 
propagation delays and protocol tolerances, and E(qi + Ci) 
is an error term denoting the time required for error 
signalling and recovery. The reason for the blocking factor 
is that transmissions are non-pre-emptive, i.e., after a bus 
arbitration has started, the frame with the highest priority 
among competing frames will be transmitted till 
completion, even if a frame with higher priority gets 
queued before the transmission is completed. However, in 
case of errors a frame can be interrupted/pre-empted during 
transmission, requiring a complete retransmission of the 
entire frame. The extra cost for this is catered for in the 
error term E above. 

2.2 Effects of Bit-stuffing, worst case 

In CAN, six consecutive bits of the same polarity 
(111111 or 000000) is used for error signalling. To avoid 
these special bit patterns in transmitted frames, a bit of 
opposite polarity is inserted after five consecutive bits of 
the same polarity. By reversing the procedure, these bits are 
then removed at the receiver side. This technique, which is 
called bit-stuffing, implies that the actual number of 
transmitted bits may be larger than the size of the original 
frame, corresponding to an additional transmission delay 
which need to be considered in the analysis. 

According to the CAN standard [7], the total number of 
bits in a CAN frame before bit-stuffing is: 

478 +s                   (3) 

where s is the number of bytes of payload data (s є[0, 8]) 
and 47 is the number of control bits in a CAN frame. The 
frame layout is defined such that only 34 of these 47 bits 
are subject to bit-stuffing. Therefore the total number of 
bits after bit-stuffing can be no more than: 
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Intuitively the above formula captures the number of 
stuffed bits in the worst case scenario, shown in Figure 1. 

111110000111100001111....before stuffing

stuffed bits

11111000001111100000111110....after stuffing  
Figure 1: The worst case scenario when stuffing bits. 
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Figure 2: Probability of a specific number of stuffed bits in a frame, assuming our probabilistic frame model. The 9 lengths are 
marked as vertical lines. 

 
Let τbit be the worst case time taken to transmit a bit on 

the bus – the so called bit time. The time taken to transmit a 
given frame i is therefore: 
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If we put si = 8 into the equation, and assume a bus speed 
of 1Mbit/sec (τbit = 1 µs), we get Ci = 135µs. This is a good 
figure to remember: the largest frame takes 135 bit times to 
send. 

2.3 Independent bit-stuffing model 

If we look into how bit stuffing actually transforms the 
data instead of using the worst-case method as presented 
above, we will get a very different result. The length of a 
frame, before bit-stuffing, can be at most 111 bits (8 bytes 
data and 47 control bits), and among them 98 bits are 
exposed to bit stuffing. By assuming equal probability of 
bit-value 1 and 0 among the bits and no dependency among 
bits, we can calculate the actual probabilities of having a 
certain frame length after bit-stuffing. These probabilities 
are for different frame sizes (number of bits) shown in 

Figure 2. The graph is the result of an exhaustive analysis 
of all possible frame patterns. The nine different frame 
lengths (0-8 bytes of data) are visualised in the graph as 
vertical lines. Note that only the first 8 cases of stuffed bits 
(1-8 bits stuffed in the frame) are visible in the graph, since 
the probability of getting more than 8 bits stuffed is very 
low. For example, the probability of getting exactly 10, 15 
and 20 bits stuffed never exceeds 10-4, 10-9, and 10-17, 
respectively. 

3 CASE STUDY: REAL CAN TRAFFIC 

In real industrial situations the 50/50 ratio does not 
apply, since we can not always assume independence 
among bits. In order to make the above reasoning more 
realistic we have gathered some traffic from a real 
automotive system developed by one of our industrial 
partners. 

What we know by experience is that the probability of 
having consecutive 0:s or 1:s in real frames is quite high, 
since the data sent often are low integer numbers or frames 
used for control, e.g. coded as 0 or -1, thus leaving a large 
number of consecutive bits with the same polarity. For 
example if we use a 16 bit integer representation and send a  
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Figure 3: Probability density functions, PDF:s, showing the number of stuffed bits in a 64 bit frame. We show here our 

independent 50/50 model, the real CAN traffic and the manipulated real CAN traffic. 

 
 

‘1’, we will send “0000000000000001”, i.e., 15 
consecutive 0:s. 

The conclusion of this is that the actual number of stuff-
bits in our real traffic is higher compared to the previous 
section where we assumed a 50/50 ratio between 1:s and 
0:s. 

