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a b s t r a c t

A problem in the clinical assessment of running speech in Parkinson's disease (PD) is to

track underlying deficits in a number of speech components including respiration, phona-

tion, articulation and prosody, each of which disturbs the speech intelligibility. A set of

13 features, including the cepstral separation difference and Mel-frequency cepstral

coefficients were computed to represent deficits in each individual speech component.

These features were then used in training a support vector machine (SVM) using n-fold

cross validation. The dataset used for method development and evaluation consisted of

240 running speech samples recorded from 60 PD patients and 20 healthy controls. These

speech samples were clinically rated using the Unified Parkinson's Disease Rating Scale

Motor Examination of Speech (UPDRS-S). The classification accuracy of SVM was 85% in

3 levels of UPDRS-S scale and 92% in 2 levels with the average area under the ROC (receiver

operating characteristic) curves of around 91%. The strong classification ability of selected

features and the SVM model supports suitability of this scheme to monitor speech

symptoms in PD.
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1. Introduction

Parkinson's disease (PD) is caused by the progressive deterio-
ration of dopamine producing nerve cells in the mid-brain [1].
The dopamine serves as a messenger that allows communi-
cation between the mid-brain and other parts of the brain that
are responsible for producing smooth and controlled body
movements. A lack of dopamine causes a number of motor
symptoms including reduced muscular movement, tremor
and speech dysfunctions. These symptoms advance with the
disease progression and degrade the quality of life of people
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with PD. Medication and surgical intervention can alleviate
some of these symptoms but there is no cure available. PD
treatments are optimized by following up the patients at
regular intervals; this is problematic given the physical
restrictions of patients and the established assessment
procedures. Tele-monitoring of symptoms through internet
or mobile devices have potential to complement traditional
clinical practices and may relieve the workload of clinicians as
well as reduce treatment cost [2]. In this aspect objective
assessment algorithms are developed that record biometric
signals associated with PD symptom severity and quantified
on standard clinical scale such as the UPDRS (Unified
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Parkinson's Disease Rating Scale) [3]. Speech is particularly
suitable in this regard as it is convenient to self-record without
supervision and expensive equipment.

Speech disturbance is an early indicator of PD and previous
investigations revealed that speech degradation and general
PD symptom severity are strongly interlinked [4]. Several
methods on PD speech classification are reported to have
analyzed speech signals to discriminate between PD patients
and healthy controls [5–8]. Traditional investigations involved
voice signal analysis to estimate dysphonic symptoms
manifested in sustained-vowel phonation. In the recent
methods [6–8], the running speech is analyzed to demonstrate
deficits in motor speech, suggesting that PD can affect all
different subsystems of speech including respiration, phona-
tion, articulation and prosody.

The speech item utility in motor UPDRS was previously
examined by Zraick et al. [9]. According to them, a standard
speech protocol to identify symptom severity should include
reading of an unfamiliar passage containing different linguis-
tic structures and a description to assess the reading ability. A
strong inter-rater reliability coefficient was produced between
symptom severity ratings, performed separately by the
medical (neurologists) and non-medical (speech pathologists)
experts, when a standard speech protocol was utilized in the
motor examination. It was inferred that the running speech
with standard formulation has potential to exploit capacious
symptoms in PD speech, providing a broader perspective of
evaluation.

The structural analysis of running speech is complex due
to linguistic confounds and annotations at different levels of
processing e.g. separating syllables, phonemes and prosodic
units. Instead of processing individual speech units for
symptom analysis, acoustic features such as variation in
fundamental frequency, sound pressure level, speech rate,
pause intervals and signal-to-noise ratio have been relied
upon to identify PD speech impairment [6–8,10]. In a recent
method for evaluating spastic dysarthria, the Mel-frequency
cepstral coefficients (MFCC), glottal-to-noise energy and
harmonic-to-noise ratio were evaluated in running speech
samples [11] and indicated high correlation. Llorente et al.
[12] proposed a scheme for detection of voice impairment
from text-dependent running speech. They parameterized
MFCCs from 140 recorded running speech samples. These
MFCCs were then used for classification between117 dys-
arthric and 23 normal speech samples with an accuracy
of 96%.

For an accurate monitoring of speech symptom status in
PD, statistical mapping between the computed features and
clinical ratings of speech symptom severity is an important
step. A difficulty in the clinical assessment of running speech
is to track underlying deficits in individual speech components
which as a whole disturb the speech intelligibility. The aim of
this work is to extract signal features from running-speech
samples computing deficits in individual speech components,
and to utilize these features for classification between speech
symptom severity levels in accordance with the UPDRS-S
using support vector machines (SVM) [13]. A recently intro-
duced speech measure, cepstral separation difference (CSD)
[14] has been explored in pursuit to categorize the level of
speech impairment.
Please cite this article in press as: Khan T, et al. Classification of speech
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2. Patients and data

The data were obtained from a feasibility study of an at-home
testing device [2] conducted at the University of California, San
Francisco (UCSF) in collaboration with Parkinson's Institute. A
total of 80 subjects (48 males and 32 females) with an average
age of 63.8 years, participated in this study over a course of a
year (i.e. from June 2009 to June 2010). 60 participants (40 males
and 20 females) had a mean PD duration of 75.4 weeks and 20
other participants were normal controls. Speech samples were
recorded during examinations of speech by a clinician. The
recording equipment consisted of a microphone connected to
a computer-based test-battery called QMAT. Subjects were
asked to recite static paragraphs displayed on the QMAT
screen in 3 standard running speech tests (RST). The
paragraphs [15], ‘‘The North Wind and the Sun’’, ‘‘The Rainbow
Passage’’ and ‘‘The Grandfather Passage’’ were recited by the
subjects in RST type 1, 2 and 3 respectively. These paragraphs
were devised in a way such that the level of textual difficulty
increases from RST 1 to 3, demanding a greater stress in
reading [14,16].

