
Handling Aperiodic Tasks in Diverse Real-Time Systems via Plug-Ins

Tomas Lennvall, Gerhard Fohler, and Bj¨orn Lindberg�

Department of Computer Engineering
Mälardalen University, Sweden

�tomas.lennvall,gerhard.fohler�@mdh.se

Abstract

Functionality for various services of scheduling algo-
rithms is typically provided as extensions to a basic al-
gorithm. Aperiodic task handling, guarantees, etc., are
integrated with a specific basic scheme, such as earli-
est deadline first, rate monotonic, or off-line scheduling.
Thus, scheduling services come in packages of scheduling
schemes, fixed to a certain methodology.

A similar approach dominates operating system func-
tionality: implementation of the actual real-time scheduling
algorithm, i.e., take the decisions which task to execute at
which times to ensure deadlines are met, are intertwined
with kernel routines such as task switching, dispatching,
and bookkeeping to form a scheduling/dispatching module.

Consequently, designers have to choose a single schedul-
ing package, although the desired functionality may be
spread over several ones. Instead, there is a need to seam-
lessly integrate new functionality with a developed system,
enabling designers to choose the best of various packages.

In this paper, we propose the use of a plug-in approach
to add functionality to existing scheduling schemes and pro-
vide for easy replacement on the operating system level. In
particular, we present an architecture to disentangle actual
real-time scheduling from dispatching and other kernel rou-
tines with a small API, suited for a variety of scheduling
schemes as plug-ins. We detail two plug-ins for aperiodic
task handling and how they can extend two target systems,
table-driven and earliest deadline first scheduling using the
presented approach.

1. Introduction

Scheduling algorithms have been typically developed
around central paradigms, such as earliest deadline first
(EDF) [6], rate monotonic (RM)[6], or off-line scheduling.

�Björn Lindberg is now with Ericsson Radio Systems, Gothenburg,
Sweden

Additional functionality, such as aperiodic task handling,
guarantees, etc., is typically provided as extensions to a
basic algorithm. Over time, scheduling packages evolved,
providing a sets of functionality centered around a certain
scheduling methodology.

EDF or fixed priority scheduling (FPS), for example, are
chosen for simple dispatching and flexibility. Adding con-
straints, however, increases scheduling overhead [12] or re-
quires new, specific schedulability tests which may have to
be developed yet. Off-line scheduling methods can accom-
modate many specific constraints and include new ones by
adding functions, but at the expense of runtime flexibility, in
particular inability to handle aperiodic and sporadic tasks.

A similar approach dominates operating system func-
tionality: implementation of the actual real-time scheduling
algorithm, i.e., take the decisions which task to execute at
which times to ensure deadlines are met, are intertwined
with kernel routines such as task switching, dispatching,
and bookkeeping to form a scheduling/dispatching module.
Additional real-time scheduling functionality is added by
including or “patching” this module. Replacement or addi-
tion of only parts is a tedious, error prone process.

Consequently, a designer given an application composed
of mixed tasks and constraints has to choose which con-
straints to focus on in the selection of scheduling algorithm;
others have to be accommodated as good as possible. Along
with the choice of algorithm, operating system modules are
chosen early on in the design process.

This contrasts actual industrial demands: designers want
to select various types of functionality without considera-
tion of which package they come from. They are reluctant
to abandon trusted methods and to switch packages for the
sake of an additional functional module only. Instead, there
is a need to seamlessly integrate new functionality with a
developed system, enabling designers to choose the best of
various packages.

In this paper, we propose the use of a plug-in approach
to add functionality to existing scheduling schemes and pro-
vide for easy replacement at the operating system level. In
particular, we present an architecture to disentangle actual



real-time scheduling from dispatching and other kernel rou-
tines with a small API, suited for a variety of scheduling
schemes as plug-ins. We detail two plug-ins for aperiodic
task handling and how they can extend two target systems,
table-driven and EDF scheduling using the presented ap-
proach.

A number of aperiodic task handling methods have been
presented [10, 11, 9], but within their respective packages
only. Instead of extending an existing scheduling package,
we concentrate the functionality into a module, define the
interface and discuss its application to off-line and on-line
scheduling methods as examples. S.Ha.R.K [7] is an oper-
ating system where scheduling algorithms including aperi-
odic servers are created in a modular fashion. The interface
between the system and the scheduler in S.Ha.R.K is more
complex than the interface we propose in this paper.

