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Abstract—This paper evaluates the performance of four veri-
fied real-time operating-system schedulers. We used the UPPAAL
and Frama-C verification tools, and our newly developed code
generator TAtoC (which is one of the main contributions in this
paper), to develop the verified schedulers. These schedulers iso-
late operating-system threads into time partitions. This technique
is referred to as resource reservation and it is a commonly used
scheduling technique in the aviation industry since it effectively
isolates timing and memory faults within each partition (and
simplifies certification). Hence, this will prevent errors from
propagating to different parts of the system.

The performance of the synthesised schedulers was evaluated
in the seL4 micro-kernel. This kernel is unique since it is the
only existing kernel that is 100% verified. The kernel itself
uses partitioning as a means to separate critical applications
from non-critical ones. The aim of this paper is to investigate
and develop a performance-efficient, and verified, scheduler
that is suitable for the seL4 kernel, since it currently lacks a
resource-reservation based scheduler.

Index Terms—theorem proving, model checking, real-time
systems, operating system scheduling, resource reservation

I. INTRODUCTION

Introduction A real-time system is a hardware/software
system in which every operation must be bounded in terms of
time. For example, this could mean that a specific operating
system (OS) thread must complete its execution within at most
32 µs counting from the point in time when it started to
execute. The requirement still holds if the thread completes
earlier than 32 µs. Hence, 32 µs is the bounded time that is
not allowed to be exceeded.

Most real-time systems have some sort of periodic behavior.
For example, an anti-lock braking system (ABS) in a car will
periodically read a sensor to check if a wheel is locked. The
maximum time delay between two consecutive sensor readings
must be bounded, since this time will represent the maximum
time delay from the time when a wheel locks until the ABS
system has knowledge of it (and can react).

A function, e.g., an ABS system, in a car usually consists of
more than one OS thread. Hence, it is not unusual that a group
of threads collaborate in order to form a specific function.
Integrating such functions onto a common hardware platform
is popular today in both the avionics [1] and the automotive [2]

industry. The reason for this is because of the constant increase
in functionality, e.g., automatic parking assistance, advanced
cruise control etc., (which is realized in software) and the limit
on the number of embedded computers due to weight and
space limitations. Hence, due to a larger number of software
functions compared to the number of embedded computers,
this will force these functions to share CPU, memory, devices
etc. Going back to the ABS example which has a number
of time-critical threads. These threads will be affected when
they share the CPU with other time-critical threads. The risk
is high that these threads will not meet their (time) deadlines
since they might be delayed by other threads that are executing
(with higher priorities). Even if we can manage to analyse
such a system and claim that all threads will meet their
deadlines (assuming that the threads will not execute longer
than intended), we still might want to isolate critical threads
from less critical threads just in case if some (non-critical)
thread would violate its assumptions and thereby interfere
with critical threads. From the certification point of view, such
an isolation might even be required. Isolation will also make
the analysis simpler since we can decompose the system into
smaller parts which can be analysed one by one in isolation.
Standards in the avionics industry, such as ARINC653 [1],
define a memory and CPU partitioning scheme as part of the
OS. This will isolate applications from each other both in time
and space. We will go more into depth in resource-reservation
(partitioning) techniques in Section II-A.

The CPU partitioning in ARINC653 is implemented as
part of the OS scheduler. Such a (resource-reservation) sched-
uler would be useful in the seL4 [3] micro-kernel. The
reason for this is because the kernel implements memory-
partitioning, and even access-control to kernel system-calls
and inter-process communication (IPC) which gives rise to
a strong isolation between software applications. The entire
seL4 kernel has been verified using the Isabelle/HOL theorem
prover. Hence, there is no possibility to implement a resource-
reservation scheduler inside the kernel (this would invalidate
the verification property). Instead, such a scheduler would
have to be implemented as an application residing in the user
space. However, this imposes a performance degradation since
scheduling operations issued from user-space take more time



to execute, compared to an in-kernel implementation, due to
system-call delays (overhead). Performance is of course an
important property for a micro-kernel. Especially if used in
a real-time embedded system which has limited resources in
terms of CPU, power consumption etc. and high demands on
timing. Hence, efficient run-time performance (low overhead)
and (verified) correctness are two important requirements on
a resource-reservation scheduler (in seL4). The goal of this
paper is to develop such a scheduler.

Making verified source-code performance efficient is a
challenge. In this work, we focused both on theorem prov-
ing and model checking. Using model checking to verify
timed automata (TA) systems works well when verifying
schedulers (that are modelled with TA). However, a recent
study [4] has shown that the run-time performance of resource-
reservation schedulers, when synthesised from TA, is sub-
stantially worse than manually-coded (non-verified) resource-
reservation schedulers. Using theorem proving to verify man-
ually coded schedulers could potentially have better run-
time performance, since there is no language-translation step
involved. We used UPPAAL-TIMES [5], UPPAAL [6] and
Frama-C [7] in this study to develop four different verified
resource-reservation based schedulers. We evaluated the per-
formance of these four schedulers in seL4, together with a
manually coded scheduler and a previously verified sched-
uler [4].

Contribution The main contributions of this paper are:
1) The development of four verified resource-reservation

based schedulers. This includes the development of a
code generator called TAtoC. It can generate source-
code from both task automata and timed automata
models.

2) The evaluation of these schedulers, in terms of their
run-time performance, in the seL4 micro-kernel. This
evaluation includes actual (clock-cycle level) time mea-
surements of the execution of the schedulers.

Outline The outline of this paper is as follows: Section II
presents preliminary background and Section III presents
related work. In Section IV we describe the verification and
synthesis efforts to develop the four verified schedulers. We
present the performance evaluation of the presented schedulers
in Section V, and finally in Section VI, we conclude our work.

