Extracting End-to-end Timing Models from
Component-based Distributed Embedded
Systems*

Saad Mubeen, Jukka Miki-Turja and Mikael Sjodin

Abstract In order to facilitate the end-to-end timing analysis, we present a method
to extract end-to-end timing models from component-based distributed embedded
systems that are developed using the existing industrial component model, Rubus
Component Model (RCM). RCM is used for the development of software for vehic-
ular embedded systems by several international companies. We discuss and solve
the issues involved during the model extraction such as extraction of timing infor-
mation from all nodes and networks in the system and linking of trigger and data
chains in distributed transactions. We also discuss the implementation of the method
for the extraction of end-to-end timing models in the Rubus Analysis Framework.

1 Introduction

The model- and component-based development [1, 2] is often considered a promis-
ing choice for the development of distributed embedded systems for many reasons
such as handling complexity of embedded software; lowering development cost;
reducing time-to-market and time-to-test; allowing reusability; providing flexibil-
ity, maintainability and understandability; supporting modeling at higher level of
abstraction and timing analysis during the process of system development. In dis-
tributed embedded systems with real-time requirements, the timing behavior of the
system is as important as its functional behavior. The current trend for the industrial
development of such systems, especially in automotive domain, is focused towards
handling timing related information and performing timing analysis as early as pos-
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sible during the development process [3, 4, 5]. Hence, the component technology
for the development of distributed embedded systems should support the extraction
of required timing information into the end-to-end timing model.

Goals and Paper Contribution. Our main goal is to extract the end-to-end timing
models from component-based distributed embedded systems that are modeled with
the existing industrial component model, i.e., the Rubus Component Model (RCM)
[6, 7]. We focus on the following issues.

1. Extraction of timing information from all nodes and networks in a distributed
embedded application into the end-to-end timing model.

2. Linking of trigger and data chains in distributed transactions, i.e., chains of tasks
that are distributed over more than one node in a distributed embedded system.

3. Implementation of the timing model extraction method in the Rubus Analysis
Framework.

Paper Layout. The rest of the paper is organized as follows. In Section 2, we
discuss the background and research problem. In Section 3, we discuss main con-
stituents of the end-to-end timing model. In Section 4, we discuss the model extrac-
tion method. Section 5 presents the related work. Section 6 concludes the paper.

2 Background and Research Problem

2.1 The Rubus Concept

Rubus is a collection of methods and tools for model- and component-based devel-
opment of dependable embedded real-time systems. Rubus is developed by Arcticus
Systems [7] in close collaboration with several academic and industrial partners.
Rubus is today mainly used for development of control functionality in vehicles by
several international companies [10, 11, 12, 13]. The Rubus concept is based around
RCM and its development environment Rubus-ICE (Integrated Component devel-
opment Environment) [7], which includes modeling tools, code generators, analysis
tools and run-time infrastructure. The overall goal of Rubus is to be aggressively
resource efficient and to provide means for developing predictable and analyzable
control functions in resource-constrained embedded systems.

2.1.1 The Rubus Component Model

RCM expresses the infrastructure for software functions, i.e., the interaction be-
tween the software functions in terms of data and control flow separately. The con-
trol flow is expressed by triggering objects such as clocks and events as well as other
components. In RCM, the basic component is called Software Circuit (SWC). The
execution semantics of an SWC are: upon triggering, read data on data in-ports;
execute the function; write data on data out-ports; and activate the output trigger.
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RCM separates the control flow from the data flow among SWCs within a node.
Thus, explicit synchronization and data access are visible at the modeling level. One
important principle in RCM is to separate functional code and infrastructure imple-
menting the execution model. RCM facilitates analysis and reuse of components in
different contexts (SWC has no knowledge how it connects to other components).
The component model has the possibility to encapsulate SWCs into software assem-
blies enabling the designer to construct the system at different hierarchical levels.

2.1.2 The Rubus Code Generator and Run-Time System

From the resulting architecture of connected SWCs, functions are mapped to run-
time entities; tasks. Each external event trigger defines a task and SWCs connected
through the chain of triggered SWCs (trigger chain) are allocated to the correspond-
ing task. All clock triggered “chains” are allocated to an automatically generated
static schedule that fulfills the precedence order and temporal requirements. Within
trigger chains, inter-SWC communication is aggressively optimized to use the most
efficient means of communication possible for each communication link. Alloca-
tion of SWCs to tasks and construction of schedule can be submitted to different
optimization criterion to minimize, e.g., response times for different types of tasks,
or memory usage. The run-time system executes all tasks on a shared stack, thus
eliminating the need for static allocation of stack memory to each individual task.

