
www.mrtc.mdh.se

Response-Time Analysis for
Dynamically and Statically

Scheduled Systems

Mikael Sjödin
mikael.sjodin@mdh.se

April 2002

MRTC Report no. 55

ISSN 1404-3041 ISRN MDH-MRTC--55--SE

MRTC
Report

1 Introduction

This paper describes how to perform response-time analysis on a set of tasks
scheduled by a �xed priority scheduler that runs �in the background� of a
static cyclic schedule. The system model contains:

• Interrupts. There may be multiple interrupt levels, so an interrupt may
be interrupted by a higher level interrupt.

• A static cyclic schedule. The schedule has a major cycle and is divided
into minor cycles. At the start of each minor cycle a set of functions
are scheduled for execution. These functions all execute to completion
and are all executed �back-to-back� as a single block of execution.

Interrupts may preempt the execution of the static scheduled functions.

• A set of tasks that are dynamically dispatched and executed by a �xed
priority scheduler in the time slots available between interrupts and
minor cycle function-blocks.

Traditionally, in this kind of system the dynamic tasks are assigned to non
time-critical functions. The time-critical functions are all allocated in the
static schedule. The reason for this partitioning has been that no method to
calculate the response-time for dynamically dispatched tasks has existed.

This paper presents a method to calculate worst-case response-times for the
dynamically dispatched tasks.

2 Recapitulating Response-Time Analysis

Lets begin by revising classical response-time analysis methods.

2.1 Task Model

In the classical response-time analysis (see e.g. [BW96, ABD+95])we assume
a �xed priority scheduler (i.e. a dynamic scheduler that always executes the
highest priority eligible task).

Each task i is assumed to be a periodic task with the following attributes:

1

msd
This work has been supported by Volvo Technical Development within the EAST/EEA project.

Ci The Worst-Case Execution-Time (WCET) of the task.

Ti The period of the task.

Bi The maximum blocking time (i.e. the maximum time to wait for a lower
priority task that has locked a resource).

Ji The maximum jitter (i.e. max deviation for the ideal periodicity).

Di The deadline of the task.

Additional attributes for tasks that will be used in this paper are:

Pi The priority of the task. Priorities can be assigned with any method (e.g.
rate monotonic or deadline monotonic). If a task i has higher priority
than a task j, then Pi > Pj.

Ri The worst-case response-time (as derived by the response-time analysis).

For this paper it assumed that:

• Ci > 0, Ti > 0, Di > 0.

• Bi ≥ 0, Ji ≥ 0.

• Pi 6= Pj if i 6= j (i.e. unique task priorities).

• Di < Ti − Ji (i.e. deadline less than period).

The two last assumption above could be removed using elsewhere published
techniques (see e.g. [Tin94, AKA94, ABD+95]. The techniques presented
later in this paper could be applied also without these assumptions. However,
since these assumptions signi�cantly simpli�es the response-time equations
we will keep them throughout this paper.

2.2 Response-Time Equations

For the model above, the formula for calculating the response-time is:

Ri = Bi + Ci +
∑

j∈{x:Px>Pi}

⌈
Ri + Jj

Tj

⌉
Cj (1)

2

Since Ri cannot be isolated on one side of the equality the following iterative
solution method is used:

Rn+1
i = Bi + Ci +

∑
j∈{x:Px>Pi}

⌈
Rn

i + Jj

Tj

⌉
Cj (2)

where R0
i = 0 and Ri = Rn

i when Rn
i = Rn+1

i .

A system is deemed schedulable if ∀i : Ri ≤ Di.

3 Modeling Static Cyclic Schedules

3.1 An Example Schedule

Lets consider an example static schedule with 4 functions A, B, C and D.
The schedule has a major cycle of length 72 ms and a minor cycle of length
6 ms. The functions have the following characteristics:

Function WCET Period
A 1 6
B 2 18
C 1 12
D 1 24

Note that by necessity all period times are multiple of the minor cycle (6)
and a divisor of the major cycle (72).

A static cyclic schedule for these functions is shown below:

ABBCD A AC ABB ACD A ABBC A ACD ABB AC A
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----|
0 6 12 18 24 30 36 42 48 54 60 66 72

In the major cycle/minor cycle paradigm the functions A, B, C and D would
all be executed back-to-back a time 0. This means that if A only executes for
0.5 ms, then B would be dispatched at time 0.5 (not at time 1 as indicated

3

in the schedule above). We call each set of functions dispatched in the be-
ginning of a minor cycle a function chain. This method of using major and
minor cycles is commonly used in practice. For instance the Rubus [Arc02]
operating system implements this type of static cyclic scheduling.

