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Abstract — This paper aims to develop a new approach to case-

based reasoning without similarity constraint. The key to this is 

the case relation model which enables identification of relevant 

cases from a global perspective. Fuzzy linguistic rules are 

adopted as powerful means to represent knowledge about 

relevance between cases in the case relation model. The 

construction of fuzzy relevance rules can be realized by learning 

from pairs of cases in the case library. The empirical studies have 

demonstrated that our CBR system using fuzzy relation model 

can work with an extremely small number of cases while still 

yielding competent performance. 
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I. INTRODUCTION  

A major assumption in case-based reasoning (CBR) [1], 

[2] is that similar experiences can be reused to guide future 

reasoning, problem solving and learning. This is referred to as 

the similarity assumption which plays a central role in CBR 

processes, where similar cases are retrieved from the case base 

to offer approximate solutions the new problem at hand. 

The notion of similarity is closely related to proximity or 

adjacency. The similarity-based learning methods aim to 

gather local knowledge from neighboring cases for problem 

solving. They are supported by the rule of thumb that similar 

problems have similar solutions. However, this rule is 

important only in a heuristic sense and will become invalid 

when truly useful solutions are not residing within cases in the 

neighborhood. The possibility of similar cases not conveying 

useful information for problem solving presents a crucial 

challenge for the CBR research [3], [4]. 

On the other hand, the similarity assumption appears too 

restrictive for applying CBR in situations when no instances in 

the case base are similar to the target problem. So far this issue 

has not received serious attention by the research community. 

All CBR papers in literature took it for granted that a set of 

similar cases can be found from the case base for further 

processing. Nevertheless, the availability of similar cases is 

not warranted in reality due to practical limitations, in 

particular when the cases in the case base are sparsely 

distributed or not representative of the entire problem space 

[5]. 

This paper proposes a new approach to CBR without 

similarity constraint. The basic idea is to construct a case 

relation model to predict the relevance between two arbitrary 

cases. We consider two cases to be relevant if the solution of 

one case is directly usable for another case. As case relevance 

is not constrained by adjacency in locations, we utilize global 

information from varied cases including those remote ones in 

solving a new problem. Exploiting remote cases would be 

beneficial to overcome the weakness of conventional CBR 

approaches in situations when similar experience to new 

problems is not available. 

Further the case relation model is represented as a set of 

fuzzy linguistic rules. We believe that fuzzy if-then rules 

present a powerful and flexible means to represent the rich 

domain knowledge for the relation of pairs of cases. Fuzzy 

rule-based reasoning can be performed to predict whether and 

to which extent a case from the library is relevant to the 

problem in query. The construction of fuzzy relevance rules 

can be realized by learning from the case library as a valuable 

resource. Our empirical studies have demonstrated that the 

learned fuzzy relation model enables the CBR system to work 

with an extremely small number of cases while still yielding 

competent performance.  

The remaining of the paper is organized as follows: 

Section II surveys related works. In section III we outline our 

novel CBR system using (fuzzy) case relation model for 

prediction of case relevance. The learning of fuzzy rules for 

the relation model is addressed in section IV. Section V 

presents experimental results for evaluation of the proposed 

method. Finally, concluding remarks are given in section VI. 

II. RELATED WORKS 

Identifying local similar relations between cases is a key 

task for conventional CBR systems. So far the main stream of 

the works for construction of similarity models has been 

focused on feature weighting [6]. Features are assigned with 

different weights in accordance with their importance, and the 

global similarity metric is defined as a weighted sum of the 

local matching values in single attributes. Different 

approaches of interest have been proposed for identifying such 

weights automatically. Incremental learning attempts to 

modify feature weights according to success/failure feedback 
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of retrieval results [7]. The probability of ranking principle 

was utilized in [8] for the assignment of weight values to 

features. Case-ranking information was utilized in [9] for 

weight adaptation so that the ranking of retrieved cases will be 

consistent with a desired order. Accuracy improvement 

represents another way for adapting the set of weights as 

discussed in [10] and [11]. Nevertheless, no matter how the 

values of weights are derived, the capability of these similarity 

learning methods is inherently constrained by weighted 

combination of the local matching degrees. This limitation in 

the structure of similarity makes it hard to represent more 

general knowledge and criteria for assessing case relations 

from a global perspective. 

A new similarity model without feature weighting was 

proposed in [12] and [13] as an effort to seek more powerful 

representation of knowledge for case retrieval. The idea was to 

encode the information about feature importance into local 

compatibility measures such that feature weighting is no 

longer needed. Later, in [14], it was analyzed and 

demonstrated that the parameters of such compatibility 

measures can be learned from the case library in favor of 

coherent matching, i.e. to maximize the supportive evidence 

while minimize the amount of inconsistence derived from 

pairwise matching of cases from the case base. 