II. PRELIMINARIES

A. Resource reservation (CPU)

Resource reservation is a general term for dividing a re-
source (CPU, memory etc.) into sub-parts and then allocate
these to different applications (which usually consist of a set
of threads, processes etc.). The applications might get different
sizes of their share. This is typically common in real-time
systems as opposed to general purpose systems like Linux
for example. General purpose systems typically implement
fair sharing which does not make sense in a real-time system
where threads (or a group of threads) have different priority
levels, i.e., this means that they are not equally important.

Applications, in real-time systems, will get different share
sizes depending on how important they are. However, most
importantly, this share is a guaranteed allocation to the applica-
tion. There are two positive aspects with resource reservation:

1) Each application can be developed in such a way that
it is optimized for a certain resource allocation. For
example, if an application development-team knows that
they will get a 20% share of the CPU, then they can
adapt the thread priorities, execution times etc. to this
share. The application can then be carefully analysed in
such a way that it guarantees that the application can
execute without deadline misses (with the assumption
that it will get a maximum of 20% of the CPU’s
processing time). This will also simplify reusability, but
most importantly, it does not matter what is allocated to
the remaining part (80%) of the CPU’s processing time.
This means that the integration phase will be simplified,
i.e., the integrator will only need to analyse the CPU
shares (%) when integrating applications. There is no
need to inspect and analyse the internal application-
threads.

2) Assume that the application from the previous example
(with a 20% CPU share) is an extremely critical and
important application (an ABS system for example).
It would be a waste of hardware resources to let this
ABS system execute alone on an embedded computer.
It would be a waste of 80% of the CPU’s processing
time which is not acceptable since cars have very
limited hardware resources. However, to let for example
a Linux-based brake-diagnostics system (that requires
approximately 60% of the CPU’s processing time) run
side-by-side with the ABS system might be hazardous.
It could be a disaster if the diagnostics system would use
more than 80% of the CPU’s processing power at any
time. A safe solution could be to put the diagnostics sys-
tem in a virtual machine and allocate 60% of the CPU’s
processing time to it using resource reservation. Hence,
the resource-reservation mechanism would prevent any
unpredictable interference between these two systems.
Putting a barrier like this between applications is a
type of isolation that makes system integration safer. In
general, isolation is the most efficient tool for avoiding
hazards due to propagating software run-time errors.
The reason for this is because it can guarantee error
confinement and this will stop errors from propagating
from one application to another. Note that we include
execution-time violations, i.e., deadline misses, in our
definition of a software error.

Figure 1 illustrates how the CPU resource-reservation
works. A set of threads (the representation of a func-
tion/application) can be confined in a partition that we refer to
as a server. Each server can also host a local scheduler that
schedules threads according to, for example, internal thread
priorities. No local scheduler is required when only one thread
resides in a server. The CPU share that is allocated to a server



is defined in the server’s interface. The global scheduler is
responsible for enforcing that the CPU shares are indeed given
to the servers at run-time according to the server interfaces.
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Fig. 1. Resource reservation for the CPU.

Figure 2 shows an example system with an ABS [8] and a
diagnostics system integrated on the same hardware platform.
The upper part shows the threads and the lower part represents
the servers. The x-axis represents (absolute) time and the
systems start to execute at time 0. The two systems are
placed in different servers (ABS and Brake Diagnostics)
and allocated 20% and 60% of the CPU’s processing time
respectively. An executing server is in practice a time window
(called budget) that is used by the server’s thread(s). The
server’s threads are allowed to execute within this time window
(but never outside of it). Time windows are represented by the
diagonal lines in figure 2. The ABS system consists of three
threads (ABS-sensor, ABS-control and ABS-actuator) that
are responsible for reading sensors, control calculations and
valve actuation (if necessary). The diagnostics system consists
of one thread (LinuxVM) that executes a Linux OS as a virtual
machine. The diagnostics system is responsible for collecting
brake-related data (from the ABS, AntiSkid, TractionControl
etc.) during driving and saving it in a database. The ABS
server has a higher priority than the diagnostics server (Brake
Diagnostics) since it is more critical than the diagnostics
system. This can be observed in figure 2 when the ABS
server interrupts (preempts) the lower priority server every 50
time units. The highest priority thread/server among the ones
that want/can execute will always run. The ABS server gives
the ABS threads 20% CPU processing time by letting them
execute in the time windows which appear for 10 time units
every 50 time units (10/50=0.2=20%). The LinuxVM thread
is given 240 time units every 400 time units by its server
(240/400=0.6=60%). Note that the two servers can not execute
simultaneously since we assume a uni-core processor platform.
The scheduling algorithm used in Figure 2 for scheduling
servers is fixed-priority preemptive scheduling (FPPS). The
local scheduler in the ABS server schedules the three threads

using FPPS as well. FPPS is one of the most common
scheduling algorithms in real-time systems [1], [2].
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Fig. 2. Example schedule with two servers using resource reservation.

B. seL4

Software errors are difficult to avoid when the software
system is complex and large. For example, a small system
like the seL4 [3] (secure embedded L4) kernel consists of
approximately 9000 lines of code (LOC). This is relatively
small compared to the Linux kernel (version 2.6.35) which
has 13.5 million LOC [9]. However, the seL4 kernel took 20
person years to verify and the verification process discovered
144 software bugs. A software system is without doubt not
reliable nor safe if the underlying OS is not verified.

The concept of seL4 is straightforward. First of all, the
most critical part of a software system, i.e., the OS, has
control of everything. Hence, keep it small, simple and make
sure that it is 100% verified. Secondly, protect applications
from each other by using partitions (resource reservation).
Software is more robust when it is composed into partitions
compared to non-partitioned (flat) software. The reason for this
is because software errors will only affect a limited portion of
the software when it is partitioned [1].