The rest of the paper is organized as follows: in section
2, we describe our notion of plug-in and target system, its
diversity is described in section 3, followed by a description
of the aperiodic task handling functionality in section 4. In
section 5 we show an example and section 6 concludes the
paper.

2. System and Plug-In Architecture

A plug-in can be thought of as a hardware or software
module that adds a specific feature or service to an existing
system. The purpose of a plug-in is to add functionality
without calling for redesign or extensive modifications. To
accomplish this it must be clear what services the plug-in
provides and an interface between the plug-in and the target
system must be defined.

2.1. Target System Architecture and Interface

Before we go into the details of the plug-in, we define
the target system model that the plug-in will interact with.
The model is presented in figure 1 and it consists of three
separate modules as parts of the system:

Execution Sequence Table This is the table where the
tasks are kept sorted in a certain order, depending on
the plug-in module’s scheduling algorithm. The plug-
in module has exclusive modification rights on this ta-
ble. To manipulate the table, the plug-in module uses
the two methodsinsert(task, pos) andremove(task).

Dispatcher It is responsible for taking the first task in the
execution sequence table and execute it. The dis-
patcher has access to view the contents of the whole
execution sequence table, but it cannot modify it. The
plug-in module also has exclusive control over the dis-
patcher and it is activated by thedispatch() call. When

Plug-in
module

Wake-up 
Calendar

Execution 
sequence 

table 

Dispatcher

insert(task, pos)remove(task)

event(taskEnd)

dispatch()

event(wakeUp, id)

setWakeUpPoint(time, id)

deleteWakeUpPoint(time, id) event(taskArrival)

SYSTEM

Figure 1. Plug-in and system architecture

the dispatcher is activated, it will check if there is an
executing task and either preempt the task, if it exists
in the execution sequence table, or else abort it.

Wake-up Calendar This calendar controls a set of watch-
dog timers, all tasks will get entries set in the calen-
dar corresponding to their deadlines (to catch deadline
misses). The calendar will also hold other time criti-
cal points, such as the critical slots from [3]. To set or
remove these wake-up points the plug-in module uses
the setWakeUpPoint(time, id) and thedeleteWakeUp-
Point(time) methods. All the wake-up points are asso-
ciated with an id. The id’s represents deadlines, critical
slots, and so on.

2.2. Plug-In Interface

The plug-in module encapsulates a scheduling algorithm
for scheduling of user level tasks (not system level tasks),
such that the rest of the system becomes completely decou-
pled from the scheduling. This means that the plug-in mod-
ule is the only part of the system that knows about schedul-
ing, and it is also the only part that needs to be changed, if
the scheduling algorithm is being changed.

Therefore the interface to the plug-in module is kept
small and simple such that it is clear how to write a new
plug-in. This makes it easier for designers to create the
scheduling package they want. The plug-in interface is used
by the system, specifically the wake-up calendar and dis-
patcher, to activate the plug-in module at certain events or
times. Thus each plug-in module that is implemented, is re-
sponsible for reacting correctly to the events that activates
it.

The details of the plug-in module interface and the events
it must react to follow below:

event(taskArrival) This event activates the plug-in when a
new user level task has been activated. The plug-in is
responsible for executing the appropriate acceptance
test to either accept or reject the new task. If the task



is accepted, the plug-in must insert it at the correct po-
sition in the execution sequence table and activate the
dispatcher.

event(wakeUp, id) This event is sent by the wake-up calen-
dar and it activates the plug-in at a certain point of time
earlier set by the plug-in itself. Here, the plug-in must
check what the wake-up activation corresponds to, by
looking at the id, and take the appropriate actions.

event(taskEnd) The dispatcher sends this event to the plug-
in when a task has finished its execution. The dis-
patcher does not care if the task is periodic (and should
be reactivated later) or aperiodic, it’s the job of plug-
in module to make the correct decision based on this.
Here, the plug-in should remove the task from the ex-
ecution sequence table and activate the dispatcher.

2.3. System and Plug-In Interaction

In figure 1, we can see the interface the system and the
plug-in uses to interact with with each other. In this section
we will describe in more detail how this interaction works
for some of the events that can happen during system exe-
cution.

