
On the Nature and Content of Safety Contracts

Patrick Graydon1 and Iain Bate1,2

1Mälardalen University, Västerås, Sweden
2University of York, York, UK

patrick.graydon@mdh.se, iain.bate@cs.york.ac.uk

Abstract—Component-based software engineering researchers
have explored component reuse, typically at the source-code level.
Contracts explicitly describe component behaviour, reducing de-
velopment risk by exposing potential incompatibilities early. But
to benefit fully from reuse, developers of safety-critical systems
must also reuse safety evidence. Full reuse would require both
extending the existing notion of component contracts to cover
safety properties and using these contracts in both component
selection and system certification. In this paper, we explore some
of the ways in which this is not as simple as it first appears.

Keywords—CBSE, safety, contracts, modular safety case

I. INTRODUCTION

Software engineering researchers have extensively explored
the reuse of components’ implementations, usually at source-
code level. Researchers in the Synopsis project propose lever-
aging Component-Based Software Engineering (CBSE) to
lower the cost of developing safety-critical systems [1]. In
CBSE, developers describe software components using con-
tracts [2]–[4]. Each contract describes a guarantee that can
be made about a component’s behaviour provided that an
assumption is satisfied. But to benefit fully from reuse, devel-
opers of safety-critical systems must also reuse as much safety
evidence as practicable. This requires both extending existing
the notion of component contracts to cover safety properties
and using these contracts in both component selection and
system certification. This is not as simple as it first appears.

II. THE DEFINITION AND ROLE OF SAFETY CONTRACTS

Researchers in the SafeCer project [1] propose using safety
contracts to capture the safety-relevant behaviour of software
components used in safety-critical systems [1], [5]. A software
component is an identifiable software unit that communicates
through explicitly specified interfaces. Component types are
the reusable, non-system-specific form of components and
might be packaged and distributed as either source or object
code. Component instances comprise distinct portions of the
system’s design, the software source code, and the object code
that will be deployed as part of a complete system. Researchers
have given the following examples of what contracts for
component types and component instances might specify [6]:

• [Input] X must be an integer in the range [0, 100]
• If X is in [0, 10], then [output] Z is in [-∞, 50]
• Output X is always less than the sum of inputs Y and Z
• Calls to a component that reads and writes files must

follow the sequence (Open; (Read | Write)* ; Close)*

• The maximum dynamic memory usage is 100 bytes
• The WCET of the provided service A is 150 milliseconds
• Value errors on input port B do not affect output C

Component

Safety argument
module

Describes the
behaviour of

Cites and
explains

Makes

Supports

Implementation

Source code

Design

Object code

Development artefacts

Unit test plan

Requirements

Safety requirements

. . .

Safety evidence

. . .

Unit test results

Operational history

Review results

Component contracts

Safety contracts

Assumptions

Guarantees

Fig. 1. Relationship between components, safety evidence, and contracts

Many of these properties could be the subject of both safety
contracts and non-safety contracts. The distinction is whether
or not the guaranteed property is needed to manage a hazard.

In the SafeCer vision [1], [4], safety contracts would
help to modularise safety evidence, facilitating qualification of
components. Fig. 1 illustrates the relationship between safety
contracts and components. Fig. 2 illustrates the lifecycle for
safety-critical CBSE that researchers propose [5]. Component
types might be created either for a specific system or out
of context. Reusable components would ideally be qualified:
that is, assessors would check the evidence cited in support
of component types’ contracts so that these properties can be
assumed when certifying systems using those components.

The lifecycle illustrated in Fig. 2 makes a safety contract
play four roles: (1) a means of encapsulating portions of the
safety case; (2) a target for component type design; (3) a
placeholder to facilitate system design; and (4) an indicator of
expected performance. Some of these roles are more crucial to
safety than others. As we will, creating contracts that perform
all of these roles is not straightforward.

III. THE DEVIL IN THE DETAILS

In this section, we present example safety contracts, discuss
challenges to making contracts useful for all of the roles they
will play in the SafeCer process, and suggest improvements.

A. Nominal Functional Behaviour

Since computing the wrong function could lead to harm,
safety contracts must specify functional behaviour. This might
be expressed in terms of pre- and post-conditions or valid op-
eration sequences and in formal, informal, or mixed notation.

