
Assuring Safety for Component Based Software
Engineering

Philippa Conmy1 and Iain Bate1,2
1Department of Computer Science, University of York, York, UK

2Mälardalen Real-Time Research Centre, Mälardalen University, Väster̊as, Sweden
email: {philippa.conmy, iain.bate}@york.ac.uk

Abstract—Developing Safety-Critical Systems (SCS)
is an expensive activity largely due to the cost of
testing both components and the systems produced by
integrating them. In more mainstream system design,
Model-Based Development (MBD) and Component-
Based Software Engineering (CBSE) are seen as com-
plementary activities that can reduce these costs, how-
ever their use is not yet well supported in the safety
critical domain, as safety is an emergent property. The
contributions of this paper are to describe some of
the challenges of using these approaches in SCS, and
then argue how through appropriate safety argument
patterns the challenges can be addressed.

I. Introduction

Software Intensive Safety Critical Systems is the term
used for any software based system whose malfunction
could cause harm to life, or the environment. Tradition-
ally each system has been certified independently, via
a collection of largely monolithic system analyses (de-
scribed as ”certification data” in this paper) which are
used to demonstrate the system is adequately safe [1],
[2]. Mainstream software engineering now successfully uses
component based design using models. Such approaches
are being adopted with some limited success in the safety
critical domain, however many critical obstacles need to be
overcome, including how to present a comprehensive safety
argument or justification, backed up with component level
certification data generated outside the current project
(either re-used or generated independently).
One strategy for reusing verification evidence would

be to determine which evidence is still valid and which
needs verification repeating. However, the purpose of the
majority of verification activities is not merely a “tick-box”
exercise, but vital to ensure safe operation of components
in a specific system context. Ariane 501 shows that context
is the most difficult part of safely reusing components
[3]. In the case of Ariane 501, sub-systems were reused
unchanged and therefore those sub-systems had little
extra testing performed. The designers had overlooked
important context related to the change of processing
platform and the interaction of the sub-system with the
rest of the system. Therefore, a technique is needed to
maximise the re-use of appropriate types of verification
data, whilst maintaining the understanding of the safety
of the overall system. In order to do this we need to

understand the original context in which the data was
assessed, our confidence in it’s veracity and applicability,
as well as summarising it’s content. This paper addresses
these issues.
This paper is laid out as follows. First we describe

related work in this area, and background context. Then
we show the overall approach and method to our work.
Next we describe a number of the component argument
templates, describing how they would be instantiated for
different types of certification data. Then we describe how
these may be used in an overall argument. Finally, we
present conclusions and further work.

II. Related Work

Background research into this area has been grouped
into three areas: Official industrial standards and guidance
(as all safety critical systems developers will need to
consider these), contracts to capture dependencies and
interfaces on either component function or data, more
general modelling techniques to support the process.
Very limited numbers of standards actively consider

compositional certification, but those that do provide
some basic requirements for the research presented in
this paper. The aviation guidance document ”Integrated
Modular Avionics (IMA) Development Guidance and Con-
siderations ED-124/DO-297” [4] looks at certification of a
particular computer design paradigm for avionics systems.
The standard recognises certifications are only given for
aircraft or engines, however, certification data can be
”approved” by an authority, making it easier to re-use.
When anticipating the re-use of a component, the guidance
requires that during initial development the designers
must describe in depth the limitations and assumptions
being made about the components’ use in this system and
others, i.e. the context.
The standard ”Road Vehicles - Functional Safety ISO

26262”, part 10 [5], contains guidance on development
of Safety Elements out of Context (SEooC). This has
a different initial stance, and allows generic components
to be developed independently, and hence the evidence
produced out of context. Components are expected to be
reasonably generic, or conform to the standard AUTOSAR
design paradigm [6]. Hence, it is assumed that they should
be reasonably re-usable as long as, again, assumptions
about how they will be used and the environment they

2014 IEEE 15th International Symposium on High-Assurance Systems Engineering

978-1-4799-3466-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HASE.2014.25