Task arrival when a new user task is activated,
event(taskArrival) is called to activate the plug-
in module. The module executes its acceptance
test to either accept or reject the task. If the task is
accepted, the plug-in callssetWakeUpPoint(dl, id) to
set a watchdog on the deadline of the task. Then,
the task is inserted into the execution sequence table,
using insert(task, pos) to set it at the correct position
according to the scheduling algorithm. Finally the
plug-in activates the dispatcher, by callingdispatch(),
and then it suspends itself. The dispatcher is activated,
looks at the front of the execution sequence table,
picks that task for execution and then it suspends.

Task finishing execution when a task has finished its ex-
ecution in a timely manner, the dispatcher gets ac-
tivated and activates the plug-in module by calling
event(taskEnd), then the dispatcher suspends. The
plug-in removes the wake-up time for the task dead-
line with removeWakeUpPoint(dl, id), then it removes
the task from the execution sequence table byre-
move(task). The plug-in also callsdispatch() again
to activate the dispatcher. The dispatcher looks at the
front of the execution sequence table and picks that
task for execution, then it suspends.

Task deadline miss if a task has not finished execution be-
fore its deadline, the wake-up calendar will be acti-
vated by a timer interrupt. It will then useevent(wake-
up, id) to activate the plug-in module. The plug-in

Plug-in 
(EDF) 

dl_rules 

SYSTEM

Plug-in 
(Offline) 

task_table 

SYSTEM

Figure 2. Example plug-ins

module sees that theid indicates a deadline miss and
removes the task from the execution sequence table,
and, if necessary takes other actions to handle a dead-
line miss. Then the plug-in calls the dispatcher, using
dispatch(), to activate it. The dispatcher checks if the
executing task exist in the execution sequence table.
When it discovers that the task has been removed by
the plug-in it will abort the task. The dispatcher also
checks for the first task in the execution sequence ta-
ble, picks it for execution, and suspends itself.

3. Target System Diversity and Plug-In Appli-
cability

The plug-in module design makes it possible to hide the
differences between scheduling algorithms behind a com-
mon interface. We will discuss how this architecture would
be applied to the different scheduling paradigms that exist,
and detail what the functions in the interface would do. Fig-
ure 2 shows the plug-ins.

3.1. Earliest deadline scheduled system

In an event-triggered system using the EDF scheduling
algorithm, the tasks are characterized by start times, worst
case execution time (WCET), and deadlines. The tasks can
also be either periodic, and have the period as an additional
attribute, or aperiodic. Before the start of the system, the
plug-in sorts any existing tasks in the execution sequence
table in EDF order. It also sets the wake-up events for the
deadlines of the tasks in the wake-up calendar.

When the system is started, the plug-in activates the dis-
patcher and suspends itself. The dispatcher does it’s job
and suspends. If no new task arrives, the executing task
will continue until it finishes its execution and then the dis-
patcher will activate the plug-in module again. The plug-in
will see that it has been activated by a task-end event and
remove that task from the execution sequence table. Then it
activates the dispatcher again. This is how the plug-in and
the system would interact if no new tasks would arrive or
no deadline misses would occur.



If a new task arrives, the plug-in is activated and exe-
cutes the acceptance test. If the task is accepted, it will
be inserted into the execution sequence table at the correct
position. The plug-in then activates the dispatcher and sus-
pends, and the interaction continues as normal.

If a deadline miss occurs and activates the plug-in, the
task will be removed from the execution sequence table.
The plug-in then activates the dispatcher and the execution
continues.

3.2. Off-line scheduled system

A target system using an off-line generated [8] sched-
ule usually has more stringent task requirements, such as
precedence constraints, than an on-line scheduled, event-
triggered counterpart. In an off-line generated schedule,
tasks have fixed starting and finishing times. In off-line
scheduled systems there are only off-line scheduled task and
no new task will dynamically arrive during the runtime of
the system.

Before the execution of the system, the plug-in prepares
the execution sequence table to correspond to the task table
internally stored in the plug-in. The on-line execution of
this plug-in will therefore be simpler with an EDF plug-in
module. As with the EDF plug-in, wake-up points will also
be set for the deadline of the tasks in the off-line schedule.
The plug-in also sets wake-up points for every time slot, like
the MARS system described in [5].

