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Saad Mubeena,b, Jukka Mäki-Turjaa,b, Mikael Sjödina

Contact: saad.mubeen@mdh.se, +46 21 10 31 91

aMälardalen Real-Time Research Centre (MRTC), Mälardalen University, Väster̊as,
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Abstract

We propose a novel model- and component-based technique to support
communications-oriented development of software for vehicular distributed
real-time embedded systems. The proposed technique supports modeling of
legacy nodes and communication protocols by encapsulating and abstracting
the internal implementation details and protocols. It also allows modeling
and performing timing analysis of the applications that contain network traf-
fic originating from outside of the system such as vehicle-to-vehicle, vehicle-
to-infrastructure, and cloud-based applications. Furthermore, we present a
method to extract end-to-end timing models to support end-to-end timing
analysis. We also discuss and solve the issues involved during the extraction
of these models. As a proof of concept, we implement our technique in the
Rubus Component Model which is used for the development of software for
vehicular embedded systems by several international companies. We also
conduct an application-case study to validate our approach.
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1. Introduction

In most of the model- and component-based software development strate-
gies for automotive and other vehicular applications, models of the behavior
of each on-board function are developed and successively refined to reach the
implementation of each node or Electronic Control Unit (ECU). In this re-
finement process, the communications needed for each node are derived and
a message set for each on-board network is defined. Moreover, timing pa-
rameters and requirements for each message are established. The majority of
existing model- and component-based development approaches for vehicular
distributed real-time embedded systems1 allow for structural and functional
modeling. They do not support execution modeling [1] which is concerned
with the modeling of run-time properties and/or requirements (e.g., end-to-
end deadlines and jitter) of software functions. The modeling of the systems
should extend down to the execution level to allow precise control of resource
utilization and that timing requirements are not violated when the system
is executed. However, providing such modeling support is very challenging
because the functionality in the systems can be realized with more than one
execution model, e.g., separate execution models for the nodes and networks.
Today, one of the main challenges during the development of the systems in
the industry is to model and express timing related information and perform
timing analysis [2].

One way to deal with these challenges is to use a component technology
that allows model- and component-based development of the systems with
the support for modeling, analyzing, predicting and modifying the execu-
tion behavior. Such a component technology should complement structural
and functional modeling with the modeling of execution requirements at
an abstraction level close to the functional specification while abstracting
the implementation details. The component technology should support the
expression of timing related information and facilitate the identification of
timing errors during the development by rendering the modeled application
for end-to-end timing analysis with ease and unambiguity.

However, building such a component technology raises many challenges.
One of the main reasons behind these challenges is that the development pro-
cess for these systems in academia and industry may be very different from

1Throughout the paper, we use the terms system or application to refer to component-
based vehicular distributed real-time embedded system or application
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each other. In academia, the development process often starts with discus-
sions about models and functions. The models are assumed to be platform
independent. Further, it is assumed that the models and functions will be
deployed on specific platforms at a later stage. However, this way of develop-
ment for the systems is often not practiced in the industry, especially in the
automotive or vehicle domain. The traditional process for the development
of these systems in the industry starts with designing the bus (or network)
communication. The infrastructure for the system to be developed is already
known. In the early stage of industrial development process, usually the focus
is on finding the answers to the questions as follows. How many busses will
there be in the system? Which nodes will be connected to which bus? How
many messages will be there in the system? Which messages will be sent by
each node? After finding the answers to these questions, the focus is shifted
towards the development of functions. Thus, communications-oriented de-
velopment process is used.

An important class of emerging distributed applications is novel func-
tionality in road vehicles. These applications realize novel services based on
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications.
Both V2V and V2I are expected to support novel applications for road-safety,
traffic efficiency, and driver/passenger comfort and entertainment. Already
today, there are examples of traffic related cloud-services, e.g., community
map and turn-by-turn navigation such as Waze2 and traffic-congestion infor-
mation by Google. However, to be successfully adopted, the development of
these new applications needs to be integrated in contemporary workflow for
development of vehicular functions. In most of the model- and component-
based software development strategies, there is often non-existing, or limited,
support to model network traffic originating from outside the vehicle. That
is, traffic from V2V, V2I, and other, e.g., cloud-based applications are not
naturally modeled and analyzed in existing approaches.

1.1. Goals and paper contributions

In order to provide a model- and component-based approach to support
communications-oriented development of vehicular distributed real-time em-
bedded systems, we target the following challenges in this paper3.

2http://www.waze.com
3This work is an extension of our previous work [3].
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1. Modeling of legacy network communication.

(a) Use of legacy (previously developed) nodes.
(b) Development of new nodes that are deployed in legacy systems

that use predefined communication rules.
(c) Adaptation4 of a node when communication rules change without

affecting its internal component design.

2. Extraction of end-to-end timing models from these systems.

3. Modeling and timing analysis of the applications that contain network
traffic originating from outside of the system.

In order to provide proof of concept, we realize this technique in the existing
industrial model the Rubus Component Model (RCM) [4]. We also conduct
the automotive-application case study to validate our approach.

1.2. Paper layout

The rest of the paper is organized as follows. Section 2 discusses the
background and related work. In Section 3, we discuss the research problem
in detail. In Section 4, we introduce a new approach for modeling legacy
network communication. In Section 5, we discuss a method to extract end-
to-end timing models. In Section 6, we present a case study. Section 7
concludes the paper and discusses the future work.

2. Background and related work

2.1. The Rubus concept

Rubus is a collection of methods and tools for model- and component-
based development of dependable embedded real-time systems. Rubus is
developed by Arcticus Systems5 in close collaboration with several academic
and industrial partners. Rubus is today mainly used for development of con-
trol functionality in vehicles by several international companies, e.g., BAE
Systems Hägglunds6, Volvo Construction Equipment7, Knorr-bremse8, and

4We assume the adaptation (redeploying or upgrading) of a node is done offline. Dy-
namic adaptation and reconfiguration of the system is not within the scope of our current
work.

5http://www.arcticus-systems.com
6http://www.baesystems.com/hagglunds
7http://www.volvoce.com
8http://www.knorr-bremse.com
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Mecel9. The Rubus concept is based around RCM and its development envi-
ronment Rubus-ICE (Integrated Component development Environment) [5],
which includes modeling tools, code generators, analysis tools and run-time
infrastructure. The overall goal of Rubus is to be aggressively resource effi-
cient and to provide means for developing predictable, timing analyzable and
synthesizable control functions in resource-constrained embedded systems.

The Rubus concept jointly considers the following viewpoints during the
development. These viewpoints are also shown in Figure 1.

1. The viewpoint of the developer/designer10.
2. The viewpoint of the analysis framework.
3. The viewpoint of the run-time system.

Ericsson research Day 20101125

The development context

System Architecture

Analysis
FrameworkDeveloper

Run-time system

Automatic
translation

Synthesis

Designs

Execute

Figure 1: Three main viewpoints jointly considered in Rubus during the development.

In the viewpoint of the developer, the software architecture of the ap-
plication is modeled in terms of software components and their interactions.
This viewpoint consists of tools that handle software complexity, support ap-
propriate level of expressiveness, and provide abstraction mechanisms that
hide low-level details (such as source code).

In the viewpoint of the analysis framework, the software architecture is
formal enough to render itself to automated analysis (e.g., response-time
analysis). The analysis framework has the knowledge of the component ar-
chitecture as well as the constraints and services provided by the run-time

9http://www.mecel.se
10Developer refers to the application developer. We overload the terms “developer”,

“designer” and “user” throughout the paper.
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system. This viewpoint comprises of tasks (which are run-time entities),
their activations, their interactions, and analysis models of tasks and mes-
sages. This viewpoint hides the complexity from the developer by providing
automated analysis tools that extract the analysis models from the software
architecture.