In this model interrupts are assumed to preempt the execution of a function
chain, thus delaying its execution. Thus, the above schedule is only valid if
there only can be a total of 1 ms of interrupt execution during any 6 ms of
time (otherwise the function chain for the �rst minor cycle would risk not to
complete during the �rst minor cycle).

3.2 Combining Static Schedules and Dynamic Tasks

When a function chain is completed, the remaining time of the minor cy-
cle can be spent executing any eligible dynamically dispatched tasks. For
instance, the Rubus operating system [Arc02] supports this type of mixed
static and dynamic scheduling.

In the example above, in the �rst minor cycle there is at least 1 ms of time
available for executing dynamic tasks (assuming that no interrupts delayed
the execution of the function chain). However, if some of the functions exe-
cute faster than their WCET then more than 1 ms may be left over for the
dynamic tasks to execute in.

Thus, we can make the observation that the static schedule behaves like a
single high priority task (from the dynamic tasks point of view). So, how do
we model this in the response time equations?

First, we recognize that from the dynamic tasks point of view the actual
functions executed in function chain is irrelevant. From the dynamic tasks
point of view the schedule would look like this:

XXXXX X XX XXX XXX X XXXX X XXX XXX XX X
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----|
0 6 12 18 24 30 36 42 48 54 60 66 72

A naive way to model the interference caused by the static schedule would
be to make it a high priority task with attributes Ci = 5 (where 5 is the
maximum time allocated for any function chain in the schedule) and Ti = 6
(where 6 is the minor cycle time). This would, however, be overly pessimistic,

4

and in essence it would allocate 5/6 (≈83%) of the CPU to the static schedule.
In this example we can however see that only 29/72 (≈40%) of the CPU is
allocated to the static schedule.

3.3 A New Task Model

To remedy this problem we extend the model of section ()2.1. We will use
a technique that is similar to the technique used in [SH99]. Lets change the
attribute Ci to denote a vector of execution times, such that:

Ci = [Ci[0], Ci[1], . . . , Ci[Ci − 1],] where each Ci[k] an execution time.

Ci is the number of elements in Ci.

The elements of Ci denotes a cyclic pattern of execution times. Where each
execution time would be the execution time of a function chain. In our
example we would get:

• Ci = [5, 1, 2, 3, 3, 1, 4, 1, 3, 3, 2, 1]

• Ci = 12

• Ti = 6

A task that always have the same WCET would have Ci = 1 (that is, if
Ci = 1 then this new model is equivalent to the classical model).

4 A New Response-Time Analysis

Now, when we have a task model that accurately captures the behavior of a
static schedule (with respect to its interference on dynamic tasks), how do
we calculate the response times for our new task model?

5

Lets begin with rephrasing equation 1 on page 2:

Ri = Bi + Ci +
∑

j∈{x:Px>Pi}

execution_demand(j, Ri)

execution_demand(j, t) = occurrences(j, t) ∗ Cj

occurrences(j, t) =

⌈
t + Jj

Tj

⌉
(3)

Where execution_demand(j, t) denotes the maximum execution demand task
j can generate in an interval t, and occurrences(j, t) denotes the maximum
number of time a task j can arrive during a time t.

Next, we introduce the in�nite array Ĉi[k], where Ĉi[k] is the maximum total
execution time of k successive invocations of task i. The formal de�nition is:

Ĉi[k] =

0 if k = 0

max
t∈0...Ci−1

k−1∑
l=0

Ci[(t + l) mod Ci] if k > 0
(4)

Note speci�cally that Ĉi[1] is the maximum of the execution times in Ci, and
Ĉi[Ci] is the sum of execution times in Ci. Also, if Ci = 1 then Ĉi[k] =
Ci[0] ∗ k. For our example above, we would get Ĉi = [0, 5, 6, 8, 11, 14, 15, . . .]
(which happens to coincide with summing up the elements from the �rst
position in Ci).

This leads us to the �nal formulation of the new response-time analysis.
Using Ĉi we can now change execution_demand(j, t) and equation ()3 to:

Ri = Bi + Ĉi[1] +
∑

j∈{x:Px>Pi}

execution_demand(j, Ri)

execution_demand(j, t) = Ĉj[occurrences(j, Ri)]

occurrences(j, t) =

⌈
t + Jj

Tj

⌉
(5)

6

4.1 Implementational Aspects

For e�cient implementation fast access to the elements of the array Ĉi is
crucial.

An e�cient implementation of equation 4 on the page before (with complexity
O(1) in contrast with the naive solution which has complexity O(Cik)) can
be made by pre-computing and storing the �rst Ci + 1 elements of Ĉi. The
pre-computed array, denoted Cpre

i, is de�ned as:

Cpre

i[k] = Ĉi[k] ∀k ∈ [0 . . . Ci] (6)

Cpre
i is computed in O(Ci

3
) time and stored in O(Ci) space. Since C is

expected to be small this overhead can be considered negligible.