Each subject was rated by a clinician based on his/her
reading performance in each RST using the UPDRS examina-
tion of speech. The speech examination is item 18 in UPDRS
part III and is abbreviated as UPDRS-S [3]. The UPDRS-S is
ranged from 0 to 4 where '0' represents normal speech,
'1' represents mildly impaired speech, '2' represents moder-
ately impaired speech, '3' represents severely impaired speech
and '4' represents unintelligible speech. Out of the 80 subjects,
24 subjects were rated '0', 25 subjects were rated '1', 28 subjects
were rated '2' and 3 subjects were rated '3'. The speech signals
were sampled at 48 kHz with 16 bit resolution. In total,
240 speech samples (80 subjects � 3 RST types) have been
utilized for classification between the symptom severities.

3. Methods

The intelligibility of speech can be disturbed by a number of PD
symptoms. Pinto et al. [4] identified the relation between PD
symptoms and anatomical substrates of speech components.
According to them, vocal impairment in PD is associated with
pathological changes to mainly three components of speech:
respiration, phonation and articulation, attributed to the
dysfunction of musculatures at subglottis (lungs, trachea,
windpipes etc.), glottis (larynx) and supraglottis (jaw, lips,
tongue, velum, pharynx etc.) respectively. The collective
dysfunction in these components gives rise to the dysfunction
in the fourth speech component called prosody.

In this work, several acoustic features were extracted from
running speech signals to estimate symptoms in each speech
component. For the sake of description, these features were
organized into groups as: (1) measures relating to the
phonatory symptoms, (2) measures relating to the articulatory
symptoms, and (3) measures relating to the prosodic symp-
toms. The respiratory symptoms (e.g. reduced loudness) are
manifested in speech prosody. The phonatory measures
represent symptoms which emerge due to the in-coordination
between phonation and respiration and cause harshness and
 intelligibility in Parkinson's disease. Biocybern Biomed Eng (2013),
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hoarseness in speech [4]. The articulatory measures represent
symptoms that emerge by subtle changes in the motion of
articulators and cause imprecise articulation and short rushes
of speech. The prosodic measures represent symptoms in
rhythm, stress, loudness and intonation in speech.

3.1. Measures of phonatory symptoms

Lungs are the primary source of speech production [17]. Voice is
produced when an airflow generated by the lungs passes
through the glottis, modulated by the vocal-fold vibration and
filtered by the vocal-tract resonances. According to the source-
filter speech model [17], the vibration of vocal folds generates a
source excitation signal holding the properties of pressure wave
expelled from the lungs. This source signal is filtered by the
spectral envelope of vocal tract resonances to form a speech
signal. In order to estimate the phonatory symptoms, distur-
bance in the pressure wave can be estimated using pressure
magnitude of source and filter log-spectrums derived from the
speech signal [18]. Note that the source excitation signal in
running speech is constituted by a series of pitch pulses.

Harshness in phonation is the PD symptom related to the
laryngeal hyper-function [19]. A harsh voice quality is
produced when an involuntary glottal constriction restricts
the airflow and generates turbulence at the constriction point.
The noise in speech spectrum generated as a result of this
turbulence is termed aspiration noise [19]. Further, the
irregular vibration of vocal folds disturbs the modulation of
source excitation signal that affects frequency distribution of
harmonics throughout the spectrum [18]. The auditory
impression in this case is of a breathy voice quality due to
an audible escape of air on phonation.

An uncontrolled glottal closure pattern is the most
frequently manifested symptom in PD speech [20]. At an
event of an unintended glottal constriction on phonation, the
subglottal pressure increases at the glottis and is not delivered
to the supraglottis (vocal tract). The increased subglottal
pressure raises the energy level of aspiration noise in the
source excitation. Moreover, the deficient pressure waves
Fig. 1 – Cepstral separation difference 'R' in running speech test-3
'0'), dCSD = 21.7 dB; and (b) severely impaired speech sample (ra
(integrating aspiration) and reduction in filter magnitude accomp
the sample rated '3'. The dCSD is markedly increased in the samp
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propagate to the supraglottis and weaken the energy level of
resonances. This phenomenon can be observed if source and
filter log-spectrums derived from the speech signal of a
severely impaired PD patient are compared to that of a normal
control (Fig. 1).

The cepstral separation difference (CSD) [14] was utilized to
estimate the pressure wave disturbance caused by the uncon-
trolled glottal closures in speech. CSD computes the log-
magnitude ratio between source and filter log-spectrums to
estimate the energy difference caused by the raised aspiration
noise in the source. The source and filter log-spectrums were
computed by performing the cepstral analysis of speech signal.
In the first step, the real cepstrum c[n], of cepstral coefficients n,
was computed by applying an inverse discrete Fourier trans-
form on the real log of the discrete Fourier transform of speech
signal S[i]. In the cepstral domain, the source cepstrum ce[n] and
the filter cepstrum ch[n] were separated by liftering the
cepstrum c[n] by applying a high-time and a low-time lifter
on c[n] respectively. A cutoff value of 20 cepstral coefficients was
used for liftering which is generally used in identifying the
speech source in speech recognition systems [21]. In the third
step, the source and filter log-spectrums were computed by
applying the real discrete Fourier transform on source cepstrum
ce[n] and filter cepstrum ch[n] respectively.