When the system is activated, the plug-in immediately
sets a wake-up point at the next time-slot. If no task has a
start time equal to the current time, it suspends. The plug-in
will be activated at the start of the next time-slot and repeat
what it did in the previous time-slot.

If there is a task with the start time equal to the current
time, the plug-in activates the dispatcher, then it suspend.
The dispatcher activates the execution of the next task and
suspends.

The plug-in will be activated every slot, and it will also
get events when tasks end or if tasks miss their deadline. If
a task finishes execution in a timely manner, the dispatcher
activates the plug-in, which removes the task from the ex-
ecution sequence table and then checks if there is a task
ready.

4. Plug-Ins for Aperiodic Task Handling

Below we present two plug-ins that handles aperiodic
tasks. These plug-ins are meant to be “plugged into” a
scheduling module that makes scheduling decisions based
on earliest start times and deadlines. The plug-ins work in-
dependently of the scheduling module and can be seen as a
layer on top of it.

At all times, the scheduling module schedules task that
are ready to execute, that is, tasks that are present in the
ready-queue. The plug-in deals with the aperiodic tasks and
places them in the ready-queue of the scheduling module,
which then processes the aperiodic tasks as it would any
other tasks in the system.

The mechanism for the two plug-ins for aperiodic task
handling is based on the slot shifting [2], taking advantage
of resources not needed by non-aperiodic tasks and using
them to schedule aperiodic tasks.

We have named the different plug-ins, plug-in A and
plug-in B to distinguish between the two different algo-
rithms. Plug-in A focuses on guarantees and handling of
single aperiodic tasks with fixed demands, e.g., execution
time, while plug-in B is geared towards large number of
aperiodic tasks with changing requirements.

Aperiodic tasks haveunknown arrival times. The earliest
start time of an aperiodic task is equal to its arrival time.
Aperiodic tasks are considered independent. We assume
that task dependencies are resolved in the off-line phase.

Known WCET Aperiodic tasks with known worst case
times and deadlines are termedfirm aperiodic. If ac-
cepted, which is determined by a guarantee test, these
tasks must be completed before their deadlines.

Unknown WCET Aperiodic tasks without deadlines and
possibly without known maximum execution times are
termedsoft aperiodic. These are executed in a best
effort fashion at lower priority than guaranteed tasks
such that the timely execution of guaranteed tasks is
not impaired.

4.1. Off-line Preparations - Slot Shifting

We propose to use the off-line transformation and on-line
management of the slot shifting method [2]. Due to space
limitations, we cannot give a full description here, but con-
fine to salient features relevant to our new algorithms. More
detailed descriptions can be found in [1], [2], [3]. It uses
standard off-line schedulers, e.g., [8], [1] to create sched-
ules which are then analyzed to define start-times and dead-
lines of tasks.

After off-line scheduling, and calculation of start-times
and deadlines, the deadlines of tasks are sorted for each
node. The schedule is divided into a set ofdisjoint execution
intervals for each node.Spare capacities (sc) to represent
the amount of available resources are defined for these in-
tervals.

Each deadline calculated for a task defines the end of an
interval ��, �������. Several tasks with the same deadline
constitute one interval. Note that these intervals differ from
execution windows, i.e. start times and deadline: execution
windows can overlap, intervals withsc are disjoint. The



deadline of an interval is identical to that of the task. The
start, however, is defined as the maximum of the end of the
previous interval or the earliest start time of the task. The
end of the previous interval may be later than the earliest
start time. Thus it is possible that a task executes outside its
interval, i.e., earlier than the interval start, but not before its
earliest start-time.

Thesc of an interval�� are calculated as given in formula
1:

������ � ���� �
�
����

�����	 � �
������������ �� (1)

The length of��, minus the sum of the activities assigned
to it, is the amount of idle time in that interval. These have
to be decreased by the amount “lent” to subsequent inter-
vals: Tasks may execute in intervals prior to the one they
are assigned to. Then they “borrow” spare capacity from
the “earlier” interval.

