
Towards Implementing Multi-resource Server on
Multi-core Linux Platform

Rafia Inam, Joris Slatman, Moris Behnam, Mikael Sjödin, Thomas Nolte
Mälardalen University, Västerås, Sweden

Email: {rafia.inam, moris.behnam, mikael.sjodin, thomas.nolte}@mdh.se

Abstract—In this paper we present our ongoing work on
implementing the multi-resource server technology in the Linux
operating system running on multi-core architectures. The multi-
resource server is used to control the access to both CPU and
memory bandwidth resources such that the execution of real-time
tasks become predictable. We are targeting Legacy applications
to be migrated from single to multi-core architectures. We
investigate the available techniques and mechanisms that can
support our multi-resource servers and we discuss the potential
problems that needed to be tackled considering the requirements
of legacy applications.

I. INTRODUCTION

Scheduling of real-time tasks on multi-core architectures
is inherently unpredictable, and activities that are located in
different cores can still interfere with others in an unpre-
dictable manner hence imposing negative impact on system
performance and real-time guarantees. A main source of such
unpredictable negative impact is the contention for shared
physical memory. In commercially existing hardware, there
are currently no mechanisms that allow a core to protect
itself from negative impact if another core starts stealing its
memory bandwidth. Hence, there is a need to develop software
technologies to track, and eventually police, the consumed
memory bandwidth in order to achieve predictable multi-core
software.

We focus on the problem of supporting migration of
real-time legacy (single-core) systems to multi-cores without
adding negative or unpredictable performance penalties using
Commercial Off-The-Shelf (COTS) hardware 1. For the single
core architecture we have proposed the use of a two-level
hierarchical scheduling framework, considering only the CPU
resource, to support the execution of legacy applications shar-
ing the same CPU [1]. However, when considering the multi-
core architecture, the memory bandwidth should be considered
to guarantee predictable performance of legacy applications
that are located in different cores. To achieve this goal, we
have proposed the Multi-Resource (MR) server technology [2]
that allows a subsystem (i.e. legacy application tasks allocated
to a server) to be tested and verified independently of other
subsystems that will share the same hardware in the final
system.

This work is supported by the Knowledge Foundation (KKStiftelsen), via
the research programme PPMSched.

1Legacy systems are systems which have been developed and maintained
for many years. The reuse of legacy code can have enormous cost, reliability,
and safety benefits. The trend is observed in embedded software appliation
domains such as automotive, consumer electronics and avionics.

While the focus in [2] was to provide an analysis framework
to assess the composability of subsystems, in this paper, we
present our on-going work towards implementing the MR
server technology in the Linux operating system. We review
some existing techniques, implementations and mechanisms
that might be used for this purpose and we discuss their
suitability to our targeted systems.

II. THE MULTI-RESOURCE SERVER

In this section we present the multi-resource server. To
bound the memory accesses for a server, we need some
mechanisms of memory throttling to control the activity of
memory requests of the server such that each server can
access the memory according to its pre-reserved memory
bandwidth limit. Later in this section, we first describe the
means to implement memory throttling by measuring the
memory bandwidth, and then we explain how we can monitor
and enforce the consumed memory bandwidth ms.

A. The concept of multi-resource server
Our scheduling model for the multi-core platform is a

two level hierarchical scheduling framework which can be
viewed as a tree of nodes, with one parent node and many
leaf nodes per core, as illustrated in Figure 1. The parent
node is a node scheduler and leaf nodes are the subsystems
(servers). Each subsystem contains its own internal set of tasks
that are scheduled by a local scheduler. The node scheduler
is responsible for dispatching the servers according to their
bandwidth reservations (both CPU- and memory-bandwidth).
The local scheduler then schedules its task set according to a
server-internal scheduling policy. For both levels of schedulers,
including the node and server level, the Fixed Priority Pre-
emptive Scheduling (FPPS) policy is assumed.

Each server maintains two different budgets; one is the
CPU-budget and the other one reflects the number of memory
requests. The server is of periodic type, meaning that it
replenishes both budgets to the maximum values periodically
every Ps period and this is done as qs := Qs,ms := Ms.
Here Qs is the amount of CPU-time allocated, and Ms is
the number of memory requests in each period. During run-
time each server is associated with two dynamic attributes qs
and ms which represent the amount of available CPU- and
memory-budgets respectively.