The integration of fuzzy theory with CBR methodology 

has been addressed by some researchers. Yager [15] explained 

that there was a close connection between fuzzy system 

modeling and case based reasoning. Dubois and Prade [16] 

formalized the fundamental hypothesis of CBR in the context 

of fuzzy rules. They established a formal framework in which 

case-based inference can be implemented as a special type of 

fuzzy set-based approximate reasoning.  

Fuzzy set and fuzzy logic have also been used for case 

representation and case matching in a CBR process. Fuzzy 

sets were used to depict imprecise case features in a fuzzy 

case-based reasoning system [17].  In [18] the fuzzy subset 

“small” was defined on attribute differences for numerical 

evaluation of similarity between cases. Moreover, fuzzy 

linguistic rules were adopted in [19] and [20] as a flexible 

means to express the criteria for similarity assessment.  

III. CBR  USING CASE RELATION MODEL 

An overview of the proposed CBR system using case 

relation model is depicted in Fig. 1, in which traditional 

similarity evaluation is replaced by global assessment of case 

relevance that is no longer subject to local neighborhood. 

Given a query problem Q, we look in the case library for all 

relevant cases across the whole problem space. The relevance 

of a known case C with respect to query Q is predicted by the 

case relation model. Every case in the case library is evaluated 

according to this model for how it is relevant for solving query 

problem Q, and those cases with their degrees of relevance 

larger than a specified threshold are then selected. Hence the 

set of cases retrieved from the case base is formulated as 

                     ),( QCRelevCBCG                                 (1) 

where CB is the case base and Relev(C, Q) denotes the degree 

of relevance for case C with respect to query problem Q.  

Subsequently all the cases in G are delivered to the next block 

of “decision fusion”, where solutions of the retrieved cases are 

combined and adapted to make a solution to the new problem. 

The purpose of the decision fusion step is to find a new 

solution to the query problem by modifying and aggregating 

known solutions of the retrieved cases. Here we consider the 

relevance values of cases as indicators of the utility or 

appropriateness of their solutions for solving the new problem. 

Thus cases with higher relevance degrees will have more 

influence in determining the final solutions. For instance, for 

numerical prediction problems, the outcome of the query 

problem Q is predicted as the weighted average of the 

outcomes of the retrieved cases as given by  
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where Out(Ci) is the output value for case Ci. If the task is to 

solve classification problems, we need to launch a voting 

procedure to choose the most plausible class from a set of 

candidates. The values of relevance of the retrieved cases that 

have the same outcome can be accumulated into a voting score 

(VS) for the associated class. In general, the voting score for a 

candidate class h is calculated by 
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Then we select the class with the largest voting score as the 

predicted class for query problem Q, i.e., 

             )(max)( arg hVSQClass
h


                                          (4) 
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Figure 1. A CBR system using case relation model 

Further, the case relation model consists of a set of fuzzy 

rules and fuzzy-rule based reasoning is performed to 

determine whether and to which extent a case in the case base 

is relevant to the new problem at hand. Since fuzzy linguistic 

rules are more powerful and flexible means to represent the 

knowledge for assessing global relation between cases, larger 
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numbers of relevant cases will be identified than case retrieval 

in terms of local similarity criterion. 

Next we consider the structure of fuzzy rules that are 

employed for the case relation model. Suppose there are n 

features for problems in the underlying domain. A case C in 

the case base is indexed by an (n+1) tuple:  SxxxC n ,,,, 21   

where 
nxxx ,,, 21   denote the attribute values in this case and 

s is the corresponding solution. Likewise we use an n-tuple 

 nyyy ,,, 21   to represent a query problem Q with yj referring 

to the value of the jth attribute in the problem. Let FSj be the 

set of fuzzy subsets (linguistic terms) for describing attribute j.  

A fuzzy rule employed for assessing case relevance can be 

formulated as follows: 

     
VRelevanceThenByAxandand
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with AjFSj and BjFSj for j=1n, and V {1.0,  0}. Note that 

the conclusion of this rule is a singleton being either unity or 

zero, it can be regarded as a zero-order Sugeno fuzzy rule. 
A special property of the rule in (5) is that it takes into 

account a pair of attribute values in every sub-condition part. 
The firing strength of the rule is defined by: 
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Finally, with a set of fuzzy rules in the form of (5) in the 

case relation model, the degree of relevance between case C 

and query problem Q can be calculated as follows:  
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where Vk is the singleton conclusion for rule Rk, ant tk denotes 

the firing strength of rule Rk  given the case C and query 

problem Q. 