In the viewpoint of the run-time system, the synthesis takes (as input)
the architecture design and possibly some artifacts (such as priorities for a
task model) produced by the analysis framework, and maps it to the run-time
system. The synthesis tools use the task model attributes and the component
architecture, that is both syntactically and semantically correct, to generate
code for the run-time system. This viewpoint provides sufficient run-time
services to the components of the application while keeping a small footprint
for the run-time system. With this view, the entire component framework is
provided at development time, but only the parts that are used are mapped
down to the actual run-time system.

2.1.1. The Rubus Component Model (RCM)

The purpose of the component model is to express the infrastructure for
software functions, i.e., the interaction between the software functions in
terms of data and control flow. The control flow is expressed by trigger-
ing objects such as internal periodic clocks, interrupts, internal and external
events. One important principle in RCM is to separate functional code and
infrastructure implementing the execution model. The infrastructure is syn-
thesized from the model.

In RCM, the basic component is called a Software Circuit (SWC). It is
the lowest-level hierarchical element in RCM and its purpose is to encapsu-
late basic functions. The SWCs interact with each other through the use
of trigger and data ports. Trigger and data correspond to trigger flow and
data flow respectively. An SWC can be seen as a type, or a class, that can
be instantiated an arbitrary number of times. By separating functional code
from the infrastructure, RCM facilitates analysis and reuse of components
in different contexts (an SWC has no knowledge how it connects to other
components). Furthermore, the component model has a possibility to encap-
sulate SWCs into software assemblies enabling the designer to construct the
system at different hierarchical levels.

The execution semantics of software components (functions) is simply:

1. upon triggering, read data on data in-ports;
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2. execute the function;

3. write data on data out-ports;

4. activate the output trigger.

The software architecture of an example system modeled with RCM is
depicted in Figure 2. The example shows how components interact with
external events and actuators with regard to both data and triggering.

Clock
Input 

trigger port
Output 

trigger port

Input data port Output data portSoftware Circuit
Actuation 

signalSensor signal

Trigger 
terminator

Figure 2: Example of the architecture of a system modeled in RCM.

2.1.2. The Rubus code generator and run-time system

Using the resulting software architecture of connected SWCs, the run-
time system maps SWCs to run-time entities; tasks. Each external event
trigger defines a task and SWCs connected through the chain of triggered
SWCs (triggering chain) are allocated to the corresponding task. All clock
triggered “chains” are allocated to an automatically generated static schedule
that fulfills the precedence order and other temporal requirements.

Within trigger chains, inter-SWC communication is aggressively opti-
mized to use the most efficient means of communication possible for each
communication link. For example, there is no use of semaphores in point-
to-point communications within a trigger chain. Another example is sharing
of memory buffers between ports when there are no overlapping activation
periods. This means that a buffer can be shared between two ports belonging
to different SWCs if it can be guaranteed that these ports will never use the
buffer space at the same time. This is true in the case of a trigger chain
because a task early in the chain can never be active at the same time as
a task late in the chain (considering the deadlines of tasks are smaller than
their respective periods).

Allocation of SWCs to tasks and construction of schedule can be sub-
mitted to different optimization criterion to minimize, e.g., response times
for different types of tasks, or memory usage. The run-time system executes
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all tasks on a shared stack, thus eliminating the need for static allocation of
stack memory to each individual task.

2.1.3. The Rubus analysis framework

The Rubus model allows expressing real-time requirements and proper-
ties at the architectural level. For example, it is possible to declare real-time
requirements from a generated event and an arbitrary output trigger along
the trigger chain. For this purpose, the designer has to express real-time
properties of SWCs such as Worst Case Execution Times (WCETs). The
scheduler will take these real-time constraints into consideration when pro-
ducing a schedule. For event-triggered tasks, response-time calculations are
performed and compared to the requirements. The timing analysis supported
by the model includes tighter response-time analysis of tasks with offsets [6],
response-time analysis of Controller Area Network (CAN) [7, 8, 9], and dis-
tributed end-to-end response time and delay analysis [10].

2.2. Related work

There are many modeling technologies that support component-based de-
velopment of distributed systems, e.g., Distributed Component Object Model
(DCOM) [11], Common Object Request Broker Architecture (CORBA) [12]
and Enterprise JavaBeans (EJB) [13]. These models in their original form
are not suitable for the development of resource-constrained distributed em-
bedded systems with real-time requirements because they require excessive
amount of computing resources, have large memory footprint and have in-
adequate support for modeling real-time communication. We focus on the
component technologies that are targeted towards the vehicular domain.

2.2.1. AUTOSAR

AUTOSAR (AUTomotive Open System ARchitecture) [14] is an indus-
trial initiative to provide standardized software architecture for the develop-
ment of software in the automotive domain. In AUTOSAR, the application
software is defined in terms of Software Components (SWCs). The distribu-
tion of SWCs, their virtual integration and communication at design time is
handled by the Virtual Function Bus (VFB). Furthermore, VFB hides the
low-level implementation and communication details at the design time. We
list some of the differences between AUTOSAR and RCM as follows.
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• When AUTOSAR was being developed, there was no focus placed on
its ability to specify and handle timing-related information such as real-
time requirements and properties. On the other hand, these require-
ments and capabilities were taken into account right from the beginning
during the development of RCM.

• AUTOSAR describes embedded software development at a higher level
of abstraction compared to RCM. A Software Circuit in RCM more
resembles to a runnable entity (schedulable element) compared to AU-
TOSAR SWC.

• Unlike AUTOSAR, RCM clearly distinguishes between the control flow
and the data flow among SWCs within a node.

• In RCM, special network interface components are used if SWCs re-
quire inter-ECU communication; otherwise, SWCs communicate via
data and trigger ports. On the other hand, AUTOSAR does not dif-
ferentiate between intra- and inter-node communication at modeling
level. There are no special components in AUTOSAR for modeling
inter-node communication.

• AUTOSAR hides the modeling of the execution environment. On the
other hand, RCM explicitly allows the modeling of execution require-
ments, e.g., jitter and deadlines, at an abstraction level close to the
functional specification while abstracting the implementation details.

Despite these differences, there are some similarities between AUTOSAR
and RCM, e.g., the sender receiver communication mechanism in AUTOSAR
is very similar to the pipe-and-filter communication mechanism for compo-
nents interconnection in RCM. In conclusion, AUTOSAR is more focussed on
the functional and structural abstractions, hiding the implementation details
about execution and communication. Whereas, RCM is all about modeling,
analysis and synthesis of the execution environment of software functions.
AUTOSAR hides the details that RCM highlights.

2.2.2. TIMMO, TIMMO-2-USE, TADL and TADL2

TIMing MOdel (TIMMO) [2] is a large EU research project with both
academic and industrial partners. It is more academic driven. It is an ini-
tiative to provide AUTOSAR with a timing model. The timing extensions
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proposed in this project are included in the version 4.0 of AUTOSAR speci-
fication [15]. TIMMO describes a predictable methodology and a language,
Timing Augmented Description Language (TADL) [16], to express timing
requirements and constraints during all design phases in the development of
automotive embedded systems. TADL is inspired by Modeling and Anal-
ysis of Real Time and Embedded systems (MARTE) [17] which is a UML
profile for model-driven development of real-time and embedded systems.
TIMMO development methodology makes use of structural modeling pro-
vided by EAST-ADL [18] which is a domain specific architecture description
language targeted towards the automotive domain. TIMMO methodology
and its model structure abstract the modeling of communication at imple-
mentation level of EAST-ADL where AUTOSAR is used. Hence, the model-
ing of intra- and inter-node communication mechanisms are the same as that
of AUTOSAR. Both TIMMO methodology and TADL have been evaluated
on prototype validators. To the best of our knowledge there is no concrete
industrial implementation of the results of TIMMO project.