The residual log-spectrum R[v] was computed using Eq. (1),
where E[v] and H[v] represent the log-magnitude frequency
spectrums of source and filter respectively, and v represents
the log-power coefficient. R[v] was computed between the
frequency bands 0–1000 Hz incorporating the range of human
voice fundamental frequencies:

R½v� ¼ logjE½v�j � logjH½v�j (1)

Our experiments on PD running speech samples have
shown that the elevated aspiration energy in source log-
spectrum in conjunction with energy depression in filter log-
spectrum results in higher residual values in log-spectrum R,
compared to that of speech samples from healthy controls.
Moreover, an increasing irregularity in the modulation of log-
spectrum R relative to the increasing symptom severity was
 is shown for two subjects: (a) normal speech sample (rated
ted '3'), dCSD = 108.4 dB. The increase in source magnitude
anied by irregular modulation shifts in 'R' can be noticed in
le rated '3'.
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observed. The mean-absolute deviation (represented as dCSD)
was used to compute dispersion in the modulation of R[v]
(Eq. (2)), where R is the overall mean of R[v]. dCSD values
increase relative to the increasing symptom severity in speech
[14]:

dCSD ¼ 1
1000

X1000
v¼1

jR½v� � Rj (2)

Hoarseness in speech is another symptom related to
impaired function of the larynx. Hoarseness is produced by
an interference with optimum vocal fold adduction character-
ized by a breathy escape of air on phonation [19]. The vocal fold
adduction increases the subglottal pressure at the glottis,
resulting in increased aspiration level, followed by a meager
propagation of pressure waves in the vocal tract. This
phenomenon results in speech depression which can be
measured by the CSD by comparing the energy levels between
source and filter log-spectrums. In order to investigate the
depression in speech frequency through CSD, a peak-detector
was applied on R to locate peaks that represent the level of
residual energy at each frequency. The average peaks'
magnitude (APCSD) was found to be elevated in PD speech
samples and was rising with increasing symptom severity. The
dCSD along with APCSD were selected as the representative
measures of phonatory symptoms for classification of speech
symptom severity.

3.2. Measures of articulatory symptoms

The PD symptoms in articulation involve short rushes of
speech and articulation blurring (e.g. imprecise consonant
articulation) that arise as a consequence of hypokinetic
movement of articulators (tongue, velum, pharynx, lips etc.)
[22]. The Mel-frequency cepstral coefficients (MFCC) are
considered as effective measures to identify articulatory
symptoms [5–7,11,12]. MFCC are aimed at detecting subtle
changes in the motion of articulators that interfere with
speech intelligibility [23]. For instance, the placement of the
tongue has a key role in creating resonances (formants) in
mouth, and slight misplacement of the tongue can alter the
energy between the frequency bands. MFCC compute energy
differences between frequency bands of speech signal, which
can be used to discriminate varying energy levels of impaired
resonances.

The MFCC are computed by partitioning the speech
frequency into overlapping Mel-frequency filter bands fol-
lowed by the application of cepstral and cosine transforma-
tions on each band [23]. The Mel-frequency filter bands are
triangular in shape and compute the energy spectrum around
the center frequency in each individual band of speech
frequency. The boundary frequencies of filter bands are
uniformly spaced using the Mel-scale given in Eq. (3):

m ¼ 1127 ln 1 þ f
700

� �
; 0 � f � Fs (3)

where, f and Fs are speech frequency and sampling rate in
hertz respectively. In the next step, the log-energy at the
output of each filter is computed. The MFCC is the discrete
cosine transform of the filter energy outputs, given in Eq. (4):
Please cite this article in press as: Khan T, et al. Classification of speech
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MFCCn ¼
XK
k¼1

Ekcos
nðk � 0:5Þp

K

� �
; n ¼ 0; . . . ; L (4)

where L is the number of MFCC coefficients. Typically, a value
of L between 10 and 16 is used. n is the order of MFC coefficient.
The 0th MFC coefficient represents the original signal energy
and is ignored. Ek is the log energy of the kth filter. K is the
number of filter bands and is chosen between 20 and 40.

In order to compute MFCC, the speech signal was divided
into frames of 50 ms each. A Mel-frequency filter bank of K = 24
was applied to extract up to 10th order MFCC from each frame.
This choice of filters results in a higher spectral resolution at
lower frequency bands where the most significant information
regarding articulatory impairment is contained. The mean of
MFCC between each frame are chosen as the representative
measures of articulatory symptoms for classification of
symptom severity.

3.3. Measures of prosodic symptoms

The prosodic symptoms in PD are categorized by reduced vocal
stress, monopitch intonation, monoloudness and abnormality
in speech rate [24]. Loudness and speech rate can be estimated
using the short-term dynamics of speech signal. Pitch can be
estimated by computing the fundamental frequency (F0).