As mentioned in Section I, seL4 implements partitioning
to some extent, but not when it comes to thread scheduling.
Threads may have unique priorities in seL4, i.e, FPPS is used,
but threads are not scheduled periodically. Also, there is no
support for CPU resource-reservations, i.e., the scheduler can
not decide when threads should start or suspend. Threads with
equal priority will be scheduled according to the round-robin
scheduling algorithm. The round-robin algorithm is based on
fairness, i.e, a common strategy in general purpose OSs such
as Linux or Windows. However, this algorithm is not suitable
for real-time systems. Figure 3 illustrates how the thread
scheduling is performed in seL4. Thread A has the highest
priority, while thread B and thread C have the same priority,
and thread D has the lowest priority among the threads. Thread
A will execute first since it has the highest priority. Once
it stops to execute (due to I/O blocking for example), then
threads B and C are allowed to run. Note that thread A can
delay the other threads for an unbounded amount of time.
This is what the resource-reservation technique is designed
to avoid. Threads B and C are scheduled by the round-robin
algorithm since they have the same priority level. This means
that both threads will get a fair amount of CPU processing



time since they run every second time with time windows that
are equally long (except for the last ones since the threads
stop executing before the time windows end). We can observe
that thread B and C are scheduled using enforcement since
time windows are used (it resembles resource reservation).
However, this enforcement is done in a fair manner (thread
B and C get the same amount of CPU processing time) and
this is not desirable in real-time systems. Thread D will be the
last one to execute since it has the lowest priority.
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Fig. 3. Scheduling in seL4.

C. Timed and task automata

Timed automata [10] is a modelling language used for
formal modelling and analysis of software and hardware. A
timed automaton is a finite state-machine that is extended
with real-valued clocks. The formalism of timed automata is
widely used for analysing real-time systems. The UPPAAL
tool (among others) supports verification of safety properties.

Timed automata have been extended with an explicit notion
of real-time threads [11]. This extended model, which is
referred to as task automata, associates asynchronous threads
with the states of a timed automaton. The task-automata model
assumes that threads are executed with static or dynamic
priorities in a preemptive or non-preemptive manner. Task
automata are supported by the UPPAAL-TIMES tool.

In this paper we use both the UPPAAL and the UPPAAL-
TIMES tool.

D. Frama-C

Frama-C is a plug-in based framework that can perform
verification of C programs. Deductive verification is one
of the functionalities that Frama-C offers through the plug-
in Jessie [12]. Functional properties of C programs can be
expressed using the ACSL [13] formal specification language.
Automated provers like Z3, CVC3, Yices, Simplify, Alt-Ergo,
Gappa etc. can be used together with the Jessie plug-in to
perform verification.

1: /*@ requires \valid(p);
2: requires \valid(q);
3: assigns *p;
4: assigns *q;
5: ensures *p == \old(*q);
6: ensures *q == \old(*p); */

7: void swap(int *p, int *q) {
8:
9: const int save = *p;
10: *p = *q;
11: *q = save;
12:}

Fig. 4. Frama-C verification example.

Figure 4 shows an example of C code that is annotated
with ACSL. A requires clause specifies pre-conditions and

an ensures clause specifies post-conditions. An assigns clause
specifies the memory locations that will be modified.

III. RELATED WORK

There are two main categories when it comes to scheduler
modelling and verification. In the first category, the scheduler
already exists as a kernel implementation [14], [15], [16], [17],
[18], [19], [20], [21]. The idea is then to model this scheduler
(using code analysis or similar methods) and later verify it. In
the second category, the scheduler is modelled from scratch
and later verified (and perhaps also synthesised) [22], [23],
[24], [25], [26], [27]. This paper presents schedulers from both
categories (see Section IV).

Looking at real-time scheduler verification (from the first
category), Gotsman et al. [18] used concurrent separation
logic to verify a simplified version of a Linux scheduler from
2005 (2.6.11). The work from Daum et al. [15], Ferreira et
al. [16] and Fidge et al. [17] used the Ergo theorem prover,
Isabelle/HOL and HIP/SLEEK (respectively) to verify round-
robin schedulers residing in the MIPS R3000 platform, the
VAMOS micro-kernel and in the real-time operating system
(RTOS) FreeRTOS (respectively). The difference to our work
is that none of these schedulers are of type FPPS with resource
reservations.

The following related work is focused on resource reser-
vation in combination with verification. Åsberg et al. [4]
developed a two-level resource-reservation scheduler that was
verified and synthesised to the RTOS VxWorks. The main
drawback with this work was the poor run-time performance
of the synthesised scheduler. Another related paper, Carnevali
et al. [28], was published the same year (2011). The main
difference, compared to the work from Åsberg et al. [4], was
that Carnevali et al. [28] used timed petri-nets instead of
timed automata and the synthesised scheduler was emulated in
Linux. The work from Ha et al. [29] included the verification
of the resource-reservation scheduler in the DEOS kernel using
theorem-proving. Singhoff et al. [27] performed schedulability
analysis of two-level resource-reservation scheduling using
timed automata and the simulation tool Cheddar. The Bossa
framework from Luciano et al. [30] and Lawall et al. [31]
used a domain specific language (DSL) to model resource-
reservation based schedulers. The main difference from our
work is that the authors verified that the scheduler was
correct with respect to the Linux kernel interface, and not any
specific scheduling policy. Zerzelidis et al. [32] used UPPAAL
to model a system with several schedulers. Each resource
reservation had a priority level but no release-time or budget.
The verification proved that the model was free from livelock
and deadlock.

Our work distinguishes itself from the listed work in that
we have focused primarily on the run-time performance of the
synthesised scheduler.