2.1.3 The Rubus Analysis Framework

The Rubus model allows expressing real-time requirements and properties at the ar-
chitectural level. For example, it is possible to declare real-time requirements from a
generated event and an arbitrary output trigger along the trigger chain. For this pur-
pose, the designer has to express real-time properties of SWCs, such as worst-case
execution times and stack usage. The scheduler will take these real-time constraints
into consideration when producing a schedule. For event-triggered tasks, response-
time calculations are performed and compared to the requirements. The analysis
supported by the model includes shared stack analysis [36] and distributed end-to-
end response time and delay analysis [37].

2.1.4 The Rubus Simulation Model

The Rubus SIMulation Model (RSIM) and accompanying tools enable simulation
and testing of applications modeled with RCM at various hierarchical levels such
as an SWC or a function, a hierarchical RCM component structure as an Assembly
(ASM), a complete Electronic Control Unit (ECU) application (may require I/O
simulation), a set of ECU’s, a distributed system (may require I/O simulation of each
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ECU). To verify the logical functionality of these objects, RSIM supports testing in
an automatic generated framework based on the Rubus OS Simulator.

The input data is read from external tools or files, e.g., Matlab, and fed to the sim-
ulation process that controls the stimulation of input ports and state variables using
probes. The output from the simulation process is fed back to the external tools. By
building a simulated environment around the application to be simulated, the execu-
tion of the application can be controlled from a high-level tool such as LabView or
Matlab/Simulink. The high-level tools control the execution of the simulated target
by means of commands to stop and run the target clock a specified number of ticks.
The high-level tool sets the input data to the control function to be tested, performs
a number of execution steps, and then reads the generated output data. In this way
the execution flow can be visualized in each time increment.

2.2 Problem Statement: Linking of Distributed Chains

The distributed transactions in a distributed embedded system may consist of trig-
ger chains, data chains or a combination of both. The first task (component) in a
trigger chain is triggered independently, while the rest of the tasks are triggered by
their respective predecessors as shown in Fig. 1(a). Whereas, each task in a data
chain is triggered independently as shown in Fig. 1(b). A mixed chain is a combi-
nation of both trigger and data chains as shown in Fig. 1(c). The end-to-end timing
model should include linking and mapping information of all these chains. More-
over, the model should also identify the type of each chain because different timing
constraints are specified on different types of chains [37].
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Fig. 1 Example of (a) Trigger chain (b) Data chain (c) Mixed Chain

The linking and mapping problem is common in all types of chains. For simplic-
ity, we consider a distributed embedded system modeled with only trigger chains
as shown in Fig. 2. There are two nodes in the system with three SWCs in node A
and four SWCs in node B. SWCs communicate with each other by using both inter-
and intra-node communication. The intra-node communication takes place via con-
nectors whereas, the inter-node communication takes place via a real-time network
to which the nodes are connected. One trigger chain (distributed transaction) that is
activated by a clock consists of four Software Circuits, i.e., SWC1, SWC2, SWC4
and SWCS. It is identified with a solid-line arrow in Fig. 2. In this transaction, a
clock triggers SWC1 which in turn triggers SWC2. SWC2 then sends a signal to
the network. This signal is transmitted over the network in a message (frame) and is
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received by SWC4 at the receiver node. SWC4 processes it and sends it to SWCS.
The elapsed time between the arrival of a triggering event at the input of the task
corresponding to SWC1 and the production of response of the task corresponding
to SWCS is referred to as the holistic or end-to-end response time of the distributed
transaction and is also identified in Fig. 2. The second trigger chain that is activated
by an external event consists of three Software Circuits, i.e., SWC3, SWC6 and
SWCT. It is identified by a broken-line arrow in Fig. 2.

