
1

Crafting Interaction: The epistemology of
modern programming
Rikard Lindell

Mälardalen University
Box 883 SE-721 23 Västerås Sweden
rikard.lindell@mdh.se

Abstract

There is a long tradition in design of discussing materials and the craft of making artefacts. ‘Smart’

and interactive materials affected what constitutes a material. Interaction design is a design activity

that creates the appearance and behaviour of information technology, challenged by the

illusiveness of interactive materials. With the increased design space of ubiquitous devices,

designers can no longer rely on a design process based on known interaction idioms, especially for

innovative highly interactive designs. This impedes the design process, because non-interactive

materials, by which designers create sketches, storyboards, and mock-up prototypes, do not

provide the essential talkbacks needed to make reliable assessments of the design characteristics.

Without a well-defined design the engineering process of artefacts has unclear ends, which are not

encompassed in the rational epistemology of engineering. To value the experiential qualities of

these artefacts the prototypes need to be interactive and crafted in code. This paper investigates the

materiality of information technology, specifically programming language code from which

interactive artefacts are made. A study of users of programming languages investigates how they

describe programming language code as a material. If you have a material it is reasonable, because

of the tradition in the material and craft fields, to say you have a craft. Thus, considering code a

design material allows the metaphor of craft to be used for the activity of programming.

Keywords

Material, Materiality, Design, Interaction Design, Craft, Engineering, Software

Engineering, Programming, Epistemology

Introduction

The creation of useful artefacts with rich experiential qualities required quality-

driven interaction designers and programmers with the ability to do simultaneous

problem-setting and problem-solving. People use interactive software, websites

and mobile applications in different contexts for different purposes. It may be

mandatory use (for example administrative systems) or devoted use of social

2

media, games, or artistic creation. Boehm shows a focus shift in software

engineering to acknowledge usability and also that requirements of interactive

artefacts cannot be defined a priori [1]. Users and other stakeholders cannot

articulate their needs so they can be transformed into a well-defined specification.

Nonetheless, models and methods in software engineering focus on solving

problems and thus require commitments to well-defined requirements [1,2].

Interaction design has indulged itself in being a design practice that defines the

appearance and function of digital artefacts [3]. Sketches, storyboards,

videomatics, and interactive prototypes depict the appearance and functionality of

digital artefacts, and at best convey requirements to software engineers [4-6]. The

result from a design process is rich in clues to the finished product. However, the

material in the design process is different from the code that implements the

design into a working artefact [7].

The interplay between interaction design and software engineering is problematic

[8]. These two activities have different epistemology; interaction design is a

design practice [3], whereas software engineering is struggling to describe itself as

engineering and science [1]. People who are active in these fields have different

ways of thinking about how they work [9]. Designers are trained to see a plethora

of future designs for a situation, in which they abide to a rigour of design practices

[10,11]. Engineers, however, are trained to solve well-defined specific problems

[9,12]. Löwgren [12] shows the epistemological differences between engineering

and design. Engineering focuses on convergent processes to determine one

solution to one problem in a sequential refining order in an objective manner

whereas design explores problems through a parallel and divergent creative

process before committing to a design. The design also bears the personal

presence of the designer.

Buxton [9] answered software engineers who wanted "guidelines for maximizing

user experience" in an open letter published in Businessweek. He was frustrated

with the inability of engineers to recognise and respect the practice of experience

design. Buxton requested at least Design Awareness from everyone in an

organisation - especially from software engineers. Design awareness can and

should be something that every employee of a company does their best to acquire,

and the same applies to technology awareness. Buxton delineated three levels of

design knowledge above design awareness; Design Literacy, Design Thinking,

3

Design Practice. All employees can acquire design literacy with more effort.

Design thinking can be acquired by anyone who is committed to investing time to

practise their skills, whereas design practice – according to Buxton – is not is

accessible to all.

The context in which designers want to bring a new or changed artefact is

explored through design. Design explains the phenomena of the context. It is

about framing the problem space of the context, cut into a search tree of plentiful

design proposition to reach the right user experience design of a future artefact

[5,13]. Design is the exploratory use of malleable tactile materials and provides

suggestions for possible future solutions [3,5,13]. The goal of the design process

is to frame, as much as possible, the problem for an engineering process to solve.

In the ideal case, every problem is well defined and known.

Sketches, storyboards, and paper prototypes work in design situations where the

designer experiments with known interaction idioms. Users, design colleagues,

and programmers fill the gaps and imagine the user experience for the finished

artefact based on their experience with these idioms. However, this approach does

not work for innovative forms of interaction and user experience. To get talkback

from the interaction design it is necessary to create interactive prototype

programs. Memmel [8] shows that the gap between designing digital artefacts and

implementing them is not easy to bridge. The designer depicts the function and

appearance in a different material from what the programmer uses to construct an

artefact. Materials have inherent characteristics that affect and provide the

preconditions for what can be created with it. Code provides other types of

talkbacks than paper prototypes, and the design process does not stop when the

programming starts; on the contrary, programming is a part of the design process.

One way of approaching this issue is to view programming language code as a

design material. If code can be considered a design material, then programming

can be explained through the metaphor of a design craft. Thus, the epistemology

of craft is applicable to programming. For this reasoning to be true we need to

investigate how users of programming language express code as a design material.

Background

Schön introduces the concept of Technical Rationality and offers an explanation

of the engineer's epistemology [14]. Schön discusses how faith in rational,

4

scientific, and technological solutions became dominant because of how these

approaches were successfully applied during World War II, where the solution to

a problem was to supply more resources [14]. The point he makes is that

engineering is close to science. “They began to see laws of nature not as facts

inherent in nature but as constructs created to explain observed phenomena, and

science became for them a hypothetico-deductive system. In order to account for

his observations, the scientist constructed hypotheses, abstract models of an

unseen world which could be tested only indirectly through deductions susceptible

to confirmation or disconfirmation by experiments. The heart of scientific inquiry

consisted in the use of crucial experiments to choose among competing theories of

explanation.” [14] (page 33). This quotation describes the belief in deductive

reasoning that disconnects the explanation of the world from the material to be

explained. A scientific approach allows the engineer to deduce, analyse, and

define problems in a rational way: the positivist epistemology of science [14].

