Towards computing the parameters

Roger Jonsson
Department of Computer Engineering
Mailardalen University
P.O. Box 883
721 23 Visteras, Sweden
roger.jonsson@mdh.se

Abstract- The problem of finding appropriate
probablilities for crossover and mutation with re-
spect to resampling may be addressed using the
Markov chain model. Our efforts in this direc-
tion lead through a simplification of the mixing
matrix incorporating both probabilities. In the
paper we present the simplification and discuss
some of its ramifications. We expect that it may
lead to some improvement of the computational
properties of the Markov chain model of the Sim-
ple Genetic Algorithm.

1 Introduction

In order to apply a genetic algorithm (GA) to solve a
real-world problem one has to decide which representa-
tion to use, how to construct the fitness function and
which parameter values to apply: all those decisions af-
fect the efficiency of search. In this paper we focus on
a specific GA model, namely the Simple Genetic Algo-
rithm [11], and two of its crucial parameters, i.e., prob-
abilities of crossover and mutation. Normally these pa-
rameters are set by the users on the basis of their expe-
rience and knowledge about the problem at hand. Even
then, the parameters usually have to be further tuned in
order to obtain good performance. Some work has been
done in the area of finding suitable parameter values,
but the results have been rather inconclusive [2, 7].

Some years ago the No-Free-Lunch Theorem [12] shed
new light on this problem. If we assume that the
crossover and mutation probabilities differently affect
the performance depending on the problem, then there
are no ”perfect” parameter settings. Whether this as-
sumption is valid or not depends on what is meant by
“performance”. Here we understand performance to be
the smallest number of chromosomes that the GA needs
to consider in order to find with a given probability
a specific individual or group of individuals (e.g., the
optimal one(s)). With this understanding it is clear
that resampling (i.e., reconsidering the same chromo-
some again) reduces the performance and should, if pos-
sible, be avoided.

Within self-adapting GAs (SAGA) these parameters
are tuned more or less automatically. Regardless of how

of the Simple Genetic Algorithm

Jacek Malec
Department of Computer Science
Lund University
P.O. Box 118
221 00 Lund, Sweden
jacek@cs.1th.se

these self-adaptive genetic algorithms regulate the pa-
rameters they all have a common objective: To tune the
GA so that it finds a good enough solution as fast as
possible. Some SAGAs adjust the mutation probabil-
ity depending on time in order to prolong the evolution
(i.e., to avoid the premature convergence); see e.g. [4].
Some other use feedback from the population for that
purpose [5]. A good overview of different SAGA meth-
ods can be found in [3] and different desired behaviours
of SAGA are described in [1].

Spears and De Jong have explained with their dis-
ruption/construction theory (recently summarized in [9])
how mutation and crossover affect schemata. Although
this theory gives interesting insight in behaviours of
these operators, it does not reveal how their probabil-
ities should be set.

The closest work to ours is the one by Suzuki [10].
He has reported some results based on Markov Chain
analysis regarding the influence of the mutation distri-
bution on the behaviour of a GA. There were though
some problems with calculating the correct probability
distribution with respect to the given problem.

The aim of this research is to investigate if and how
the probabilities of mutation and crossover affect the
probability of resampling. Also, with the above under-
standing of performance, we expect to derive how these
parameters should be set for a specific problem in a given
domain.

The paper begins with a short recapitulation of the
Nix and Vose’s Markov chain model of the SGA. After
specialising the model (in Section 3) an interesting sim-
plification is derived in Section 4. Finally we comment
this result and give some conclusions.

2 Preliminaries

This section introduces the Simple Genetic Algorithm
(SGA) expressed in terms of a Markov chain. This way
we introduce the necessary vocabulary that will be used
later in the paper.

The theoretical model that Nix and Vose presented
in [6] (recently recapitulated in [11]) is a complete model
of a generational SGA, with selection, crossover and mu-
tation. The disadvantage of this model (as pointed out

by e.g. Spears [9]) is that it can be reasonably used
only for very small populations and small chromosome
lengths. This is so because the calculations rapidly get
unmanageable, both in terms of time and of memory
size.

Let C be the cardinality of the representation and L
the length of the individual. Thus we have V = CF
possible individuals in the search space. To model a
series of n generations we first define a population q as

a vector: ¢ déf<a0,a1, ...,ay_1> were each a;, for i =
0,1,...,V — 1, corresponds to the proportion of that
individual in the population, i.e. 1 = Z};Bl a;. Let the
size of the pupulation, i.e. the amount of individuals in
the population, be denoted by U. The population size
will be assumed constant throughout this paper, unless
noted otherwise.