TIMMO-2-USE [19], another large EU research project, is a followup on
TIMMO project. In this project, TADL2 language has been introduced which
includes a major redefinition of TADL. TADL2 supports the AUTOSAR
extensions regarding timing model. Apart from the redefinition of TADL,
this project provides new algorithms, tools, and a methodology to model
advanced timing information at different levels of abstraction. The use cases
and validators indicate that the project results are in compliance with the
AUTOSAR-based tool chain [15]. Since this project is recently finished, it
may take some time for its results to become mature and find their way in
the industrial use. Arcticus Systems has been involved in TIMMO-2-USE
project as one of the industrial partners.

In conclusion, TIMMO methodology and TADL focus on expressing tim-
ing information. They are initiatives to annotate AUTOSAR with a timing
model. This will be hard to accomplish all the way since AUTOSAR aims at
hiding implementation details of execution environment and communication
through the VFB. At the modeling level, there is no information in AU-
TOSAR to express low-level details, e.g., linking information. These details
are necessary to extract the timing model from the architecture. There is no
focus in this initiative on how to extract this information from the model or
perform timing analysis or synthesize the run-time framework. In our view,
timing model means extracting enough information to be able to perform
certain kind of timing analysis, e.g., end-to-end response-time analysis.
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2.2.3. ProCom

ProCom [20], developed as part of a research project at Mälardalen Uni-
versity, is a two-layered component model for the development of distributed
embedded systems. At the upper layer, called ProSys, it models a system
with concurrent subsystems that communicate with each other by means of
asynchronous messages. At the lower layer, called ProSave, a subsystem is
internally modeled in terms of functional components which are implemented
as a piece of code, e.g., a C function. ProCom is inspired by RCM and there
are a number of similarities between the ProSave modeling layer and RCM:

• components in both ProSave and RCM are passive,

• both models clearly separate data flow from control flow among their
components,

• both models use pipe-and-filter style of communication mechanism for
components interconnection.

However, ProCom does not differentiate between intra- and inter-node com-
munication which is unlike RCM. ProCom hides communication details,
whereas RCM lifts them up to the modeling level. It will be very hard in
ProCom to extract the timing model and perform end-to-end timing analysis
at the level where it is done in RCM.

2.2.4. COMDES-II

COMDES-II [21], developed at the University of South Denmark, pro-
vides a component-based framework for the development of distributed em-
bedded control systems. It models the architecture of a system at two levels.
At upper level, an application is modeled as a network of actors that are
active components. Actors communicate with each other by sending labeled
messages. At the lower level, the functionality of an actor is modeled in
terms of Function Blocks which are passive components similar to the SWCs
in RCM. Unlike RCM, COMDES-II employs signal-based communication
for both intra- and inter-node interactions. COMDES-II does not include
explicit components to model network communication. Despite few differ-
ences, there are a number of similarities between RCM and COMDES-II.
However, it will be very hard in COMDES-II to extract the timing model
and perform end-to-end timing analysis at the level where it is done in RCM.
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2.2.5. Middleware-based approaches

Object Management Group defined middleware technologies such as Real-
Time CORBA, minimum CORBA and CORBA lightweight services for the
development of real-time and distributed embedded systems [22]. The run-
time framework of Real-time CORBA is heavyweight. On the other hand,
RCM has a small run-time footprint, i.e., timing and memory overhead.
In RCM, we do the timing analysis and actually synthesize the application
as run-time and communication platform efficient as possible. We believe,
due to high resource requirements at run-time, Real-time CORBA is not
efficiently usable in the type of applications that RCM focuses on.

There are other middleware solutions such as iLand project [23] in which a
middleware-based framework is introduced to support predictable and time-
bounded reconfiguration at run-time for the service-oriented distributed real-
time systems. The methodology in this work supports composition of dis-
tributed applications based on the concept of services while taking into ac-
count real-time properties and requirements. This work focuses on service-
oriented development, whereas our approach is based on component-based
development. The framework in [23] relies on run-time mechanisms such as
dual-band priority assignment [24] for dynamic resource management and re-
configuration. In [25], a component-based modeling approach is introduced
that enables dynamic replacement of components at run-time while preserv-
ing the temporal properties of the system. On the other hand, we do not con-
sider dynamic reconfiguration and replacement of components in our work.
Most of these techniques have been validated for soft real-time systems in
the multimedia-applications domain. However, our approach mostly focuses
on hard real-time distributed embedded systems in the vehicular domain.

3. Problem statement

To provide a model- and component-based approach to support communi-
cations-oriented development of the systems, we target the following issues.

3.1. Modeling of legacy network communication

In an ideal scenario, it should be possible to automatically generate the
communication from the design model for each distributed real-time appli-
cation. However, this is often not the practice in the industry because of
presence of legacy communications and legacy systems. These systems have
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their own predefined rules for communication. In order to support the mod-
eling of these systems, the implementation details must be abstracted; the
communication protocols must be encapsulated and abstracted; and adap-
tation of a node must be supported when communication rules change (e.g.,
due to re-deployment in a new system or due to upgrades in the communica-
tion system) without affecting its internal component design. This problem
can be formulated as: how to model legacy network communication and allow
the use of legacy nodes to support the communications-oriented development
processes for component-based distributed real-time embedded systems?

3.2. Issues concerning the extraction of end-to-end timing model

In order to ensure that the system will behave in a timely manner during
its execution, we need to analyze tasks, messages and event chains in dis-
tributed transactions and predict the end-to-end delays. For this purpose, the
end-to-end timing model should be unambiguously extracted from the mod-
eled application. Moreover, the distributed transactions in the applications
should be unambiguously identified, extracted and linked. The distributed
transactions may consist of trigger chains, data chains or a combination of
both. The first SWC in a trigger chain is triggered independently, while the
rest of the SWCs are triggered by their respective predecessors as shown in
Figure 3 (a). Whereas, each SWC in a data chain is triggered independently
as shown in Figure 3 (b). A mixed chain is a combination of both trigger and
data chains as shown in Figure 3 (c). The end-to-end timing model should in-
clude linking and mapping information of all these chains. The model should
also identify the type of each chain because different timing constraints are
specified on different types of chains [26]. Furthermore, data chains require
different end-to-end timing analysis compared to trigger chains [10].

Sensor
Input SWC_A SWC_B SWC_C

10 ms 15 ms

Data sink

Trigger Merge

10 ms 10 ms

Data 
sink

Sensor 
Input

SWC_A SWC_B SWC_C

(c)

10 ms 10 ms 10 ms
SWC_A SWC_CSWC_B

Data 
sink

Sensor 
Input (b)

10 ms SWC_A SWC_CSWC_B

Data 
sink

Sensor 
Input (a)

Figure 3: Example of (a) Trigger chain (b) Data chain (c) Mixed Chain.