There may not be direct triggering connections between any two neighboring
SWCs in the chain which is distributed over more than one node, e.g., SWC2 and
SWC4 in Fig. 2. In this case, SWC2 communicates with SWC4 by sending signals
via the network. Here, the problem is that when a trigger signal is produced by
SWC2, it may not be sent straightaway as a message on the network. A message may
combine several signals and hence, there may be some waiting time for the signal
to be sent on the network. The message may be sent periodically or sporadically or
by any other rule defined by the underlying network protocol. When such trigger
chains are modeled using the component-based approach, it is not straightforward
to link them to extract the end-to-end timing model. For example, if a message is
received at node B then the following information should be available to correctly
link the received message in the chain: the ID of the sender node; the /D of the task
that generated this message; the /D of the destination node; and the /D(s) of the
task(s) that should receive this message. In order to get a bounded end-to-end delay,
a more important question is when and who will trigger the destination SWC when
a message is received at node B.
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Fig. 2 Trigger chains in distributed transactions

The existing modeling components in RCM do not provide enough support to
link and extract the corresponding timing information of distributed chains. There-
fore, special objects in the component technology are needed to provide the linking
information of distributed chains to extract end-to-end timing information. Further,
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there is a need to model mapping between signals and messages and vice versa.
SWCs inside a node communicate via signals whereas they communicate via mes-
sages if located on different nodes in a distributed transaction. Moreover, there is a
need to model exit and entry points for RCM models. An exit point is where a mes-
sage (data) leaves the model and is transmitted according to the protocol-specific
rules of the network. Similarly, an entry point is where a message enters the model
from the model of the network or any other model. The reason for the need of model-
ing exit and entry points for RCM models is to get the bounded delays in distributed
transactions. The model of entry and exit points will support the use of nodes devel-
oped using RCM with the nodes developed by other component technologies.

3 End-to-end Timing Model

The end-to-end timing model consists of timing properties, requirements and depen-
dencies concerning all tasks, messages, task chains and distributed transactions in
a distributed embedded system under analysis. Basically, it consists of two models,
i.e., system timing model and system linking model. All the required timing infor-
mation of each node in a distributed embedded application is extracted into a node
timing model. Similarly, the timing information of all networks in a distributed em-
bedded application is extracted into a network timing model. Together the node and
network timing model comprise the system timing model. All mapping and linking
information of distributed chains is extracted into the system linking model.

3.1 System Timing Model

Node Timing Model. The node timing model contains node-level timing infor-
mation. It is based on a transaction model with offsets developed by [22] and later
on, extended by many researchers, e.g., [23, 24]. A node, I", consists of a set of
k transactions Ii,...,I;. Each transaction I; is activated by mutually independent
events, i.e., the phasing between them is arbitrary. The activating events can be a
periodic sequence of events with a period T;. In case of sporadic events, 7; denotes
the minimum inter-arrival time between two consecutive events.

There are |I;| tasks in a transaction I and each task may not be activated until a
certain time, called an offset, elapses after the arrival of the external event. By task
activation we mean that the task is released for execution. A task is denoted by 7;;.
The first subscript, i, specifies the transaction to which this task belongs and the
second subscript, j, denotes the index of the task within the transaction.

A task, 7;;, is defined by the following attributes: a priority (F;;), a worst-case
execution time (Cj;), an offset (O;;), maximum release jitter (J;;), an optional dead-
line (D; ), maximum blocking time which is the maximum time the task has to wait
for a resource that is locked by a lower priority task (B;;). In order to calculate the
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blocking time for a task, usually, a resource locking protocol like priority ceiling or
immediate inheritance is used. Each task has a worst-case response time denoted by
R;;. In this model, there are no restrictions placed on offset, deadline or jitter, i.e.,
they can each be either smaller, greater or equal to the period.

Network Timing Model. This model contains network-level timing information of
a distributed embedded system. A network consists of a number of nodes that are
connected through a real-time network. Currently, the model supports Controller
Area Network (CAN) and its higher-level protocols such as CANopen, CAN for
Military Land Systems domain (MilCAN) and Hégglunds CAN (HCAN) [25]. If a
task on one node intends to communicate with a task on another node, it queues a
message in the send queue of its node. The network communication protocol ensures
the arbitration and transmission of all messages over the network.

Each message m has the following attributes: a unique identifier (ID,,); trans-
mission type showing whether the message is periodic or sporadic or mixed [25];
a unique priority (P,,); transmission time (Cp,); release jitter (J,,,) which is inher-
ited from the difference between the worst- and best-case response times of the task
queueing the message; data payload (s;,) in the message; period (7;,) in the case of
periodic transmission, Minimum Update Time (MUT,,) which is the minimum time
that should elapse between the transmission of any two sporadic messages in the
case of sporadic transmission, or both T,, and MUT,, in the case of mixed transmis-
sion [25, 26, 27, 28]; blocking time (B,,) which is the maximum time a message can
be blocked by lower priority messages; and worst-case response time (Ry,).