III. LEARNING FUZZY RULES FROM THE CASE 

BASE 

With the structure of fuzzy rules having been formulated in 

the preceding section, we now turn to discussing how to 

generate such fuzzy rules for assessing relevance between 

cases. Recall that two cases are relevant if the solution of one 

case is directly usable for solving another case. Our aim is to 

elicit relevance values that can precisely approximate utility 

information. This means that we desire the relation 

),(),( QSUtilityQCRelev   for any query problem Q from the 

domain and any case C from the case base, with S denoting the 

solution for case C.  

Supervised learning is performed in this paper to generate 

fuzzy rules for the case relation model. We need a “teacher” to 

specify samples of desired relevance values for various pairs 

of cases as training examples. Hiring a domain expert to 

examine the true relations for many pairs of cases is usually 

too costly or even unfeasible. The approach we adopt in this 

paper is to rely on the case base to create adequate training 

samples for generating fuzzy rules. We will explain how the 

training examples can be derived in subsection A, followed by 

fuzzy rule learning using the derived training samples in 

subsection B.  

A. Deriving Training Examples from Known Cases   

Supervised learning is performed in this paper to generate 

fuzzy rules for the case relation model. We need a “teacher” to 

specify samples of desired relevance values for various pairs 

of cases as training examples. Hiring a domain expert to 

examine the true relations for many pairs of cases is usually 

too costly or even unfeasible. The approach we adopt in this 

paper is to rely on the case base to create adequate training 

samples for generating fuzzy rules. We will explain how the 

training examples can be derived in subsection A, followed by 

fuzzy rule learning using the derived training samples in 

subsection B.  

We consider the available case base as a dispensable 

resource for deriving training samples for learning fuzzy rules. 

As all cases in the case library have known and optimal 

solutions, it is a straight forward matter to derive the utility of 

one case with respect to another by comparing their solutions. 

Given two cases Ci and Cj, the utility of Ci with respect to Cj 

can be determined by examining the relation between their 

solutions, Si and Sj respectively. The closer solution Si appears 

to solution Sj, the more useful solution Si will be for problem 

solving in case Cj. In view of this, we define utility between 

cases as equivalent to the vicinity between their solutions. 

Thus we can write: 

                  ),(),( jiji SSVicCCUtility                                      (8) 

The criterion of vicinity between solutions is usually 

domain dependent, thus we cannot further concretize equation 

(8) without considering problem context and specifics. 

Nevertheless, for some common CBR applications such as 

classification and numerical prediction, the following match 

functions can be recommended as reasonable metrics in 

respective circumstances. 

1. In classification problems with symbolic classes without 

orders, the vicinity between two classes can be defined by a 

binary function as 

                    










ji

ji

ji SSif

SSif
SSVic

0

1
),(                                 (9) 

2. In classification problems with symbolic classes having 

ordinal values, the vicinity between two classes should reflect 

the relative distance in the order. Thus we have     
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where K is the total number of classes and e(si, sj) denotes the 

number of classes between Si and Sj in the order. 

3. For problems of numerical prediction, the vicinity 

between two outputs can be defined by measuring the 

syntactical differences such that 
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     The utility derivation stated above enables us to acquire 

many utility values for pairs of cases from the case library. 

They are then used as desired relevance values (for the 

corresponding case pairs) in the training examples for learning 

fuzzy rules Since we can yield a degree of utility for every 

pair of cases in the case library, a much larger multitude of 

training samples than the number of cases can be created. 

B. Generating Fuzzy Rules from Training Examples 

We extend the Wang-Mendel algorithm [21] to 

automatically generate fuzzy relevance rules from the training 

examples. A training example is a pair of cases along with the 

desired relevance values between them. As our task is to build 

fuzzy rules in form of (5), the original Wang-Mendel 

algorithm is slightly modified to deal with pairs of attribute 

values in the conditions of the rules. Initially we build 

candidate fuzzy rules from pairs of cases included in the 

training data set, one rule from each case pair. Subsequently 

these candidate rules are evaluated for their truth values in 

light of their original case pairs. Finally rule reduction is done 

on each group of candidate rules with the same condition, i.e. 

only the rule with the highest truth value within the group is 

kept and retained into the case relation model while other 

candidate rules are discarded.  