IV. SCHEDULER VERIFICATION AND SYNTHESIS

This section will describe how we verified and synthesised
our four resource-reservation based schedulers (Section IV-B).



One of the schedulers was handwritten in C and later verified
using Frama-C (Section IV-B1). Three of the schedulers (pre-
sented in Section IV-B2, IV-B3 and IV-B4) were modelled
with timed/task automata and later synthesised using two
different versions of our code generator (TAtoC) that we
developed during this work (Section IV-A). The Frama-C
verification source-files and the code generator TAtoC are
available for free as open source projects1. The TAtoC code
generator can hence be modified in order to fit the needs of
the user, as opposed to the default (built-in) code generator in
UPPAAL-TIMES which is closed source.

A. Code synthesis

We have developed a code generator called TAtoC (Timed
Automata to C) that is compatible with both the UPPAAL and
UPPAAL-TIMES tool, i.e., it can convert both task- and timed-
automata to C code. TAtoC is an external tool (not integrated in
UPPAAL) and it is written as a Bash script. Figure 5 illustrates
the data flow between TAtoC and UPPAAL. The input to
the TAtoC tool is a XML file representing a timed-automata
system. This XML file contains timed-automaton structures
that are modelled either in the UPPAAL or the UPPAAL-
TIMES tool. TAtoC has the ability to parse timed-automaton
XML-files and generate C code.
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Fig. 5. The model-conversion flow from UPPAAL to TAtoC.

The TAtoC code generator is inspired by the existing code
generator [33] in the UPPAAL-TIMES tool. TAtoC is based
on the maximal-progress assumption [34]. This means that
the timed-automata system should execute as many transitions
as possible (during the current clock tick) until it stabilises,
i.e., until no more transitions are possible to take. The clock
tick will at this point be incremented by one, then follows
another set of transitions until the system stabilises again
(and so on). This is illustrated in Figure 6. Assume that
the clock CL is initially set to one in the timed-automata
system. The leftmost automata will make a transition from
state Temp1State1 to state Temp1State2 (since the guard
CL == 1 is true). This will in turn force one of the other
two automata to make a transition since both automata have

1TAtoC http://www.idt.mdh.se/∼tatoc/

Fig. 6. Example timed-automata system with three templates.

an edge with a channel (channel?) that is connected to the
leftmost automaton (channel!). The last possible transition
is Temp1State2 to Temp1State1. No more transitions are
possible to take after this transition (during the current clock
tick) since CL is equal to zero. The system has stabilised now,
so CL gets incremented by one.

TAtoC supports the majority of timed-automaton constructs.
For example, it can translate task automata, inline C-code inte-
grated in timed automata, templates, one-to-many or many-to-
one synchronisation etc. The main difference between TAtoC
and the UPPAAL-TIMES code generator is that TAtoC is
state oriented while UPPAAL-TIMES is transition oriented.
Generated source code from a code generator that is state
oriented is potentially more run-time efficient.

The left part of Figure 7 shows the data structures used to
represent states and transitions in a timed-automata system.
A state (lines (1)-(5)) is simply represented by a number of
transition objects. Each state in a timed automaton is directly
mapped to one struct state. A separate data structure (line
(18)) points to each active state. Each automaton (template),
in a timed-automata system, will have one active state each.
Hence, the number of pointers of current active will be equal
to the number of templates in a timed-automata system.

The lines (7)-(16) represent a transition (left part of Fig-
ure 7). The index variable (line (9)) is a reference to both
the transition guard, and the assignment operations (if any).
The guard and the assignment operations are stored in two
functions, shown in the right part of Figure 7. The lines (10)-
(12) (left part of Figure 7) represent the synchronisation part
of a transition. It does not matter if the transition is a sender
(the synchronisation initiator) or not, it may still have multiple
transitions connected to it. Line (13) connects the transition to
a template and the data structures on lines (14)-(15) point to
the two states that the transition interconnects.

1: struct state {
2:
3: int nr of outgoing trans;
4: struct trans **trans from state;
5: };
6:
7: struct trans {
8:
9: int index;
10: int nr synced;
11: int *synced with;
12: char is send;
13: int template index;
14: struct state *to state;
15: struct state *from state;
16: };
17:
18: struct state **current active;

1: int evaluate guard(int index) {
2:
3: switch(index) {
4: case 1:
5: .
6: .
7: .
8: }
9: }
10: void assign trans(int index) {
11:
12: switch(index) {
13: case 1:
14: .
15: .
16: .
17: }
18: }

Fig. 7. State and transition mapping (left sub-figure), and the guard and
assign mapping of transitions (right sub-figure).



Figure 8 shows how the generated C-code from TAtoC and
UPPAAL-TIMES differs. The leftmost pseudo code represents
the main controller-loop in the generated code from TAtoC
and the rightmost part represents the corresponding code from
UPPAAL-TIMES. TAtoC has fewer LOC and less iteration
steps than UPPAAL-TIMES. The first two for loops (line (1)
and (2)) in TAtoC will potentially have less iteration steps than
the corresponding part on line (1) in UPPAAL-TIMES. Take
for example the automata system in Figure 6. TAtoC would
have three states in Active States and each state’s Outgo-
ing Trans would be one. However, All Trans in UPPAAL-
TIMES would be four since its code generator would traverse
all edges in a timed-automata system. TAtoC does not check
that a transition is active, unlike UPPAAL-TIMES (line (2)),
since they are organised in Active States. Both generators
will do the same check for channeled transitions (lines (4-
12) on the left sub-figure and the corresponding part on lines
(5-13) on the right sub-figure). When transitions are taken
(with or without channels), then both generators will update
variables in the same manner (Update Variables(Trans) and
Update Variables(Ch Trans)). An example of a variable
update is shown in Figure 6 when the variable m is assigned
new values (m = 0, m = m + 1 and m = m + 2). One of