Technical rationality is part of the historical heritage in software engineering,

where the metaphor of engineering is used to describe programming and the

activity of developing software artefacts. Bennington [15] describes an

engineering development model for software at the Symposium on Advanced

Programming Methods for Digital Computers on 29 June 1956. According to

Bennington, technical rationality was a success factor for their project: “It is easy

for me to single out the one factor that I think led to our relative success: we were

all engineers and had been trained to organize our efforts along engineering lines.

We had a need to rationalize the job; […] In other words, as engineers, anything

other than structured programming or a top-down approach would have been

foreign to us.” This quote shows how the development of software engineering

was organised. This instrumental and strictly top-down approach was named "The

Waterfall Model" during the 70's [1]. This development method was an attempt to

respond to demands of a technical, rational, and clearly defined problem. Focus

and resources were allocated to solve the problem. The Waterfall Model is still

important in the development of large projects [1], and the model is still the basis

for education and literature in software engineering.

Boehm [1] describes in his exposé of over a half-century of software engineering

how the field evolved with a major increase of focus on usability and “value”.

Software engineering has realised the problems with the waterfall model and has

5

introduced iterative models such as the spiral model [16] or the Rational Unified

Process (RUP) [2]. These models deal with changes in problem-setting in

iterations. In RUP, the focus is on use-cases, architecture and well-defined goals

for each iteration [2]. However, each iteration of the spiral model and RUP is a

waterfall model. Therefore the situation is only marginally improved in these

models. The foundation is still the technical rationality epistemology.

Figure 1. Buxton's image of the organisation for the engineering-driven product development.

Buxton describes an engineering-driven organisation [5], see Figure 1. The first

step is to conduct research and development, step two is a comprehensive

engineering, and in the last step a marketing department tries to adapt, sell, and

spread the products. This type of organisation requires an agreement on ends. The

process is not particularly suited to encompass external influences and change.

Dissonance and physiological entropy arise in the organisation when changes and

difficulties in clearly defining the problem occur because “Technical Rationality

depends on agreement about ends.” “When ends are fixed and clear, the decisions

to act can present themselves as an instrumental problem. But when ends are

confused and conflicting, there is as yet no problem to solve. A conflict of ends

cannot be resolved by the use of techniques derived from applied research; it is

rather through the non-technical process of framing the problematic situation that

we may organise and clarify both the ends to be achieved and the possible means

of achieving them” [14]. In the citation Schön delineates how technical rationality

does not address situations where the result is uncertain and where there is no

ready-defined problem to solve. In the quote, Schön also provides a clue of how to

deal with difficult situations.

The Agile Manifesto

The Manifesto for Agile Software Development (2001) was written as a critique

of the rigid approach to requirements specification, analysis, construction and

documentation. It focuses the creation of useful artefacts with rich user

experience. The manifesto reads: Individuals and interactions over processes and

marketrnd – engineering

6

tools, Working software over comprehensive documentation, Customer

collaboration over contract negotiation, and Responding to change over following

a plan [17]. The manifesto reflects programmers’ frustration at spending most of

their time documenting and managing projects instead of writing code.

Two popular agile software development methods, as they are known, are

Extreme programing (XP) and Scrum [18]. Both XP and Scrum were created

years before the Agile Manifesto. They are currently regarded as the methods that

best live up to the agile Manifesto dogma. The methods are based on informal

user stories that describe the features from a user perspective [8]. User stories are

implemented in iterations and are evaluated and revised after each iteration. In

Scrum one iteration is called a sprint that lasts between a couple of weeks or up to

a month [19]. After each iteration the developed features must be demonstrable,

and the result of a sprint is revised in a sprint review meeting. Despite the

emphasis on usable features, Lárusdóttir et al. [20] have shown that scrum teams

often fail to attend user experience values of a design. Scrum is designed to

handle chaos and change [21], yet programmers still spend up to a month in

problem-solving committed to ends before they can re-evaluate the problem-

setting.

Agile Development with XP and Scrum in particular is a big step for software

engineering in the direction of focusing on service qualities and user experience as

opposed to non-agile development models, such as RUP, the spiral model, and the

waterfall model. However, despite the Agile Manifesto, XP, Scrum, and other

iterative development models have still a clear plan-implement-evaluate cycle that

extends over a longer period, at least weeks, but in practice longer. A common

feature of these methods is agreement about ends. Scrum, however, is different

from the others by being designed to accommodate change, but the method does

this by a technical rational approach: “One of the key pillars of Scrum is that once

the Scrum Team makes its commitment, the Product Owner cannot add new

requests during the course of the Sprint. This means that even if halfway through

the Sprint the Product Owner decides that they want to add something new, they

cannot make changes until the start of the next Sprint.” [22]. This quotation shows

that the method prevents continuous problem-setting and problem-solving to

handle difficult situations. Longer plan-implement-evaluate cycles impede agile

development and lock the scrum team to goal commitments.

7

In recent years, the Kanban development model has attracted attention by

providing freedom for adaptation [23]. “Scrum is less prescriptive than XP, since

it doesn’t prescribe any specific engineering practices. Scrum is more prescriptive

than Kanban though, since it prescribes things such as iterations and cross-

functional teams. ... Kanban leaves almost everything open. The only constraints

are Visualize Your Workflow and Limit Your WIP [work in progress]. Just inches

from Do Whatever, but still surprisingly powerful.” [23]. This quotation shows

how Kanban can support an agile development process in constant change. The

model allows the goal of a work in progress (WIP) change during the process.

This means that a WIP can have an open end. Thus, Kanban is a radically

different approach than the earlier development models. Kanban has become

popular in game development. This is no coincidence; game development is

focused on highly interactive experience and game play. Game development is

also a guild instead of a professional discipline [24]. Game developers have to

work their way up from being level designers, and are promoted as they

demonstrate their skills to get gradually closer to developing the game engine.