The linking and mapping problem is common in all types of chains. For
simplicity, we consider the system which is modeled with only trigger chains
as shown in Figure 4. There are two nodes in the system with three SWCs
in node A and four SWCs in node B. SWCs communicate with each other
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by using both inter- and intra-node communication. The intra-node commu-
nication takes place via connectors. Whereas, the inter-node communication
takes place via a real-time network to which the nodes are connected. One
trigger chain that is activated by a clock consists of four SWCs namely SWC1,
SWC2, SWC4 and SWC5. We regard this chain as distributed trigger chain
because it is distributed over more than one node. It is identified with the
solid-line arrow in Figure 4. In this chain, a clock triggers SWC1 which in
turn triggers SWC2. SWC2 then sends a signal to the network. This signal
is transmitted over the network in a message (frame11) and is received by
SWC4 at the receiver node. SWC4 processes it and sends it to SWC5. The
time elapsed between the event trigger at input of the task corresponding to
SWC1 and production of the response of the task corresponding to SWC5
is referred to as the holistic or end-to-end response time of the distributed
chain and is identified in Figure 4. The second distributed trigger chain
that is activated by an external event consists of three SWCs namely SWC3,
SWC6 and SWC7. It is identified by the dashed-line arrow in Figure 4.

There may not be direct triggering connections between any two neigh-
boring SWCs in the chain which is distributed over more than one node,
e.g., SWC2 and SWC4 in Figure 4. In this case, SWC2 communicates with
SWC4 by sending signals over the network. Here, the problem is that when
a trigger signal is produced by SWC2, it may not be sent straightaway as a
message to the network. A message may combine several signals, and hence,
there may be some waiting time for the signal to be sent to the network. The
message may be sent periodically or sporadically or by any other rule defined
by the underlying network protocol. When these trigger chains are modeled
using the component-based approach, it is not straightforward to link them
to extract the end-to-end timing model. For example, if a message is received
at node B then the following information should be available to correctly link
the received message in the chain: the ID of the sender node; the ID of the
task corresponding to SWC that generated this message; the ID of the des-
tination node; and the ID(s) of the task(s) corresponding to SWC(s) that
should receive this message. In order to get a bounded end-to-end delay,
a more important question is when and who triggers the destination SWC
when a message is received at the destination node.

11We use the terms message and frame interchangeably because we only consider mes-
sages that fit into one frame.
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Model of a Distributed Real-time Embedded Application
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Figure 4: Example of distributed trigger chains.

The existing modeling components in RCM do not provide enough sup-
port to link and extract the corresponding timing information of distributed
chains. Therefore, special objects in the component technology are needed
to provide the linking information of distributed chains to extract end-to-
end timing information. Further, there is a need to model mapping between
signals and messages and vice versa. SWCs inside a node communicate via
signals, whereas they communicate via messages if located on different nodes.
Moreover, there is a need to model exit and entry points for RCM models.
An exit point is where a message (data) leaves the model and is transmitted
according to the protocol-specific rules of the network. Similarly, an entry
point is where a message enters the model from the model of the network or
any other model. The reason for the need to model exit and entry points for
RCM models is to get the bounded delays for distributed chains. The model
of entry and exit points will support the use of nodes developed using RCM
with the nodes developed by other component technologies.

The problem discussed in this subsection can be formulated as: how to
extract end-to-end timing models from component-based distributed real-time
embedded systems that are built using the communications-oriented devel-
opment processes? We believe that the issues discussed in this subsection
may occur during the development of any other component model for dis-
tributed real-time embedded systems that uses the pipe-and-filter commu-
nication mechanism for components interconnection, e.g., ProCom [20] and
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COMDES [21]. The problem of linking distributed chains may also exist in
any type of “inter-model signaling”, where a signal leaves one model (e.g., a
node, or a core, or a process) and appears again in some other model.

3.3. Modeling and timing analysis of “outside traffic”

The problem arises when the requirements dictate the modeling and end-
to-end timing analysis of the system at a stage where the models of some
ECUs may not be available. However, the signals and messages which these
missing ECUs are supposed to send and receive have been decided. In such a
system, the network is assumed to contain “outside traffic”, i.e., the messages
whose sender nodes are not developed yet. This “outside traffic” could come
from external services (e.g., V2V, V2I, and other cloud-based applications),
from legacy nodes that lack proper behavior models, or from crude prelimi-
nary models of nodes that have not been completely modeled yet. Regardless
of source, it is important to be able to analyze end-to-end timing behavior
of vehicle internal functions, while taking into account the outside generated
traffic. Similarly, the available ECUs may send messages via network to the
nodes that will be available at a later stage. Some reasons behind these re-
quirements are to support design space exploration, allow fine tuning of the
system with respect to real-time requirements and detection of timing errors.

There exist timing dependencies among messages and their sender and
receiver tasks. A message inherits some timing properties from its sender
task, e.g., transmission type and period. If the sender task is triggered pe-
riodically then the message it sends is also periodic. Further, the message
inherits period from its sender task. Similarly, if the sender task is activated
sporadically then the corresponding message is sporadic and the message in-
herits inhibit time from the sender task. The inhibit time is the minimum
amount of time that should elapse between two consecutive transmissions of
a sporadic message. In the case of mixed transmission mode, the message
inherits both period and inhibit time from its sender [9]. When the systems
are analyzed, each message is assumed to inherit the release jitter from its
sender (attribute inheritance [27]). For the messages whose sender tasks are
unknown (because the sender ECUs are not available yet or the network
traffic is generated from outside of the model), these properties must be ex-
tracted in the timing model. Otherwise, the end-to-end timing analysis of
these systems cannot be performed. The problem discussed in this subsec-
tion can be formulated as: how to model and timing analyze the applications
that contain network traffic originating from outside of the system?
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4. Modeling of legacy network communication

We introduce a new modeling entity the Network Specification to repre-
sent the model of communication in a physical network. In order to abstract
the implementation of communications in a node, we propose two special-
purpose modeling entities namely Out and In Software Circuits for each frame
that a node sends to and receives from the network respectively.

4.1. Network Specification (NS)

It is the model representation of a physical network. There is one NS for
each network protocol. It consists of two parts, one is independent of the un-
derlying communication protocol while the other is protocol dependent. The
protocol-independent part defines messages and the data-elements mapped
to them. A message is an entity that is used to send information from one
node to another via network. Moreover, the protocol-independent part of the
NS describes message properties such as a message ID, a unique sender node
ID, a list of receiver nodes IDs and an ordered set of signals included in the
message. For example, a signal in RCM has a name, data type, resolution
and real-time properties. The protocol-independent part of NS also contains
the list of nodes in the system.

The protocol-dependent part of the NS is uniquely defined for each pro-
tocol, e.g., it will be different for different high-level protocols for Controller
Area Network (CAN) [28] such as CANopen [29], Hägglunds Controller Area
Network (HCAN) [30] and CAN for Military Land Systems domain (Mil-
CAN) [31]. It defines the behavior semantics of each message according to
the network communication protocol. It contains complete information of
all frames which are sent to and received from the network. Moreover, it
describes the frame properties. A frame is a formatted sequence of bits that
is actually transmitted over the network. In RCM, a frame is a collection of
RCM signals.

The frame properties described by the protocol-dependent part of the
NS (e.g., for the CANopen protocol) include an identifier (a reference to the
corresponding message in the protocol-independent part), a priority, a trans-
mission type (e.g., different types of message transmission in the CANopen
protocol), a sender node ID, a list of receiver nodes IDs, whether a frame is
an IN frame or an OUT frame, a period (period with which a message is sent
in the case of periodic transmission), an inhibit time (minimum time between
successive transmission of a message in the case of one of the asynchronous

17



transmission types in CANopen), SYNC period (time between SYNC mes-
sages sent by the CANopen SYNC master), and real-time requirements (e.g.,
message deadline). Moreover, it also specifies the bus speed. The transmis-
sion type of a frame can be periodic, sporadic or mixed (transmitted period-
ically as well as sporadically) [9].