Obviously, the amount of unused resources in an inter-
val cannot be less than zero, and for most computational
purposes, e.g., summing available resources up to a dead-
line are they considered zero, as detailed in later sections.
We use negative values in the spare capacity variables to in-
crease runtime efficiency and flexibility. In order to reclaim
resources of a task which executes less than planned, or not
at all, we only need to update the affected intervals with
increments and decrements, instead of a full recalculation.
Which intervals to update is derived from the negative spare
capacities. The reader is referred to [1] for details.

Thus, we can represent the information about amount
and distribution of free resources in the system, plus online
constraints of the off-line tasks with an array of four num-
bers per task. The runtime mechanisms of the first version
of slot shifting added tasks by modifying this data struc-
ture, creating new intervals, which is not suitable for fre-
quent changes as required by sporadic tasks. The method
described in this paper only modifies spare capacity.

4.2. Online Activities

Runtime scheduling is performed locally for each node.
If the spare capacities of the current interval������ 
 �,
EDF is applied on the set of ready tasks.������ � � in-
dicates that a guaranteed task has to be executed or else a
deadline violation in the task set will occur. It will execute
immediately. Since the amount of time spent is known and
represented insc, guarantee algorithms include this infor-
mation.

After each scheduling decision, the spare capacities of
the affected intervals are updated. If, in the current inter-
val ��, an aperiodic task executes, or the CPU remains idle
for one slot, current spare capacity in�� is decreased. If
an off-line task assigned to�� executes, spare capacity does

not change. If an off-line task	 assigned to a later interval
�� � � 
 � executes, the spare capacity of�� is increased -
	 was supposed to execute there but does not, and that of
�� decreased. If�� “borrowed” spare capacity, the “lend-
ing” interval(s) will be updated. This mechanism ensure
that negative spare capacity turns zero or positive at run-
time. Current spare capacity is reduced either by aperiodic
tasks or idle execution and will eventually become 0, in-
dicating a guaranteed task has to be executed. See [2] for
more details.

4.2.1 Guarantee Algorithm A

Assume that an aperiodic task	� is tested for guarantee. We
identify three parts of the total spare capacities available:

� �������, the remaining sc of the current interval

�
�

������� � � � � �� ������� � ���		� �
��������� 
 ���		�� ������ 
 �, the positive spare
capacities of allfull intervals between� and���		�

� 
������������ ���		��������������, the spare capac-
ity of the last interval, or the execution need of		 be-
fore its deadline in this interval, whichever is smaller

If the sum of all three is larger than�����		�, 		 can be
accommodated, and therefore guaranteed. Upon guarantee
of a task, the spare capacities are updated to reflect the de-
crease in available resources. Taking into account that the
resources for		 are not available for other tasks. This guar-
antee algorithm is����, N being the number of intervals.

4.2.2 Guarantee Algorithm B

This plug-in uses a newer version of slot shifting as guaran-
tee test and the basic idea behind it is based on the standard
EDF guarantee. EDF is based on having full availability
of the CPU, so we have to consider interference from the
non-aperiodic tasks in� and pertain their feasibility.

Assume that at time�� we have a set of guaranteed ape-
riodic tasks��� and a set of non-aperiodic tasks�. At time
�� where�� � ��, a new aperiodic� arrives to the plug-in
module. Meanwhile, a number of tasks of� �� may have
executed; the remaining task set at�� is denoted��� . We
test if� � ��� can be accepted, considering tasks in�. If
so, we add� to the set of guaranteed aperiodic tasks,�.

The finishing time of a firm aperiodic task��, with an
execution demand of�����, is calculated with respect to
the finishing time of the previous task,����. Without any
off-line tasks, it is calculated the same way as in the EDF
algorithm:

������ � ����� �� �� � ����� (2)



Plug-in 
(EDF) 

SYSTEM

Plug-in A

interval_table

Plug-in 
(EDF) 

SYSTEM

Plug-in B
accepted_tasks
interval_table

Figure 3. Plug-in A and Plug-in B

Since we guarantee firm aperiodic tasks together with tasks
in �, we extend the formula above with a new term that
reflects the amount of resources reserved for these tasks:

�������������

�
�� R[�� ������] , � � �
���������R[��������� ������] , � 
 �

(3)
where����� ��	 stands for the amount of resources (in slots)
reserved for the execution of the tasks in� between time��
and time�� . We can access����� ��	 via spare capacities
and intervals at runtime:

����� ��	 � ��� � ��	�
�

������
���


���������� �� (4)

As ������ appears on both sides of the equation, a simple
solution is not possible. But in [4] an algorithm, with a
complexity of����, for computing the finishing times of
hard aperiodic tasks is presented.