3.3.1. Short-term spectral dynamics
The prosodic changes in speech are reflected in the dynamics
of short-term spectral components of speech signal. Number
of pauses, voice intensity levels, speech/pause intervals and
articulation rate can be estimated from spectral envelopes of a
speech signal. Rosen et al. [25] found 'Pause Time' and
'Spectral Range' as the most specific (95%) and accurate
(95%) differentiators of speech prosody. Inspired by this, we
developed a pause detection algorithm that locates pause
occurrences and pause intervals in a speech signal. Acoustic
features such as zero-crossing rate, short-term energy and
spectral centroid were derived simultaneously during this
process.

In this approach, the number of pauses (Np) in recorded
speech is computed by segmenting between the voicing and
unvoicing regions in speech spectrum. Voice segmentation is
based on thresholding the short-term energy (STE) and
spectral centroid (SC) in each signal frame. First, the speech
time-series x(n) of length N is broken into i short frames of size
50 ms. Then, the STE and SC are computed in each ith frame
using the formulae given in Eqs. (5) and (6) respectively, where
Xi(k), for k = 1, . . ., N, represent the discrete Fourier coefficients
of the ith frame:

STEi ¼
PN

n¼1 jxiðnÞj2
N

(5)

SCi ¼
PN

k¼1 kXiðkÞPN
k¼1 XiðkÞ

(6)

Generally, the STE and SC sequences depict higher
magnitude in the voiced frames and are relatively weaker in
the unvoiced frames [26]. To qualify a segment as a pause, two
thresholds i.e. T1 for SC and T2 for STE respectively are
 intelligibility in Parkinson's disease. Biocybern Biomed Eng (2013),
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computed. In order to compute T1 and T2, two histograms are
produced for each SC and STE sequences respectively. The
positions of first and second local maxima (represented as M1

and M2 respectively) are computed in each histogram. The
thresholds are calculated using Eq. (7), where W is a user-
defined constant:

T ¼ WM1 þ M2

W þ 1
(7)

Larger values of W lead to a strict threshold value closer to
M1 which may result in voice information loss in case of
impaired speech signals that may possibly have weak STE and
SC. The value of W was relaxed and was set as 0.1. The formula
generates thresholds T1 and T2 for SC and STE histograms
respectively. For the ith frame, if the SCi and STEi values are
larger than the thresholds T1 and T2 respectively, then the ith
frame is declared as the voiced frame. Whereas, if the SCi and
STEi values are less than the thresholds T1 and T2 respectively,
then the ith frame is declared as a pause.

Our experiments showed that the Np and the pause
intervals elevate in the higher symptom severity levels. The
STE sequence was ignored because it is affected by the
amplitude and sound pressure changes caused by the varying
distance between mouth and mic. The SC sequence was
selected as a measure to detect depression in voice intensity as
it is invariant to temporal changes in the speech signal. In our
experiments, the mean magnitude of SCi (for i = 1. . .N) was
found higher in normal speech signals and found relatively
lower in impaired speech.

Further, the zero-crossing rate (ZCR) in voiced regions of
speech signal was investigated. Prosodic changes can be
measured using ZCR because the ZCR is lower in voiced
regions in presence of fundamental frequency which is low-
frequency in nature [18]. The ZCR sequences were computed
for each ith voiced region of speech signal x(n) using Eq. (8):

ZCRðiÞ ¼ f s
2n

Xk
l¼1

jsignðxiðlÞÞ � signðxiðl � 1ÞÞj
  !

(8)

where, fs is the sampling rate, n is the length of speech signal x
(n), xi is the voiced region in speech signal x(n), k is the length of
the voiced region xi and ZCR(i) is the zero-crossing rate in the
voiced region xi. The energy (variance) of ZCR sequences
(represented as eZCR) given in Eq. (9), was used for symptom
level classification:

eZCR ¼
Pi¼1

N ðZCRi � ZCRÞ2
N

(9)

where, N is the total number of voiced regions and ZCR is the
average between ZCR values in these regions. A negative
correlation between eZCR and symptom scores would indicate
increasing monopitch intonation in speech.

3.3.2. F0 variation
Reduced F0 variability is a noticeable feature of prosody that
leads to the audible impression of monopitch intonation in PD
speakers [6–8]. A problem in the F0 estimation of PD speech is to
find periodic patterns (pitch periods) in a speech signal.
A normal voice region exhibits a periodic pattern in the
speech signal. By contrast, an impaired voice region exhibits
Please cite this article in press as: Khan T, et al. Classification of speech
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a noise-like non-periodic pattern. In order to find correct pitch
periods in an impaired speech signal, an algorithm must be able
to discriminate between the voiced regions of impaired speech
and the unvoiced regions holding the additive noise.

To cope with this problem, a modified cepstrum-based
pitch detector [27] was utilized to evaluate F0 variation in PD
speech. This method utilizes ZCR and STE to remove unvoiced
regions in speech signal based on the assumption that the
unvoiced regions exhibit low STE and high ZCR. This type of
filtering preserves the impaired voiced regions having higher
STE and generally low ZCR and removes the unvoiced regions
holding the additive noise. Once a signal is translated into the
cepstral domain, the cepstral peaks representing the 'false'
pitch periods are readily eliminated by the prior removal of
unvoiced frames. The remaining cepstral peaks provide the
locations for the correct pitch periods. A pitch period T0 is
estimated subsequently by converting back the cepstral peak
position into the time domain. F0 is estimated using F0 = Fs/T0,
where Fs is the sampling frequency (i.e. 48 kHz).