1: for each State in Active States do
2: for each Trans in State.Outgoing Trans do
3: if Trans.Has Channels = TRUE then
4: Sync := FALSE
5: for each Ch Trans in Trans.Channeled Trans do
6: if Ch Trans.Is Active = TRUE then
7: if Ch Trans.Guard = TRUE then
8: Sync := TRUE
9: goto 13:
10: fi
11: fi
12: od
13: if Trans.Guard = TRUE and Sync = TRUE then
14: if Trans.Is Send = TRUE then
15: Update Variables(Trans)
16: Update Variables(Ch Trans)
17: else
18: Update Variables(Ch Trans)
19: Update Variables(Trans)
20: fi
21: Active States := Trans.Next State
22: Active States := Ch Trans.Next State
23: goto 1:
24: fi
25: fi
26: else // if Trans.Has Channels =
27: FALSE then
28: if Trans.Guard = TRUE then
29: Update Variables(Trans)
30: Active States := Trans.Next State
31: goto 1:
32: fi
33: fi
34: od
35:od
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:

1: for each Trans in All Trans do
2: if Trans.Is Active = TRUE then
3: if Trans.Guard = TRUE then
4: if Trans.Has Channels = TRUE then
5: Sync := FALSE
6: for each Ch Trans in Trans.Channeled Trans do
7: if Ch Trans.Is Active = TRUE then
8: if Ch Trans.Guard = TRUE then
9: Sync := TRUE
10: goto 14:
11: fi
12: fi
13: od
14: if Sync = TRUE then
15: if Trans.Is Send = TRUE then
16: Update Variables(Trans)
17: Update Variables(Ch Trans)
18: else
19: Update Variables(Ch Trans)
20: Update Variables(Trans)
21: fi
22: for each N Trans in Trans.Next State do
23: N Trans.Is Active := FALSE
24: od
25: for each P Trans in Trans.Prev State do
26: P Trans.Is Active := FALSE
27: od
28: for each N Trans in Ch Trans.Next State do
29: N Trans.Is Active := FALSE
30: od
31: for each P Trans in Ch Trans.Prev State do
32: P Trans.Is Active := FALSE
33: od
34: goto 1:
35: fi
36: fi
37: else // if Trans.Has Channels =
38: FALSE then
39: Update Variables(Trans)
40: for each N Trans in Trans.Next State do
41: N Trans.Is Active := FALSE
42: od
43: for each P Trans in Trans.Prev State do
44: P Trans.Is Active := FALSE
45: od
46: goto 1:
47: fi
48: fi
49: fi
50:od

Fig. 8. Main control loop in the generated code from TAtoC (left sub-figure)
and the UPPAAL-TIMES tool (right sub-figure).

the main benefits with the state oriented approach is clearly
shown on the lines (21), (22) and (29) in the left sub-figure

of Figure 8. The corresponding part in the right sub-figure is
located on lines (22)-(33) and (39)-(45). When a transition
is taken, then the generated code from UPPAAL-TIMES
must deactivate all transitions in the previous active state and
activate all transitions in the next active state. For TAtoC
on the other hand, performing an assignment to a pointer
(Active States := Trans.Next State) is all that is required
when making a state transition. Observe that Active States
can contain several active states.

We will present the performance difference between the
generated code from TAtoC and UPPAAL-TIMES in Sec-
tion V.

B. Schedulers

This section will present the modelling and verification
work related to the development of our four resource-
reservation based schedulers. All schedulers implement FPPS
of periodic servers. The scheduling hierarchy is one-level
deep. Hence, our schedulers implement a global scheduler that
schedules servers, and each server hosts one thread (there are
no local schedulers). We believe that it makes sense to only
verify the global scheduler and not the local schedulers since
the local ones are application dependent. Some applications
might not need verified local schedulers or even any local
scheduler for that matter. Besides, a misbehaving local sched-
uler in one application does not affect the behavior of other
applications (in the same scheduling level), whereas the global
scheduler affects all applications.

We refer to [4] for more information concerning the verifi-
cation of the Times-ImprovedCgen scheduler (Section IV-B2),
the UPPAAL scheduler (Section IV-B3) and the UPPAAL-
ImprovedModel scheduler (Section IV-B4). The verification of
these three schedulers is not a contribution of this paper. We
merely adapted these models and used them to synthesise the
scheduler code, using our code generator TAtoC.

1) Frama-C: Figure 9 (left sub-figure) shows the pseudo-
code that represents the global scheduler. The global scheduler
is executed as an interrupt-handler at every OS tick. There are
two main events that are handled by the global scheduler;
the depletion of the budget of a server (line (2)), and the
release of servers (line (13)). The variable Time represents
the current clock tick. The function ContextSwitch() will stop
one server and start another one. The ReadyQ functions
are responsible for maintaining all active servers in a queue,
sorted based on their priorities. The ReleaseQ functions are
responsible for maintaining all (active and inactive) servers
in a queue, sorted based on their release times (in order to
achieve a periodic execution of servers). The functionality of
the global scheduler and several queue-management functions
were verified with Frama-C. Figure 9 (right sub-figure) shows
the internal structure of one of the queue functions (lines (1) to
(14)) and the corresponding Frama-C verification statements
(lines (15) to (27)). These verification statements were used
to verify lines (2) and (3) in the global scheduler (left sub-
figure of Figure 9). We only show a subset of the verification
statements due to space restrictions. The functionality of



ReadyQ RetrieveFirstItem is to remove the server with the
highest priority from the priority queue (pq *queue) and re-
turn it. Assume that line (3) in the global scheduler is replaced
with the function body of ReadyQ RetrieveFirstItem (lines
(3) to (13)). The verification statements (lines (15) to (27))
could then be used to verify this part of the global scheduler.
There are two behaviors defined at line (16) and (23). The
correct behavior to be verified requires the pre-condition that
the ready-queue has at least one item during the time when
a server depletes its budget (line (17) and (18)). In this case,
the post-condition requires the queue length to decrement by
one (line (19)), and that the item to be returned is indeed
the item in the end of the queue, before the function re-
orders it (line (20)). The re-ordered queue should not contain
the element that we just removed (line (21) and (22)). The
incorrect behavior is defined as follows; when there are no
elements in the ready queue at the time of the server budget-
depletion (line (24) and (25)).

