
Handling multiple mode switch scenarios in component-based multi-mode systems

Yin Hang, Hans Hansson

Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, SWEDEN
Email: {young.hang.yin, hans.hansson}@mdh.se

Abstract—The growing complexity of embedded systems
software entails new development techniques. Component-
Based Software Engineering is undoubtedly suitable for the
development of complex systems thanks to its inherent compo-
nent reuse. Another approach to reduce software complexity is
by partitioning the system behavior into different operational
modes. Each mode is associated with a unique behavior and
the system can change behavior by switching between modes.
When such a multi-mode system is developed by reusable
software components, a crucial issue is how to achieve a
seamless composition of multi-mode components and also how
to handle mode switch properly. As an integrated solution to
the challenges of multi-mode component-based software system
development we have proposed the Mode Switch Logic (MSL).
The current version of MSL assumes independent handling of
a single mode switch scenario, i.e. that no other mode switch
is triggered until an ongoing mode switch is completed. For
a wide class of systems, this is an unrealistic assumption. In
this paper we lift this assumption by proposing an extension of
MSL to handle multiple mode switch scenarios concurrently
triggered by different components.

Keywords-component-based; mode switch; multi-mode

I. INTRODUCTION

The software complexity of embedded systems is growing

rapidly, imposing challenges on traditional development

techniques. As a consequence, there is a strong demand

for new techniques to reduce software complexity. Among

these new techniques, Component-Based Software Engi-

neering (CBSE) [1] provides a promising paradigm for the

development of complex systems, as it allows a system to

be built by reusable components that can be independently

developed. The success of CBSE has been evidenced by a

number of component models proposed in both industry and

academia [2] [3].

Another approach to reduce software complexity is to

partition the system behavior into different operational

modes. Such a multi-mode system usually runs in one

of its supported modes and can switch to another mode

under certain circumstances. A representative example is

the control software of an airplane, which could run in the

modes taxi (the initial mode), taking off, flight and landing.

Different subsystems are running in different modes. For

instance, the navigation subsystem may only run in flight
mode and the subsystem for controlling the wheels may only

run in taxi mode.

Combining CBSE and multi-mode systems, we get a

Component-Based Multi-Mode System (CBMMS), i.e. a

multi-mode system developed in a component-based manner.

Fig. 1 illustrates a conceptual CBMMS, with its component

hierarchy on the left and its component connections on

the right. The system, i.e. Component a, consists of three

components: b, c and d. Component c is composed by e
and f. According to the terminology of CBSE, we distin-

guish primitive components and composite components. A

primitive component is directly implemented by code while

a composite component is composed by other components.

In Fig. 1, b, d, e and f are primitive components while

a and c are composite components. Since the component

hierarchy has a tree structure, a composite component and

its subcomponents have a parent-and-children relationship.

For instance, c is the parent of e and f, which in turn are

the children of c. Moreover, the system can run in two

modes: m1
a and m2

a. When the system is in m1
a, Component

d is deactivated (i.e. not running), shown in the component

hierarchy in Fig. 1 by not displaying d in mode m1
a. In

contrast, when the system is in m2
a, d is activated while f

is deactivated. Besides, Component b has different mode-

specific behaviors represented by black and grey colors in

Fig. 1.

Figure 1. A component-based multi-mode system

The predominant challenge for a CBMMS is its mode

switch handling. Fig. 1 implies that the mode switch of a

system may amount to the joint mode switches of many

different components at various levels. For instance, the

mode switch from m1
a to m2

a requires the activation of d, the

deactivation of f, and the change of behavior of b. In order

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.61

404

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.61

404

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.61

404

to overcome this challenge, we have developed the Mode

Switch Logic (MSL) [4] [5], a systematic approach to the

development of CBMMSs and its mode switch handling.

In MSL, some components can detect a mode switch event

and trigger a mode switch scenario that is propagated to

some other components which may also switch mode as a

consequence.

Currently, MSL is limited by assuming that only a single

mode switch scenario is handled at a time. However, in a

real system, it could be possible that multiple mode switch

scenarios are triggered simultaneously, thus giving rise to a

conflict situation. A vivid example of concurrent triggering

of multiple mode switch scenarios is road trains [6] which

provide the opportunity for a vehicle to join or leave a

platoon of other vehicles led by a professional driver in the

front vehicle on a motorway. To be a member of a platoon,

a vehicle should approach the platoon and send a request.

If the request is approved by the leading driver, the vehicle

will become part of the platoon and enter a semi-autonomous

control mode in which the vehicle is able to automatically

follow the platoon so that the driver can relax himself by

doing something more interesting other than maneuvering

the car. When a driver wants to leave the platoon, he can

simply send a leaving request to inform the leading driver

and drive out of the platoon as the car switches to manual

mode. Now consider two concurrent events: one is triggered

by a driver who wants to leave the platoon while the other

is triggered as the leading driver brakes abruptly due to

the unexpected obstruction of a wild animal in front. An

emergency brake must be immediately performed for all

members of the platoon before any vehicle can switch to

manual mode and leave the platoon. Similarly, in a CBMMS,

different components may concurrently request to switch

modes. The contribution of this paper is that it proposes an

extension of MSL that can handle such multiple concurrent

mode switch scenarios.

The remainder of the paper is organized as follows:

Section II briefly introduces MSL. In Section III, a conflict

handling mechanism is proposed for MSL to manage con-

current triggering of multiple mode switch scenarios. The

correctness-verification of the conflict handling mechanism

is presented in Section IV. Related work is reviewed in

Section V. Section VI concludes the paper and discusses

future work.

II. THE MODE SWITCH LOGIC

The Mode Switch Logic (MSL) includes three major

elements: (1) a mode-aware component model; (2) a mode

mapping mechanism; and (3) a mode switch runtime mecha-

nism. The focus of this paper is on the mode switch runtime

mechanism which is extended to cope with multiple mode

switch scenarios.