3.2 System Linking Model

In distributed embedded systems, the transactions are usually distributed over sev-
eral nodes. Hence, there exist chains of components (tasks) that may be distributed
over more than one node. A task chain consists of a number of tasks that are in a
sequence and have one common ancestor. A task in a chain may receive trigger, data
or both from its predecessor. Two neighboring tasks in a distributed transaction may
reside on two different nodes, while the nodes communicate with each other via a
network. When there are chains in a distributed embedded system, the end-to-end
timing model should not only contain timing related information but also the link-
ing information among all tasks and messages within each distributed chain (see
subsection 2.2) . The extraction of linking information from chains in a distributed
real-time system is more complex compared to a single node real-time system.

4 Extraction of End-to-end Timing Model

In this section, we resolve the issues discussed in the previous section. We also show
the applicability of our approach by modeling a two-node distributed embedded ap-
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plication with RCM. Finally, we present the conceptual organization of the method
for the extraction of end-to-end timing models in Rubus-ICE.

4.1 Proposed Solution

4.1.1 Addition of Special Components in RCM

In order to model real-time network communication and legacy communication in
distributed embedded systems, we introduced special purpose Software Circuits in
RCM, i.e., Output Software Circuit (OSWC) and Input Software Circuit (ISWC) in
[14]. There is one OSWC for each message that a node sends to the network. Sim-
ilarly, there is one ISWC for each message that a node receives from the network.
It should be noted that each of these special-purpose components is translated to
an individual task at the run time. We also introduced a new object in RCM, i.e.,
the Network Specification (NS) that represents the model of communication in a
physical network [14]. There is one NS for each network protocol. NS contains Sig-
nal Mapping which includes the following information: How are signals mapped
to messages? How many signals a message contains? How are signals encoded in
a message at the sender node? How are signals decoded from a message at the re-
ceiving node? The model representation of OSWC, ISWC and NS in a two-node
distributed embedded system modeled with RCM is shown in Fig. 3.
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Fig. 3 Example of a two-node distributed embedded system modeled with RCM

When the OSWC component is triggered, it executes the required functionality
(e.g., mapping of signals to a message) and then the data (message) is transferred
from the RCM model of a node to the network controller or another model of com-
munication network. Therefore, OSWC also represents the model of an exit point
for RCM models. Similarly, ISWC component also represents the model of an entry
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point for RCM models. Since the trigger in-ports of all OSWC components and trig-
ger out-ports of all ISWC components along a distributed transaction are referenced
in NS, the end-to-end timing delay can be bounded by specifying the delay in the
extra-model medium.

4.1.2 Identification of Distributed Chains

In order to unambiguously identify each individual chain, we attach “trigger depen-
dency” attribute with each task. This attribute is part of the data structure of tasks in
the end-to-end timing model. If a task is triggered by an independent source such as
a clock then this attribute will be assigned “independent”. On the other hand, if the
task is triggered by another task then this parameter will be assigned “dependent”.
Moreover, a precedence constraint will also be specified on this task in the case of
dependent triggering. If this attribute for all tasks (except the first) has value “de-
pendent”, the chain will be identified as a trigger chain. On the other hand, if this
attribute for more than one task in a chain has “independent” value then the chain
will identified as a data chain.

4.1.3 Linking and Mapping of Distributed Chains

The linking information of all distributed chains in the modeled distributed embed-
ded application is provided in the Network Specification. We assign pointers (refer-
ences) to trigger in-ports of OSWCs and the trigger out-ports of ISWCs along the
same distributed transaction. All such pointers for all trigger chains in the system
are specified in the NS.

An example of a two-node distributed embedded system modeled in RCM is
shown in Fig. 3. There are four SWCs in Node A while three SWCs in Node B. We
consider CAN or any of its high-level protocols for inter-node communication. In
this example, the nodes are connected to a CAN network. There are three trigger
chains in the system that are distributed over two nodes:

o EC|:SWCl1 —=SWC2— OSWC_Al1 — ISWC_B1 — SWC5 — SWC6.
o EC,:SWC3 — OSWCAl = ISWC_B1 — SWC5 — SWC6.
o EC3:SWCT — OSWC_B1 = ISWC_Al — SWCA4.