In RCM, the components inside a node communicate with each other via
data and control signals. However, if a component on one node communicates
with a component on another node via a network then the signals are packed
into the frames. The frames are then transmitted over the network. Here,
some questions arise concerning the communication in the network. How are
signals mapped to messages? How are the signals packed into the frames?
How are the signals encoded into the frames at the sender node? How are
the signals decoded from the frames and sent to the respective SWCs at the
receiver node? How many signals are there in each frame? All rules concern-
ing the answers to these questions are specified in the Signal Mapping. The
Signal Mapping is a unique object for each protocol for network communi-
cation and is an integral part of the protocol-dependent part of the NS. The
Signal Mapping also describes the length of each signal in a frame, the type
of signal encoding in a frame (e.g., signed or unsigned 2’s complement), and
maximum age of a signal guaranteed by the sender.

4.2. Out Software Circuit (OSWC)

It is the model representation of signals in an outgoing message to the
network. Basically, it is a Software Circuit which denotes the data that leaves
the model. There is one OSWC in a node for every outgoing frame on the
network. Each OSWC describes the signals that can be sent in a particular
frame. A frame contains zero or more signals. The OSWC has only one
trigger in-port and at least one data in-port. Each data in-port is associated
with one signal in the NS. Therefore, the number of data in-ports may vary
depending upon the number of signals packed in the frame. The OSWC has
no data and trigger out-ports. It uses protocol-specific rules, specified in the
protocol-specific part of the NS, while encoding data and mapping signals
to a frame. In this way, it provides a clear abstraction to the SWCs that
send signals to one of its data in-ports. Thus, SWCs are kept unaware of the
protocol-specific details such as signal-to-frame mapping, data type encoding
and transmission patterns of frames. The conceptual model of the OSWC is
illustrated in Figure 5 (a), whereas its RCM model is shown in Figure 5 (b).
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4.3. In Software Circuit (ISWC)

It is the model representation of signals in an incoming message from
the network. Basically, it is a Software Circuit which denotes the data that
enters the model. There is one ISWC component in a node for every frame
received from the network. It describes all the signals that are contained
in a received frame that is associated to it. The ISWC component has one
trigger out-port that produces a trigger signal every time the component is
executed. There is at least one data out-port in the ISWC. Each data out-
port is associated with one signal in the NS. Therefore, the number of data
out-ports may vary depending upon the number of signals contained in the
received frame. There are no data in-ports in the ISWC. It has one trigger
in-port which is triggered every time a frame arrives from the network. When
a frame arrives at a node, the physical network drivers and protocol-specific
implementation of the ISWC extract the signals (zero or more signals per
frame) and encode their data in the RCM data type. When the signal(s)
is delivered, the data is placed on the data port which is connected to the
data in-port of the destination SWC (the linking and mapping information is
provided in the NS), and the corresponding trigger port is triggered. Figures
5 (a) and 5 (a) graphically illustrate the conceptual and RCM model of the
ISWC respectively. It should be noted that the developer can specify timing
parameters such as execution times for the OSWC and ISWC.

Clock
Input 

trigger port
Output 

trigger port

Input data port Output data portSoftware Circuit
Actuation 

signalSensor signal

Trigger 
terminator

Data Port

Trigger Port

In Software Circuit (ISWC)

Signals received from one Frame

Out Software Circuit (OSWC)

Signals to be sent in one Frame

(a) (b)

Trigger port Data port

Figure 5: OSWC and ISWC components (a) conceptual models (b) models in RCM.

The models of a node, a network, a signal database and a signal in RCM
are shown in Figures 6 (a), (b), (c) and (d) respectively. The signal database
object corresponds to the Signal Mapping which is part of the NS (as dis-
cussed in Section 4.1). It contains all the signals that are sent over the
network. Each signal in the signal database is linked to one or more mes-
sages. The model of a message along with the list of user-defined properties
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is shown in Figure 6 (e). The developer specifies only the name, priority,
data size, value and type of identifier (in the case of CAN) of the message.
The message automatically inherits jitter, transmission type and period or
inhibit time or both from the sender OSWC.

Data Port

Trigger Port

In Software Circuit (ISWC)

Signals received from one Frame

Out Software Circuit (OSWC)

Signals to be sent in one Frame

(a) (b)

(a) (b)

(c) (d) (e)

Figure 6: RCM models of (a) node, (b) network, (c) signal database, (d) signal, (e) message
and its attributes.

Consider an example of a node in a distributed real-time embedded ap-
plication modeled with the introduced objects as shown in Figure 7. Let the
node be connected to the CAN network. The upper half of Figure 7 rep-
resents the model of a node, whereas the lower half represents the physical
communication including the CAN controller and network. There are two
grey boxes outside the model called CAN SEND and CAN RECEIVE that
are placed just below the sets of OSWCs and ISWCs respectively. These
grey boxes are specific for each network protocol. The frames that leave the
model (sent to CAN SEND) are denoted by S (Send), e.g., S1, S2 and S3.
Similarly all the frames that enter the model (received from CAN RECEIVE)
are denoted by R (Receive), e.g., R1 and R2. All signals that are sent in
the frame S1 are provided at the data in-ports of OSWC1. These signals are
mapped and encoded into S1 by OSWC1 according to the protocol-specific
information available in the NS. Once the frame is ready, it leaves the model
as it is sent to the grey box CAN SEND. In this example, this grey box
represents a CAN controller in the node which is responsible for physical
transmission of this frame over the network according to the arbitration and
communication rules specified by the CAN protocol.

When a frame arrives at the receiving node, it is transferred by the net-
work drivers to the CAN RECEIVE grey box which is responsible for raising
an interrupt request and passing the frame to the corresponding ISWC. In
this case, the TrigInterrupt object in RCM corresponding to the interrupt
is connected to the in-port of the ISWC. If CAN drivers use polling-based
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Figure 7: Model of a node using OSWCs and ISWCs for network communication.

processing instead of interrupts then the in-port of the ISWC is connected
to the clock, where clock period is set equal to the polling period. Upon
receiving the frame, the ISWC decodes it, extracts signals from it, places the
data on the corresponding data port (connected to the data in-port of the
destination SWC), and triggers the corresponding trigger port by using the
linking information available in the NS. It should be noted that when the
OSWC is triggered, it executes the required functionality (e.g., mapping of
signals to a message) and then the data (message) is transferred from the
RCM model of node to the network controller or another model of communi-
cation network. Therefore, OSWC also represents the model of an exit point
for RCM models. Similarly, ISWC component represents the model of an en-
try point for RCM models. Using our new approach, nodes can be developed
without explicit knowledge about the communication configuration.

4.4. Automatic generation of the OSWC and ISWC components

Both OSWC and ISWC can be automatically generated from the NS by
a Network Configuration Tool. The input to this tool is the protocol-specific
information about the network communication and the linking information
of tasks in all distributed chains (i.e., trigger, data and mixed) present in
the application. This information is provided from the configuration files
that correspond to the NS. The output of this tool is a set of automatically
generated OSWCs and ISWCs for each node in the network. This tool also
carries out mapping from the NS to the OSWC and ISWC and vice versa.
One of the main purpose of our modeling technique was to use legacy com-
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ponents, however, it can also be used the other way around. That is, the
protocol-independent part of the NS can be automatically generated from
the models of the OSWC and ISWC from an existing system.