Apart from the reduced F0 variation in impaired speech
signals, our experiments have shown that the pitch-period
locations were spread in small chunks across the speech
spectrogram. Distortion in pitch periods and interval between
the periods increased relatively to increasing symptom
severity. In addition to F0 standard deviation (F0std), the
entropy between T0 intervals (Ient; Eq. (10)) and jitter in T0 (JPPQ:
pitch perturbation quotient [28]; Eq. (11)) were computed and
were used in symptom level classification:

Ient ¼ �
XN�1

i¼1

Piln Pi (10)

JPPQ ¼ ð1=N � 2ÞPN�1
i¼2 jðT0i�1 þ T0i þ T0iþ1Þ=3 � T0ij

ð1=NÞPN
i¼1 T0

i
(11)

where, Pi is the probability that the interval lengths of two
adjacent pitch periods (T0) in speech spectrogram are equal. N
is the total number of pitch periods in speech spectrogram.

4. Feature analysis

A correlation analysis between the speech features and the
clinical ratings of speech is complicated. First, due to the fact
that the clinical ratings are based on a set of multiple
symptoms in which each symptom is represented by a
different feature. Secondly, the UPDRS-S ratings follow a
monotonic rank order from '0' to '3' (normal-to-severe level).
Under these conditions, the one-to-one mapping between a
calculated feature (representing an individual symptom) and
its corresponding subjective rating (based on multiple symp-
toms) is not possible through one-dimensional scales (e.g.
rank-order or Likert scales).

Louis Guttman proposed the 'Guttman Scale' [29] to
perform systematic correlation between qualitative rank-
order variables. The model suits the qualitative ranked nature
of speech dataset where a human rater examines proportions
of different speech symptoms to choose between the severity
levels. In the Guttman scale, a variable y (i.e. a human rater)
with h distinct ordered values (i.e. UPDRS-S classes) is said to
 intelligibility in Parkinson's disease. Biocybern Biomed Eng (2013),
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be a simple function of variable x (i.e. a speech feature) with i
distinct ordered values, if for each value of x there is only one
value of y. The converse needs not to hold and for the same
value of y, there may be one or multiple values of x. The
Guttman monotonicity coefficient (m2) expresses an increase
in variable x relative to an increase in variable y without
assuming that the intervals between each value of y are
perfectly scaled. Accordingly, m2 relies on that ties between x
and y can be untied in the same order without penalty which
suits the situation where subjective rating is based on a set of
multiple symptoms in which proportion of one symptom may
vary from another. A m2 equal to '+1' depicts perfect correlation
between x and y. The formula to compute the Guttmann
monotonicity coefficient between x and y is given in Eq. (12):

m2 ¼
Pn

h¼1
Pn

i¼1ðxh � xiÞðyh � yiÞPn
h¼1
Pn

i¼1 jxh � xijjyh � yij
(12)

where h is the order of UPDRS-S levels '0' to '3' and i is the
corresponding order of feature values relative to h.

We performed two correlation tests. In the first test, m2 was
utilized to correlate between the features computed from
speech samples in RST 1, 2 and 3 (each consisting of 80
samples) and the UPDRS-S ratings. The features were
evaluated for each RST separately so that changes in
correlation can be observed with respect to the increasing
textual difficulty in RST 1, 2 and 3 respectively. In the second
test, the features computed from the total speech samples
(consisting of 240 samples) were correlated with the UPDRS-S
ratings. As there were few samples in symptom group '3', they
were merged into symptom group '2'. The dataset was
stratified through Jackknifing [30] to estimate the precision
of m2 by leaving out one or more samples at a time from the
dataset. The Jackknife estimates of m2 are listed in Table 1.

The measures of phonatory symptoms (CSD features) were
strongly correlated with the clinical ratings and this correla-
tion improved with the increasing textual difficulty. The dCSD

produced higher correlation than any other acoustic feature in
this study i.e. 0.70, 0.74 and 0.78 in RST 1, 2 and 3 respectively,
and 0.73 in the total dataset. These correlations were
statistically significant ( p < 0.05). The dCSD estimates disper-
sion in the glottal energy difference that arise by the
uncontrolled closures of glottis which is according to one
study [20] the most frequently manifested symptom in PD
speech. Also, the CSD measure of speech depression (APCSD)
indicated strong correlation (m2 > 0.5) with subjective ratings.

The measures of articulatory symptoms (MFCC) showed
strong statistically significant ( p < 0.05) correlation with the
clinical ratings. However, only the 4th MFCC showed improv-
ing correlation with the increasing textual difficulty i.e. 0.58,
0.65 and 0.68 in RST 1, 2 and 3 respectively. The MFCCs in the
order 7th-to-10th indicated strong negative correlation with
the subjective ratings. The negative correlation is due to the
cosine sign change in the MFCC order 7th-to-10th amid
discrete cosine transformation.