Reflection-in-action and interaction design

Technical rationality and focus on ends have a different epistemological

dimension than Reflection-in-action - Schön's term for the reflective practitioner

way of thinking and acting. The reflective practitioners have practical knowledge

(knowledge-in-practice); they can be aware or unaware of this knowledge

regardless of guild. Reflective practitioners deal with problem-setting, and unique

and complex situations, mainly through reflection-in-action (reflection-in-action).

Schön depicts reflection-in-action as the following scenario:

“When good jazz musicians improvise together, they also manifest a “feel for”

their material and they make on-the-spot adjustments to the sound they hear.

Listening to one another and to themselves, they feel where the music is going

and adjust the playing accordingly. They can do this, first of all, because their

collective effort at musical invention makes use of a scheme – a metric, melodic,

and harmonic schema familiar to all the participants – which gives a predictable

order to the piece. In addition, each of the musicians has at the ready a repertoire

of musical figures which he can deliver at appropriate moments. Improvisation

consists of varying, combining, and recombining a set of figures within the

8

schema which bounds and gives coherence to the performance. As the musicians

feel the direction of the music that is developing out of their interwoven

contributions, they make new sense of it and adjust their performance to the new

sense they have made. They are reflecting-in-action on the music they are

collectively making and on their individual contributions to it, thinking what they

are doing and, in the process, evolving their way of doing it. Of course, we need

not suppose that they reflect-in-action in the medium of words. More likely, they

reflect through a “feel of music”...” [14].

This quote illustrates that reflection-in-action happens on the fly and is a thought

process happening while the practitioners perform their activities. This can be

done consciously, but it is more likely that it is a subconscious thought process

(thinking on your feet), for example, when a musician improvises while

communicating through the music with the rest of the ensemble and the audience.

Reflection-in-action can be summarised in three phases that are repeated: (1)

Frame the problem, assess the situation, and understand the working material. (2)

Perform moves over the situation. These moves are parts of the practitioner’s

repertoire. They are small experiments with the intentional result, but often with

unintended effects (both positive and negative). (3) Reflect and evaluate the

consequences of action in conversation with the situation. Practitioners take in and

reflect on how the situation responds (talkbacks). The conversation happens in

what Schön calls the medium's language [25]. Then the process restarts.

Design problems are often vague, complex, and contradictory [11]. In the

problem-setting phase interaction designers name the phenomena that they will

pay attention to and work with. They create concepts through various design

techniques to better understand and frame the problem. Concept designs are

evaluated and refined through introspection, criticism, and user studies, such as

the Wizard of Oz method [5]. Interaction designers also increase their

understanding of the situation and context through sketching interfaces and

designing mock-up prototypes [26].

9

Figure 2. Modified figure of Buxton’s model of a design-driven organisation. Design is first

diverging then converging to a design that can be handed over to engineering.

Buxton [5] describes how a design-driven organisation can manage resources for

the research, development, and construction of new artefacts. He believes that a

successful design process faster answers issues that would otherwise be answered

in the research and development. Figure 2 also shows how the design team

follows the design through the entire process and that marketing meets up. Design

and marketing focus on users; the first to create value, and the other to

communicate value so that users are willing to pay.

Interaction designers have a repertoire of interaction styles that they can apply to

different problems [27]. Digital artistry and creation of aesthetically pleasing

looks - especially for highly interactive graphical user interfaces - are futile unless

there is a whole and situation adaptation. To be really able to design great

interfaces, interaction designers should master a programming language. It is part

of being conscious of the design material [6,9]. While interaction designers can

implement a design by composing software, they must not be seduced by

technologies for technology's sake.

Interaction designers create architecture for interactive artefacts and their spatial

and temporal properties. They design the artefact’s topology, the artefact’s

appearance on the screen or in the room and how the artefact changes over time

because of interaction. Interaction designers understand the consequences of

different designs and have a feel for how a design can be realised. This feeling can

be obtained by transforming design into technology. This is similar to the model

building of architects. They build models of future buildings to understand the

consequences of what they have designed and drawn. Similarly, interaction

designers build interactive prototypes for technical substantiation and in full

understand what they have designed. We are talking about material consciousness

[28]. The difference between the architect and interaction designer is that the latter

engineering market

10

builds a model in full scale, albeit quickly, and at times chaotic, but it is a model

and not a product.

Craft

The profession, the knowledge, and ability to design and create interactive

artefacts constitute a creative craft. McCullough [29] discusses the craft related to

interactive technology use and how an artisan approach can enrich interaction

design. Golsteijn et al. [30] found that the craft of making digital content is an

important aspect in cherishing digital objects. Furthermore, traditional digital

media (image, audio, and video files) can be manipulated with a craftsmanship

approach by establishing a close coupling to tangible physical materials [31]. The

traditional creative artisan work can benefit from information technology, and

thus bring the craftsmanship approach to technology appropriation to extend the

users’ repertoire [32].

According to McCullough, there is a wide gap between the design of digital

artefacts, and computer science and software engineering. The rejection of the

craft in today's computer science and software engineering is similar to how

engineers in the emerging Industrial Revolution saw the craft, illustrated in the

following quote from Diderot's Encyclopédie 1751-80 [29]

“CRAFT. The name is given to any profession that requires the use of the hand,

and is limited to a certain number of mechanical operations to produce the same

piece of work, made over and over again. I do not know why people have a low

opinion of what this word implies; for we depend on the crafts for all the

necessary things of life. [...] The poet, the philosopher, the minister, the warrior,

the hero would all be nude, and lack bread without this craftsman, the object of

their cruel scorn.”

That fact that craftsmanship has not been highly regarded is not new. Within

software engineering, the concept of craftsmanship is sometimes used

derogatorily to describe careless programming. Boehm [1], for instance, uses the

notion of craftsmanship as an analogy for the 1960s careless "cowboy

programming" and lack of professional discipline. However, negligence has

nothing to do with craft and craftsmanship. On the contrary, the craftsman is

described by Sennett [28] as quality-driven, bordering onto the manic, busy

perfecting his/her work. Wallace and Press [33] found that this quality-drivenness

11

has become of major importance for crafting aesthetically pleasing digital

artifacts. But this goes deeper than just creating appearance. For instance, the core

animation application programming interface (API) of the iOS provides App-

creators with functionality that gives animated cues to the behaviour of onscreen

objects and makes the interface feel more luxurious.