4.5. Support for modeling “outside traffic”

A solution to the problem (discussed in Section 3.3) could be using the
model of a dummy sender node in place of the ECU that is not available but
decisions on the messages it sends are already taken. The only purpose of
this node is to encode and pack signals into messages and send them to the
network. Similarly, a dummy receiver node can be used to receive messages
in place of a missing ECU. Such a solution can be realized in RCM with the
models of sender and receiver nodes that contain one OSWC and one ISWC
for every message they send and receive respectively. However, this solution
is impractical as it adds design complexity to the system. Moreover, it adds
an extra modeling and testing overhead on the developer because there are
several modeling and specification steps involved when a node is modeled.

The problem can be solved in a better way by introducing a special type
of message called stand-alone message. This message supports the model-
ing of “outside traffic”. It does not bear any association with the OSWC
component. This means, it does not have any sender task inside the model
of the system. However, there is an option for the user to associate this
message to any number of ISWCs, i.e., it can be received by any number
of tasks. Apart from name, priority, data size, value and type of identifier
(user-defined properties for a regular message); it is also possible for the user
to specify transmission type and corresponding timing parameters (period,
inhibit time or both) for this message. The transmission type of a message
is a very important parameter because the network timing analysis is depen-
dent upon it especially in the case of CAN and its high-level protocols. For
example, if there are only periodic and sporadic messages in the system then
one type of timing analysis is used such as [7]. On the other hand, if there
is at least one mixed message in the system then a different timing analysis
(i.e., response-time analysis for mixed messages) is used [9, 32, 33].

The user can also specify release jitter for the stand-alone message. The
release jitter may either be equal to the difference between the estimated
worst- and best-case response times of the sender (belonging to the node
that is not available) or zero if these response times cannot be estimated
at this stage. The extra user-defined information in the case of stand-alone

22



messages is vital for the network timing analysis, and hence, for the end-to-
end timing analysis. The standalone message introduced in Rubus-ICE along
with the list of its user-defined properties is shown in Figure 8. The dark
vertical stripes on both of its sides differentiate it from the regular message
in RCM. This message is treated differently from the regular message at the
attribute inheritance step by the holistic timing analysis algorithm [27, 10].

 

 

 

 

 

Figure 8: Model of a stand-alone message with the list of user-defined properties.

It should be noted that the list of user-defined properties of a stand-alone
message (see Figure 8) is more general and includes user-defined properties of
a regular message (see Figure 6 (e)). One may think of using the user-defined
properties in Figures 8 consistently for all types of messages. However, this
is not practical mainly because of two reasons. First, the timing informa-
tion extracted from the modeled application may be redundant. That is,
the transmission type and corresponding period and inhibit time will be ex-
tracted from the user-defined input as well as from the sender task. This
redundancy may result in the extraction of ambiguous end-to-end timing
model. Information duplication can lead to inconsistency in the model. Sec-
ond, it will add extra complexity and burden on the developer to specify too
much information during the modeling. Our intension is to extract unam-
biguous end-to-end timing information and keep things as simple as possible
for the developer.

5. Extraction of end-to-end timing models

In order to ensure all timing requirements are met, the modeled applica-
tion should render itself to the end-to-end timing analysis. For this purpose,
the end-to-end timing model of the application should be available.
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5.1. End-to-end timing model

This model consists of timing properties, requirements and dependencies
concerning all tasks, messages, task chains and distributed transactions in
the system under analysis. It consists of the following sub models:

1. System timing model
(a) Node timing model
(b) Network timing model

2. System linking model

5.1.1. System timing model

This model is composed of node and network timing models.

1) Node timing model. This model contains node-level timing informa-
tion. We consider the model that is based on the transactional task model
(i.e, tasks with offsets ) introduced by [34] and later on, extended by many
researchers, e.g., [35, 36]. A node, Γ, consists of a set of k transactions
Γ1, . . . ,Γk. Each transaction Γi is activated by mutually independent events,
i.e., the phasing between the events is arbitrary. The activating events can
be a periodic sequence of events with a period Ti. In case of sporadic events,
Ti denotes the minimum inter-arrival time between two consecutive events.

There are |Γi| tasks in a transaction Γi. Each task in Γi may not be
activated until a certain time, called an offset, elapses after the arrival of
the external event. By task activation we mean that the task is released
for execution. A task is denoted by τij. The first subscript, i, specifies the
transaction to which this task belongs and the second subscript, j, denotes
the index of the task within the transaction. A task, τij, is defined by the
following attributes.

• Cij denotes the worst-case execution time of the task.

• Oij denotes the offset of the task.

• Dij specifies the optional deadline of the task.

• Jij denotes the maximum release jitter.

• Bij represents the maximum blocking time which is the maximum time
the task has to wait for a resource that is locked by a lower priority
task. In order to obtain the blocking time for a task, a resource sharing
protocol, e.g., Stack Resource Policy (SRP) [37] or Priority Ceiling
Protocol (PCP) [38], that bounds the blocking time must be used.
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• Pij denotes the priority of the task.

• Rij denotes the worst-case response time of the task.

In this model, there are no restrictions placed on offset, deadline or jitter,
i.e., they can each be either smaller or greater than the period.

2) Network timing model. This model contains network-level timing
information of the system. A network consists of a number of nodes that are
connected through a real-time network. Currently, RCM supports CAN and
its higher-level protocols such as CANopen, MilCAN and HCAN. However,
it can be easily extended to support other protocols such as Flexray [39]. In
this model, each message m has the following attributes.

• IDm denotes a unique identifier.

• FRAME TYPE specifies whether the frame is a Standard or an Ex-
tended CAN frame.

• TRANSMISSION TYPE specifies whether the message is periodic or
sporadic or mixed (both periodic and sporadic).

• Pm denotes unique priority.

• Cm specifies the transmission time.

• Jm denotes the release jitter. Usually, it is inherited from the task that
queues m.

• sm denotes the data payload in each message. It ranges from 0 to 8
bytes in a CAN message.

• Tm specifies the period of a message in the case of periodic transmission.
For a sporadic message, MINTm is used which refers to the minimum
time that should elapse between the transmission of any two messages.
For a mixed message, both Tm and MINTm are specified.

• Bm denotes the blocking time of the message. It refers to the maximum
amount of time during which this message can be blocked by the lower
priority messages.

• Rm denotes the worst-case response time.
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5.1.2. System linking model

In distributed embedded systems, there exist chains of components (tasks)
that may be distributed over more than one node. A task chain consists of
a number of tasks that are in a sequence and have one common ancestor. A
task in a chain may receive trigger, data or both from its predecessor. Two
neighboring tasks in a distributed transaction may reside on two different
nodes, while the nodes communicate with each other via network. When
there are chains in the system, the end-to-end timing model should not only
contain timing related information but also the linking information among all
tasks and messages within each distributed chain. All mapping and linking
information of distributed chains is extracted into the system linking model.

5.2. Method to unambiguously extract and link distributed chains

We provide a method to identify, extract and link distributed chains from
the RCM models of component-based distributed real-time systems.