The disadvantage with the Frama-C verification is that we
can not verify that queue->len will never be less or equal to
zero (line (25)) since it is a function parameter. We can only
guarantee that the function returns NULL if queue->len is
less or equal to zero.

We do not show the verification of the functions
max element (line (8)) and sort (line (10)) due to space
limitations in this paper.

1: function global scheduler begin
2: if Time = BudgetDepletion then
3: InactiveServer := ReadyQ RetrieveFirstItem()
4: if ReleaseQ GetFirstItem() != Time then
5: ActiveServer := ReadyQ GetFirstItem()
6: if ActiveServer = NULL then
7: ContextSwitch(InactiveServer, IdleServer)
8: else
9: ContextSwitch(InactiveServer, ActiveServer)
10: fi
11: fi
12: fi
13: if ReleaseQ GetFirstItem() = Time then
14: while (Server:=ReleaseQ GetFirstItem()) = Time do
15: ReadyQ Insert(Server)
16: ReleaseQ Update(Server.Period)
17: od
18: if ActiveServer = NULL then
19: ActiveServer := ReadyQ GetFirstItem()
20: ContextSwitch(IdleServer, ActiveServer)
21: else if ReadyQ GetFirstItem()!=ActiveServer then
22: InactiveServer := ActiveServer
23: ActiveServer := ReadyQ GetFirstItem()
24: ContextSwitch(InactiveServer, ActiveServer)
25: fi
26: fi
27:end

1: server t *ReadyQ RetrieveFirstItem(int temp,
2: server t *SERV, pq *queue, int *first, int max) {
3: if (queue->len <= 0) {
4: return NULL;
5: }
6: else {
7: temp = queue->index[0];
8: max = max element(queue->priority, queue->len);
9: *first = queue->priority[max]+1;
10: sort(queue->priority, queue->index, queue->len);
11: queue->len--;
12: return &(SERV[temp]);
13: }
14:}
15: /*@
16:behavior CorrectDepletion
17: assumes Time == BudgetDepletion;
18: assumes queue->len > 0;
19: ensures (queue->len+1) == \old(queue->len);
20: ensures \result == &(SERV[\old(queue->index[0])]);
21: ensures \forall integer i; 0 <= i < queue->len ==>
22: \old(queue->index[0]) != queue->index[i];
23:behavior IncorrectDepletion
24: assumes Time == BudgetDepletion;
25: assumes queue->len <= 0;
26: ensures \result == NULL;
27:*/

Fig. 9. Pseudo-code of the resource-reservation scheduler (left sub-figure)
and an example of a queue function that was verified using Frama-C (right
sub-figure).

Conclusively, we could (with a lot of effort) verify the
queue functionality of the global scheduler using Frama-
C. As an example, we showed roughly how we verified
the ReadyQ RetrieveFirstItem function (right sub-figure in
Figure 9). However, verifying the timing correctness of the
scheduler was much more challenging. Line (17) in the right
sub-figure of Figure 9 represents such a challenge. The vari-
able Time represents the global (absolute) system-time, while
BudgetDepletion represents the internal scheduler absolute
time (a time event which in this case represents the ending of a

server’s budget). Line (17) alone does not verify that the server
executed the amount of budget time that it was allocated.
Hence, we had to implement observers that handled the book-
keeping of time spend by all servers. We then verified this time
by comparing it to the system time using ensures clauses.
The tricky part was to get a global view of the verification,
i.e., it was challenging to verify all properties simultaneously
since there were restrictions on function calls. Hence, we had
to verify each function in isolation, or skip function calls
and simply inline the function source-code directly. The OS
tick was simulated using a for loop and the Time variable
represented the OS tick.

2) Times-ImprovedCgen: The Times-ImprovedCgen sched-
uler is essentially a task-automaton model (Figure 10) that has
been modelled in the UPPAAL-TIMES tool. The synthesis
of the model was done using the code-generator version of
TAtoC (see Section IV-A) that supports UPPAAL-TIMES.
Figure 10 represents (a simplified version of) the global
scheduler, i.e., it corresponds to Figure 9 (left sub-figure), but
in task-automaton form. The state S Main (in Figure 10) is
the initial state and the starting point for every new scheduling
event, i.e., server budget-depletion and server-release events.
The transition going from S Main to itself is taken when the
system should progress one scheduling tick, i.e., the current
active server is allowed to execute one tick (AllowServer-
ToRun?). This is only possible if there are no scheduling
events at the current tick (Clock < S BudgetEvent, Clock <
S ReleaseEvent). The budget-deplete transition (going from
state S Main to S BudgetDepletion) has a higher priority
with respect to the server-release transition (S BudgetEvent
<= S ReleaseEvent). Task events (originating from within
a server) have lower priority if they occur at the same time
as budget depletions (S BudgetEvent <= NextTaskEvent).
Observe that these priorities will determine the order of the
scheduling events. The budget-deplete event will lead to a
deactivation of the current server, followed by a queue update,
and finally a context switch. The DepleteObs1! channel will
synchronise with an observer automaton which is used when
verifying the scheduler.