The mode-aware component model defines essential fea-

tures for a component to be mode-aware. A component can

support multiple modes, each of which represents a unique

configuration. The mode switch of an individual component

is realized by reconfiguration, viz. changing its configuration

in the current mode to the configuration in the new mode.

Furthermore, dedicated mode switch ports are introduced for

the exchange of mode-related information with the parent

and subcomponents of a component.
Since multi-mode components are independently devel-

oped for reuse, we do not assume a system-wide agreement

on the naming and number of modes of each component. The

mode mapping mechanism describes the correlation between

the modes of different components. Given the current mode

of a component at runtime, mode mapping can tell the

current modes of other components. In addition, it also

determines the new modes of different components when

a mode switch is taking place. More details of the mode-

aware component model and the mode mapping mechanism

can be found in [4].
The mode switch runtime mechanism coordinates the

mode switches of different components at runtime. It defines

the following roles:

• The Mode Switch Source (MSS): a (primitive or com-

posite) component which can detect a mode switch

event (e.g. that the value of a sensor reaches a thresh-

old) and actively request to switch mode by triggering

a mode switch scenario. We use ck : mi
ck
→ mj

ck
to

denote a mode switch scenario in which an MSS ck
requests to switch mode from mode mi

ck
to mj

ck
. We

shall hereafter use “scenario” when referring to such a

“mode switch scenario”.

• The Mode Switch Decision Maker (MSDM): a com-

ponent which has the authority to approve or reject

a scenario. This component is scenario-dependent and

must be either directly or indirectly composed by the

MSS that triggers the scenario. A mode switch is

performed only when the MSDM approves a scenario.

• Type A/B components: For a given scenario, a Type A

component must switch mode as a consequence, while

a Type B component is unaffected. Type A and Type

B components are determined by mode mapping and

are scenario-dependent. In this paper, we use Tci = A
or Tci = B to denote that ci is a Type A or Type B

component, respectively.

The mode switch runtime mechanism consists of a Mode

Switch Propagation (MSP) protocol and a mode switch

dependency rule. The MSP protocol propagates a scenario

to all Type A components without affecting Type B compo-

nents. The MSDM is also identified by the MSP protocol

for a specific scenario. If the MSDM approves a scenario

by triggering a mode switch, the mode switch dependency

rule guarantees the mode consistency between different

components upon each mode switch completion.
For a component ci, let Sci denote that the current state

of ci allows a mode switch, and let ¬Sci denote that the

405405405

current state of ci does not allow a mode switch. Also, let

Pci be the parent of ci and Top be the top component in

the component hierarchy. Now consider a scenario triggered

by an MSS ci, with cj as the MSDM and CM as the set of

vertically intermediate components between ci and cj in the

component hierarchy. We extend the MSP protocol presented

in [4] into the following:

Definition 1. The Mode Switch Propagation (MSP) pro-
tocol: When ci detects a mode switch event, it will request
to switch mode by triggering a scenario. If ci �= Top, ci
will issue an MSR (Mode Switch Request) primitive which is
sent to Pci , eventually reaching cj through CM . For each
ck ∈ CM , identified when Tck = A and Sck upon receiving
the MSR, ck forwards the MSR to Pck . Upon receiving the
MSR, the MSDM cj is identified if one of the three following
conditions is satisfied: (1) Tcj = B; (2) Tcj = A and ¬Scj ;
(3) Tcj = A and Scj and cj = Top. The MSDM cj makes
the following decisions:

• In Condition (2), cj will reject the MSR by issuing an
MSD (Mode Switch Denial) primitive that is propagated
back to ci via CM . Mode switch propagation is termi-
nated when ci receives the MSD. No component will
switch mode for this scenario.

• In conditions (1) and (3), cj will approve the MSR by
issuing an MSQ (Mode Switch Query) primitive that
is propagated downstream and stepwise to all Type
A components. After receiving an MSQ, a component
cl is required to reply to Pcl with either an MSOK
or MSNOK primitive. Component cl replies with an
MSOK if Scl (and if all its Type A subcomponents have
replied with an MSOK if cl is composite). Otherwise,
if ¬Scl , cl will directly reply to Pcl with an MSNOK
(without propagating the MSQ downstream further if cl
is composite). If cl receives at least one MSNOK from
a subcomponent after its MSQ propagation, it will also
reply to Pcl with an MSNOK.

• If all the Type A subcomponents of cj have replied
with an MSOK, cj will trigger a mode switch by is-
suing an MSI (Mode Switch Instruction) primitive that
follows the propagation trace of the MSQ. Mode switch
propagation is completed when all Type A components
have received the MSI. In contrast, if cj receives at
least one MSNOK, it will abort the mode switch plan by
issuing an MSD that follows the propagation trace of the
MSQ. Mode switch propagation is terminated without
any component switching mode when the MSD reaches
all components that have received the MSQ.

If ci = Top, then cj = ci and CM = ∅. Then, when ci
detects a mode switch event, it will directly issue an MSQ to
its Type A subcomponents.

The difference between the MSP protocol in [4] and the

extended MSP protocol above is only the way of directly

rejecting an MSR. In the old version, an MSDM does nothing

when it directly rejects an MSR, whereas in the extended

version here, an MSD must be sent back from the MSDM

all the way down to the MSS. This extension serves as an

initial preparation for the handling of multiple scenarios.
When an MSDM triggers a mode switch by issuing an

MSI, all Type A components will switch mode after its MSI
propagation, following the mode switch dependency rule,

which specifies the conditions of mode switch completion:

Definition 2. The mode switch dependency rule: Let cj be
the MSDM for a scenario and cj triggers a mode switch by
issuing an MSI that is propagated downstream and stepwise
to all Type A components. Then,

• For any primitive component ci (Tci = A), ci starts
its mode switch by reconfiguring itself upon receiving
an MSI. The mode switch completion of ci equals
its reconfiguration completion. An MSC (Mode Switch
Completion) primitive will be sent from ci to Pci when
ci completes its mode switch.