121

will work in is well defined. The standard notes the need to
manage mismatched assumptions, and how whether these
impact on the overall safety of the vehicle, however doesn’t
give guidance on how to do this.
”Informal” contract based approaches of various kinds

can be found in [2], [7], [1], [8]. These all consider how
to capture various non-functional dependencies between
safety related components, using natural language to ex-
press dependencies and guarantees. It should be noted that
there may be a very complex chain of safety dependencies
within a SCS, as shown in Figure 1 - a failure in one com-
ponent, may be caused by another, mitigated by a third,
and so on. A modular safety argument for CBSE will need
to consider this, and how to reconcile and argue for the
adequate safety of this chain of events, particularly where
there may not be a complete match between functionality
needed by one component and that offered by another.
A more formal approach to contract expression (specific

to high assurance) is found in [9], where the authors
present a restricted language for describing rely/guarantee
conditions between software applications and computing
hardware. This has the advantage that it can be used
to generate automatically a limited set of arguments
about the composed behaviour of the software, including
for failure behaviour. However, this doesn’t allow us to
capture information such as qualitative properties of the
certification data, or assumptions about (for example)
environmental deployment. Other means outside of the
safety domain, e.g. the Object Constraint Language [10],
allow expression of some functional properties.
The approach within this paper is neutral to the actual

means used to describe dependencies, we have assumed
natural language to be used as part of our arguments
claims, but more formal means are used for parts- making
the type of matching process described in IV-A simpler in
places.
In terms of modelling approaches, in [11] Habli describes

methods for certification of product-lines, particularly
looking at safety argumentation. A product-line is a set of
similar products, which have common components (known
as assets) which can be re-used within the set (possibly
configured differently in each product). However this re-
search is based around a specialised design methodology,
and in a constrained domain. This paper provides a more
general approach.

Component
A

Component
B

FAILED Component
D

Component
C

Causes Detects

Mitigates

Fig. 1. Failure Propagation and Mitigation

III. Envisaged Process

This section presents an overview of the proposed ap-
proach to safety arguing, based around the a compo-
nent model approach. We are assuming that a software
component has been already designed, and implemented,
and a component model is created for after or during
the fact. During the design process a certain amount of
what this paper calls “certification data” (this is anything
used as evidence about a component such as analysis
results, design documents, staff competencies etc.) will be
produced for it. Our aim is to facilitate, and maximise, the
re-use of this data using modular safety arguments. We
note that some analyses may feed into other analyses, for
example design reviews that lead to design alterations or
requirements specifications that must be met in a software
implementation.
The proposed approach to safety arguing is in two parts,

the initial preparation for individual components, followed
by a system argument phase during an actual system
design (Figure 2). It is summarised as follows:

Preparation phase: Produce argument fragments for
components and link to component model. These argu-
ment fragments are based on a catalogue of patterns, as
presented in this paper.

System argument phase:
1) Produce top down system safety analyses, down
to specific requirements. Express these in argument
form, using the principles/patterns presented here.

2) Resolve and match argument fragments to the specific
requirements - joining the top down and bottom up
arguments. Safety arguitationment contracts will be
used for this purpose.

3) Iterate and update design and arguments as neces-
sary, e.g. where resolutions are not possible.

The preparatory phase process is summarised quite
simply as follows. Ready prepared component models and
certification data are combined with pre-defined safety
argument patterns (and other information as appropriate),
in order to produce safety argument fragments for a given
component. The details of what should be included in
component argument fragments is described in section
IV-A of this document.
The system argument phase (Figure 2) is more complex,

and has six main process parts (P1-6), and a number
of decision points (D1-3). Various types of data that are
produced and/or used throughout the process are detailed.
The process must start with system safety analyses (P1),
for example high-level failure modes and effects analyses,
hazard identification, functional failure analyses. These
techniques are well established and, hence, we do not
describe them here (see [12] for a comprehensive overview).
These create system specific hazard and risk data, and
some system safety requirements which can be allocated
as necessary to different components for fulfilment, and
can shape the design. For example, duplicates might be
used to fulfil reliability requirements, and several different

122

Component
a

Start

P1. Perform
System Safety

Analyses

System
Design

Hazard and
risk data

P2. Produce high
level safety

argument down to
requirements

D1. Can system do
what is needed

safely??