The craftsman must be patient and not be tempted to do quick fixes. External

factors - social and economic conditions, poor tools, or bad work environment -

can be obstacles to the craftsman's good work. However, the craftsman's

commitment is to perform good craftsmanship for its own sake [28].

Sennett describes the craftsman's ability to simultaneously identify problems and

solve them. This is consistent with Schön's ideas about reflection-in-action,

discussing problems qualifying in difficult situations. Sennett says that problem-

setting and problem-solving have a rhythm that relates to subconscious and

conscious reflection-in-action.

“Every good craftsman conducts a dialogue between hand and head. Every good

craftsman conducts a dialogue between concrete practices and thinking; this

dialogue evolves into sustaining habits, and these habits establish a rhythm

between problem-solving and problem-finding. The relationship between hand

and head appears in domains seemingly as different as bricklaying, cooking,

designing a playground, or playing the cello...” [28].

The craftsman is thus characterised by an ability to see and solve problems

simultaneously in the dialogue between hand and mind. Schön [25] calls this

dialogue a conversation with the situation. The conversation is enabled by the

craftsman’s material consciousness and mastery earned through at least ten

thousand hours of practice.

Material

McCullogh discusses the concept and use of interactive technologies, especially

artistically creative users, and portrays this practice as a craft:

“Virtual craft still seems like an oxymoron; any fool can tell you that a

craftsperson needs to touch his or her work. This touch can be indirect – indeed no

glassblower lays a hand on molten material – but it must be physical or continual,

and it must provide control of whole processes. Although more abstract

endeavours such as conducting an orchestra or composing elegant software have

12

often been referred to as crafts, this has always been in a more distant sense of the

word. Relative to these notational crafts, our nascent digital practices seem more

akin to traditional handicrafts, where a master continuously coaxes a material.

This new work is increasingly continuous, visual, and productive of singular

form; yet it has no material.” [29].

McCullogh believes that information technology is not a material because it has

no physical properties. But, says McCullogh, the craftsmanship and handwork is

still important, whether you use a drawing tablet to draw or navigate using

automated and habitual manipulations. However, Dourish and Mazmanian [34]

have found that there is a materiality of digital representations, and that digital

technologies need to be studied on their own materiality and on their particular

forms of practice. Bertelsen et al. [35] found that the concept of materiality

described the engaging talkbacks and resistance from creative music patch

programming with the MSP/Max graphical programming language. In their view,

the materiality of the software encompasses the inherited historicity of music –the

domain knowledge – and the potential of computer technology – the ability to use

and abuse technology in new ways. Information technology, according to

Löwgren and Stolterman [27], is a material which has no recognisable features.

This view combines interaction with "traditional" design trades and crafts.

The similarity between the industrial designer and architect on the one hand and

the interaction designer on the other lies in creating technology. However, the

industrial designer and architect's material is traditionally concrete as opposed to

interaction designer material that is intangible. Robles and Wiberg argue that

interaction designers should attend to the designs materiality and learn from more

traditional design disciplines [36]. With new adaptive, dynamic and context-aware

material Bergström et al. suggest that they become material over time, which

implies that industrial designers and architects should rely on methods from

interaction design [37]. The material they are working on has traditionally

distinguished disciplines based on what they create, but they have similar

practices, methods, and approaches to design. Information technology is on the

surface visual, auditory, or haptic, but this is an illusion created by calculations

and represented in ones and zeros and described with programming languages.

The media and language for interaction design are sketches of the appearance of

13

the interface, creating paper prototypes, and to write working prototype computer

programs that embody digital artefacts' behaviour.

Empirical Study

The background shows that volatile digital materials have materiality in

application areas where artisanal approach is appropriate [29-32]. There are

indications in the literature that there is materiality to be considered in

programming too [28,34,35].

In my experience material can be a metaphor of programming language code. The

creative work of implementing interactive multimedia artefacts and products

using a mixture of languages has made me reflect upon the materiality of code, if

it is pliable, malleable, solid, or brittle. But as much as this is my personal

experience, I need to know the view and attitude in the community of

practitioners, both interaction designers and developers. The idea was to start the

inquiry by sending out an open and informal question to users of programming

languages; colleagues, friends, and alumni students: "I would like you to write a

sentence or two describing what you think and feel about your favourite

programming language." However, the investigation resulted in 33 responses,

providing ten pages of text. Each answer offered a varying amount of data,

ranging from an entire page to just a few sentences. Grounded Theory [38] was

considered the most pragmatic approach to analyse the data. The method works

with any kind of data [39] and describes a workflow that drives the analysis

[40,41]. The method needs only the amount of data required to achieve saturation,

and is thus independent of large quantities of data [38].

The data were considered enough to fill a gap of programming language code as

material in the background literature. The advantage of the grounded theory data

analysis method is that you can begin with what you have. Later on if you

discover that you do not have enough data to delineate the categories and the core

category you can collect more data, in a second phase of theoretic selection. You

collect data and continue the analysis until your categories are saturated [38].

A grounded theory grows in three or four phases [40,41], and a grounded theory

analysis in each of these phases is done in four activities: theoretic selection,

theoretic coding, comparison, and conceptualising [41]. Here, the theoretical

selection is the community of users of programming languages. During coding,

14

sentences or words are marked or labelled as indicators that contribute to the

growing theory. Pre-conceptualised ideas to theories are written as memos. Then

the indicators are compared, sorted and commented to be woven into a theory

during conceptualising. For each phase the theory gets more general and

saturated. In a second phase of analysis of the analysis, I have also included

related theories and literature for the creation and saturation of the categories. The

method allows you to treat these findings as data, which is one of its advantages

[39].