From the measures of prosodic symptoms, the number of
pauses Np showed high statistically significant ( p < 0.05)
correlation with the clinical ratings e.g. 0.77 in RST-3 and
0.64 in the total dataset. The correlation between pause
intervals PI and subjective ratings were also strong in RST-3.
The high statistically significant correlation of Np and PI,
Please cite this article in press as: Khan T, et al. Classification of speech
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specifically in RST-3, suggests that the respiratory symptoms
are discernible if the textual difficulty in reading is strong
enough to stress the patients forcing them to rest at several
occasions during the recitation. Among other prosodic
measures, the eZCR was moderately correlated. The SCAVG

and the F0 features were weakly correlated with the ratings.
Further analysis revealed that the 7th and 8th MFCCs and

the 9th and 10th MFCCs were strongly correlated between each
other. Moreover, the 1st, 2nd, 5th and 6th MFCC were not
correlated with the subjective ratings in all the speech tests.
For these reasons the 8th and 10th MFCC as well as the 1st, 2nd,
5th and 6th MFCC were excluded from the final list of features
used in symptom level classification. Nevertheless, a majority
of suspected symptoms in PD speech were covered by a total of
13 distinct acoustic features associated with each component
of speech. Importantly, none of these features showed very
weak correlation (m2 < 0.2) with the clinical ratings that
justifies the higher classification accuracy obtained in this
study.

5. Classification

The support vector machine (SVM) is widely relied on in
biomedical decision support systems [31] for its ability to
regularize global optimality in the training algorithm and for
having excellent data-dependent generalization bounds to
model non-linear relationships. However, the classification
success of SVM depends on the properties of the given dataset
and accordingly the choice of an appropriate kernel function.
Training a linear SVM is equivalent to finding a hyper plane
with maximum separation. In case of a high-dimensional
feature space with low input data size, instances may scatter
in groups and classification with a linear SVM may lead to
imperfect separation between the hyper planes. The solution
is then to utilize a nonlinear SVM that maps these features into
a 'higher-dimensional' space by incorporating slack variables.
This leads to a very large quadratic programming (QP)
optimization problem but it can be solved using the sequential
minimal optimization (SMO) algorithm [13]. SMO decomposes
the overall QP problem into QP sub-problems. This decompo-
sition is performed by solving the smallest possible QP
optimization problem at every step involving two Lagrange
multipliers satisfying the linear equality constraint to find
local optima. At each decomposition step, SMO finds the
optimal values for these multipliers and updates the SVM cost
function to reflect new optimal marginal separations between
the hyper planes.

Another important consideration in SVM is the choice of
kernel function for transforming the non-linear feature space
into a straight linear classification solution. Kernel functions
can be linear, polynomial or radial basis and the choice of
function is based on the nature of feature space. In our case,
the underlying specificity regarding the qualitative nature of
data could not be determined. To circumvent this limitation, a
universal kernel function based on the Pearson VII function
(PUK) [32] is utilized. PUK is generally used for curve fitting
purposes and has the general form given in Eq. (13). Here H is
the peak height at the center x0 of the peak and x is
an independent variable. The variables s and v control the
 intelligibility in Parkinson's disease. Biocybern Biomed Eng (2013),
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Table 1 – Jackknife estimates of Guttman Correlation Coefficient (m2) between the symptom measures and UPDRS speech
ratings. Estimates in bold represent very high (>0.7) statistically significant ( p < 0.05) correlation. Estimates in italic
represent improving correlation relative to the increasing textual difficulty in RST 1, 2 and 3 respectively.

Measurement type Feature Symbol m2

RST-1a RST-2b RST-3c In total samples

Measures of phonation
Cepstral separation

difference
(1) Mean absolute deviation in R dCSD 0.70 0.74 0.78 0.73
(2) Average between peaks' magnitude in R APCSD 0.57 0.56 0.62 0.57

Measures of articulation
Mel-frequency

cepstral coefficients
(3) 1st Mel-frequency cepstral coefficient MFCC1 0.08 0.12 �0.01 0.06
(4) 2nd Mel-frequency cepstral coefficient MFCC2 0.16 0.15 0.15 0.13
(5) 3rd Mel-frequency cepstral coefficient MFCC3 0.38 0.55 0.52 0.48
(6) 4th Mel-frequency cepstral coefficient MFCC4 0.58 0.65 0.68 0.63
(7) 5th Mel-frequency cepstral coefficient MFCC5 �0.01 0.08 0.14 0.13
(8) 6th Mel-frequency cepstral coefficient MFCC6 �0.02 �0.12 �0.12 �0.17
(9) 7th Mel-frequency cepstral coefficient MFCC7 �0.47 �0.64 �0.58 �0.56
(10) 8th Mel-frequency cepstral coefficient MFCC8 �0.58 �0.65 �0.60 �0.60
(11) 9th Mel-frequency cepstral coefficient MFCC9 �0.49 �0.51 �0.52 �0.50
(12) 10th Mel-frequency cepstral coefficient MFCC10 �0.52 �0.54 �0.59 �0.55

Measures of prosody
Spectral dynamics (13) Number of pauses Np 0.67 0.62 0.77 0.64

(14) Pause intervals PI 0.46 0.22 0.71 0.45
(15) Energy (variance) in ZCR sequence eZCR �0.46 �0.48 �0.58 �0.50
(16) Mean between SCi sequence SCAVG �0.27 �0.33 �0.32 �0.29