• For any composite component ci (Tci = A), ci starts
its mode switch by reconfiguring itself after its MSI
propagation. Component ci completes its mode switch
when it completes its reconfiguration and has received
an MSC from all its Type A subcomponents. After that,
if ci �= cj , an MSC will be sent from ci to Pci after ci
completes its mode switch.

• If Tcj = A, the system mode switch is completed after
the mode switch of cj . Otherwise, if Tcj = B, the
system mode switch is completed after cj has received
an MSC from all its Type A subcomponents.

The mode switch dependency rule guarantees that all Type

A components must be running in their new modes after the

mode switch completion of a system, which is a key property

ensuring mode consistency.
The mode switch runtime mechanism, chiefly represented

by the MSP protocol and the mode switch dependency rule,

is demonstrated by the time sequence diagram in Fig. 2,

showing a complete mode switch process based on the

example in Fig. 1. In Fig. 2, the MSS c triggers a scenario

by issuing an MSR. The MSR from c is sent to its parent

a, which is the MSDM of this scenario. Component a
approves the MSR by issuing an MSQ that is propagated

to all Type A components. It should be noted that e is

a Type B component, thus not affected by this scenario.

After receiving the MSQ, each Type A component checks

its current state. Here the current state of each Type A

component allows a mode switch, therefore an MSOK is sent

back in response to the MSQ. Once the MSDM a receives

the MSOK from its Type A subcomponents b, c and d, it

will trigger a mode switch by issuing an MSI that follows

the propagation trace of the MSQ. The propagation of MSI
results in the reconfiguration of each Type A component,

represented by black bars in Fig. 2. Finally, MSC primitives

406406406

are sent bottom-up to indicate mode switch completion.

The white bars mean that the mode switch of a composite

component is blocked by its subcomponents, i.e. a composite

component has completed its reconfiguration but is still

waiting for at least one MSC. Since the MSDM a is a Type

A component, the system mode switch is completed upon

the mode switch completion of a.

Figure 2. A complete mode switch process

III. THE HANDLING OF MULTIPLE MODE SWITCH

SCENARIOS

The mode switch runtime mechanism presented in Sec-

tion II assumes that no new scenarios are triggered until

the current scenario is completely handled. However, it is

likely that a system has multiple MSSs potentially triggering

concurrent scenarios. In this section, we propose a conflict

handling mechanism to cope with multiple scenarios based

on the following assumptions:

1) A mode switch cannot be aborted or rolled back.

2) An MSS will not trigger a new scenario until the

current scenario triggered by it is completely handled.

3) There is no mode switch failure, i.e. all mode switch

primitives are correctly communicated and the han-

dling is correctly executed.

Essentially, the conflict handling mechanism introduces

separate queues for storing incoming MSR and MSQ primi-

tives and updates these queues based on a set of pre-defined

criteria. In order to preserve component encapsulation, these

queues are locally defined for each component instead of

being globally defined for the entire system.

A. MSR and MSQ queues

When multiple scenarios are considered, each component

must be able to distinguish different scenarios. Hence, we

introduce unique identifiers:

Definition 3. A mode switch scenario ID is a unique ID
of a scenario. Any MSX primitive (e.g. MSR or MSQ) must

carry a (mode switch) scenario ID k that it is associated
with, denoted as msxk.

For a system where concurrent scenario triggering is

allowed, each component may receive multiple primitives

simultaneously or within a short interval, each primitive

being associated with a specific scenario. Since a component

can only handle a single primitive each time, other primitives

must be buffered somewhere to be handled afterwards.

Therefore, we introduce MSR and MSQ queues. For a

CBMMS, let PC be the set of its primitive components and

let CC be the set of its composite components. We also use
˜CC to denote the set of composite components excluding

Top. Let SCci be the set of subcomponents of a composite

component ci. Furthermore, let T k
ci = A or T k

ci = B denote

that ci is a Type A or Type B component for Scenario k and

let SCA
ci(k) denote the set of Type A subcomponents of ci

for k, then:

Definition 4. An MSR queue of ci, denoted as ci.Qmsr, is
a FIFO queue storing any incoming MSR from SCci (and
from ci itself if ci is an MSS and ci �= Top). An MSR in
this queue is denoted as msrk, or msrkcj where k is the
scenario ID and cj ∈ SCci ∪ {ci} is the immediate sender
of this MSR.

Whenever ci receives an MSR from a subcomponent or

decides to trigger a scenario by issuing an MSR (ci �= Top)

as an MSS, the MSR will be enqueued in ci.Qmsr. Con-

versely, an MSR msrkcj is dequeued from ci.Qmsr when any

one of the following conditions is satisfied:

1) ci completes its mode switch based on Scenario k
(T k

ci = A).

2) ci receives a msck from all cj ∈ SCA
ci(k) (T k

ci = B).

3) ci receives a msdk (ci ∈ PC∨SCA
ci(k) = ∅∨ci ⇒ k).

4) ci has propagated a msdk (SCA
ci(k) �= ∅).

Here ci ⇒ k means that ci is the MSS of k. Conditions (3)

and (4) imply two cases. First, if ∃msrk ∈ ci.Qmsr that is

directly rejected by the MSDM, then ci should know where

k comes from as it receives a msdk. If ci is the MSS of k,

no further propagation will be needed for the msdk. If k is

from cj ∈ SCci , then ci should propagate the msdk to cj .

Second, if ∃msrk ∈ ci.Qmsr that is accepted by the MSDM

and ci has propagated a msqk to SCA
ci(k), then ci should

also propagate a msdk to SCA
ci(k) unless SCA

ci(k) = ∅.