In this plug-in module no explicit reservation of re-
sources is done, which would require changes in the inter-
vals and spare capacities, as done in the plug-in A module.
Rather, resources are guaranteed by accepting the task only
if it can be accepted together with the previous tasks in�

and�. This enables the efficient use of rejection strategies,
and simplifies the handling of the intervals andsc.

4.3. Guarantee Plug-Ins

When a plug-in is activated, it updates the intervals in
conformity with the last task execution and checks if there
are any pending aperiodic tasks. If so, it processes them and
puts one or more of them into the ready-queue of the sched-
uler. Figure 3 show the two plug-ins and the data structures
they contain.

4.3.1 Plug-In A

The plug-in keeps a table consisting of the intervals and
their attributes (start, end, sc, and so on) that was created
in the off-line phase. It must also keep track of which task

executed last, when it started its latest execution, and how
much time it consumed, to be able to update the intervals
table. Using this information, the plug-in updates interval
spare capacities and possibly also wake-up points.

4.3.2 Plug-in B

Plug-in B also needs information about the last task exe-
cution to be able to update spare capacities and wake-up
points in the intervals table it keeps locally. It focuses on
handling large numbers of aperiodic tasks with changing
requirements, therefore accepting tasks is done with ex-
plicit guarantees via modifying intervals and spare capaci-
ties. Rather, guarantees are including implicitly, by keeping
a list of the so far accepted task. Should a task finish early, it
is removed from the list and the resources reserved for it are
freed without further provisions. It is well suited for effi-
cient overload handling, since task removals do not require
changes in intervals and spare capacities as in plug-in A.

After each scheduling decision, the spare capacities of
the affected intervals are updated as for plug-in A.

5. Example

In this section we will use an example to illustrate how
the two plug-in modules we defined earlier, plug-in A and
plug-in B, work and interact with the rest of the system. We
assume that there are three periodic tasks scheduled by the
EDF algorithm, and the task-set is the following:����� 
�,
����� ��,����� ���, where (�� 	 ) represents WCET and
period. Deadline is assumed to be equal to the end of the
period (� � 	 ). The tasks have harmonic periods to make
the example simple. Firm aperiodic tasks have the format:
	�� � �����, and soft aperiodic tasks have the following
format:	�� � ���.

Off-line In the off-line phase the plug-ins create a table
that contains all the interval start and end points, the length
of the interval, thesc and total execution time in an inter-
val, and lastly the wake-up (wu) point of the interval. This
table is stored within the plug-in and it will be updated dur-
ing runtime to reflect the correct state. Both plug-ins create
identical tables as shown in table 1. The table is created
with a length equal to the least common multiple (LCM)
of the periods of the tasks. This table will be restored and
repeated when time� is equal to a multiple of the LCM.

The execution sequence table (ES-table) contains the
following periodic tasks from the start: ES-table�
���� ��� ���.

On-line The on-line behavior of the two models differs
so we will show step by step how each of them behave,
and what happens with the interval table at different times.
Below we will see the actions taken during each step by the
system and the plug-ins.



Interval start(I) end(I) � � � sc(I) wu(I)

�� � 
 
 � �
�� 
 � � � 

�� � � � � �
�� � �� 
 � �

Table 1. The original interval table.

Interval start(I) end(I) � � � sc(I) wu(I)

�� � 
 
 � �
��� 
 
 � � 

��
 
 � � � 

�� � � � � �
�� � �� 
 � �

Table 2. Updated interval table for plug-in A.

Time System actions Plug-in actions

This shows how the actions by the different parts will
be represented. At each point time we can see the system’s
dispatcher, wake-up calendar actions, and the plug-in’s ac-
tions.

� � � dispatch�� setWakeUpPoint(�), dispatch()

No new aperiodic tasks have arrived so the plug-in sets a
wake-up point and suspends.

� � � dispatch��� remove(��), Guarantee-test,

deleteWakeUpPoint(3,critical-

slot), setWakeUpPoint(4),

insert(��� ,dl-pos), dispatch()

ES-table� ���� ��� and a firm aperiodic task has ar-
rived,	�� � ��� 
�.