Lets call a sequence of Ci task executions a full execution. A full execution
will contain one execution of each instance in Ci, i.e., a full execution will
take at most

∑
k Ci[k] time. As pointed out above,

∑
k Ci[k] = Ĉi[Ci] (which

is stored in Cpre
i[Ci]). Now we can implement equation 4 on the preceding

page as:

Ĉi[k] = no_of_full_executions ∗ Cpre

i[C] + Cpre

i[no_of_remaining_executions]

no_of_full_executions = k div C

no_of_remaining_executions = k rem C

(7)

5 Putting It All Together

So, now we have a way to calculate the response times for our new task
model. How do we model a system with interrupts, a static schedule and a
set of dynamic tasks? Well, everything is modeled as tasks in out new task
model, as follows:

• Interrupts are assigned the highest priorities. Higher priorities to higher
level interrupts. Each interrupt must have a minimum interarrival time
and the interrupt handler must have a known WCET. Each interrupt
is modeled as a task with the following attributes:

7

� Ci = [〈the known WCET〉]
� C = 1

� Ti = 〈the known interarrival time〉
� Ji = 0

� Bi = 〈the longest time interrupts at this level are disabled〉
� Di = ∞ or 〈the interrupts deadline〉

• Next, the task for the static schedule is assigned a priority lower than
the interrupts and the following attributes:

� Ci = [〈Array of WCETs for function chains〉]
� C = 〈number of minor cycles in schedule〉
� Ti = 〈minor cycle time〉
� Ji = 0

� Bi = 0

� Di = ∞

• Finally, the dynamic tasks are assigned priorities that are lower than
the task for the static schedule.

Now, equation 5 on page 6 can be used to calculate Ri for each task and if
∀i : Ri ≤ Di then all dynamic tasks (and interrupts) will meet their deadlines.

6 Preemptive Static Schedules

In some static scheduled systems it is allowed to for functions chains to
preempt each other. That is, a function chain A may not complete before
the next function chain B is released. In this case, A is preempted by B and
when B completes A is resumed. The Rubus [Arc02] operating system is an
example of where such schedules can be allowed.

When using the response-time analysis in section ()4 to model the inter-
ference caused by function chains to dynamic tasks this type of preemptive
static schedule need no special treatment. For instance a preemptive sched-
ule modeled as Ci = [7, 1, 5, 1] and Ti = 4 is perfectly all right. One need

8

to keep in mind though, when modeling such schedules, the response time
calculated for the static schedule task is not a valid response time (whereas
the response times calculated for all other tasks will be valid).

7 Future Work

In the formulation of equation 5 on page 6 the term execution_demand(j, t)
gives us a powerful tool to express arbitrary complex execution patterns
for tasks. For instance, in the Rubus operating system, no minor cycles
are needed. Instead, function chains can be scheduled at arbitrary points
in time during the major cycle. To model a static schedule with arbitrary
release times for function chains the function execution_demand(j, t) can be
changed to properly describe such a release pattern. (For instance, by using
an array Ti[] with release times instead of the plain Ti that expresses the
period of the minor cycle.)

On the scheduling theory side, work could be performed to formally prove
that the response-time analysis is correct for any monotonically increasing
function execution_demand(j, t) (monotonically with respect to t). Also, it
could be shown that other task models, like the sporadically periodic tasks
model [Tin94], can be modeled by the execution_demand(j, t) function.

References

[ABD+95] N.C. Audsley, A. Burns, R.I. Davis, K. Tindell, and A.J. Wellings.
Fixed Priority Pre-Emptive Scheduling: An Historical Perspec-
tive. Real-Time Systems, 8(2/3):129�154, 1995.

[AKA94] A.Burns, K.Tindell, and A.J.Wellings. Fixed Priority Scheduling
with Deadlines Prior to Completion. In Proc. of the 6th Euromicro
Workshop of Real-Time Systems, pages 128�142, June 1994.

[Arc02] Arcticus Systems Home Page, 2002. http://www.arcticus.se.

[BW96] A. Burns and A. Wellings. Real-Time Systems and Programming
Languages. Addison-Wesley, second edition, 1996. ISBN 0-201-
40365-X.

9

[SH99] M. Sjödin and H. Hansson. Analysing Multimedia Tra�c in Real-
Time ATM Networks. In Proc. 5th IEEE Real-Time Technology
and Applications Symposium (RTAS), pages 203�212, June 1999.

[Tin94] K. Tindell. Fixed Priority Scheduling of Hard Real-Time Sys-
tems. PhD thesis, University of York, February 1994. Available
at ftp://ftp.cs.york.ac.uk/pub/realtime/papers/thesis/ken/.

10