5.2.1. Extraction of unambiguous timing information

The end-to-end timing information that is extracted from all tasks, mes-
sages and distributed chains can be divided into two categories. The first
category corresponds to the timing information that is provided by the user
in the modeled application, e.g., most of the task and message attributes
discussed in Section 5.1.1. Whereas, the second category corresponds to the
timing information which is not directly provided by the user but has to be
extracted from the modeled application. For example, release jitter for a
message. It is inherited as the difference between the worst- and best-case
response times of the sending task. Similarly, message transmission type,
message period and inhibit times are often not specified by the user, rather
they are inherited from the sender tasks. Hence, these parameters must be
extracted from the modeled application and added in the timing model. We
assign period or inhibit time to the message which is equal to the period or
inhibit time of its sender task. If the sender task is activated by a clock,
we assign periodic transmission type to the message. Similarly, if the sender
task is activated by a sporadic event then we assign sporadic transmission
type to the message. However, if the sender task is triggered by both a clock
and a sporadic event then transmission type of the message is considered
as mixed. These assignments are important because a message is analyzed
differently based on its transmission type.
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5.2.2. Identification of trigger, data and mixed distributed chains

In order to unambiguously identify each individual chain, we attach trig-
ger dependency attribute with each task. This attribute is part of the data
structure of tasks in the timing model. Basically, it extracts the triggering
information for the corresponding task. If a task is triggered by an indepen-
dent source, such as a clock, then this attribute is set to “independent”. On
the other hand, if the task is triggered by another task then this parameter
is set to “dependent”. A precedence constraint is also specified on this task
in the case of dependent triggering.

An iterative method determines whether the triggering of every two neigh-
boring tasks in a chain is dependent or independent of each other by testing
the value of corresponding trigger dependency attributes. If this attribute
for all tasks (except the first) is “dependent”, the chain is identified as a
trigger chain. On the other hand, if this attribute for each and every task
in the chain has “independent” value, the chain is identified as a data chain.
However, if this attributed has “independent” value for some tasks in the
chain while “dependent” value for the rest, the chain is regarded as a mixed
chain. This method is applied to all chains in the system.

5.2.3. Linking of distributed trigger, data and mixed chains

The method for linking distributed chains is built upon the modeling
approach that we discussed in the previous section. This method treats all
types of chains in a similar fashion. The linking information for all distributed
chains in the modeled application is provided in the NS. We assign references
to trigger in-ports of OSWCs and the trigger out-ports of ISWCs along the
same distributed chain. These references are contained in a reference array.
There is one reference array for each distributed chain. The ordering of
references within the array corresponds to the ordering of the components
(OSWC/ISWC) along the trigger chain. That is, the first reference in the
array corresponds to the trigger port of the first component in the chain,
and so on. The reference arrays corresponding to all distributed chains in
the system are specified in the NS. Consider the example shown in Figure 9.
There are three SWCs in each node. The nodes are connected to the CAN
network. There are two trigger chains in the system that are distributed over
two nodes. These chains are identified as TC1 and TC2 as shown below.

• TC1 : SWC1 → SWC2 → OSWC A1 → ISWC B1 → SWC4 →
SWC5.
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• TC2 : SWC6→ OSWC B1→ ISWC A1→ SWC3.
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Figure 9: Demonstration of linking distributed chains.

The trigger chain TC1 is triggered by an external event, whereas TC2 is
triggered by a clock. There is a reference array R1 that contains references
to all the OSWC and ISWC components in TC1. R11 refers to the trigger
in-port of OSWC A1 in Node A, whereas R12 refers to the trigger out-port
of ISWC B1 in node B. Similarly, a reference array R2 is stored in the NS
that contains references to all OSWCs and ISWCs in TC2. R21 refers to the
trigger in-port of OSWC B1 in Node B, whereas R22 refers to the trigger
out-port of ISWC A1 in node A. In this way, all the neighboring components
located in different nodes within a distributed trigger chain can be linked.

5.3. Extraction of end-to-end timing model in Rubus-ICE

In Rubus-ICE, the application is modeled in the Rubus Designer tool. It
is then compiled to the Intermediate Compiled Component Model (ICCM).
Apart from the compiled component model, the ICCM file also includes
timing and linking information of the modeled system. The timing model
that is implemented in the Rubus Analysis Framework, extracts the required
timing and linking information from the ICCM file12 as shown in Figure 10.
From the extracted model, the Rubus Analysis Framework performs the end-
to-end timing analysis and then provides the results, i.e., response times of

12in XML format
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individual tasks, response times of network messages, end-to-end response
times and delays of distributed chains, network utilization, etc., back to the
Rubus-ICE tool suite.
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Figure 10: Extraction of the end-to-end timing model in Rubus-ICE tool-suite.

6. Automotive application case study

We provide a proof of concept for the modeling technique and timing
model extraction method that we implemented in Rubus-ICE by conduct-
ing an automotive-application case study. We model the next-generation
Adaptive Cruise Control system with RCM and analyze it with the Holistic
Response Time Analysis (HRTA) plug-in in Rubus-ICE.

6.1. Next-generation adaptive cruise control system

The Adaptive Cruise Control (ACC) system is an automotive feature that
allows a vehicle to automatically adapt itself to the traffic environment to
maintain a steady speed to the value that is preset by the driver. Often, it
uses a radar to create a feedback of distance to, and velocity of, the preceding
vehicle. It also communicates (cooperates) with the surrounding vehicles.
Moreover, it receives traffic related cloud-services such as community map
and turn-by-turn navigation services from outside of the vehicle. Based on
the feedback, it either reduces the vehicle speed to keep a safe distance and
time gap from the preceding vehicle or accelerates the vehicle to match the
preset speed specified by the driver. The ACC system may be modeled with
four nodes namely Cruise Control (CC), Engine Control (EC), Brake Control
(BC) and User Interface (UI) [40]. Figure 11 shows the block diagram of the
ACC system. The nodes communicate with each other via CAN network.

Assume that the models of EC and BC nodes are available while the
models of CC and UI nodes will be available at a later stage. However, the
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Figure 11: Block diagram of Adaptive Cruise Control System.

decisions about network communication have been made. There is one stand-
alone message “ACC Control Msg” in the system that is assumed to be sent
by the CC node (not available yet). This message is received by the BC
node as shown by the dashed-line arrow in Figure 11. The BC node sends
two messages over the network. First message “Vehicle Control UI Msg”
is sent to the UI node (not available yet). Whereas, the second message
“Vehicle Control Msg” is sent to the EC node. It should be noted that the
dashed-line arrows represent virtual communication while the actual message
transmission takes place through the CAN network.

The UI node reads driver inputs and shows status messages and warnings
on the display screen. The inputs are acquired by means of switches and
buttons mounted on the steering wheel. These include Cruise Switch input
that corresponds to ON/OFF, Standby and Resume states for ACC; Set
Speed input (desired cruising speed set by the driver) and desired clearing
distance from the preceding vehicle. This node receives linear and angular
speed, status of manual brake sensor, and status messages and warnings to
be displayed on the screen from the BC node via the CAN network.

The CC node analyzes the state of the cruise control switch. If the switch
is in the ON state then the cruise control functionality is activated. It reads
input from a proximity sensor (e.g., radar) and processes it to determine the
presence of the vehicle in front of it. It also receives V2V communication
and navigation information from outside of the vehicle as shown in Figure
11. Moreover, it processes the radar signals along with the other information,
such as vehicle speed, to determine its distance to the preceding vehicle. It
sends a CAN message to the BC node. The message carries the control
information that is used to adjust the speed of the vehicle with respect to
the cruising speed or clearing distance from the preceding vehicle.
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The EC node is responsible for controlling vehicle speed by adjusting
the engine throttle. It reads sensor input and determines engine torque.
It receives a CAN message (from the BC node) that includes information
regarding vehicle speed and status of the manual brake sensor. Based on the
received information, it determines whether to increase or decrease engine
throttle. It then sends new throttle position to the actuators that control
the engine throttle.