The trigger chains EC; and EC; are triggered by external events whereas the trig-
ger chain ECj is triggered by a clock. The references to the trigger ports of OSWC
and ISWC in each trigger chain are specified in NS. There is a pointer array P; that
references the trigger in-port of OSWC B1 in Node B and trigger out-port of ISWC
Al in node A. Similarly, a pointer array P is stored in NS that points to the trigger
in-port of OSWC Al in Node A and trigger out-port of ISWC B1 in node B. In this
way, all the neighboring components located in different nodes within a distributed
trigger chain can be linked to each other. The grey boxes outside the model are spe-
cific for each network communication protocol. In this example they represent CAN
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SEND and CAN RECEIVE routines. The CAN SEND grey box represents a CAN
controller in a node and is responsible for receiving messages from the correspond-
ing OSWC and queueing them for transmission over the network.

When a message arrives at the receiving node, it is transferred by the physical
network drivers to the CAN RECEIVE grey box which is responsible for raising
an interrupt request and passing the message to the corresponding ISWC compo-
nent. In this case, the Triginterrupt object in RCM corresponding to the interrupt
is connected to the in-port of the ISWC component. If CAN drivers use polling-
based processing instead of interrupts then the in-port of the ISWC component is
connected to the clock object in RCM whose period is equal to the polling period.
Upon receiving a message, an ISWC component decodes it, extracts signals from it,
places the data on the corresponding data port (connected to the data in-port of the
destination SWC) and triggers the corresponding trigger port by using the linking
information in NS. It should be noted that there can be more than one ISWC and
OSWC components in a node. It can be seen from Fig. 3 that OSWC and ISWC
essentially make the exit and entry points for the node models.

4.2 Extraction of End-to-end Timing Model in Rubus-ICE

In Rubus-ICE, a distributed embedded application is modeled in Rubus Designer. It
is then compiled to the Intermediate Compiled Component Model (ICCM). Apart
from the compiled component model, ICCM file also includes timing and linking in-
formation of the modeled system. The end-to-end timing model that is implemented
in the Rubus Analysis Framework, extracts the required timing and linking infor-
mation from ICCM file as shown in Fig. 4. The end-to-end timing model consists
of three models, i.e., node timing model, network timing model and system linking
model. From the extracted timing model, the Rubus Analysis Framework performs
the end-to-end timing analysis and then provides the results, i.e., response times of
individual tasks, response times of network messages, end-to-end response times
and delays of distributed chains, network utilization, etc., back to the Rubus-ICE
tool suite. The schedulability analysis results of a case study, performed using our
timing model extraction method, are presented in [37].

5 Related Work

There are very few commercial component models for the development of dis-
tributed embedded systems especially in automotive domain. In our previous work,
we carried out a detailed comparison of RCM with various models for distributed
embedded systems [14]. We briefly highlight a few of them.

AUTOSAR (AUTomotive Open System ARchitecture) [15] is a standardized
software architecture for the development of software in automotive domain. It can
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Fig. 4 Extraction of end-to-end timing model in Rubus tool-suite

be viewed as a standardized distributed component model [16]. When AUTOSAR
was being developed, there was no focus placed on its ability to specify and han-
dle real-time requirements and properties. On the other hand, such requirements
and capabilities were strictly taken into account right from the beginning during
the development of RCM. AUTOSAR describes embedded software development
at a relatively higher level of abstraction compared to RCM. A Software Circuit
in RCM more resembles to a runnable entity (a schedulable part of AUTOSAR
software component) instead of AUTOSAR software component. As compared to
AUTOSAR, RCM clearly distinguishes between control flow and data flow among
software components in a node. AUTOSAR hides the modeling of execution envi-
ronment. Whereas, RCM explicitly allows the modeling of execution requirements,
e.g., jitter and deadlines, at an abstraction level close to the functional modeling
while abstracting the implementation details.