Yes

High level
safety

argument

P3. Collect all
prepared safety
argument parts

P4. Perform
matching process to

pull together all
parts

D2. Is arg
complete and
satisfactory?

End

No

P5. Identify
Mismatches

D3. Can
mismatches be

resolved in
argument?

P6. Produce
Argument
contracts

End

P7. Reconsider
design

Argument
Contracts

Whole
argument

No

Yes

Yes

Componefra
gments

No

Componefraa
gmentgments

Component
arg

fragments

Fig. 2. Process for producing system level safety arguments
including argument fragments

components might be used in concert (or independently)
in order to meet a system level functional requirement.
Note that it is necessary at this point to consider whether
the system is going to be acceptably safe AND fulfil the
functional needs. If it isn’t then the current design should
be abandoned.
A system level safety argument needs to be created

or modified (P2), which describes how and why these
requirements have been allocated. This argument is then
collected with the component argument fragments for all
components (P3). Once all the parts have been brought
together, careful consideration is needed as to how to join
the different arguments together (P4). In some cases it
may be very easy to work out how to link goals together,
in others it may be much more complex. However, the aim
of this part of the process is to put together a complete ar-
gument to be assessed. After this there is a decision point:
D2. If the argument is considered satisfactory then there
is no need to continue. If it isn’t then further analysis is
needed to identify difficulties and mismatches (P5). Some
of these mismatches may be resolved via argument, and
some via re-examining the design. Any design mismatches
must be addressed first, as any resolutions that mean a
change to the design (P7) are likely to mean a change
to the high level analyses in P1 (note the iterative loop).
There is little point in addressing argument conflicts if the
high level argument has to change again.
Assuming there are no design mismatches, and justi-

fications can be made for the argument conflicts then
a series of one or more safety argument contracts must
be developed to explain how they are resolved. Once
this has been addressed, the complete argument is once
again pulled together (P4) and the argument must be re-
assessed. Once it is satisfactory then we can finish the
process.
We note that this process diagram glosses over some as-

pects of a typical design process, such as smaller iterations
and changes for reasons other than safety needs. However,
we assume that the developer will take pragmatic steps to
minimise the need to repeat system safety analyses over
and over again, during the design iterations.

IV. Arguing The Safety of Components

A. Introduction to Goal Structuring Notation
The purpose of the safety arguing is twofold, first we

wish to better support the re-use of safety related certifi-
cation data about a component, second there is a genuine
need to provide a justification that a system developed
from multiple, independently developed, components is
acceptably safe in context.

Public Goal

Public Goal

Claim e.g. Software is
acceptably safe

Goal

AwayGoal

AwayGoal

IdentifiedModule

Evidence e.g.
test report

Solution

Argument
decomposition e.g.

argue over each
hazard

Strategy

Information such as
definitions of terms

Context

Text {X} to be determined

Uninstantiated Goal

Claim to be developed
further

Undeveloped Goal

Fig. 3. Goal Structuring Notation

The arguments in this paper are expressed using the
Goal Structuring Notation (GSN) [13] as shown in figure
3. Modular extensions to the GSN allow for composition
of arguments from sets of fragments (or modules). When
using modular GSN, a public goal (a guaranteed or offered
claim) is matched to an away goal (a claim which cannot
be supported in the current argument structure). As goals
are typically expressed using natural language these may
not be readily directly linked (due to slight differences
in terms, levels of abstraction being described, and so
on). For example, an away claim might be that a piece
of software needs a guaranteed secure communication in
order to function correctly. A public goal for different
supporting software (in a separate argument module) may
provide evidence that one particular secure method is
provided. Some thought is needed by the developers as
to whether the offered method is that required, and gives
enough security. Where it is difficult to directly match
claims we use a Safety Argument Contract (SAC). Note

123

that this contract is the resolution between two (or more)
slightly mismatched claims, and is different to a design
contract. The latter describes an interface.