The BC node receives signals from the break sensors. It also receives
the status from the linear and angular speed sensors which are connected
to the wheels. It receives a CAN message that includes control information
processed by the CC node. Based on this feedback, it computes new vehicle
speed. It produces control signals and sends them to the brake actuator and
brake light controller. It also sends CAN messages to the EC and UI nodes
that carry information regarding status of manual brake, vehicle speed and
angular speed.

6.2. Modeling of the ACC system in Rubus-ICE

The RCM model of ACC system is shown in Figure 12. Since, CC and
UI nodes are not available at this stage, there are models of only CC and EC
nodes in the application. The model of CAN bus is also shown. The selected
speed of CAN bus is 500 kbps. The standard CAN frame format is selected.

 

 

 

 

Figure 12: Adaptive Cruise Control System modeled with RCM.

There are three CAN messages in the system ACC control Msg, Vehi-
cle Control Msg and Vehicle Con-trol UI Msg as shown in Figure 13. ACC
control Msg is the only stand-alone message. The senders and receivers of all
messages are shown in Figure 11. A signal database is also shown in Figure
13. It corresponds to the NS (see Section 4) and contains all the signals that
are sent over the network. Each signal in the signal database is linked to
one or more messages. The user-defined properties of all messages are also
visible in Figure 13.

The internal architecture of the BC node is shown in Figure 14. It
is modeled with five SWCs ( SpeedSensorInput, ManualBrakeSensorInput,
RMPSensorInput, SetBrakeSignal SWC and SetBrakeLightSignal SWC), one
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Figure 13: CAN messages and signal database modeled with RCM.

ISWC component (ACC control Msg ISWC), two OSWC components (Ve-
hicle Control Msg OSWC and Vehicle Control UI Msg OSWC) and one as-
sembly (Brake Control). An assembly in RCM is a container for various
software items. The Brake Control assembly is further modeled with two
SWCs BrakeInputInfoProcessing and BrakeController as shown in Figure
15. Each component is named according to its functional behavior, e.g., the
ACC control Msg ISWC component is responsible for receiving ACC control
Msg to the network.

 

 

 

 

 

 

 

  

Figure 14: RCM model of the Brake Control node.

The internal architecture of EC node is shown in Figure 16. It is modeled
with two SWCs (EngineTorqueInput and SetThrottlePosition), one ISWC
component (Vehicle Con-trol Msg ISWC) and one assembly (Engine Control)
as shown in Figure 17. The Engine Control assembly is further modeled with
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Figure 15: Internal model of Brake Control assembly in RCM.

two SWCs EngineInputInformationProcessing and ThrottleControl.
 

 

 

 

Figure 16: RCM model of the Engine Control node.

 

 

 

 

Figure 17: Internal model of Engine Control assembly in RCM.

6.3. Holistic response-time analysis of the ACC system

The HRTA plug-in in Rubus-ICE calculates the response times of all
messages and tasks as well as end-to-end or holistic response times of Dis-
tributed Transactions (DTs). We refer the reader to [41] for the details about
the holistic response-time analysis. We focus on the analysis of the following
DTs.

1. DT1: ACC control Msg → ACC control Msg ISWC → BrakeInputIn-
foProcessing → BrakeController → SetBrakeSignal SWC

2. DT2: ACC control Msg → ACC control Msg ISWC → BrakeInputIn-
foProcessing → BrakeController → SetBrakeLightSignal SWC

3. DT3: SpeedSensorInput → BrakeInputInfoProcessing → BrakeCon-
troller → Vehicle Control UI Msg OSWC → Vehicle Control UI Msg
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Table 1: Calculated holistic response times of distributed transactions under analysis.

Distributed Transaction DT1 DT2 DT3 DT4

Holistic Response Time (µs) 520 555 1250 830

4. DT4: SpeedSensorInput → BrakeInputInfoProcessing → BrakeCon-
troller→ Vehicle Control Msg OSWC→ Vehicle Control Msg→ Vehi-
cle Control Msg ISWC→ EngineInputInformationProcessing→ Throt-
tleControl → SetThrottlePosition

Both distributed transactions DT1 and DT2 are initiated by the stand-alone
message ACC control Msg. They terminate by producing the control signals
for brake actuators and brake light controllers. DT3 starts with the speed
sensor input in the BC node and terminates by sending the message destined
for the UI node. Finally, DT4 initiates with the speed sensor input in the
BC node and terminates by producing a control signal for engine throttle
controller in the EC node. The worst-case execution times of all SWCs
are selected in the range of (20 − 200 )µs . The holistic response times of
these distributed transactions are shown in Table 1. In order to interpret
the calculated results, consider the holistic response time of DT4 in Table 1.
It indicates that the maximum time required from sensing the variation in
the vehicle speed to controlling the engine throttle actuator is 830µs. The
holistic response times of other DTs can be interpreted in a similar fashion.

7. Conclusion and future work

We introduced a new technique to provide a model- and component-based
support for communications-oriented development of vehicular distributed
real-time embedded systems. The proposed approach allows modeling of
legacy network communication and abstracts the implementation and con-
figuration of communications in the component-based systems. It explicitly
enables the communication capabilities of a node, but hides the implemen-
tation or protocol details. Moreover, it allows model- and component-based
development of new nodes that are deployed in legacy systems that use prede-
fined communication rules. The proposed approach also enables adaptation
of a node when communication rules change without affecting its internal
architecture. In order to support end-to-end timing analysis, we presented a
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method to extract end-to-end timing models from the systems that are devel-
oped using the proposed approach. In this context, we discussed and resolved
various issues. Our technique also supports modeling and timing analysis of
distributed applications that contain network traffic originating from out-
side of the system, e.g., cloud-based applications. As a proof of concept,
we implemented this technique in the existing industrial tool Rubus-ICE,
and validated it by modeling and analyzing the automotive application-case
study. We believe, this technique may be suitable for several other model-
and component-based development technologies that use a pipe-and-filter
style for component interconnection, e.g., ProCom and COMDES. Moreover,
it can be used for any type of “inter-model signaling”, where a signal leaves
one model (e.g., a node, or a core, or a process) and appears again in some
other model. We believe, the tools implementing our technique may prove
helpful for the software development organizations in the vehicular domain
to decrease the costs for software development, configuration and testing.

An interesting future research direction is to bridge the semantic gap
between functional models (expressed in standard languages as EAST-ADL
and/or proprietary languages such as Simulink or Statemate) and execution
models (expressed in proprietary languages like RCM). It would also be in-
teresting and useful to facilitate the exchange of timing analysis models and
tools between RCM and several other component models and tools.
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[6] J. Mäki-Turja, , M. Nolin, Tighter response-times for tasks with off-
sets, in: Real-time and Embedded Computing Systems and Applications
Conference (RTCSA), 2004.

[7] K. Tindell, H. Hansson, A. Wellings, Analysing real-time communica-
tions: controller area network (CAN), in: Real-Time Systems Sympo-
sium (RTSS) 1994, pp. 259 –263.

[8] R. Davis, A. Burns, R. Bril, J. Lukkien, Controller Area Network (CAN)
schedulability analysis: Refuted, revisited and revised, Real-Time Sys-
tems 35 (2007) 239–272.
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