Descriptive categories and concepts were induced from the collected data. These

were: material (core category), rational, pragmatic, mastery, learning, and

explorative. Figure 3 shows the relationship of the categories to one another and

their dimensional relationship to Sennett’s concepts of craftsmanship and quality-

driven [28]. The diagram depicts the categories’ relationship to the core category

material. The size of the circles – except for the material category – describes the

category’s saturation.

Material

The core category in the collected data is material. Material concerns the code's

materiality, and sets the conditions for the situation and use of programming

languages. This is closely related to the materiality concept of Bertelsen et al.

[35], but here it is transferred to a broader domain of programming. Material

provides talkbacks for those trying to understand and describe the world through

programming. Material also provides talkbacks for those who do sketches or

explore a design through programming. For example, hardware programming of

embedded systems is a different material from robot programming, although they

are closely related, whereas large data volumes are different in their materiality

compared with embedded systems. The material properties are different for this: it

may involve explorative programming and exploration of the nature of the data

set, or to make runs over the material as a commercial service. In the collected

data, statements on flexibility and simplicity recur. The material’s internal

malleability is important to the informants. That is, language and data can be

processed and transformed according to desire and need.

15

Figure 3. Six categories of how programmers feel and think about their favourite programming

language. The horizontal dimension depicts, ascending rightwards, to what extent each category

relates to the concept of craftsmanship. The vertical dimension, ascending upwards, shows the

concept quality-driven in craftsmanship-related categories. (The concept quality-driven is not

applicable to the rational category). The diagram also shows the influence of the core category

material on each category, the closer the more influence. The size of the circles – except for the

material category – describes the saturation of each category.

Talkbacks from the Material relate to Bjurwill’s four interoperation frames [42].

A situation is understood by making thought experiments and by conversation

with the material through four interpretation frames: practice, theory, value, and

context. The practice frame deals with the practitioner’s skill, “The media,

languages, and repertoires that practitioners use to describe reality and conduct

experiments” [43], for instance subconsciously knowing that design pattern

should be applied to a specific problem. The theory frame is also relevant to the

core category of material. It is through the theory frame that the programmer

applies a theoretical model to explain the situation and phenomena. Practitioners

choose the explanation that best fits the situation through thought experiments,

obtaining information, skills and creativity.

Rational

For the rational approach the informants indicate the programming language’s

particular theoretical-technical features, such as polymorphism, abstraction levels,

and performance. The language paradigm is important for this category. There are

rational

material

mastery

pragmatic

learning
explorative

q
u
al
it
y
-d

ri
ve

n

craftsmanship

16

also those describing multi-paradigm language, which is a rather pragmatic choice

(see below), but where the focus is on delivering specific properties.

Here is an illustrative quote: “... the language supports multiple levels of

abstraction. Depending on the application you can choose either to write code at a

high level of abstraction, with object orientation, encapsulation, inheritance,

dynamic binding and so on, or, on a more hardware related level, with standard C

functions, simple data types and structs, and so on.”

The rational category is close to a scientific approach to programming derived

from academic studies in computer science. The rational category is not about

what the language is used for, and there are no emotional reasons as to why a

specific language is one’s favourite language.

Learning

The learning category refers to learning through programming. This partly refers

to the inexperienced learning from layman to master, but also the master’s

learning and discovery of the world through programming. The informants who

provided data here were discussing the discovering of the world of programming.

"Suddenly there was a language based on logical rules and, as a computer game

geek, I was very motivated to learn."

The previous quote is an example of the layman's contact with a programming

language. The following quotation describes when mastery of the programming

art is taken to a higher level: "... when I worked a lot with prologue, the

declarative approach felt amazing, to describe the world as it was, and what you

can do with it instead of writing cookie recipes felt right!"

The following quote shows how the programming language describes a world:

“Once you have crossed the threshold into one programming language, you have

learnt to think in algorithms. It is another way of seeing the world, a wholly

different set of problem-solving tools”.

These three quotations also link to the category of material. In the first two, how

code describes the world, and, in the last case, how the code’s talkbacks tell the

programmer how the world wants to be designed. Also, there is an aspiration

towards a rational approach because the quotes are about programming paradigms

and their properties.

17

Mastery

This category describes the pursuit for full control over the artefact and its inner

bits and bytes. The following quote illustrates this: “It is a new and enjoyable

challenge to try to optimise an ordinary code loop to massive parallelisation where

you have to think about how much [performance] it costs to read and write to

memory.” This specific quote discusses CUDA, a language that takes advantage

of graphics processors' massive parallelism. Another example of mastery and

control is the following quote: "My favourite is C. When I start the programming

environment, it feels like I have total control, no stress, no funny business."

The pursuit of mastery may also lie in the choice to use a more obscure language.

Programming for the informants in this category has an almost irrational and

therapeutic function.

This category is related to the core category of material in that the mastery is

about controlling the machine's behaviour in detail. The processor's silicon die

design, and the computer hardware architecture, feature an influence on the

situation for this category. Furthermore, this category is also connected to

Sennett’s idea of quality-driven manic craftsmanship [28]. The focus on quality

can also be found in Martin et al.’s book Clean Code: A Handbook of Agile

Software Craftsmanship [44] which instructs the reader how to gain full control

over the code. Another empirical finding that saturates this category is the

Manifesto for Software Craftsmanship – Raising the bar (2009). The manifesto

berates pragmatic “working software” and praises well-crafted software.

Pragmatic

The most widespread approach to programming is category pragmatism. The core

category of material has great influence on the category of pragmatic because the

focus is on using tools for specific purposes in specific situations. Partly, the

informants describe problem-setting activities, but the main emphasis is on

problem-solving. A typical quote for this category is: “Today, I write mostly in

Perl, Scheme and Java. Scheme is the more elegant, Perl the most efficient, and

Java the most durable.”

Here we also find those who use more emotionally charged words about what

they do. A positive tone is exemplified in the following quote: “I love the fact that

you can do so much with scripting languages in Linux ... in no time. It is

18

extremely powerful because it combines the various scripting languages together,

and also combines it with Linux commands. It is amazing.” However, there are

those who are more sceptical to programming: “I do not have a favourite language

- they are all evil and should be met with healthy doses of scepticism.”