S_Main

US_BudgetDepletion

U S_Release

US_ContextSwitch

Clock < S_ReleaseEvent, Preemption==FALSE

Update queues
Update queues

Clock < S_BudgetEvent
, Clock < S_ReleaseEvent
AllowServerToRun?

Clock < S_ReleaseEvent
, Preemption==TRUE

ReleaseObs1!

EventHandlerStart!
DepleteObs1!

Clock == S_BudgetEvent
, S_BudgetEvent <= S_ReleaseEvent
, S_BudgetEvent <= NextTaskEvent

Clock == S_ReleaseEvent
, S_ReleaseEvent < S_BudgetEvent
, S_ReleaseEvent <= NextTaskEvent

Fig. 10. Task-automaton model of the resource-reservation scheduler
(simplified version).

The EventHandlerStart! channel will synchronise with
an automaton which is responsible for server context-
switching. A server-release event (going from state S Main to
S Release) has a lower priority than a budget-deplete event
(S ReleaseEvent < S BudgetEvent) but a higher priority
than a task event (S ReleaseEvent <= NextTaskEvent).
The server-release event will trigger an update of the server
priority-queue and it will determine the next server-release



event. Hence, the the next server-release event should lie for-
ward in time (Clock < S ReleaseEvent) relative to the cur-
rent time. Each server release will be notified (ReleaseObs1!)
to the observer automaton for the purpose of verification. A
server context-switch will occur if the released server has a
higher priority than the current active server (Preemption ==
TRUE). If this is not the case (Preemption == FALSE) then
no re-scheduling will occur. We direct the reader to a technical
report [35] for more details regarding the scheduler automaton.

The Times-ImprovedCgen scheduler also contains a second
task-automaton responsible for the server context-switching,
and each server is modelled as a separate task-automaton.

3) UPPAAL: We refer to the third scheduler as the UPPAAL
scheduler. It is based on a TA model similar to the one
presented in Figure 10. The main differences are that we used
TA (instead of task-automaton) and the queue-management
functions were written in a C-like language instead of being
modelled as TA. The UPPAAL tool supports C-like function-
calls in the transition (edge) between states. Hence, the TA
model for the UPPAAL scheduler becomes smaller compared
to the Times-ImprovedCgen scheduler, i.e., it has less number
of states and transitions. This improves the run-time perfor-
mance of the UPPAAL scheduler compared to the Times-
ImprovedCgen scheduler. The disadvantage with the TA model
of the UPPAAL scheduler (using the C-like language) is that
it becomes less readable. We used the UPPAAL version of
TAtoC (see Section IV-A) to synthesise C code implementing
this scheduler.

4) UPPAAL-ImprovedModel: The fourth scheduler
(UPPAAL-ImprovedModel) is an improvement of the
UPPAAL scheduler. The C code implementing the UPPAAL-
ImprovedModel scheduler was also generated using the
the UPPAAL version of TAtoC. The largest part of the
TA model of the UPPAAL-ImprovedModel scheduler was
replaced with C-like code. Hence, this scheduler resembles
the Frama-C verified scheduler since the global scheduler
and queue-management functions (Figure 9) were reused
from the Frama-C scheduler. The UPPAAL-ImprovedModel
scheduler can thus be seen as a fusion between the Frama-C
and the UPPAAL scheduler. The advantage with the UPPAAL-
ImprovedModel scheduler is that the model can be verified
using model-checking (which is in our opinion the preferred
method to verify schedulers) and the C (like) functions can
be verified using Frama-C.

V. EVALUATION

We ported the four schedulers (Section IV-B) to the seL4
micro-kernel platform (version 1.1). We instrumented the
synthesised schedulers with time-measurement primitives so
that we could measure the scheduler overhead, i.e., the run-
time performance. We ran the schedulers with different number
of servers (2-7), i.e., the schedulers scheduled a different
number of servers in each experiment. The number of servers
chosen for our experiments was inspired by a wheel-loader
application from Volvo Construction Equipment [36]. The
varying number of servers in our experiments shows how

the performance of the schedulers varied with respect to the
scheduling workload. Each server was configured with one
thread. The thread itself did not do any useful work, i.e., it had
an empty for loop (the computations inside the thread did not
affect the measured overhead of our schedulers). The scheduler
performance was only affected by the number of servers
and their parameters. For example, running more servers will
generate more scheduling events since each server will add
more work for the scheduler in the form of server activations,
budget depletions and context switches.

A. Experimental setup

We ran seL4 on an Intel 533 MHz Pentium3-Katmai pro-
cessor (model 7, stepping 3) that was emulated with the Quick
EMUlator (QEMU) [37] (version 1.3.0). QEMU is an open-
source processor emulator that emulates hardware accurately
down to CPU-cycle level. We used the ReaD Time-Stamp
Counter (RDTSC) processor register (for x86 architectures)
to measure the scheduler overhead. This is a reliable method
for measuring time on the Pentium3 Katmai processor since
Katmai does not have multi-core processors or frequency
scaling (SpeedStep). We inserted a CPUID instruction-call
before each call to RDTSC in order to flush the instruction
pipeline. This prevents out-of-order execution of the RDTSC
operation since it serializes the instruction queue.

B. Results

Figure 11 shows the number of measured clock cycles
(the average out of 100 trials per server configuration) used
by the schedulers to schedule 2-7 servers within a time
span of 30 seconds. We included two additional schedulers
(called Non-verified and Times) in the evaluation to act as
reference points. The Non-verified scheduler is, as the name
suggests, a manually coded scheduler which is not verified.
The Times scheduler is based on the same model as the
Times-ImprovedCgen scheduler, but we used the default code-
generator in the UPPAAL-TIMES tool to generate the C code.