Each core has its own node scheduler which schedules the
servers on that core. The node scheduler maintains a state
of each server on the core; the state is either runnable or

Core m

Node Scheduler

. . .
Local Scheduler

τ1,1 τ1,j. . .

Local Scheduler

τn,1 τn,j. . .

SubSystem 1 SubSystem n

<Q1, M1, P1 > <Qn, Mn, Pn >

Core n

Node Scheduler

. . .
Local Scheduler

τ1,1 τ1,j. . .

Local Scheduler

τn,1 τn,j. . .

SubSystem 1 SubSystem n

<Q1, M1, P1 > <Qn, Mn, Pn >

. . .

Memory Bus

Memory requests Memory requests

Sh
ar

ed

re
so

ur
ce

Fig. 1. A multi-resource server model

suspended. A server is in the runnable state if it still has
allocated resources to use.

A server which depletes any of its resources is placed in the
suspended state, waiting for replenishment which will happen
at the beginning of the next period. The node scheduler selects
a runnable server for execution. When a server Ss is executing,
qs decreases with the progression of time, while ms decreases
when a task in the server issues a memory request using the
shared memory-bus.

A scheduled server uses its local scheduler to select a task
to be executed according to the local scheduling mechanism.
When a task τi, running inside a server Ss, issues a memory
request, the associated core is stalling until the cache-line is
fetched from memory. A higher priority task can pre-empt
the execution of lower priority tasks but not during the core
stalling. A memory request is managed even if the budget of
Ss has depleted. When the memory budget is depleted, the
remaining CPU budget will be dropped and the state of the
server is changed to suspended.

For the CPU part of the server, any type of periodic server
(i.e. idling periodic [3] or deferrable servers [4]) could be
used to determine the consumption of allocated CPU budget
of each server. The memory part of the server is modelled
as a deferrable server since the memory-budget is consumed
only when a memory request is made. More details on the
execution of a multi-resource server are explained in [2].

B. Online monitoring and policing of ms

In many cases, a continuous determination and tracking
of the consumed memory bandwidth is very difficult without
using a dedicated external hardware that monitors the memory-
bus. Since we target the use of standard hardware, we use a
software-based memory throttling technique.

Most modern processors host a range of Performance Moni-
tor Counters (PMCs) which can be used to infer the amount of
resources consumed. The hardware performance counters are
registers frequently used for off-line and on-line performance
analysis without slowing down the system. The counters are
used to track certain low-level operations or events within the
processor accurately and with minimal overhead. The perfor-
mance counters can be used when evaluating performance of
a computer system. For example, Eranian in [5] describes
the use of performance counters to measure four interesting
memory-related metrics: measuring cache misses, measuring
memory bandwidth, measuring latency and access locality for

the x86 platform.
We will implement servers that enforce/police the consumed

memory bandwidth and thus accurate and non-intrusive es-
timates of the bandwidth consumptions become even more
important. For policing purposes, using interrupts that will
be generated when cache misses occur could give the most
accurate approach for accounting of the consumed bandwidth.

C. Online monitoring and policing of qs
The CPU-budget consumption of the servers should be

monitored to properly handle server budget depletion (the tasks
of the server should execute until its budget depletion).

In general, there are two methods to achieve this; the first
one is based on decreasing qs of each active server at every
system tick and to check if qs = 0. For example, the works
in [6], [1] use this method. The second method is based on
using a timer that generates an interrupt after qs time units
whenever a server becomes active and the value of qs is
updated whenever the server is preempted. Implementation
examples that use this method are presented in [7], [8], [9].

III. HIERARCHICAL SCHEDULING IN LINUX
In this section we investigate some available implementa-

tions to incorporate the multi-resource server for real-time
applications. We present our choice of using the Linux op-
erating system and its real-time patch to schedule hard real-
time tasks. We review the existing work in implementing real-
time hierarchical scheduling using the Linux operating system,
and software throttling implementations using performance
counters to limit memory bandwidth access of the server. We
present their shortcomings with respect to providing memory-
aware hierarchical scheduling.

The motivation of using Linux is that it is an open source
kernel under the GNU General Public License and it is
developed worldwide, and the use of Linux in embedded
systems is increasing rapidly [10]. The stock 2.6 kernel version
allows pre-emption when Linux is running in user space, when
1) Linux returns from a system call or an interrupt back to user
space, 2) the systems blocks on a mutex, 3) the system calls
yield. This makes the kernel suitable for running soft real-time
tasks only [11] but it lacks the hard real-time tasks support.