More concretely, the learning algorithm for generating 

fuzzy relevance rules works in the following three steps:  

Step 1: Creating fuzzy rules separately from individual 

case pairs included in the training data set. Given a pair of 

cases: ),,,,( 21 i

i

n

ii

i SxxxC   and ),,,,( 21 j

j

n

jj

j SxxxC  , we produce 

a candidate fuzzy rule Rij as follows:   
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Step 2: Evaluating the truth value of every candidate fuzzy 
rule in terms of the case pair from which the rule is created. 
The truth value of the candidate fuzzy rule as formulated in 
(12) and (13) is given by: 
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Step 3: Clustering all the candidate fuzzy rules into groups 
such that rules in the same group have the same condition and 
rules in different groups have distinct conditions. Then, for 
every rule group, we select the rule with the highest truth value 

while discarding the remaining ones to remove conflicting and 
redundant information in the group. 

IV. EXPERIMENTAL EVALUATIONS 

In this section we show the evaluation results on two 

well-known benchmark data sets: IRIS data and Wine data, 

which can be downloaded from the webpage: 

ftp.ics.uci.edu/pub/machine-learning-databases. The 150 

examples in the IRIS data set are characterized by four 

attributes. The WINE data set consists of 178 samples with 13 

attributes. Both data sets have examples classified in three 

classes without order.  

A. Learning  from  Small Case Bases 

In experiments, both the IRIS data set and WINE data set 

were randomly divided into three parts of equal size: one part 

was used as case base for learning fuzzy relevance rules and 

the remaining two parts were used as the test data offering 

query problems. The fuzzy rules learnt from case bases were 

employed as case relation model to guide the retrieval of 

relevant cases for classification of problems in the test data. 

We did such experiments three times for both data sets (IRIS 

and WINE), with each time taking a different part of examples 

as the case base for learning. Tables I and II below indicate the 

classification accuracy on test problems for the IRIS and 

WINE data respectively.    

TABLE I 

TEST ACCURACY ON  IRIS DATA USING OUR METHOD 

Numbers of trials Classification accuracy 

1 0.940 

2 0.960 

3 0.960 

Average 0.953 

TABLE II 

TEST ACCURACY ON WINE DATA USING OUR METHOD 

Numbers of trials Classification accuracy 

1 0.958 

2 0.958 

3 0.958 

Average 0.958 

 

We can see from the above tables that excellent 

classification accuracy was achieved by our new CBR system 

despite the small number of cases (50-60) in the case bases. 

This can be attributed to the pair-wise examinations of cases 

in the case base, which produces multiplication of training 

patterns for fuzzy relational learning of the case relevance 

model. 

Moreover, we compare the performance of our system with 

some other machine learning approaches in terms of the mean 

accuracy (on test data) and the number of cases used for 

learning. Table III illustrates the results for the IRIS data, and 

the figures for the WINE data are given in Table IV. It is 

obviously seen that the accuracy obtained by our method is the 

second best among the results from other papers. 
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Nevertheless, we used a much lower number of cases for 

learning than any other works as indicated in the tables.  

TABLE III 
COMPARISON ON IRIS DATA 

The learning 

methods 

Accuracy on 

test data 

Number of cases 

used for learning 

This paper 0.953 50 

C4.5 [22] 0.947 135 

IGA classifier [23] 0.951 135 

Ref. [24] 0.953 135 

Ref [25] 0.967 144 

TABLE IV 
COMPARISON ON WINE DATA 

The learning 

methods 

Accuracy on 

test data 

Number of cases 

used for learning 

This paper 0.958 59 ~ 60 

C4.5 [22] 0.901 160 ~ 161 

IGA classifier [23] 0.937 160 ~ 161 

Ref. [24] 0.916 160 ~ 161 

Ref [26] 0.944 160 ~ 161 

SOP-3 [27] 0.935 160 ~ 161 

MOP-3 [27] 0.970            160 ~ 161 

B. Robustness against Sharp Case Reduction 

An interesting phenomenon observed in experiments is 

that, after fuzzy rule learning, the original case base can be 

further reduced to an extremely small size while still yielding 

good performance of our CBR system. This can be explained 

by the fact that the learned case relation model conveys 

information in a global perspective such that cases relevant to 

query problems can be identified from remote regions given 

sparsely distributed cases.   

TABLE V 
ACCURACY ON IRIS DATA USING OUR 

METHOD UNDER CASE REDUCTION  

Numbers of 

trials 

Original case 

base size 

Reduced case 

base size 

Accuracy on 

test data 

1 50 10 0.940 

2 50 10 0.940 

3 50 10 0.960 

Average 50 10 0.947 

TABLE VI 
ACCURACY ON WINE DATA USING OUR 

METHOD UNDER CASE REDUCTION 

Numbers of 

trials 

Original case 

base size 

Reduced case 

base size 

Accuracy on 

test data 

1 60 6 0.771 

2 59 6 0.815 

3 59 6 0.975 

Average 59.3 6 0.854 

Tables V and VI show the classification accuracy in the 

new experiments, in which the original cases bases were first 

used to construct the fuzzy relevance rules and then they got a 

sharp reduction in size for being utilized to classify problems 

in test data. The results given in these tables demonstrate the 

robustness of our CBR system against case reduction as long 

as case relation models are successfully established. A small 

case base saves memory space and computational cost and is 

very beneficial for applications of CBR in real-time systems. 