In addition to the MSR queue, MSQ queues are defined

in a similar fashion:

Definition 5. An MSQ queue of ci, denoted as ci.Qmsq , is a
FIFO queue storing an incoming MSQ from Pci (or from ci
itself if ci is an MSS and ci = Top). An MSQ in this queue
is denoted as msqk where k is the scenario ID.

Whenever ci receives an MSQ from Pci or decides to

trigger a scenario by issuing an MSQ (ci = Top), the MSQ is

enqueued in ci.Qmsq . The dequeue conditions of an msqk

407407407

in ci.Qmsq are exactly the same as those of the msrkcj in

ci.Qmsr.
Note that MSR and MSQ queues are not needed for all

components. For instance, since a primitive component has

no subcomponents, it only needs an MSR queue with size 1

if it can be an MSS in some mode(s). Likewise, since Top has

no parent, it only needs an MSQ queue with size 1 if it can

be an MSS in some mode(s). Table I shows the allocation

of MSR and MSQ queues to different types of components

together with the maximum required size of each queue. The

queue sizes in Table I guarantee that no overflow occurs to

the MSR and MSQ queues of any component. The reason

for such an allocation and queue size is explained in [7].

Table I
THE ALLOCATION OF MSR AND MSQ QUEUES

ci MSR queue MSQ queue

(1) ci ∈ PC, ci �= MSS No Yes (Size: 2)
(2) ci ∈ PC, ci = MSS Yes (Size: 1) Yes (Size: 2)

(3) ci ∈ ˜CC, ci �= MSS Yes (Size: 2 ∗ |SCci |) Yes (Size: 2)

(4) ci ∈ ˜CC, ci = MSS Yes (Size: 2 ∗ |SCci |+ 1) Yes (Size: 2)
(5) ci = Top, ci �= MSS Yes (Size: 2 ∗ |SCci |) No
(6) ci = Top, ci = MSS Yes (Size: 2 ∗ |SCci |) Yes (Size: 1)

Based on the definition of MSR/MSQ queues together

with their enqueuing and dequeuing conditions, we propose

the MSR/MSQ queue checking rule and the MSR/MSQ queue
updating rule, which jointly constitute our conflict handling

mechanism.

B. The MSR/MSQ queue checking rule
The MSR/MSQ queue checking rule includes two addi-

tional prerequisite terms: transition state and locked MSR:

Definition 6. A component ci is in a transition state within
the interval [t1, t2] for Scenario k, where

• If ci ∈ PC, t1 is the time when ci handles a msqk ∈
ci.Qmsq , while t2 is the time when the dequeuing
conditions (1) or (3) are satisfied for either ci.Qmsr

or ci.Qmsq for k.
• If ci ∈ ˜CC, t1 is the time when (1) ci issues a

msqk to SCA
ci(k) as an MSDM; or (2) ci handles a

msqk ∈ ci.Qmsq . In addition, t2 is the time when one
of the dequeuing conditions (1)-(4) is satisfied for either
ci.Qmsr or ci.Qmsq for k.

• If ci = Top, t1 is the time when ci issues a msqk to
SCA

ci(k), while t2 is the time when the dequeuing con-
ditions (1), (2), or (4) are satisfied for either ci.Qmsr

or ci.Qmsq for k.

Definition 7. The first MSR in ci.Qmsr is locked if it has
been forwarded by ci to Pci according to the MSP protocol.

Based on the definitions above, the MSR/MSQ queue

checking rule is defined as follows:

Definition 8. The MSR/MSQ queue checking rule: If ci is
not in transition state, then: If ci.Qmsq �= ∅, the first MSQ in
ci.Qmsq will be immediately handled, else if ci.Qmsr �= ∅

and the first MSR in ci.Qmsr is not locked, the first MSR will
be immediately handled. The handling of the MSQ or MSR
follows the mode switch runtime mechanism.

The MSR/MSQ queue checking rule enables a component

to handle multiple scenarios sequentially and enables a

system to handle multiple scenarios concurrently by its

components. When a component is in transition state for

Scenario k, it is dedicated to the handling of k until it leaves

the transition state, i.e. when it has completely handled k.

By this means, its handling of k can never be interfered by

the arrival of another Scenario k′ which is simply enqueued

and handled afterwards. The MSR/MSQ queue checking rule

can be implemented as algorithms 1-3, where the following

notations deserve extra explanation:

• Wait(ci, A,B) and C : Signal(ci, A,B) are used for ci
to receive the primitive B or send the primitive B to C
via the dedicated mode switch port A, which is either

pMSX (for exchanging primitives with Pci) or pMSX
in (for

exchanging primitives with SCci).

• MSC Collecting and validk are boolean variables

which will be explained in the next section.

• k ← cj : Scenario k is from the immediate sender cj .

• locked is a boolean variable of ci set to true if the first

MSR in ci.Qmsr is locked.

• enqueue(A,B) is a function enqueuing the primitive

A (either MSR or MSQ) in queue B.

• updateBothQueues(ci, k): If the first MSQ in ci.Qmsq

is msqk, then it is removed from ci.Qmsq; if the first

MSR in ci.Qmsr is msrk, then it is removed from

ci.Qmsr. Besides, after ci removes msrk, if locked is

true, ci will set it to false.

• MS event detected is a boolean variable set to true

when the MSS ci detects a mode switch event.

• Derive new mode(ci) is a function deriving the new

mode of an MSS ci as ci detects a mode switch event.

• TransitionS is a boolean variable of ci set to true

when ci is in transition state.

• HandleMSQ(ci) and HandleMSR(ci) are functions for

the handling of an MSQ and MSR, respectively, follow-

ing the mode switch runtime mechanism presented in

Section II.

Algorithm 1 detects any incoming MSR or MSQ which is

then put in the right queue. Furthermore, if ci has sent a

msrk to Pci and msrk is directly rejected by the MSDM,

ci will receive a msdk from Pci . Then ci should dequeue

the locked msrk from ci.Qmsr (and further propagate the

msdk to cj ∈ SCci if ci ∈ CC and msrk comes from cj).