A. The real-time support
A lot of works have been done to support hard real-time

behaviour in Linux. Some options are discussed below:
1) The real-time patch (RT PREEMPT): The real-time be-

haviour can be added to Linux by patching the kernel with the
real-time patch called RT PREEMPT [12]. This patch allows
for running hard real-time tasks by making the Linux kernel
a fully preemptible kernel, because it allows for preemption
by higher priority tasks outside code that is not protected by a
special kind of non preemptible spinlocks. Furthermore, there
are several tools and built-in test-and debugging mechanisms
that can be used for measuring the performance of the pre-
emptible kernel.

The scheduler of the kernel is constructed in a mod-
ular fashion and it consists of several scheduling classes.
Three native Linux scheduling classes are used to schedule

the tasks. The first one is the SCHED_NORMAL that is a
non real-time scheduling class. The other two scheduling
classes, SCHED_FIFO and SCHED_RR are real-time schedul-
ing classes that schedule real time tasks. Each scheduling class
has its own priority. The real time scheduling classes have a
higher priority than the SCHED_NORMAL class. SCHED_RR
implements a round robin algorithm. It is an enhancement of
the SCHED_FIFO (first in first out) policy and it schedules
tasks according to the time slice. In this manner Fixed Priority
Pre-emptive Scheduling (FPPS) is supported for the real-time
tasks.

2) SCHED DEADLINE: Another potential solution we in-
vestigated is SCHED DEADLINE [13]. It is a non intrusive
modification to the stock Linux scheduler done by the com-
pany Evidence. It provides a scheduling class based on the real
time scheduling algorithm Earliest Deadline First (EDF). The
recent version of SCHED DEADLINE supports cgroups thus
it presents a kind of real-time server-based implementation to
support the temporal isolation property.

3) ExSched: ExSched [9] is a framework to develop real-
time schedulers without the need to patch or modify the
main kernel itself. Using ExSched the scheduling policies
can be implemented as external kernel modules for different
operating systems. Its main advantage is its portability. It can
be connected to different operating systems, currently it is
working with Linux and VxWorks operating systems. ExSched
provides the traditional scheduling algorithms FPPS and EDF
scheduling. It provides implementations for global, partitioned,
and semi-partitioned scheduling on multi-core platforms.
B. Hierarchical scheduling support

Here we investigate different implementations supporting
server-based scheduling in Linux.

1) Linux Control groups: Linux provides a functionality
to group together tasks in a hierarchy called Linux Control
groups or simply cgroups as a Linux kernel feature. This
mechanism facilitates allocation of a resource or a combination
of resources such as CPU runtime, system memory and or
network bandwidth to the hierarchy [14]. A cgroup can be
configured with a quota for every resource where its hierarchy
is attached to. A task set can be attached to a particular cgroup.
In this manner groups of tasks can be forced to use only their
own share of the resources. Cgroup usage can be monitored
and changed during runtime.

Cgroups provide a fine-grained control over allocating,
prioritizing, denying, managing, and monitoring system re-
sources. It is also possible to divide hardware resources among
tasks and users, that increases the overall efficiency [14].
The CPU resource also called cpu can be attached to a
cgroup. It uses the SCHED_CFS or SCHED_RT schedulers
to divide the CPU time (CPU bandwidth) proportionately
between cgroups (groups of tasks). The SCHED_CFS divides
the proportional share of the scheduler depending on the pri-
ority/weight of the task assigned to cgroups. The SCHED_RT
is used for real-time tasks in which the runtime execution and
period of real time tasks can be specified in microseconds as
cpu.rt_running_us and cpu.rt_period_us.

Cgroups are good for system administrators by providing
interfaces to configure the system, but they provide limited
functionality for application developers and hence not suitable
to implement a real-time two-level hierarchical structure. To
execute the hard real-time tasks preemtibaly, we need some
real-time patch like RT PREEMPT. But this patch is not
yet supported by the cgroups. Using cgroups, only a limited
amount of memory RAM can be allocated to a task. Another
limitation in using cgroups to implement a two-level hierarchi-
cal system is a limited assignment of subgroup (server in our
case) periods. The hierarchical structure makes the cgroups
less flexible. This hierarchical organization can be compared
to the hierarchical organization of processes in Linux. Child
groups inherit some of the attributes of their parents. Hence the
subgroup must have a period smaller or equal than its parent
cgroup’s period [15].