2014 IEEE 15th International Symposium on High-Assurance Systems Engineering

978-1-4799-3466-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HASE.2014.44

245

System Design Phase

System Certification Phase

Component
Qualification Phase

Component
Qualification Phase

Component
Selection Phase

Component Creation Phase

Concept Phase,
Including Hazard Analysis

(System-Level) Requirements

System Design

Detailed Hardware
Requirements

Detailed Design
(Hardware)

Hardware
Development

Detailed Software
Requirements

Detailed Design
(Software)

Software
Development Qualification of Hardware /

Software Component
Instance (In Context)

Software / Hardware
Component Type

Development

Qualification of Hardware /
Software Component Type

(Out of Context)

System Integration

Component Selection

System Verification and Validation

System Certification

Instantiation of Component
in System Context

Fig. 2. Phases of the Generic Process Model

1) Related Issues: When a component type is used in a
context for which it was not expressly designed, behavioural
aspects that its designers did not consider might be important.
For example, the fact that a component temporarily suspends
all interrupts might be unremarkable in some contexts and
important in others. Moreover, some evidence of functional
behaviour is system specific. For example, functional tests
must use the chosen compiler and target computer if they are to
reveal defects arising from compiler bugs or incorrect compiler
settings. Developers instantiating a component type that is
reused at the source-code level must re-execute functional tests.

2) Implications: Safety is a system-level property and a
component type is not part of a system. We recommend not
singling out component type contracts as safety contracts.

When a component type will be used on multiple plat-
forms, its functional behaviour contracts indicate what what
its instances are expected to do, not what evidence shows that
they do. Contract and component creation mechanisms must
make the need to generate system-specific evidence clear to
developers. Where analyses of test plan requirements coverage
and structural coverage are system-independent and can be
qualified, component type contracts should guarantee related
test plan properties. Component instance safety arguments can
then refer to new test results and qualified test plan properties.

B. Timing Properties

Since late computation could also lead to harm, safety
contracts must also specify timing properties such as (a) timing
and timeliness of inputs and outputs, (b) component exe-
cution frequency, (c) Worst Case Execution Time (WCET),

(d) interrupt handling and/or masking behaviour, and (e) syn-
chronisation (e.g. assumption of single threading, use of a
synchronisation primitive, or disabling of interrupts).

1) Related Issues: Compiling the same source code with
a different compiler (even for the same platform) might result
in object code differences that affect execution time. Even a
component distributed as object code might run faster or slower
if clock rates or cache settings differ. Achieving high utilisation
often requires knowing WCET precisely [7]. But we cannot
precisely know the execution time of a component type.

2) Implications: As with contracts for some resource usage
properties, component type contracts for WCET might serve
to indicate component instances’ expected performance:

Assume: X is compiled using GCC 4.2 with no
optimisation, executed on a Freescale MPC
5554 clocked at 200±4 megahertz with all
caches disabled, and not interrupted.

Guarantee WCET (X.foo()) ≤ 1 millisecond.
Confidence Informative only.

Component type WCET contracts might be the basis for
component instance contracts that serve as placeholders for
system design. However, typical WCET assessment techniques
apply to entire tasks, not software components [7]. If WCET
evidence must be collected anew each time a component is
instantiated, it might make more sense to gather evidence about
tasks’ WCET than components’ WCET.

IV. CONCLUSIONS

CBSE for safety-critical software systems is not as simple
as it first appears. Because functional test evidence for source-
code components must be regenerated, component type con-
tracts should include qualifiable test plan properties instead.
Because the meaning of execution time contracts changes dur-
ing development, contracts must distinguish between indicative
properties and properties backed by safety evidence (of a given
quality). Further research is needed to ensure that SafeCer
components and contracts are fit for purpose.

ACKNOWLEDGMENT

The work was funded by the Swedish Foundation for
Strategic Research (SYNOPSIS) and Artemis (SafeCer).

REFERENCES

[1] SafeCer. (2013, June) Safety certification of software-intensive systems
with reusable components. [Online]. Available: http://www.safecer.eu

[2] B. Meyer, “Applying ‘design by contract’,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[3] A. Cimatti and S. Tonetta, “A property-based proof system for contract-
based design,” Proc. 36th EUROMICRO Conference on Software Engi-
neering and Advanced Applications, pp. 21–28, 2012.

[4] J. Carlson, C. Ekelin, J.-L. Gilbert, Á. Herranz, and S. Puri, “Generic
component meta-model, Version 1.0,” SafeCer, Deliverable D2.2.4, 2012.

[5] P. Graydon et al., “Nature and derivation of safety contracts, Version
1.1,” SafeCer, Deliverable D2.3.2, 2013.

[6] P. Böhm et al., “Specification of the requirements on the generic
component model, including certification properties and safety contracts,”
SafeCer, Deliverable D2.2.1 and D2.2.2, 2012.

[7] P. Graydon and I. Bate, “Realistic safety cases for the timing of systems,”
The Computer Journal, 2013, in press.

246