In addition to Algorithm 1, if ci is an MSS in at least

one of its modes, Algorithm 2 is also applied to enqueue

self-triggered MSR or MSQ of ci.

408408408

Algorithm 1 MSR MSQ enqueue(ci)
loop

Wait(ci, pMSX ∨ pMSX
in , primitive);

if primitive = msrkcj && cj ∈ SCci then
if ci ∈ CC && MSC Collecting then

validk := true;
end if
enqueue(msrkcj , ci.Qmsr);

else if primitive = msqk then
enqueue(msqk, ci.Qmsq);

else{primitive = msdk}
if ci ∈ CC && k ← cj ∈ SCci then
cj : Signal(ci, pMSX

in ,msdk);
end if
updateBothQueues(ci, k);

end if
end loop

Algorithm 2 MS detection(ci)
loop

if MS event detected then
Derive new mode(ci);
if ci �= Top then
enqueue(msrkci , ci.Qmsr);

else{ci = Top}
enqueue(msqk, ci.Qmsq);

end if
end if

end loop

Algorithm 3 implements the MSR/MSQ queue checking

rule. The MSR and MSQ queues of ci are checked only

when ci is not in any transition state. It calls functions

HandleMSQ(ci) and HandleMSR(ci). Due to limited space,

the algorithms for these two functions (available in [7]) will

not be presented here.

Algorithm 3 CheckQueue(ci)
loop

if ¬TransitionS then
if ci.Qmsq �= ∅ then

HandleMSQ(ci);
else

if ci.Qmsr �= ∅ && ¬locked then
HandleMSR(ci);

end if
end if

end if
end loop

C. The MSR/MSQ queue updating rule

The MSR/MSQ queue checking rule alone is still insuffi-

cient to handle multiple scenarios correctly, as it is unaware

of the impact of a scenario upon other pending scenarios,

implicitly assuming that different scenarios are independent

of each other. Nevertheless, after a component completes

its mode switch for Scenario k, if ∃msrk
′

cj in ci.Qmsr

(cj ∈ SCci ∪{ci}), then msrk
′

cj may not be valid any more.

This problem can be illustrated by a small example. Let’s

consider a system with its component hierarchy presented

in Fig. 1. Tables II and III give the basic mode mappings of

the two composite components a and c. In each table, modes

in the same column are mapped. For example, according to

Table II, when a is running in mode m1
a, b must be running

in m1
b , c can run in either m1

c or m2
c , and d is deactivated.

Fig. 3 depicts three scenarios: (1) S1 = (b : m1
b → m2

b); (2)

S2 = (e : m1
e → m2

e); (3) S3 = (f : m1
f → m2

f). For S1

and S3, all components are Type A components, while for

S2, only c and e are Type A components. For each scenario,

the current possible mode and the target mode of each Type

A component are also defined in Fig. 3. For instance, for

S1, m1
f → m2

f means that S1 will imply the mode switch

of f from m1
f to m2

f . The given mode mappings imply that

when b is running in m1
b , e can be in either m1

e or m2
e while

f must be running in m1
f . Therefore, all three scenarios can

be simultaneously triggered.

Table II
THE MODE MAPPING TABLE OF a

Component Supported modes

a m1
a m2

a

b m1
b m2

b
c m1

c m2
c m3

c

d Deactivated m1
d

Table III
THE MODE MAPPING TABLE OF c

Component Supported modes

c m1
c m2

c m3
c

e m1
e m2

e Deactivated

f m1
f m2

f

Suppose S1 and S3 are triggered at the same time. Then

b and f will issue two different MSR primitives (say msrS1

and msrS3) simultaneously. The MSP protocol indicates

that a is the MSDM for both scenarios. After some time,

a possible outcome is that msrS1 arrives at a.Qmsr earlier

than msrS3 . Applying the MSR/MSQ queue checking rule,

a will first handle msrS1 . Suppose a system mode switch

is successfully performed based on S1. Upon mode switch

completion, msrS1 is dequeued from a.Qmsr and a is

supposed to handle msrS3 . However, all components are

Type A components for S1, including the MSS of S3, f,
whose current mode has become m2

f rather than m1
f . As a

consequence, S3 is no longer valid because it can only be

triggered when f is in m1
f . A reasonable action regarding

such an invalid scenario would be to remove all the pending

409409409

Figure 3. Mode switch scenarios

MSR primitives associated with S3, including msrS3
c in

a.Qmsr, msrS3

f in c.Qmsr, and msrS3

f in f.Qmsr.

Sometimes a pending scenario may still remain valid in

spite of the mode switch completion of another scenario.

Suppose S2 and S3 are simultaneously triggered. A possible

outcome is that msrS2 arrives at c.Qmsr earlier than msrS3 .

Evidently, c will first handle msrS2 . If a mode switch is

performed and completed based on S2, the pending Scenario

S3 is still valid because f (the MSS of S3) is a Type B

component for S2 which does not affect f. In this case, the

pending MSR primitives msrS3

f in both c.Qmsr and f.Qmsr

should not be removed without handling.

Unfortunately, after a mode switch, it is impossible for

each component to tell if a pending scenario is valid or

not. The reason is that only an MSS itself knows that it is

the MSS of a scenario (in order not to break component

encapsulation). However, it is viable for each component to

tell whether a pending MSR/MSQ in its MSR/MSQ queue is

valid or not. A valid MSR/MSQ is specified as follows:

Definition 9. Let ci be a component which has completed
its mode switch based on Scenario k (T k

ci = A) or has
received an MSC from all cj ∈ SCA

ci(k) (ci ∈ CC, T k
ci = B).