TIMMO (TIMing MOdel) [5] project is an initiative to provide AUTOSAR with
a timing model. The timing extensions proposed in this project are included in the
version 4.0 of AUTOSAR specification [29]. It describes a predictable methodology
and a language, TADL (Timing Augmented Description Language) [4], to express
timing requirements and timing constraints in all design phases during the devel-
opment of automotive embedded systems. Both TIMMO methodology and TADL
have been evaluated on prototype validators. To the best of our knowledge there
is no concrete industrial implementation of TIMMO. In TIMMO-2-USE project
[3], TADL2 language has been introduced which includes a major redefinition of
TADL. TADL?2 also supports the AUTOSAR extensions regarding timing model.
Apart from the redefinition of the language, algorithms, tools and a methodology
has been developed to model advanced timing at different levels of abstraction. The
use cases and validators indicate that the project results are in compliance with the
AUTOSAR-based tool chain [29]. Since this project is recently finished, it may take
some time for the results of the project to become mature and find their way in the
industrial applications.

ProCom [8] is a two-layer component model for the development of distributed
embedded systems. ProCom is inspired by RCM, and there are a number of similar-
ities between the ProSave modeling layer (a lower layer in ProCom) and RCM. For
example, components in both ProSave and RCM are passive. Similarly, both models
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clearly separate data flow from control flow among their components. Moreover, the
communication mechanism for component interconnection used in both models is
pipe-and-filter. The validation of a complete distributed embedded system, modeled
with ProCom, is yet to be done. Moreover, the development environment and the
tools accompanying ProCom are still evolving.

BIP framework [30] provides a 3-layered representation, i.e., behavior, inter-
action and priority for modeling of heterogeneous real-time components. Unlike
RCM, it does not distinguish between required and provided or input and output in-
terfaces (or ports). BIP uses triggering, rendezvous and broadcast styles for compo-
nent interaction. Whereas, RCM used the pipe-and-filter style for interaction among
components. BIP provides connections to IF Toolset [31] and PROMETHEUS tools
[32] to support modeling, validation, static analysis, model checking and simulation.
On the other hand, RCM is supported by the Rubus-ICE tool suite that provides a
complete modeling, analysis and simulation support for the component-based de-
velopment of distributed real-time systems.

Robocop [34, 33] is a component-based framework for the development of mid-
dleware in the consumer electronics domain, e.g., consumer devices like mobile
phones, DVD players, ATM machines, etc. On the other hand, RCM is intended for
the development of real-time embedded systems in the automotive domain. The in-
teraction mechanism among components in both models is also different as Robocop
uses request response while Rubus uses pipe and filter. However, there are several
similarities between Robocop and RCM, e.g., both have a low resource footprint,
both are able to generate C code and both support deployment at the compilation
step (in addition, Robocop supports deployment at run-time).

A related research presents a detailed overview of timing aspects during the de-
sign activities of automotive embedded systems [18]. In [19], the authors define
end-to-end delay semantics and present a formal framework for the calculation of
end-to-end delays for register-based multi-rate systems. Like any other timing anal-
ysis, they assume that the timing information of the system is available as an input.
On the other hand, our focus is on the extraction of required information into an
end-to-end timing model to carry out end-to-end timing analysis.

In our previous work, we extended RCM to support modeling and analysis of
distributed embedded systems. In [20], we explored various options for model-
ing of real-time network communication in RCM. In [14], we discussed modeling
of legacy communication in component-based distributed embedded systems. We
added new components in RCM to encapsulate and abstract the communication pro-
tocols, allow use of legacy nodes and legacy protocols in a component- and model-
based software engineering environment, and support model- and component-based
development of new nodes that are deployed in legacy systems that use predefined
communication rules. Further, we highlighted the problem of linking trigger chains
in the transactions that are distributed over several nodes in a distributed embedded
system [21].



Extracting End-to-end Timing Models from Component-based Distributed Embedded ... 13

6 Conclusion

In this paper, we discussed the extraction of end-to-end timing models from compo-
nent-based distributed embedded systems modeled with the industrially available
component model, the Rubus Component Model (RCM). The purpose of extract-
ing such models is to perform the end-to-end timing analysis during the develop-
ment process. We discussed and resolved various issues during the model extraction
such as extraction of timing information from all nodes and networks in the system
and extraction of linking model containing the linking information of all distributed
chains. We also described the implementation of the end-to-end timing model ex-
traction method in the Rubus Analysis Framework.

Although, we discussed the extraction of end-to-end timing models from RCM
models, we believe that the model extraction method is also suitable for other com-
ponent models for the development of distributed embedded systems that use a
pipe-and-filter style for component interconnection, e.g., ProCom [8], COMDES
[9]. Moreover, our approach can be used for any type of “inter-model signaling”,
where a signal leaves one model (e.g. a node, or a core, or a process) and appears
again in some other model.
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