Plug-in A The absolute deadline of	�� is 
, so�� � ��
and �� � �� and the available sc in this interval is 4
(������ � ����� �), which is larger than	�� execution re-
quirement, so	�� will be guaranteed. Since	�� ’s dead-
line,
, is not equal to������ �, �� will have to be split. The
sc is also updated after the split and the interval table for
plug-in A is shown in table 2.

Plug-in B In this plug-in the set of guaranteed aperiodic
tasks (�) is empty. The plug-in tests if	�� can be accepted
together with the periodic tasks. This is done by calculating
the finishing time of	�� , which is� in this case (according
to formula 3). No interval split will occur in this plug-in,
nor any change to thesc of the intervals table because an
aperiodic task was accepted.

Both plug-ins will set an updated wake-up point. The
wake-up point has been changed because task�� has exe-
cuted one slot, and then suspend.

� � � event(taskEnd),

dispatch��

remove(��� ),
Internal-work,

dispatch()

ES-table� ���� ���. No new aperiodic tasks has ar-
rived, 	�� has finished. The plug-ins will be activated
by this task-end event,plug-in A will modify the wake up
point of the interval	�� belonged to in the intervals table,
������ � 
), and then suspend again.Plug-in B takes no
action and suspends.
� � � event(taskEnd),

dispatch��

remove(��),
Internal-work,

dispatch()

ES-table� ����. No new aperiodic tasks have arrived.
�� will execute.�� has finished, the wake up point is not
modified because�� belongs to a later interval (but the��
in that interval is modified, so������ � �).
� � � event(wakeUp),

dispatch���

insert(��� ,first-pos),
insert(�� ,pos),

setWakeUpPoint(5), setWakeUp-

Point(6), dispatch()

ES-table� ���� ���. Next instance of task� is ready.
�� has finished executing and it belongs to a later interval,
so the wu of that interval is modified (������ � �).

A soft aperiodic task	�� � �
� has arrived. Both plug-
ins will behave in the same manner: since������ 
 �, task
	�� will be inserted first in the ready-queue.Plug-in B will
set the next wake up point and suspend.Plug-in A will set
the wake up to
 even though the original������ � 
, this
has changed because	�� executed in an earlier interval and
thus the������ increased to�.
� � � event(wakeUp),

dispatch���

setWakeUpPoint(6), dispatch()

ES-table� ���� ���. Plug-in A is activated by the
wake-up point event. Normally this means that the exe-
cution of the soft task must be stopped in favor of a peri-
odic task. But in this case we have only an interval change,
and the������ 
 �, so the soft task can continue to exe-
cute (������ 
 � because�� executed in an earlier inter-
val). Plug-in A resets the wake up point and suspends itself.
Plug-in B is not activated.
� � � event(wakeUp),

dispatch���

insert(�� ,EDF-pos), setWakeUp-

Point(7), dispatch()

ES-table� ���� ��� ���. The second instance of task
� is activated. Both plug-ins are activated by wake up
points, this means that the execution of the soft task must
be stopped in favor of a periodic task. Once again, there
is only an interval change and a new wake up point can be
set, and since the������ 
 �, 	�� can continue to execute.
Both the plug-ins suspend.
� � 	 event(wakeUp),

dispatch��

remove(���),

setWakeUpPoint(8), dispatch()



Taf TasA0 B0 B1A2A1C0 C0TasTasTas

Taf arrives Tasarrives 

1110 2 3 4 5 6 7 8 9 10 12

Table 3. Example execution trace

ES-table� ���� ��� ���. The plug-ins are activated due
to the wake up point.	�� must be interrupted so�� won’t
miss it’s deadline. The plug-ins set the next wake up point
and suspend.
� � 
 event(wakeUp),

event(taskEnd),

dispatch���

remove(��), insert(�� ,pos),

insert(��� ,first-pos), setWakeUp-

Point(9), dispatch()

ES-table� ���� ��� ���. The next instance of task� is
activated. Since the������ 
 �, 	�� will be put first in the
ready queue and executed. The plug-ins set the next wake
up point and suspend.
� � � event(wakeUp),

event(taskEnd),

dispatch��

remove(���),

setWakeUpPoint(10), dispatch()