Considering the limitations of the Linux control groups
we move our attention to find a better solution for our
implementation.

2) CPU-based server implementations: Many server-based
techniques for CPU time have been completely implemented
for single-core and multi-core platforms using different oper-
ating systems like [16], [17], [7], [6], [1], [8], [9].

A kernel-level implementation to support partitioning and
hierarchical scheduling in ARINC 653 for Linux is provided
in [18]. It uses a partitioned scheduler at the global-level to
schedule partitions, and a local-level process scheduler is used
to schedule processes within each partition using. A timer is
used to trigger the scheduling events based on the scheduling
table. A POSIX compliant implementation of sporadic server
for the Linux kernel is provided in [19].

For ExSched, a Hierarchical Scheduling Framework (HSF)
plugin has been implemented as an HSF kernel module, which
provides a two-level hierarchical scheduling implementation
for temporal isolation on single core processors. The HSF-
FP plugin module can communicate with the core module of
ExSched through call-back functions. These call-back func-
tions are used to tell the HSF-FP plugin about different events
like task releases, task executions and task completions.

C. Memory-based server implementations
Memory servers are used to limit memory requests gener-

ated by tasks of the server. Since this issue has arisen with
the advent of multi-core platforms, not much work is found
in this area. A software-based memory throttling approach is
used to limit the memory-accesses of the interfering cores.
Hardware performance counters are used to measure last level
cache misses to measure memory accesses and the scheduler
is updated to enforce the memory throttling.

Recently a server-based approach to bound the memory
load of low priority non-critical tasks executing on non-
critical cores was presented by Yun et al. i [20] for an Intel
architecture running Linux. In their model, the system consists
of one critical core executing a critical application and a set
of non-critical cores executing non-critical applications. One
memory server is implemented on each non-critical core to

limit memory requests generated by tasks that are located on
that core. Hence the interference from other non-critical cores
on the critical core is bounded.

The servers are implemented on Linux using cgroups
in [20]. Since in this approach only one server per core is
considered, one cgroup (without any hierarchy of cgroups) is
used on each core and there is no need to assign periods to
the child groups which makes the problem easier. This work
has been extended in [21] by using a memory reclaiming tech-
nique when a core is not fully utilizing its allocated memory
budget. The memory reclaiming algorithm is presented and
is implemented in Linux kernel 3.6, as a dynamic loadable
kernel module.

IV. DISCUSSION

In this section we will discuss the suitability of using
the existing techniques and implementations presented in the
previous section to implement the MR servers.

Looking at the implementations of memory or CPU re-
sources servers based on Linux cgroups, we believe that
cgroup is not a good solution due to its inherited limita-
tions as explained earlier. In addition, adding both resources,
memory and CPU, for servers implementations might add
more limitations especially when considering the effect of
each resource on the other. For example, when any of the
resources budget depletes the corresponding server should be
suspended. For this reason we have decided to implement the
server from scratch. This problem was not considered in the
memory server implementation presented in [20] because
only one memory server is considered in each core which
makes the use of cgroup possible. For our case, our legacy
applications are executed in different servers and that means
multiple servers may share a single core, which interfere with
each other through the sharing of both memory and CPU
resources. While servers that are located in different cores will
interfere with each others through the sharing of the memory
bandwidth resource.

The next decision is on which of the Linux real-time
extensions that is more appropriate for our legacy applications.
ExSched seems to be more attractive since it provides a
platform independent solution, which is more appropriate for
our targeted legacy applications2.

Even though ExSched supports a CPU resource hierarchical
scheduling framework, the provided implementation is only
limited for single core, which must be extended for multi-
core to be suitable for the MR server technique. In addition,
the implementation of memory part of the MR server must
be added and the interaction between two resources (memory
and CPU) should be considered which is our current work.

REFERENCES

[1] R. Inam, J. Mäki-Turja, M. Sjödin, and M. Behnam. Hard Real-
time Support for Hierarchical Scheduling in FreeRTOS. In 7th Annual
Workshop (OSPERT’ 11), pages 51–60, Porto, Portugal, July 2011.

2A number of additional works have been presented to support real-time in
Linux for multi-cores which may impose less overhead than ExSched, e.g., the
works in [22] and [23], however, most of these works either require changing
of the kernel of Linux or they provide platform dependent solutions.