If ci.Qmsr �= ∅, then ci will identify the validity of each
msrk

′ ∈ ci.Qmsr (k′ �= k):
• If ci ∈ PC, then ci must be the MSS of k′. Hence

msrk
′

is invalid.
• If ci ∈ CC, then msrk

′
can come from either ci or

cj ∈ SCci . If msrk
′

is from ci itself, then msrk
′

is
valid when T k

ci = B and invalid when T k
ci = A. If

msrk
′

is from cj ∈ SCci , then msrk
′

is valid under

two conditions: (1) T k
cj = B; (2) T k

cj = A and cj sends
msrk

′
to ci after sending msck to ci while ci is waiting

for msck from SCA
ci(k). Otherwise, msrk

′
is invalid.

If ci = Top, T k
ci = A, and ∃msqk

′ ∈ ci.Qmsq , then
msqk

′
is invalid. Otherwise, msqk

′
is always valid.

Definition 9 explains MSC Collecting and validk in Al-

gorithm 1. When MSC Collecting is true for a composite

component ci which is in transition state for k, ci must

be waiting for msck from SCA
ci(k). In the meantime, an

incoming msrk
′

cj from cj ∈ SCci should be considered to

be valid, denoted as validk
′

in Algorithm 1. If T k
cj = B,

then msrk
′

cj is obviously valid because cj is even unaffected

by k. If T k
cj = A, then cj must be sending msrk

′
cj to ci after

its mode switch for k. The reason is ascribed to the mode

switch dependency rule which ensures that cj must complete

mode switch before ci. Hence msrk
′

cj is also valid for ci.

Once the validity of each pending MSR/MSQ is identified,

each component will remove each invalid pending MSR/MSQ
from its MSR/MSQ queues, following the MSR/MSQ queue
updating rule:

Definition 10. The MSR/MSQ queue updating rule: Let ci
be a component which has completed its mode switch based
on Scenario k (T k

ci = A) or has received an MSC from all
cj ∈ SCA

ci(k) (ci ∈ CC, T k
ci = B). If ci.Qmsr �= ∅, then

ci will remove each invalid MSR from ci.Qmsr. Similarly, if
ci.Qmsq �= ∅, then ci will remove each invalid MSQ from
ci.Qmsq .

The MSR/MSQ queue updating rule is implemented as

Algorithm 4, where dequeue(A,B) is a function dequeuing

a primitive A from queue B.

Algorithm 4 UpdateQueue(ci, k)
if ci ∈ PC then

if ∃msrk
′

ci ∈ ci.Qmsr then
dequeue(msrk

′
ci , ci.Qmsr);

end if
else{ci ∈ CC}

if (∃msrk
′

ci ∈ ci.Qmsr) && (T k
ci = A) then

dequeue(msrk
′

ci , ci.Qmsr);
end if
if (∃msrk

′
cj ∈ ci.Qmsr) && (cj ∈ SCci) then

if T k
cj = A && ¬validk′

then
dequeue(msrk

′
cj , ci.Qmsr);

end if
end if
if (ci = Top) && (T k

ci = A) && (∃msqk
′ ∈ ci.Qmsq)

then
dequeue(msqk

′
, ci.Qmsq);

end if
validk

′
:= false;

end if
locked := false;

410410410

The essence of the MSR/MSQ queue updating rule is to

remove a pending MSR/MSQ which becomes invalid due to

the mode switch of a previous scenario. It should be noted

that the MSR/MSQ queue updating rule does not remove any

MSR or MSQ associated with the currently handled scenario

because this is already covered by the dequeuing conditions

introduced in Section III-A.

One may wonder why ci ∈ ˜CC does not remove a

pending MSQ. It can be inferred that an incoming MSQ
is pending in ci.Qmsq only when ci is in transition state.

Otherwise, the MSQ will be immediately handled by ci.
Suppose ci is in transition state for Scenario k, with a

pending msqk
′

in ci.Qmsq . Then ci must be the MSDM for

k. Otherwise, if ci is not the MSDM for k, Pci must also

be in transition state for k and should not send msqk
′

until

it leaves this transition state. Now that ci is the MSDM for

k, components out of ci must all be Type B components for

k. Therefore, k′ must be valid and should not be removed.

D. Discussion

The MSR/MSQ queue checking rule always checks the

MSQ queue before the MSR queue. A potential problem is

the bias towards scenarios triggered by a component closer

to Top. For instance, consider two scenarios k1 and k2,

concurrently triggered by c1 and c2 respectively. Top is the

MSDM for both scenarios and c1 is much closer to Top.

Since it takes more steps for msrk2 to reach Top compared

with msrk1 , k1 is more likely to be handled by Top before

k2 despite their simultaneous triggering. When a component

ci, with msqk1 in ci.Qmsq and msrk2 in ci.Qmsr, checks its

MSR/MSQ queues, msqk1 will be first handled while msrk2

may even be removed afterwards due to the MSR/MSQ

queue updating rule.

However, ∀ci ∈˜CC, since a pending MSQ will eventually

be handled without being removed by the MSR/MSQ queue

updating rule, it is better to assign higher priority to the

MSQ queue than the other way round. For instance, if

∃msqk ∈ ci.Qmsq and ∃msrk
′ ∈ ci.Qmsr, the mode

switch completion of ci based on k may skip the subsequent

handling of msrk
′

due to the MSR/MSQ queue updating

rule. Conversely, if msrk
′

is first handled, msqk will be

handled later anyway. Therefore, assigning higher priority

to the MSQ queue can benefit more from the MSR/MSQ

queue updating rule.

IV. VERIFICATION OF THE CONFLICT HANDLING

MECHANISM

The conflict handling mechanism, represented by the

MSR/MSQ queue checking rule and the MSR/MSQ queue

updating rule, extends the mode switch runtime mechanism

of MSL with the support for handling multiple concurrent

scenarios. The correctness of the conflict handling mech-

anism can be proved by the satisfaction of a number of

properties, among which the two most important are:

1) The conflict handling mechanism is deadlock-free.

2) A triggered scenario will eventually be handled.