Here is a quote that shows the proximity between the pragmatic and the rational

attitude: “Ruby is a language that simplifies the path to better code quality with

unit testing while it makes for productivity with its elegant dynamic duck typing.

You get things done while a readable structure can be maintained. [...] Java will

probably come number two on the podium, but then you don’t get as much done.

Moreover, it is not as much fun!” The focus is still here on the pragmatic (how

much can be done) and on the emotional (if it is fun).

Among the pragmatic programmers are also those who give the impression of not

being quality-driven. For this group features that make their job easier are

important, such as type checking and garbage collection. Focus in the data is on

what you can get away with, which stands in stark contrast to mastery.

Explorative

This category mainly describes a conversation with the material. It is a continuing

problem-setting and problem-solving with move-making-experiments and

exploring of mini hypotheses through reflection-in-action. The programmer can

strive here to design aesthetic expressions, functions and interactions. They

explore the problem in conversation with the material to achieve a result.

Programming in this category is not stable or even correct. Here programming

languages are tools to incrementally explore and understand a problem. “What I

cherish the most is that [Processing] is incremental so that I can test my way

forward. Sometimes it feels like sketching, in the truest/best sense, when I can try

my way to a new idea into an interactive behaviour. Sometimes.”

Here are two quotes that demonstrate the exploration and problem-setting

approach: “Both in the case of Flash and Processing you get to see directly and

graphically the results of your coding, a kind of feedback that really enhances

your comprehension of programming concepts, such as: "Oh, that's what happens

if I loop it!", and "Hold it right there till someone presses a button!". ”

“The awesome [thing] with Lingo was/is that I as a creator with lots of ideas

could just sit down and do instead of planning. I could start at the wrong end and

19

still get it into something I could use.” This quote also shows that the exploratory

approach is all about problem- setting and not about writing robust code.

The exploratory approach with clear talkbacks from the material also applies to

those programmers who have a more computer science approach: “What I like

about Haskell is how natural it feels to divide a program into functions (once you

have taken in that concept ...) and how clean and well organised the code

becomes.” This quote suggests the materiality talkbacks. Explorative

programming explores designs; designers do both problem-setting and problem-

solving. Dan Ingalls says that explorative programming may take you where your

original goal does not matter [45]. Users of programming languages in this

category obtain a material consciousness of digital artefacts.

If code is a material then programming is a craft

This is of course not a deductive logical rule stated in the heading of this section.

However, there is a tradition of discussing material and craft and how they relate

to each other [46]. This discussion has a long tradition which goes back to

nineteenth century handicraft1 education [47]. Thus, if you have one it is

reasonable to assume you have the other.

The core category that emerged in the theoretical phase of the study above is

called material. Data on the materiality of computer programming languages are

provided for all categories except the rational. The categories of rational and

mastery are in a dimension with one endpoint in a scientific approach to software

engineering as described by Boehm [1], and the other end close to Sennett’s [28]

quality-driven craftsmanship approach. The category of mastery often refers to the

materiality of the silicon-based artefact’s design. In the pragmatic category

statements about the type of data to be processed or which problem to be solved

recur, and the materiality of the code here is indicated to be dynamic and

malleable. The materiality of programming is explicitly mentioned in the category

explorative - where most of the submitted data come from interaction designers

and digital artists. The categories explorative and learning recur in stories that

indicate talkbacks from the material similar to Schön’s description [25]. The

1 Salomon is using the Swedish word Slöjd that means the work skill in craft

applied without an economic purpose.

20

learning category is about learning through programming to obtain a practice that

is either pragmatic or rational.

Programmers who have an artisanal approach have a good chance also to acquire

design thinking or even design practice, and this is indicated by the explorative

category. Several pioneers interviewed in William Moggridge’s book Designing

Interactions have a background in computer science [48]. Bill Buxton and Jonas

Löwgren are both examples of prominent interaction designers with an

undergraduate degree in Computer Science.

The interaction designer and the programmer are standing on common ground,

since the reflective practitioners’ reflection-in-action, dealing with messy

situations, and continuous problem-setting and problem-solving are pillars of the

programmers’ work. As indicated by category material in the study above, it is

reasonable to say that programming follows craftsmanship epistemology. Hence

the interaction design process does not have to turn into an engineering process as

portrayed in Figure 2. The ongoing design process turns into a software

craftsmanship process, see Figure 4.

Figure 4. Design and programming as a craft facilitate the transition in the design work's change of

materials from paper to pixels, and from sketches to code.

Craftsmen do problem-setting and problem-solving simultaneously. “Still the

experimental rhythm of problem-solving and problem-finding makes the ancient

potter and the moored programmer members of the same tribe.” [28]. Thus, the

design process is not over because the artisan's hands have a different repertoire.

When we consider programmers as craftsmen of code, they have a repertoire of

moves and skills, similar to designers. There is an ability to identify and

understand the situations and know what tools are useful for the specific situation,

to master specific techniques, APIs, frameworks, libraries, patterns, and

programming languages. For example, the development of an artefact prototype

can be implemented with dynamic languages by embedding a Lua or Javascript

interpreter. This crafting of interaction can be done in the manner delineated in the

market

21

explorative category described above, the talkbacks from the code providing

grounding for design decisions. As the design converges, the code starts to

solidify, and the dynamic code can be reshaped into static code, written in for

instance the C programming language. This is performed according to either the

pragmatic or mastery category.

Programmers can develop a different feel for the code's properties. In the

discussion of programming language features one programmer described the

Ruby language as “cuddly faux fur”, soft and comfortable but nothing one can use

to build solid structures. The Python language was described as a “scaffold” that

can quickly be moved and that you can build into anything. I myself use Lua

which feels like play-dough for static modules in the C programming language

and a way to explore the problem. C, however, feels like therapy and getting

silicon under my fingernails.

The development of software - programming - is an activity with a wide range of

intrinsic properties that are closer to (handi)craft than science or engineering.