Then we define a matrix) with the transition proba-
bilities between each state, were a state is population at
a given time. Let S; be a random variable defining the
state at time ¢. Then the elements in the matrix @) are
defined as:

Q(a,) = pgr = P(S¢ =7|Se_1 = q) (1)

The size of the matrix @) is B x B, were B grows with
the chromosome length L, the cardinality C, and the
size of the population U. It may be easily computed as
B = (YFV1) (see e.g. [6]).

One may also be interested in finding out probability
of reaching a specific state or a set of states J, after
n generations. A specially useful example of a set J
may be the set of all states containing the optimal (in
some specific sense) individual. This probability can be
calculated as follows:

PP E IS pOply (2)

red ¢
were p(o) is the probability of being initially in state ¢
and pf?) < Q" (g, 7).

Given an SGA and a problem at hand, how can one
compute the elements of the matrix Q7 Nix and Vose
model the crossover and mutation operators with a ma-
trix M and the selection process with a function F, that
incorporates the fitness of the individuals. Then:

= pqr =

Q(g,7)
Vo1v-o1 Ur:
('7: w@Zﬂ/@Z)
z=0 y=0

1;[Ur)! (3)

where @ denotes logical XOR. The selection function
F(q), is interpreted as the probability of selecting an
individual x from the population ¢q. Because it is conve-
nient to think of F(q) as a vector of values, we use the

standard subscript notation to denote some particular
coordinate of this vector.

The matrix M contains the elements ms,,(0) which
are the probabilities of producing an individual with only
zeros from the parents z and y. The reason why M
does not need to include other children than those with
only zeros is that the following can be easily shown:
Mgy (2) = My 4(2) = Meez,ye-(0). Therefore we may
skip the argument and speak just of the elements my ,.

The probability of producing a child z from parents
z and y depends directly on the type of the recombina-
tion operator and on parameter values that this operator
uses. A generic formula can be given though for some
special cases. E.g. when first crossover is applied, with
X being the probability of using crossover mask k&, and
then mutation is used, with y; being the probability of
using mutation mask [, then

) =Y W Iy g rekeyei=2 (1)

mwvy (z 9
Lk

where ® is the binary operator AND', k denotes the bit-
wise negation of k and [a@ =] should be read as one if
a = f and zero otherwise. Then EoLuatlon 4 yields the
time complexity O(LV?) = O(LC*") when the opera-
tors @ and ® have complexity O(L).

The crossover mask is a binary string were a zero
corresponds to selecting that gene from one parent and
a one to selecting that gene from the other parent. For
the case when the cardinality is two, the mutation mask
is also a binary string were a zero means ”"no mutation”.
When the cardinality is larger than two the operators
® and @ need a more general definition. Please observe
that the index [has two (equivalent) interpretations: as
an integer (index) and as a binary vector (the binary
representation of the integer).

3 Specialising the Markov chain model

From the general description of an SGA given above
we will derive a more specific one by concretely speci-
fying the three operators: rank-based selection, uniform
crossover and bit-flip mutation with a given rate. By
introducing this specialisation we will make it possible
to eventually simplify Equation 4.

Rank-based selection can be described as the proba-
bility of selecting individual z from population g:

def >ilfi<fala;
F(@)e = / o(y)dy (5)
Zj [fj<fz]qj

where f; is the fitness of individual z, and ¢(y) is any
continuous increasing probability density over [0, 1], for

L Although it could be more legible to use the standard notation
A for logical AND, we have decided to adhere to Vose’s [11] choice
of symbols.

example g(y) = 2y (cf. [11]). The factor g for bit-flip
mutation that uses the mutation rate p,, is:

—

T T
= pp (L= pm) 1 (6)

where 171 is the result of multiplying a transposed vector
of ones with [, i.e., the sum of all elements (in case of the
mutation mask they are only ones or zeroes) in /. Since
the probability distribution of bit-flip mutation with a
given rate only depends on the number of ones in the
mask, a simpler factor, §;, can be defined as follows:

& Epl (1= pn)t (7)

where 0 < i < L.
Finally, the factor xj for uniform crossover, were p.
is the probability of crossover, may be given as:

p2t
Xk = _
{ 1—pe+p2~"

if 77k >0
if 7Tk=0 (8)

Since xj is constant in the case of 17k > 0, we name
that case x1 and, respectively, xo when 17k = 0.

4 A Simplification

In this section we present the result of computations that
we have done for the M matrix given the specialisation
described above.

In order to simplify the notation in the following equa-

tions, three terms have to be introduced: the number of
ones at the corresponding locations (of individuals z and
y), N = 17 (2®y), the number of zeros at the correspond-
ing locations, Z = 17 (z ®), and the number of equal
elements at the corresponding locations, £ = Z + N.
Now, the following result can be shown.
Corollary 1 Given the binary representation (C = 2),
the mutation distribution defined as bit-flip with a rate
pm (as described by Equation (6)) and the uniform
crossover with probability p. (as described by Equa-
tion (8)), the elements of the mizing matriz M may be
computed as follows:

(6r, + 07z,)0 —x1) | XL L-E
2y +X1Z(5i2E(i_N).
i=N
(9)

Proof: We will depart from the generic form stated in
Equation 4 and by subsequent transformations eventu-
ally derive Equation 9.