For Property 2, a scenario is also considered to be handled

if its associated primitives are removed by the MSR/MSQ

queue updating rule.

We resort to model checking for the verification of the

conflict handling mechanism. The conflict handling mecha-

nism is modeled in the model checker UPPAAL [8] with

regard to the six cases listed in Table I. In each case,

the conflict handling mechanism is implemented in a target

component. Shown in Fig. 4, the target component can have

a parent stub or two child stubs for some cases which

simulate the behaviors of its parent and subcomponents

by running the same conflict handling mechanism. Both

the parent stub and child stub can trigger scenarios at any

time, as long as they do not have any self-triggered pending

scenarios. In [7], we manually prove the model equivalence

between a stub and a real component. Property 1 can be

easily verified by UPPAAL. Table IV shows the verification

time1 excluding Case (4).

Figure 4. The modeling structure in UPPAAL

Table IV
VERIFICATION TIME OF DEADLOCK-FREENESS, EXCLUDING CASE (4)

Case Verification time

(1) ci ∈ PC, ci �= MSS 0.002s
(2) ci ∈ PC, ci = MSS 0.013s

(3) ci ∈ ˜CC, ci �= MSS 33.539s
(5) ci = Top, ci �= MSS 0.268s
(6) ci = Top, ci = MSS 2.56s

All the five cases in Table IV are proven to be deadlock-

free with reasonable verification time. The verification for

Case (4) demands for more efforts in that UPPAAL ends

up with memory exhaustion due to the growing model

complexity. This problem is remedied by two means. The

first is to use Compact Data Structure in UPPAAL for state

space representation instead of the default Difference Bound

Matrices representation. A direct consequence of this is

longer verification time but much less memory consumption.

In addition, we divide the model for Case (4) into four

1Verification was performed on MacBook Pro, with 2.66GHz Intel Core
2 Duo CPU and 8GB 1067 MHz DDR3 memory.

411411411

simpler models that can be verified separately. Case (4)

considers ci ∈ ˜CC which is an MSS. Each scenario

k triggered by ci can affect SCA
ci(k). Since ci has two

subcomponents (e.g. c1 and c2) in the model, k can lead

to four sub-cases concerning SCA
ci(k): (a) T k

c1 = T k
c2 = A;

(b) T k
c1 = A, T k

c2 = B; (c) T k
c1 = B, T k

c2 = A; (d)

T k
c1 = T k

c2 = B. Cases (b) and (c) are symmetrical, hence

it is sufficient to only consider three cases, e.g. (a), (b) and

(d). Using Compact Data Structure and taking (a), (b) and

(d) as three sub-cases of Case (4), we successfully verified

the deadlock-freeness for Case (4), with the verification time

summarized in Table V.

Table V
VERIFICATION TIME OF DEADLOCK-FREENESS: CASE (4) (USING

COMPACT DATA STRUCTURE)

Sub-case Verification time

(a) Tk
c1

= Tk
c2

= A 475.1s

(b) Tk
c1

= A, Tk
c2

= B 523.855s

(d) Tk
c1

= Tk
c2

= B 286.052s

Property 2 cannot be directly verified by the UPPAAL

models made for the verification of Property 1. The reason

is that these models allow the triggering of a scenario at any

time if it is possible. Since the conflict handling mechanism

assigns higher priority to the MSQ queue, if the parent stub

keeps sending a msqk (not associated with the MSR sent

from the child stubs) to the target component, a pending

msrk
′

from a child stub of Type B for k may never be

handled. This problem should not exist in a real-world

system because the triggering of a scenario is usually not

a frequent event. In order to make Property 2 verifiable,

we slightly modify the parent stub such that for every two

consecutive MSQ primitives (msqk and msqk
′
) sent by the

parent stub, at least either k or k′ originates from a child

stub. Since this modification does not alter the conflict

handling mechanism, the modified models can be used to

verify both properties. Property 1 and Property 2 are both

satisfied for cases (1)-(6). The detail verification results

can be found in [7], including proofs that the parent and

child stubs faithfully model relevant aspects of an arbitrary

component structure above or below the target component.

Now that the correctness of the conflict handling mech-

anism has been verified by model checking assuming that

each composite component has two subcomponents, we can

further prove its correctness for a more general system. Since

the conflict handling mechanism is not dependent on the

number of subcomponents of any composite component,

the conflict handling mechanism works for a CBMMS

where each composite component has arbitrary number of

subcomponents.

V. RELATED WORK

The extended MECHATRONICUML (EUML) [9] by Heinze-

mann et al. is currently the most closely related work to our

MSL. In EUML, each component has reconfiguration ports

resembling the dedicated mode switch ports of our mode-

aware component model. Each composite EUML component

internally has a manager and executor which play the same

role as our mode switch runtime mechanism. Components

can propagate messages for requesting/executing reconfigu-

ration. The propagation of these messages can be compared

with our MSP protocol. However, the MSP protocol relies

on mode mapping whereas the message propagation in

EUML is controlled by some reconfiguration rules. EUML

requires that reconfiguration should be performed bottom-

up; this is similar to our mode switch dependency rule which

in addition allows concurrent reconfigurations of different

components. The major difference between EUML and MSL

is that EUML focuses more on component reconfiguration

without addressing mode. In general, MSL is more mature

since EUML is more recently developed. EUML is also

aware of the transmission of multiple request messages,

which is comparable to the triggering of multiple scenarios

described in this paper, however, no concrete solutions have

been reported yet.

Another recent work related to MSL is the oracle-based

approach by Pop et al. [10]. The basic idea is to ab-

stract component behaviors into a property network spread

throughout the component hierarchy. The mode of each com-

ponent is modeled as a property and mapped from a set of

properties to their valuations. A single property change can

be propagated throughout the property network, potentially

leading to the valuation change of other properties. And

then the new mode of each component can be derived after

the update of the property network. A finite-state machine

called Oracle is offline constructed to guarantee predictable

update time of the property network. The construction of

Oracle implies that the mode switch handling requires global

information of the property network. In contrast, MSL is

fully distributed, requiring no global information.