[2] M. Behnam, R. Inam, T. Nolte, and M. Sjödin. Multi-core composability
in the face of memory bus contention. In 5th International Workshop on
Compositional Theory and Technology for Real-Time Embedded Systems
(CRTS’12), December 2012.

[3] L. Sha, J.P. Lehoczky, and R. Rajkumar. Solutions for some Practical
problems in Prioritised Preemptive Scheduling. In Proc. 7th IEEE Real-
Time Systems Symposium (RTSS’ 86), pages 181–191, December 1986.

[4] J.K. Strosnider, J.P. Lehoczky, and L. Sha. The Deferrable Server
Algorithm for Enhanced Aperiodic Responsiveness in Hard Real-time
Environments. IEEE Transactions on Computers, 44(1), 1995.

[5] S. Eranian. What can performance counters do for memory subsystem
analysis? In ACM SIGPLAN Workshop on Memory Systems Performance
and Correctness (MSPC’08), pages 26–30. ACM, 2008.

[6] R. Inam, J. Mäki-Turja, M. Sjödin, S. M. H. Ashjaei, and S. Afshar.
Support for Hierarchical Scheduling in FreeRTOS. In 16th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA’ 11), France, September 2011.

[7] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril. Towards
hierarchical scheduling on top of vxworks. In Proceedings of the Fourth
International Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT’08), pages 63–72, July 2008.

[8] M.M.H.P. van den Heuvel, M. Holenderski, R. J. Bril, and J. J. Lukkien.
Constant-bandwidth supply for priority processing. IEEE Transactions
on Consumer Electronics (TCE), 57(2), 2011.

[9] M. Asberg, T. Nolte, S. Kato, and R. Rajkumar. ExSched: an external
cpu scheduler framework for real-time systems. In IEEE 18th Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA’ 12), 2012.

[10] R. Love. Linux Kernel Development 3rd edition. Prentice Hall, 2006.
[11] Paul McKenney. A realtime preemption overview, 2005.

http://lwn.net/Articles/146861/.
[12] C. Hallinan. Embedded Linux Primer: A Practical, Real-World Ap-

proach. Pearson Education, Inc, 2010.
[13] J. Lelli, D. Faggioli, and T. Cucinotta. An efficient and scalable

implementation of global EDF in Linux. In Proceedings of the 7th
International Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT’ 11), pages 6–15, July 2011.

[14] M. Prpić, R. Landmann, and D. Silas. Resource Management Guide -
Managing system resources on Red Hat Enterprise Linux 6. Red Hat,
Inc, 2013. https://access.redhat.com/site/documentation/.

[15] Real-Time group scheduling - The Linux Kernel Archives.
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt.

[16] D. Kim, Y-H Lee, and M. Younis. Spirit-ukernel for strongly partitione
real-time systems. In Proc. of the 7th International conference on Real-
Time Computing Systems and Applications (RTCSA’00), 2000.

[17] S. Saewong and R. Rajkumar. Hierarchical reservation support in
resource kernels. In Proc. 22th IEEE Real-Time Systems Symposium
(RTSS’ 01), December 2001.

[18] Sanghyun Han and Hyun-Wook Jin. Kernel-level ARINC 653 partition-
ing for Linux. In Proceedings of the 27th Annual ACM Symposium on
Applied Computing (SAC ’12), 2012.

[19] D. Faggioli, A. Mancina, F. Checconi, and G. Lipari. Design and
implementation of a POSIX compliant sporadic server for the Linux
kernel. In proceedings of the 10th Real-Time Linux Workshop (RTLWS’
08), 2008.

[20] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory-
access Control in Multiprocessor for Real-Time Systems with Mixed
Criticality. In Proc. of the 24th Euromicro Conf. on Real-Time Systems
(ECRTS’ 12), July 2012.

[21] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms. In Proc. 19th IEEE Real-Time Technology
and Applications Symposium (RTAS’ 13), 2013.

[22] J. Calandrino U. Devi H. Leontyev B. Brandenburg, A. Block and
J. Anderson. LitmusRT : A status report. In 9th Real-Time Linux
Workshop, pages 107–1232, November 2007.

[23] M. Mollison and J. Anderson. Bringing theory into practice: A userspace
library for multicore real-time scheduling. In 19th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’13), pages
283–292, April 2013.