C. Comparison with the KNN Method 

We compare our method with the K-nearest neighbor 

(KNN) method in terms of classification accuracy on the same 

test problems using the same case bases. Tables VII and VIII 

illustrate the accuracy obtained by KNN in the same 

experiments as those described in subsection A. We can see 

that KNN achieved slightly better accuracy on the IRIS data 

than our method. This is not surprising since nearest neighbors 

can sometimes provide very useful local information when 

they are sufficiently close to a problem in query.  

However, as demonstrated in tables IX and X, the 

performance of KNN degraded more quickly than our method 

with sharply reduced case bases. This can be explained by the 

fact that, with a sharp case reduction, the cases in the case 

base are more likely sparsely distributed such that the nearest 

cases retrieved contain less meaningful information in a local 

sense. In contrast, by searching for relevant cases globally, our 

new CBR system is able to detect and utilize geographically 

“remote” cases that are relevant. Hence its performance is less 

affected by the reduction of the size of the case base.      

TABLE VII 

TEST ACCURACY ON  IRIS DATA USING KNN METHOD 

Numbers  

of trials 

Accuracy 

(K=1) 

Accuracy 

(K=3) 

Accuracy 

(K=5) 

1 0.940 0.950 0.960 

2 0.980 0.980 0.990 

3 0.960 0.930 0.980 

Average 0.960 0.953 0.977 

TABLE VIII 
TEST ACCURACY ON  WINE DATA USING KNN METHOD 

Numbers  

of trials 

Accuracy 

(K=1) 

Accuracy 

(K=3) 

Accuracy 

(K=5) 

1 0.737 0.712 0.729 

2 0.681 0.639 0.630 

3 0.748 0.681 0.739 

Average 0.722 0.677 0.699 

TABLE IX 

COMPARISON OF OUR METHOD WITH KNN 
ON IRIS DATA UNDER CASE REDUCTION 

Numbers of 

trials 

Reduced case 

base size 

Accuracy of 

our method 

Accuracy of 

KNN (K=5) 

1 10 0.940 0.860 

2 10 0.940 0.670 

3 10 0.960 0.870 

Average 10 0.947 0.800 

TABLE X 
COMPARISON OF OUR METHOD WITH KNN 

ON WINE DATA UNDER CASE REDUCTION 

Numbers of 

trials 

Reduced case 

base size 

Accuracy of 

our method 

Accuracy of 

KNN (K=5) 

1 6 0.771 0.373 

2 6 0.815 0.403 

3 6 0.975 0 

Average 6 0.854 0.259 



                                                                                                                                          617

V. CONCLUSION 

Traditional CBR systems only utilize local similar cases 

for solving new problems. However, the availability of similar 

cases is not always guaranteed in practical situations, in 

particular when the cases in the case base are sparsely 

distributed. This paper aims to develop a new CBR approach 

that is not subject to similarity constraint. To this end we need 

to construct a global case relation model to determine the 

relevance between arbitrary cases in the whole problem space. 

Further we suggest that fuzzy linguistic rules being employed 

as powerful means to represent knowledge in the relation 

model. Fuzzy relational learning is conducted to discover 

fuzzy relevance rules from pairs of cases in the case library. 

Finally, the results of evaluations reveal that, with knowledge 

support by the case relation model, our CBR system can work 

competently with a very low number of cases. 

As more general significance (beyond CBR), this paper 

demonstrates the feasibility of building a relational knowledge 

base from a repository of single objects. To our knowledge, 

the work presented here represents the first effort of research 

in the new avenue of fuzzy relational learning. In future we 

plan to extend the current work by revising the membership 

functions of fuzzy sets that are used to build fuzzy relevance 

rules. For that purpose, the extended Wang-Mendel algorithm 

will be embedded in an overall optimization framework for 

fitness evaluation of possible specifications of membership 

functions. The other research direction would be to create 

flexible structured fuzzy rules for construction of a compact 

fuzzy relation model with high generalization. We intend to 

further develop our previous method of premise learning [28], 

[29] to deal with pairs of cases in a flexible structured fuzzy 

relevance rule.   
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