Mode switch has been addressed in a number of compo-

nent models, e.g. SaveCCM [11], Koala [12], Rubus [13],

and MyCCM-HI [14], to name a few. In Koala and

SaveCCM, a special switch connector is introduced to

achieve the structural diversity of a component. Depending

on the input data, switch can select one of multiple outgoing

connections. In Rubus, mode is treated as a system property.

A system-wide static configuration of components is defined

for each mode. MyCCM-HI provides a more advanced

mechanism for handling mode switch. Each MyCCM-HI

component is mode-aware and is associated with a mode

automaton which implements its mode switch mechanism. In

addition, mode switch is also addressed by languages such as

the Architecture Analysis & Design Language [15], where a

412412412

state machine is used to represent the mode switch behavior

of a component. Each state machine consists of a number

of states (modes), transitions between these states (mode

switches) and input/output event ports used for mode switch

triggering. Compared with MSL, none of these works pro-

vide any systematic strategy to coordinate the mode switches

of different components, due to the common assumption of

independent mode switches between components.

VI. CONCLUSION

In this paper, we have proposed a conflict handling

mechanism as a supplement to the Mode Switch Logic

(MSL) dedicated to the development of Component-Based

Multi-Mode Systems as well as their mode switch handling.

The conflict handling mechanism enables MSL to deal with

concurrent triggering of multiple mode switch scenarios. The

correctness of this mechanism has been verified by model

checking.

The current conflict handling mechanism can be enhanced

in future by prioritizing scenarios so that scenarios with

higher priorities can be handled earlier. Another potential

improvement is the consideration of timeout. After triggering

a scenario, a component may expect it to be handled within

a specified time interval. If the pending scenario cannot be

handled in time, a timeout event may be issued for further

actions. We also intend to adapt MSL to safety-critical

systems. According to the mode switch runtime mechanism

of MSL, a scenario is rejected even if a single Type A

component is not ready to switch mode. In a safety-critical

system, some mode switch can be rather urgent and should

not be rejected. Such a mode switch would require special

treatment.

The verification of this work can be further complemented

by extensive simulation. Since model checking is subject to

state explosion, it is less suitable for verification of very

large systems. A better alternative could be to simulate MSL

and analyze its performance in different complex systems

that are automatically generated. Moreover, as far as we

know, no existing multi-mode systems are yet built by multi-

mode components, hence an important future direction is to

explore the usability of MSL in real-world systems.

ACKNOWLEDGMENT

This work is supported by the Swedish Research Council

via the ARROWS project at Mälardalen University.

REFERENCES

[1] I. Crnković and M. Larsson, Building reliable component-
based software systems. Artech House, 2002.

[2] I. Crnković, S. Sentilles, A. Vulgarakis, and M. R. V.
Chaudron, “A classification framework for software compo-
nent models,” IEEE Transactions on Software Engineering,
vol. 37, no. 5, 2011.

[3] T. Pop, P. Hnětynka, P. Hošek, M. Malohlava, and T. Bureš,
“Comparison of component frameworks for real-time embed-
ded systems,” Knowledge and Information Systems, pp. 1–44,
2013.

[4] Y. Hang, “Mode switch for component-based multi-mode
systems,” Licentiate Thesis, Mälardalen University, Sweden,
December 2012.

[5] Y. Hang, J. Carlson, and H. Hansson, “Towards mode switch
handling in component-based multi-mode systems,” in Pro-
ceedings of 15th International ACM SIGSOFT Symposium on
Component Based Software Engineering, 2012.

[6] C. Bergenhem, H. Pettersson, E. Coelingh, C. Englund,
S. Shladover, and S. Tsugawa, “Overview of platooning sys-
tems,” in Proceedings of 19th ITS World Congress, October
2012.

[7] Y. Hang and H. Hansson, “Handling multiple mode switch
scenarios in component-based multi-mode systems,” MRTC,
Mälardalen University, Tech. Rep. ISSN 1404-3041 ISRN
MDH-MRTC-274/2013-1-SE, June 2013.

[8] K. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,”
STTT-International Journal on Software Tools for Technology
Transfer, vol. 1, no. 1-2, pp. 134–152, 1997.

[9] C. Heinzemann and S. Becker, “Executing reconfigurations
in hierarchical component architectures,” in Proceedings of
16th International ACM SIGSOFT Symposium on Component
Based Software Engineering, 2013.

[10] T. Pop, F. Plasil, M. Outly, M. Malohlava, and T. Bureš,
“Property networks allowing oracle-based mode-change prop-
agation in hierarchical components,” in Proceedings of 15th
International ACM SIGSOFT Symposium on Component
Based Software Engineering, 2012.

[11] H. Hansson, M. Åkerholm, I. Crnković, and M. Törngren,
“SaveCCM - a component model for safety-critical real-time
systems,” in Proceedings of Euromicro Conference, Special
Session on Component Models for Dependable Systems, 2004.

[12] R. V. Ommering, F. V. D. Linden, J. Kramer, and J. Magee,
“The Koala component model for consumer electronics soft-
ware,” Computer, vol. 33, no. 3, 2000.

[13] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg,
J. Lundbäck, and K. Lundbäck, “The Rubus component model
for resource constrained real-time systems,” in Proceedings
of 3rd International Symposium on Industrial Embedded
Systems, 2008.

[14] E. Borde, G. Haı̈k, and L. Pautet, “Mode-based reconfigu-
ration of critical software component architectures,” in Pro-
ceedings of Conference on Design, Automation and Test in
Europe, 2009.

[15] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architec-
ture analysis & design language (AADL): An introduction,”
Software engineering institute, MA, Tech. Rep. CMU/SEI-
2006-TN-011, Feb. 2006.

413413413