The derivation begins with substituting z =
Equation 4:

V-1
mw,y(o) = Z i

1,k=0

Mg,y =

0 in

W[M@k@k@y@l:m (10)

Remember that mg,,(0) may be shortened to mg,y.

If we set k = 0 then t® k = 0 and y ® k = y thus
y ® 1 = 0 yields y = [, therefore y; = py. Analogously,
if we set k =V — 1 then y; = p,. Extracting those two
cases from Equation 10 we obtain the following term:

Please remember that x consist only of two cases (k =0
and k > 0). Setting term (11) in Equation 10 yields:

(e + 11y) (X0 + X1)
2
—2

+

Mg,y =

V-1

+ wxilrekekeyaol=0. (12)

<;

~
o~
Il

In order to restore the uniform summation bounds in the
inner sum we introduce yet another term:

(e + py) (X0 + Xx1)
2

Mg,y = — (pz + Ny)Xl +
V—

+ X[z
=0

._.
<
._

tekdkoy®l=0]. (13)

~
Il
<

After some simple transformations we obtain:

(e + 11y) (X0 = Xx1)
2

Mg,y = +

‘<
,_.
<
L

ekokoy=1. (14)
0

+Xx1 1]
1=0

o~
i

Now we can substitute y; by §;, were 0 < i < L, since
the following equality is true:

V-1
Z Z[x@)k@fc@y:l]

V-1
= Y [[Meokokay) =]

I€A; k=0 k=0
(15)
where the set A; holds all masks [such that j = 171.
Thus, in Equation 14 we may substitute p with 6 and

get:

(Ogr, + 077,) (X0 — X1)
+
2
V-1

+x12512 (zekaokey) =1 (16)

My,y =

Studying the external summation in the equation above
we can see that for the condition [IT(z®k®k ®y) = i]
to be true, ¢ has to be at least equal to the amount
of ones in corresponding locations of z and y. That is
i > 17(z ® y) = N. Analogously, for the condition to
be true i can not be larger than the number of locations
not containing zeros in the corresponding locations of
and y. Thatisi < L—17(Z®§) = L — Z, and the
motivation is similar to the one given above.

Therefore the bounds on the external sum can be
tightened without loss of terms:

(07, + dpry)) (X0 — X1)
+
2
L-Z

V-1
+x1 Y. &) [[Teekokey) =i (17)
k=0

i=N

Mg,y =

Now consider the case when there are E positions in z
and y that hold the same value. Then there must be
2F different crossover masks (k) that produce the same
result. Also if there are E equal values in the corre-
sponding locations, there must be L — E positions were
the values differ. The amount of combinations of these
L — E positions is (Y7x), where N <i < L — Z. These
two terms replace the inner sum, which completes the
proof. O

As can be easily seen from Equation 9, this simplified
calculation of one element in the mixing matrix has the
worst case time complexity O(L?).

5 On performance

If we define performance as the inverse of the smallest
number of chromosomes that the GA needs to consider in
order to find with a given probability a specific individ-
ual or group of individuals. Then, in order to maximize
performance, the GA should consider each chromosome
(individual) at most once, since each time the algorithm
resample, the performance necessarily decreases. The
probability of resampling is particularly high close to
convergence, i.e. when the population is homogeneous.
The mutation and crossover probabilities should there-
fore be chosen appropriately, so that they maximise the
performance.

To be able to calculate these probabilities, we must
first notice how states in the Markov chain model in-
fluence the performance. Obviously, only some states,
namely those that do not contain any duplicates, are
desired — otherwise resampling necessarily takes place.
Given the set of all states of the Markov chain, S, if we
define a set, D, as the set of all desirable populations

£ . 1
DY {geSlg=<qo,---,qv_1 > AVi(g; = 0V g; = ﬁ)}

(18)
then the amount of states in D is (f;). The columns
of () that correspond to the states in D (let’s call this
part of the transition matrix @) p) show the probabilities
of reaching a desirable population from any population.
The elements in these columns describe the probabilities
of maintaining (if the present population is included in
D) or increasing the diversity from one population to
another.

Clearly still some of the elements in (Jp are transi-
tions that decrease the performance. For instance, any

transition from a state g to a state r, where both states
have a non-zero element at the corresponding position
(i-e. Ji(g; > 0 Ar; > 0)) will necessarily result in resam-
pling, although in the next generation. Therefore we
may restrict the transition matrix Qp even further, to a
matrix Qg such that the target states (i.e. the columns)
correspond to those states for which no resampling takes
place. A corresponding characterisation of the set H (of
even more desirable states) could be:

def
H<= {ge Dlg=<q,...