Sennett [28] describes the Linux programmer as the modern craftsman.

“People who participate in “open source” computer software, particularly in the

Linux operating system, are craftsmen who embody some of the elements first

celebrated in the hymn to Hephaestus, but not others. The Linux technicians also

represent as a group Plato’s worry, though in a modern form; rather than corned,

this body of craftsmen seem an unusual, indeed marginal, sort of community. The

Linux system is public craft.”

Martin et al. [44] stress the importance of quality-driven and disciplined practice

in the craft of programming. They focus on the code, to carefully write clean code

based meticulous attention to the principles and guidelines for the scope of a

function or method, of responsibility for a class, how test-driven development is

pursued, how concurrency is best implemented, etc. Clean code is easy to read,

easy to maintain and free from side effects and glitches. Above all, Martin et al.

show that the problem cannot be solved at once but a problem can be explored by

writing tests and constant iteration of possible improved solutions. This further

connects the categories explorative and mastery.

22

Discussion

According to Buxton [5] problem-setting should be done without writing code.

However, programming is a tool for a design that is difficult to portray on paper;

for example, collaborative, pliable, or highly interactive features. Innovative

interaction techniques require interactive prototypes. Interactive prototypes

describe, demonstrate, and answer; they are specific, refined, and are used to

performing tests [5]. However, exploratory programming allows various designs

to be explored in order to set a problem [5,12,13], to validate the possible

solutions [13,47], and in retrospect to transform the code into clean code [44].

One way to explore a design is to propose solutions by writing tests. By writing

tests, the programmer explores and sets the problem while simultaneously solving

the problem [44]. The ongoing tests are move-testing-experiments [25], in which

the bugs and unwanted conditions are talkbacks from the material that drives the

development process forward.

The empirical study shows that the 33 programmers or users of programming

languages have different approaches to programming. A big group describes a

rational approach to programming that is decoupled from the material, but the

majority has a coupling to the materiality of code and talkbacks from it. Those

with an exploratory approach in their programming practice are closest to the

material, and they show most of the material continuousness and rhythm of

problem-setting and problem-solving that Sennet describes [28]. Narratives in the

mastery category reveal manic quality-driven craftsmanship. Material is an

important part of the basis for craftsmanship in general, and implicitly here infers

programming as a craft.

The literature and the study above suggest that it is meaningful to use material as

a metaphor for code and crafts as a metaphor for programming. When code can be

seen as a design material, I suggest that it may have implications in education and

in the organisation of software development. In education, Kapor [50] has said

that programming should be part of the interaction designer’s repertoire, and that

designers need to learn programming to get respect from software engineers. Both

Kapor and Buxton point out that it is important that the development process is

based on design, Figure 2. Code as a design material goes deeper than bridging

engineering and design. Programming should be part of the designers’ material

consciousness, and thus be a part of an interaction design curriculum.

23

The creation of innovative highly interactive digital artefacts will benefit from not

using the metaphor of engineering as described by Boehm [1] in the design and

development process. Buxton [5] convincingly portrays the importance of the 1.0

version of software and that the original experience design remains stable through

the artefact’s entire lifecycle. Engineering can be a useful metaphor to describe

the activities dealing with updates and non-functional issues beyond the original

version,whereas a quality-driven artisanal ethos creates an environment to equip

the world with well-designed tools and user experiences. We need to use methods

of agile software development with a different approach to acknowledging

experiential values. The development model Kanban contains characteristics that

allow an artisanal approach [23]. It allows open-endedness, does not prescribe

specific roles, and accommodates continual change. Programmers and designers

can simultaneously be doing problem-setting and problem-solving. The model

allows the concrete material from the design process – mood boards, sketches,

storyboards, videomatics etc – to be used instead of user stories for features. The

model affords explorative programming, and as the artefact takes shape, the

development process can adopt a more pragmatic or mastery approach. However,

to organise a project in an artisanal manner, the participants in the project need to

have craftsmanship epistemology.

Acknowledgements

Thanks to Prof. Jonas Löwgren för providing valuable input, to Dr. Tomas Kumlin whose

expertise in grounded theory was very valuable, to Egle Kristensen for proofreading from the field,

and to my wife Eva Lindell who as a PhD student in Business Administration provided input.

References

[1] Boehm B (2006) A view of 20th and 21st century software engineering. In Proceedings of

the 28th international conference on Software engineering (ICSE '06). ACM, New York,

NY, USA, 12-29.

[2] Kroll P, von Krüchten P (2003) The Rational Unified Process Made Easy: A

Practitioner's Guide to the RUP. Addison-Wesley Professional

[3] Fällman D (2008) The Interaction Design Research Triangle of Design Practice, Design

Studies, and Design Exploration. Design Issues MIT press 24.3:4-18

24

[4] Löwgren J, Stolterman E (2004) Design av informationsteknik - materialet utan

egenskaper. Studentlitteratur

[5] Buxton B (2007) Sketching User Experiences - getting the design right and the right

design. Morgan Kaufmann

[6] Lindell R (2009) “Jag älskar att allt ligger överst” – En designstudie av ytinteraktion för

kollaborativa multimedia-framträdanden. Mälardalen University Press Dissertations: 72

[7] Vallgårda A, Sokoler T (2010) A Material Strategy: Exploring Material Properties of

Computers. International Journal of Design vol 4 issue 3

[8] Memmel T, Gundelsweiler F, Reiterer H (2007) Agile human-centered software

engineering. In Proceedings of the 21st British HCI Group Annual Conference on People

and Computers vol 1:167-175

[9] Buxton B (2009) On Engineering and Design: An Open Letter. Businessweek April

29. http://www.businessweek.com/innovate/content/apr2009/id20090429_083139.htm.

Accessed April 2012

[10] Wolf T.V, Rode J, Sussman J, Kellogg W.A (2006) Dispelling "design" as the black art

of CHI. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (CHI '06) 521-530

[11] Stolterman E (2008) The Nature of Design Practice and Implications for Interaction

Design Research. in International Journal of Design 2(1):55-65

[12] Löwgren J (1995) Applying design methodology to software development. In

Proceedings of Designing Interactive Systems 87-95.