The difference in performance between the Times and
the Times-ImprovedCgen scheduler represents the improved
run-time performance of the generated code from TAtoC
compared to the code generated from the UPPAAL-TIMES
tool. We observed a run-time performance difference in
most server configurations when comparing Times and Times-
ImprovedCgen in the average case (the upper sub-figure in
Figure 11). The run-time performance differed more when we
used more servers. However, the most significant difference in
performance can be found in the measured maximum values
(the lower sub-figure in Figure 11). We can clearly see by
these results that the state-oriented approach, implemented by
TAtoC, has an advantage in the aspect of run-time performance
compared to the default code generator in the UPPAAL-
TIMES tool (which uses a transition-oriented approach).

The Frama-C verified scheduler had surprisingly better run-
time performance than the non-verified scheduler. In fact, it
had the lowest run-time overhead of all schedulers. We used a
different queue structure/implementation (bubble-sort) in the



Fig. 11. Clock-cycle measurements of the schedulers in the seL4 micro-kernel.

Frama-C implementation which seemed to be beneficial in
terms of performance in this setting, compared to bitmaps,
which were used in the non-verified scheduler. We have, in
previous studies [38], observed that schedulers with simpler
queue algorithms can outperform more complex queue struc-
tures in performance when the number of queue elements (in
this case servers) are low.

The biggest surprise was the efficient run-time perfor-
mance of the TA-based schedulers (UPPAAL and UPPAAL-
ImprovedModel). The UPPAAL scheduler had slightly less
overhead than the Times and Times-ImprovedCgen scheduler
in the average case. The measured maximum number of clock
cycles of the UPPAAL scheduler are almost equal to the
Non-verified and Frama-C scheduler. This is quite impressive
considering that only the queue functions are written in C
while the rest of the scheduler is modelled entirely with TA.

The UPPAAL-ImprovedModel scheduler had an outstanding
good run-time performance. It was almost equally good in
performance (both maximum and average values) compared
to the Non-verified and Frama-C scheduler. This is perhaps
not so surprising considering that most part of the UPPAAL-
ImprovedModel scheduler is written in a C-like language.

To conclude, there is a clear trade off between the effort
in verifying a resource-reservation scheduler, and the run-
time performance (overhead) when running the scheduler. The
Frama-C verified scheduler required substantially more effort
in the verification process compared to TA and model check-
ing. Although both methods achieved the same verification

goals. On the other hand, our results reveal a remarkable good
run-time performance of the scheduler that was verified using
the Frama-C verification method.

The UPPAAL scheduler had a balanced trade off between
TA and C (like) code. The queue functions required little
verification efforts since we used Frama-C which only verifies
functional properties and not timing properties. Replacing the
queue TA in the UPPAAL scheduler with the corresponding
functionality in C-like code (verified with Frama-C) greatly
improved the run-time performance of the scheduler, without
adding too much overhead in the verification process. Hence,
the UPPAAL scheduler had the optimal balance between the
verification effort needed (and the maintenance of it), and
good run-time performance. The verification complexity is
also an important factor (besides the run-time performance)
since it influences how costly the maintenance of the (verified)
software will become, in case it is expected to be updated
frequently. Hence, we consider the UPPAAL scheduler as
the winner in the aspect of both verification and run-time
performance since it merges the verification techniques of
Frama-C and model checking in a optimal way.

VI. CONCLUSION

We have observed that schedulers verified with theorem
proving (using Frama-C) are efficient in performance. This
is of course not surprising. However, the verification proce-
dure/language (in this case ACSL) is not equally as expressive
as timed-automata and model-checking. On the other hand,



we found model-checking to be more efficient in verifying
schedulers than ACSL and theorem proving. The main advan-
tage with timed-automata and model-checking is the notion
of time that can be expressed between two events, such as
two execution instances of a scheduler. However, synthesised
code from timed automata does not have good run-time perfor-
mance. Frama-C can verify the internals of C functions, but not
the relation between two calls to the function, while model-
checking tools such as UPPAAL do not verify C functions
directly (but rather indirectly by model-checking a model
which is not as expressive as Frama-C). Hence, we see a great
potential in merging Frama-C and model-checking verification
since the two complement each other. We found that this merge
improved the overall effectiveness of the scheduler verification
process, while also minimising the run-time overhead of the
scheduler.

We developed a scheduler that was verified using both UP-
PAAL and Frama-C. We made the synthesis of the scheduler
possible by developing a code generator for the UPPAAL tool.
We have shown with experiments in the seL4 micro-kernel
that the performance of this scheduler is comparable with a
manually coded scheduler. We have also shown that our code
generator TAtoC generates more run-time efficient C code than
the UPPAAL-TIMES code generator.

To conclude, our scheduler is verified in a more expressive
way by merging two verification techniques, but our main
contribution is the enabling of efficient synthesis of this
scheduler using our state-oriented code generator TAtoC.

For future work we plan to improve our code generator and
also focus on other verification techniques such as Event-B.
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[8] M. Åsberg, M. Behnam, F. Nemati, and T. Nolte, “Towards Hierarchical
Scheduling in AUTOSAR,” in ETFA’09.

[9] G. Kroah-Hartman, J. Corbet, and A. McPherson, “Linux Kernel Devel-
opment: How Fast it is Going, Who is Doing It, What They are Doing,
and Who is Sponsoring It,” in The Linux Foundation, 2009.

[10] R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theoretical
Computer Science, vol. 126, pp. 183–235, 1994.

[11] E. Fersman, P. Krcal, P. Pettersson, and W. Yi, “Task automata: Schedu-
lability, decidability and undecidability,” Information and Computation,
vol. 205, pp. 1149–1172, 2007.
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