F0 variability (17) Fundamental frequency F0 standard deviation F0std �0.41 �0.42 �0.51 �0.26
(18) Interval entropy between T0 Ient 0.23 0.28 0.37 0.28
(19) Jitter (pitch perturbation quotient) JPPQ 0.54 0.21 0.59 0.38

a Running Speech Test-1: ‘‘The north wind and the sun were disputing which one is the stronger when a traveler came along wrapped in a warm
cloak. They agreed that the one who first succeeded in making the traveler's take his cloak off should be considered the stronger. Then the
north wind blew as hard as it could but the more he blew the more closely the traveler pulled his cloak around him and at last the north wind
gave up the attempt. Then the sun shined out and immediately the traveler took off his cloak and so the north wind was agreed that the sun
was the stronger of the two.’’
b Running Speech Test-2: ‘‘When the sunlight strikes rain drops in the air, they act like a prism and form a rainbow. The rainbow is a division of
white light into many beautiful colors. These take the shape of a long round arch with its path high above and its two ends apparently beyond
the horizon. There is according to a legend a boiling part of gold at one end. People look but no one ever finds it. When a man looks for
something beyond his reach, his friends say he is looking for the part of gold at the end of the rainbow.’’
c Running Speech Test-3: ‘‘Do you wish to know all about my grandfather; well he is nearly 93 years old. He dresses himself in an ancient black
frock coat usually minus several buttons. Yeah he still thinks he is swiftly as ever. A long flowing beard clings to his chin giving those who
observe him a pronounced feeling of an outmost respect. When he speaks, his voice is just a bit cracked and covers the trifle. Twice each day,
he plays skillfully and with a zest upon a small organ except in the winter when the ooze or snow or ice prevents he slowly takes a short walk in
the open air each day. We have often urged him to walk more and smoke less but he always answers 'banana oil'. Grandfather likes to be
modern in his language.’’
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half-width and the tailing factor of peak respectively.
Importantly a curve with v equals to 3 and s equals to 1, is
comparable to a sigmoid function used in the neural network
modeling [32]:

f ðxÞ ¼ H

½1 þ ðð2ðx � x0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=v � 1

p
Þ=sÞ

2
�
v (13)

The SMO configured with PUK kernel function (of s = 1 and
v = 3) was used for classification of speech data. Originally,
there were 72 samples in class '0' (24 subjects � 3 RST),
75 samples in class '1' (25 subjects � 3 RST), 84 samples in class
'2' (28 subjects � 3 RST) and only 9 samples in class '3'
(3 subjects � 3 RST). In order to avoid high standard error in
class '3' pertaining to a low sample size as well as to balance
the class distribution, samples in class '3' were merged into
class '2' leaving behind 3 levels for symptom classification
Please cite this article in press as: Khan T, et al. Classification of speech
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where class '0' consisted of 72 samples, '1' consisted of
75 samples and '2' consisted of 93 samples.

There were two important investigations performed: First,
to analyze the influence of reading stress on symptom level
classification with a hypothesis that classification rate should
improve relative to the increasing textual difficulty demanding
a greater stress in reading. Three different classification tests
were performed each on the samples of a different RST as the
level of textual difficulty increases from RST 1 to 3. The second
investigation was to estimate the classification performance of
SVM on classifying the complete speech dataset. A 10-fold
cross validation strategy [33] was adopted to obtain unbiased
generalization estimates. For optimal results, the SVM
regularization constant was tuned between 1 and 10. A
regularization constant of 7 produced the best generalization
performance in this dataset and was maintained in all
classification tests.
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5.1. Investigation-1

In the first investigation, three classification matrices
of dimensions 13 (features) � 80 (samples) for RST 1, 2 and
3 respectively were prepared for classification between the
3-level UPDRS-S targets. The confusion matrices (Table 2.1a,
2.2a and 2.3a) were used to portray the prediction performance
in each classification test. Each row in the confusion matrix
represents the actual class instances while each column
represents instances in the predicted class. The matrix
diagonal presents the correctly predicted samples or the true
positives in each class. In the first classification test taking
RST-1 into account, the SVM classified the samples into
Table 2 – Investigation 1: Textual difficulty vs. classification rat
increasing level of reading stress. (a) Confusion matrix. (b) Rec
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3 symptom levels with a classification accuracy of 63% and
true positive rates (TPR) of 63%, 40% and 81% in class 0, 1 and
2 respectively.

The low TPR of class 0 and 1 indicates the difficulty of
discriminating between the normal and mildly impaired
speech samples. One reason could be that the textual difficulty
in RST-1 paragraph was not strong enough to stress the mildly
impaired subjects, who comfortably read the passage without
displaying any symptom and were thus classified as being
normal. Additionally, the high TPR of class 2 indicates that the
more severely impaired subjects exhibited reading difficulty
even in this low-stress setting and revealed symptoms which
were effectively quantified.
e: Classification rate increases proportionally to the
eiver operating characteristic curves.
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Table 3 – Investigation 2: SVM classification performance. (1) On overall speech dataset. (2) On training and testing set. In
both cases, the averaged ROC curves are protruded toward perfect classification. Class '2' ROC curves (in 1b and 2b) are
parallel to the level of perfect classification.

b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g x x x ( 2 0 1 3 ) x x x – x x x 9

BBE-23; No. of Pages 11
In the second classification test, the increased textual
difficulty in RST-2 improved the classification accuracy to 70%
and TPRs to 60%, 72% and 78% in class 0, 1 and 2 respectively.
Upgraded TPR in class 0 and 1 indicate the improved ability of
features in discriminating between the samples in class 0 and
1. This finding supports that the mild symptoms which
remained hidden in RST-1 were detected by the more
demanding reading difficulty level in RST-2. The finding was
confirmed in the third classification test when the subjects
were exposed to the highest textual difficulty. The speech
samples were classified with a marked improvement in the
classification accuracy (84%) and the TPRs in class 0 (75%),
1 (76%) and 2(97%) respectively.