ES-table� ���� ��� ���. 	�� has finished executing,
the plug-ins set the next wake up point and suspend.
� � �� event(wakeUp),

event(taskEnd),

dispatch��

remove(��),

setWakeUpPoint(11), dispatch()

ES-table� ���� ���. �� has finished it’s execution,��

is executed. The plug-ins set the next wake-up point and
suspend.
� � �� event(wakeUp),

event(taskEnd),

dispatch��

remove(��),

setWakeUpPoint(12), dispatch()

ES-table� ����. �� has finished executing, the plug-ins
set the next wake up point and suspend.

After this, because� � total length of the interval tables,
the plug-ins recreate the original intervals table by restoring
the sc andwu of the intervals. If an aperiodic task arrives
and has a deadline longer than the end of the interval table,
the table will be extended by repeatedly adding the original
table to the end of the extended table, until it is longer than
the deadline. All the interval information (start, end, sc, and
so on) of the extended table is adjusted to represent a larger
table, and thus later time points.

6. Conclusion

In this paper we addressed the need for adding function-
ality to systems, in particular scheduling algorithms, with-
out need for abandoning trusted methods or major revisions.

We proposed a plug-in approach for aperiodic task han-
dling, presented two different plug-in modules, and showed
their applicability to two scheduling schemes, EDF, and off-
line scheduling. Our method concentrates the aperiodic task
functionality into a software module with a defined inter-
face.

We presented an architecture to disentangle actual real-
time scheduling from dispatching and other kernel routines
with a small API, suited for a variety of scheduling schemes
as plug-ins. As the functionality of the plug-in is indepen-
dent of the basic scheduling scheme and the interface is very
small, we can insert and apply the aperiodic-plug-ins to both
off-line and on-line scheduling methods.

Further research will go into extending the applicability
to a wider range of systems and algorithms.

References

[1] G. Fohler.Flexibility in Statically Scheduled Real-Time Sys-
tems. PhD thesis, Wien,̈Osterreich, April 1994.

[2] G. Fohler. Joint scheduling of distributed complex periodic
and hard aperiodic tasks in statically scheduled systems.
In Proceedings of the 16th Real-Time Systems Symposium,
Pisa, Italy, Dec. 1995.

[3] D. Isovic and G. Fohler. Handling sporadic tasks in stati-
cally scheduled distributed real-time systems. InProceed-
ings of the 10th Euromicro Real-Time Systems Conference,
June 1999.

[4] D. Isovic and G. Fohler. Efficient scheduling of sporadic,
aperiodic, and periodic tasks with complex constraints. In
Proceedings of the 21st IEEE Real-Time Systems Sympo-
sium, Orlando, Florida, USA, Nov. 2000.

[5] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl,
C. Senft, and R. Zainlinger. Distributed fault-tolerant real-
time systems: The MARS Approach. 9(1):25–40, Feb. 1989.

[6] C. Liu and J. Layland. Scheduling algorithms for multi-
programming in hard real-time environment.Journ. of the
ACM, 20, 1, Jan. 1973.

[7] M. G. P. Gai, L. Abeni and G. Buttazzo. A new kernel ap-
proach for modular real-time systems development. InPro-
ceedings of the 13th Euromicro Real-Time Systems Confer-
ence, June 2001.

[8] K. Ramamritham. Allocation and scheduling of complex
periodic tasks. InInternational Conference on Distributed
Computing Systems, pages 108–115, 1990.

[9] M. Spuri and G. Buttazzo. Scheduling aperiodic tasks in dy-
namic priority systems.The Journal of Real-Time Systems,
pages 179–210, Mar. 1996.

[10] S. R. Thuel and J. Lehoczky. On-line scheduling of hard
deadline aperiodic tasks in fixed-priority systems. pages
160–171, Dec. 1993.

[11] S. R. Thuel and J. Lehoczky. Algorithms for scheduling hard
aperiodic tasks in fixed-priority systems using slack stealing.
In Proceedings of the Real-Time Symposium, pages 22–33,
San Juan, Puerto Rico, Dec. 1994.

[12] V. Yodaiken. Rough notes on priority inheritance. Technical
report, New Mexico Institut of Mining, 1998.