[13] Krippendorf K (2006) The Semantic Turn. CRC Press, Taylor & Francis Group

[14] Schön D.A (1983) From Technical Rationality to Reflection-in-Action. Chap 2 in The

Reflective Practitioner - how professionals think in action, Basic Books

[15] Bennington H (1983) Production of Large Computer Programs. Annals of the History of

Computing vol 5 issue 4

[16] Boehm B (1985) A Spiral Model of Software Development and Enhancement. In

Proceedings of an International Workshop on Software Process and Software

Environments

[17] Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningham W, Fowler M, Grenning

J, Highsmith J, Hunt A, Jeffries R, Kern J, Marick B, Martin R.C, Mellor S, Schwaber K,

Sutherland J, Thomas D (2001) Agile Manifesto. http://agilemanifesto.org/. Accessed

April 2012

[18] Lindvall M, Basili V, Boehm B, Costa P, Dangle K, Shull F, Tesoriero R, Williams L,

Zelkowitz M (2002) Empirical Findings in Agile Methods. Extreme Programming and

Agile Methods — XP/Agile Universe 2002 Lecture Notes in Computer Science, Volume

2418/2002:81-92

[19] Kniberg H (2007) Scrum and XP from the Trenches: How we do Scrum. C4Media inc

[20] Lárusdóttir M.K, Cajander Å, Gulliksen J (2012) The Big Picture of UX is Missing in

Scrum Projects. In Proceedings of the 2nd International Workshop on the Interplay

25

between User Experience Evaluation and Software Development, In conjunction with the

7th Nordic Conference on Human-Computer Interaction

[21] Schwaber K (1995) SCRUM Development Process. in Workshop Report: Sutherland,

Jeff. Business Object Design and Implementation of 10th Annual Conference on Object-

Oriented Programming Systems, Languages, and Applications Addendum to the

Proceedings. 6:4:170-175

[22] Deemer P, Benefield G (2006) Scrum Primer, Yahoo, 2006. in The Scrum Papers: Nuts,

Bolts, and Origins of an Agile Process

[23] Kniberg H, Skarin H (2010) Kanban and Scrum - making the most of both. C4Media inc

[24] Annika Waern (2011). Personal communication.

[25] Schön D.A (1983). Design as a Reflective Conversation with the Situation. Chap 3 in The

Reflective Practitioner - how professionals think in action, Basic Books

[26] Tversky B (2002) What do sketches say about thinking? In Proceedings of AAAI Spring

Symposium on Sketch understanding 148-151

[27] Löwgren J, Stolterman E (2004) Design av informationsteknik - materialet utan

egenskaper, Studentlitteratur

[28] Sennett R (2008) The Crafsman. Penguin Books

[29] McCullough M (1998) Abstracting Craft - the practiced digital hand, MIT Press

[30] Golsteijn C, van den Hoven E, Frohlich D, Sellen A (2012) Towards a More Cherishable

Digital Object. in DIS 2012

[31] _ (2013) Hybrid Crafting: Towards an Integrated Practice of Crafting with Physical and

Digital Components. In journal on Personal and Ubiquitous Computing Journal, special

issue on Material Interactions - From Atoms & Bits to Entangled Practices.

[32] Rosner D.K, Ryokai K (2009) Reflections on craft: probing the creative process of

everyday knitters. In Proceedings of the Seventh ACM Conference on Creativity and

Cognition 195-204

[33] Wallace J, Press M (2004) All This Useless Beauty: The Case for Craft Practice in

Design For a Digital Age. The Design Journal 7 (2):42-53

[34] Dourish P, Mazmanian M (2011) Media as Material: Information Representations as

Material Foundations for Organizational Practice. In Proceedings of the Third

International Symposium on Process Organization Studies

[35] Bertelsen O.W, Breinbjerg M, Pold S (2007) Instrumentness for creativity mediation,

materiality & metonymy. In the 6th Conference on Creativity & Cognition 233-242

[36] Robles E, Wiberg M. (2011) From materials to materiality: thinking of computation from

within an Icehotel. interactions 18:32-37

[37] Bergström J, Clark B, Frigo A, Mazé R, Redström J, Vallgårda A (2010) Becoming

materials: material forms and forms of practice, Digital Creativity 21:3 155-172

[38] Glaser B, Strauss A (1967) Discovery of Grounded Theory. Strategies for Qualitative

Research. Sociology Press

[39] Glaser B (1999) The Future of Grounded Theory. Qualitative Health Research, vol 9,

issue. 6, pp836-845

26

[40] Hartman J (2001) Grundad Teori. Studentlitteratur

[41] Guvå G, Hylander I (2003) Grundad teori ett teorigenererande forskningsperspektiv.

Liber

[42] Bjurwill C (1998) Reflektionens praktik. Studentlitteratur

[43] Schön D.A (1983) Patterns and Limits of Reflection-in-Action Across the Professions.

Chap 9 in The Reflective Practitioner - how professionals think in action, Basic Books

[44] Martin R.C, Feathers M.C, Ottinger T.R 2010. Clean Code: A Handbook of Agile

Software Craftsmanship. Prentice Hall

[45] Seibel P (2009) Coders at Work - Reflections on the craft of programming. Chapter 10,

Dan Ingalls. 373-412. Apress

[46] Redström J (2005) On Technology as Material in Design. In Design Philosophy Papers:

Collection Two: 31-42. Team D/E/S Publications

[47] Salomon O (1891) ‘Introductory Remarks’, from The Teachers’ Handbook of Slöjd.

Boston: Silver, Burett & Co excerpted in: Adamson G (ed) The craft reader. Berg, Oxford

[48] Moggridge W (2007) Designing Interactions. MIT Press

[49] Löwgren J (2007) Interaction design, research practices and design research on the digital

materials. Published at webzone.k3.mah.se/k3jolo 2007-03-16

[50] Kapor M (1991) A Software Design Manifesto. Dr.Dobbs Journal