In our investigation of real CAN traffic, we considered 
some 25 000 frames. Due to the format of the obtained 
data, we investigated only the data part of the frames, 
which in this case were 8 bytes for all frames. The rest of 
the CAN frames (control fields and so on) were not 
considered. The obtained distribution of stuff-bits is shown 
in Figure 3 (“Real traffic”). Worth noticing is that the 
actual worst case is here 13 bits, to be compared with the 
worst-case result of 15 stuffed bits when applying 
traditional analysis for a frame size of 64 bits. The figure 
also shows the distribution obtained with our 50/50 model 
(“50/50”), as well as the distribution obtained for the real-
traffic when applying the coding (“Real traffic using 
XOR”) that we will present next. 

4 A SIMPLE CODING SCHEME TO REDUCE BIT-STUFFING 

In order to reduce the number of stuffed bits in the real-
CAN traffic, we can use some kind of bit-operation on the 
original data to remove consecutive 1:s and 0:s. The 

general idea of this transformation is to align the real-traffic 
distribution with that of our 50/50 model. 

For example, we can use a simple coding scheme in 
which the original frame is XORed with a particular bit-
pattern, the bit mask. XOR is a logical operation performed 
in a single operation by most CPUs. In our case we use the 
bit-pattern 101010101010... in order to kill sequences of 1:s 
and 0:s. On the receiving side, the same XOR operation is 
performed, with the same bit mask, to decode the data. 
Figure 4 illustrates the encoding/decoding process. 

Our choice of bit pattern is just an example. The actual 
bit-pattern needed to get the maximum reduction in the 
number of stuffed bits is dependent on the characteristics of 
the transferred data. In fact, it may even be desirable to use 
different bit-patterns for different frames. The details of 
how this can be realised is however outside the scope of 
this paper. 

We have applied the simple XOR-coding to our 25 000 
automotive CAN frames. The result is presented in Figure 3 
(“Real traffic using XOR”). Here we compare the number 
of bits stuffed into a frame of size 64 bits, i.e., 8 bytes. Our 
50/50 independent model give us quite good results, since 
we will seldom (probability in the order of 10-5) have 
frames extended with more than 8 bits, i.e., 46% smaller 
than the traditional worst case figure. For the frames 
obtained after the XOR transformation we did not find any 
frame with more than 3 extra bits, i.e., 80% smaller than the 
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Figure 4: Encoding/decoding process for the proposed method. 

 

worst case. Compared to the original real traffic, we will 
now transmit one byte less. (All of this should of course be 
compared with the worst-case analysis result of 15 bits.) It 
should be noted that with the XOR we now have even 
better performance than our previously suggested 50/50 
model. The reason is that our real CAN data contains many 
long sequences of consecutive 1:s and 0:s, and by masking 
this data using our bit pattern, we will almost eliminate the 
occurrence of bit-stuffing. But in the general case, we will 
get a performance closer to the 50/50 model. 

5 CONCLUSIONS 

In dimensioning safety critical systems, a central activity 
is to validate that sufficient resources are allocated to 
provide required behavioural, timing, and reliability 
guarantees. The method we present here provides 
information on distributions of stuff bits in transmitted 
CAN-frames. This information can be used to obtain a 
more accurate reliability analysis, which by allowing 
occasional deadline misses may substantially reduce the 
resource demands, without violating the system 
requirements. Reducing resource utilisation is essential, 
since it may allow the use of cheaper solutions. 

Since the validation of a system or a product typically is 
based on a model of a system, it is important to reduce the 
modelled utilisation, i.e., the utilisation given by the model. 
This can be achieved either by more accurate modelling, or 
by reducing the actual utilisation of the system. Focusing 
on bit-stuffing in CAN, we have in this paper presented 
both a method to increase the accuracy in the modelling, 
and a coding method which reduces the actual bus 
utilisation. 

We achieved increased accuracy in the modelling by 
taking bit-stuffing distributions into consideration. This 
allowed us to reduce the frame size used when performing 
timing analysis of the CAN bus. This may have dramatic 

effects on the calculated response time, e.g., a system that 
with traditional worst-case analysis is deemed 
unschedulable may be shown to, with a very high 
probability, meet its deadlines. 

We have shown with a case study, including 25 000 
messages from a real automotive system, that the observed 
worst case number of stuff bits is 13 compared to the worst 
case of 15 bits derived by traditional worst-case analysis. 
Furthermore, our model indicated that it is relatively safe to 
assume at most 8 stuff bits because the probability for more 
stuff bits is very low. Additionally, by using our XOR-
coding scheme we can reduce the number of stuff bits to 3. 

In our future work we plan to investigate the exact 
effects of this further, including the integration of bit-
stuffing effects in our framework for analysing reliability 
and timing trade-offs [4]. On a more detailed level, we will 
investigate the effects of bit stuffing the control fields of 
CAN frames. This includes the effects of fixed fields in the 
CAN control frame, as well as the bit stuffing of the 
arbitration field. 
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