,qv—1 > A(Vr e H)(qg-r =0)}

(19)
encapsulating all transitions from ¢ that do not lead to
resampling. This reduces the number of states even more

and the amount can be calculated as: (};) — ((V(;), were

a= ZX:BI g; > 0. The interpretation is that the second
term of the subtraction represents the amount of states
that include individuals already present in q.

Finally one would like to be able for a given problem
to automatically calculate such p,, and p, that maximise
the probabilities in Q. To solve this problem we do
not need the complete () matrix, although the fitness
distribution is required.

6 Conclusions and future work

We have presented a new formula for calculating the ele-
ments in the mixing matrix M, of complexity O(L?),
as compared to the general formula which has com-
plexity O(LCLQ). This reduction in complexity can be
achieved only for the case when a binary alphabet, uni-
form crossover and bit-flip mutation with a given rate are
used. Although the simplification is rather restricted,
the binary representation and the chosen operators are
the ones used rather commonly.

We have also presented the concept of desirable states
and some ideas on how to calculate the transition proba-
bilities to these states. Our hypothesis is that maximis-
ing these probabilities by manipulating p,, and p. may
give us knowledge about how to choose these parameters
for specific cases.

However, there remains much to be done:

e The complexity of maximising @) g needs to be con-
sidered.

e The matrix Qg is only a snapshot of one transi-
tion. The continuous and limit behaviour of a SGA
needs to be investigated separately.

e The size of the matrix @ is critical, since it rapidly
gets unmanageable. For example, let us consider
L =5, a binary alphabet and U = 10. Then, from
the equation B = (V}¥7") (which calculates the
dimension of @), we get B > 10°. This indicates
that it is computationally unmanageable (even af-

ter applying an aggregation method suggested by

Spears in [8]) to calculate all elements of @) for any
real world problems.

Our future work will include explicit solving the max-
imisation problem for small populations and chromo-
some lengths. The framework will also be extended with
the formal analysis of continuous and limit behaviour of
the transitions defined by Qr. However, for this ap-
proach to be useful in practice, the fitness distribution
needs to be either estimated or sampled, which is a clear
disadvantage.

Acknowledgement

The authors are very grateful to Edyta Szymanska for
valuable comments on the draft of this paper.

This research has been supported by the Volvo Re-
search Foundation, Volvo Educational Foundation and
Pehr G. Gyllenhammar Research Foundation.

Bibliography

[1] H.-G. Beyer and K. Deb. On the desired behaviours
of self-adaptive evolutionary algorithms. In Parallel
Problem Solving from Nature - PPSN VI, pages 59—
68, 2000.

[2] K. A. DeJong. An analysis of the behaviour of a
class of genetic adaptive systems. PhD thesis, Uni-
versity of Michigan, 1975.

[3] A.E. Eiben, R. Hinterding, and Z. Michalewicz. Pa-
rameter control in evolutionary algorithms. IEEE

Transactions on Evolutionary Computation, 3(2),
1999.

[4] F. Herrera and M. Lozano. Adaptive control of the
mutation probability by fuzzy logic controllers. In
Parallel Problem Solving from Nature - PPSN VI,
pages 335-344, 2000.

[6] C. W. Ho, K. H. Lee, and K. S. Leung. A genetic
algorithm based on mutation and crossover with
adaptive probabilities. In Congress on Evolution-
ary Computation, 1999.

[6] A. E. Nix and M. D. Vose. Modelling genetic algo-
rithms with Markov chains. Annals of Mathematics
and Artificial Intelligence, 5:79-88, 1992.

[7] J. D. Schaffer, R. Caruana, L. Eshelman, and
R. Das. A study of control parameters affecting
online performance of genetic algorithms for func-
tional optimization. In 3rd International Confer-
ence on Genetic Algorithms, pages 51-60, 1989.

[8] W. M. Spears. Aggregating models of evolutionary
algorithms. In Congress on Evolutionary Computa-
tion, pages 631638, 1999.

[9] W. M. Spears. Evolutionary Algorithms. The Role
of Mutation and Recombination. Natural Comput-
ing Series. Springer Verlag, 2000.

[10] J. Suzuki. A Markov chain analysis on simple ge-
netic algorithms. IFEE Transaction on Systems,
Man, and Cybernetics, 25(4):655-659, April 1995.

[11] M. D. Vose. The Simple Genetic Algorithm, Foun-
dations and Theory. MIT Press, 1999.

[12] D. H. Wolpert and W. G. Macready. No free lunch
theorems for optimization. I[EFEE transaction on
evolutionary computation, 1(1), April 1997.