The receiver operating characteristic (ROC) curve is
generally used to analyze the feasibility of a classification
model independent of the class distribution [34]. A ROC curve
can be plotted by taking false-positive rate of a symptom class
on x-axis against the true-positive rate of that class on y-axis.
An area under the ROC curve of 100% represents a 'perfect
model' and an area near 50% corresponds to a 'worthless
model'. In all the three classification tests, the mean ROC
curves were protruded upwards from the diagonal threshold
indicating the indubious distinction of samples in each
Please cite this article in press as: Khan T, et al. Classification of speech
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symptom class (Table 2.1b, 2.2b and 2.3b). The area under
the mean ROC curve in all the three tests remained above 75%
('good' model) and improved with the level of textual difficulty
i.e. 76% ('good model'), 80% ('very good model') and 91%
('excellent model') in RST 1, 2 and 3 respectively.

5.2. Investigation-2

In order to analyze the performance of computed features and
SVM model in classifying the total speech data set, a new
matrix with dimensions 13 (features) � 240 (total speech
samples; i.e. 3 RST � 80 samples = 240 samples) was formed
for separation between the 3 levels of speech symptom
severity. Data stratification with 10-fold cross-validation on
the input vector produced an overall classification rate of 83%
with the TPR of 84%, 76% and 87% in class '0', '1' and '2'
respectively (Table 3.1). Noticeably, the area under the ROC
curves in each symptom level was larger than the previous
three classification tests, specifically in class '2' whose curve
was parallel to the level of perfect classification. Class '2' is the
combined representative class of moderate and severe speech
symptoms. The marked distinction of samples belonging
specifically to this group supports that the selected measures
 intelligibility in Parkinson's disease. Biocybern Biomed Eng (2013),
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are representative features of speech symptoms in PD. Further
tuning of the SVM suggests that the classification rate can be
improved (to 85%) if the samples are stratified by 20-fold cross
validation, keeping in mind that this type of experimentation
with stratification parameters could possibly have introduced
a bias. The TPRs were improved to 84%, 82% and 89% in class
'0', '1' and '2' respectively with the improved averaged ROC
area of 91%.

Another unbiased approach to validate the generalization
performance of selected features, is to introduce novel unseen
data to the classification model, with a statistical assumption
that the new data will have a similar distribution to the data
used in training the classifier. The selected 13 features were
computed from 80 samples of RST 1 and 2 respectively, and
were used to form a training set matrix of 13 (features) � 160
(samples; i.e. 80 RST-1 samples + 80 RST-2 samples =
160 samples). This matrix was then used to train the SVM
classifier against the UPDRS-S ratings 0, 1 and 2. Another set of
same features computed from 80 samples in RST-3 was used to
form a test set matrix of 13 (features) � 80 (samples). This test
set matrix was used for testing the trained classifier. A high
accuracy (82%) was achieved by this scheme in classifying the
test set between the 3 levels of UPDRS-S (Table 3.2) with an
averaged ROC area of 90%. Specifically the samples in class '2'
were predicted again with a very high true positive rate (100%).

6. Discussion

The results were compared with two other methods on
objectification of running-speech in PD [6,8]. Both these
methods utilized running speech samples together with
sustained vowel phonation and diadochokinetic test samples
to derive estimates of prosody, phonation and articulation
respectively. The first method [6] used SVM on 11 different
acoustic features to classify between 23 PD patients and
23 healthy controls and achieved a classification rate of 85%.
The second method [8] applied simple naïve Bayes rule on
19 different acoustic features derived from the same dataset
and produced a classification rate of 91.30%. The two methods
employed similar prosodic measures as used in this paper (i.e.
F0STD, number of pauses, pause time and voice intensity) but
different articulatory and phonatory measures. Both these
methods performed two level classification of speech.

In order to compare the two methods with our approach,
we merged the samples rated '1' (mild symptom) in our speech
database with the samples rated '0' (normal) so that the new
classification scheme was two level i.e. 'normal-mild' and
'moderate-severe'. The application of the configured SVM on a
total of 13 features derived from 240 running speech samples
produced a two-level classification accuracy of 92%. Although
different methods can't be conclusively compared when
tested on different data sets, these results suggest that the
features from the running speech are enough to identify PD
speech symptoms if they are able to track deficits in individual
speech components.

Our experiments further suggest that the improvement in
classification accuracy of speech symptoms is proportional to
the increasing level of textual difficulty in our data set from mild
PD stage. It was observed that the mild speech symptoms were
Please cite this article in press as: Khan T, et al. Classification of speech
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undetected in the recitation of easy-to-read text. Even in this
situation, the high values of Guttmann's m2 suggest that the CSD
and MFCC were robust in characterizing between the speech
symptom severity levels. In particular, the dCSD indicated very
strong correlation with the clinical speech ratings and this
correlation increased with increasing level of textual difficulty.
The strong correlation between 4th MFCC and speech ratings
directs further clinical research to explore the articulators
responsible for frequency disturbances in this sub-band.

The implication of pitch features limits this classification
model to English speakers only due to the fact that the
sounding of phonemes in other languages may involve
different fundamental tones. Besides, since the MFCC and
CSD features do not incorporate the exclusive computation of
fundamental frequency, the strong Guttman correlation
between these features and clinical ratings suggests that
these features have the potential to detect PD speech
anomalies in languages other than English. In general, the
high classification performance by the SVM supports this
model and the selected pool of features as a suitable tool to
categorize speech symptom severity levels in early stage PD.
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