B. Relationship between Components and Safety Argu-
ments
In an attempt to make the claims matching process

simpler, and provide a more structured methodology, we
present a series of argument fragments patterns to guide
the production of safety arguments that capture context,
justifications and essential characteristics of the evidence.
The fragments can be re-used within any system safety
argument. The system safety argument will contain system
specific hazard and safety requirements. The component
arguments will be based on assumptions about these safety
requirements (SRs). SACs will be used to join and resolve
the assumptions with the actual requirements. This is
summarised in figure 4.
The proposed method to ease matching of component

argument fragments to a system level argument is to use
the same high-level argument strategies for all sets of
arguments. This is not intended to limit the content of
the argument, but does constrain the broad organisation
of the parts. For example, if components are used in similar
systems in the same domain there may be high level
functions common across all of them. E.g. Automotive
systems will contain braking, steering, engine management
functions, all met by a number of different components.
For all components developed for these similar systems, it
is envisaged there will be some idea of how they are to be
re-used whilst they are being developed. Structuring the
argument fragments in terms of how they might contribute
to the high level functions would help immensely in merg-
ing the component fragments to a system level argument
which is, again, structured around these functions.

System Level
Argument

Safety Argument
Contract(s)

Component
Argument fragments

Component
Argument fragments

Fig. 4. Summarising the relationships between instantiated
argument fragments, system argument, and SACs

However, this does become more difficult when consider-
ing components that may be used across multiple domains.
Functions may be superficially similar (e.g. braking and
steering in trains, planes and automobiles) but hazardous

situations, environments, and hence tolerances etc. are so
different that it is difficult, and potentially dangerous, to
compare these directly. The SAC will be used to try and re-
solve differences, however, this paper concentrates only on
similar systems. Support for cross-domain arguments will
be examined in the future. The safety arguing approach
presented in here is able to highlight commonalities as well
as variabilities, by making explicit contextual information
and assumptions about how a component is used.
In practical terms, this broad level strategy approach

means there is a need to make certain goals in the com-
ponent argument fragments worded in a particular way,
or prominently justified, with all contexts explicit. This
should make the away and public goal matching process,
and resolution via SACs, simpler.
As part of a CBSE process, a set of high-level require-

ments for a system will be produced. This will include haz-
ard identification. Then a set of components which can be
used to fulfil these requirements will be found. The model-
based approach allows us to quickly assess potential com-
ponents, and model their interactions, without the expense
of fully building the system. In addition, it allows us to re-
use components by capturing their essential properties in
a model. Similarly, argument fragments (with appropriate
content) about the component properties can be re-used
to assess early on whether component certification data is
compatible, and whether components will safely interact
with one another.

{Properties Z} of
{component A} met in

implementation

Goal:
Properties

{Properties Z} are valid
in context

Goal: PropValid

{Properties Z}
demonstrated via

testing

Goal: PropMet

Test results and
data

Sol: PropTest

Running on {arch}
with {inputs c}

Con: ArchCont

Assumptions: ...
Pre-Conditions: …
Post-Conditions: …

Component
Model

Fig. 5. Links between safety arguments and a component
specification model

The relationship between a component model, and the
type of information presented in the safety argument, is
elaborated in Figure 5. Each component has a set of one or
more design contracts associated with it (pre-and post con-
ditions), and evidence supporting the contracts is linked
to via the “solutions” at the bottom of an argumentation
fragment. However, the argument is only valid within
a set of defined, and assumed, contextual information
(Assumptions). It should be noted that there might be
more contextual information in the argument than that
contained in the component model. For example, context
such as which standards are being used for assessing and

124

developing the component. These relationships will be
further understood as the component model is developed.

C. Component Model Argument Fragments
As described earlier, each component model will have

one or more safety argument fragments attached to it.
These argument fragments should concern properties of
the actual component which are constrained and do not
change fundamentally when a component is used. In other
words, although some properties may be configurable for a
component type, the type of configuration possible doesn’t
change. If it does then the argument may not be re-usable
(as the configuration is part of the context within which
the argument is constructed).
We noted that the argument fragments must contain

appropriate content to allow the assessment of components
suitability for a new safety system. Extensive discussions
with industrial partners within the funding project consor-
tia have identified that the safety arguments fragments for
the component model need to be able to at least address
the following things:
1) Confidence in the evidence: there are many aspects
or characteristics of the evidence that may be subjec-
tively assessed, via an argument. These include:
a) Qualitative assessment of how well it has been ap-
plied, including: Completeness, Depth, Probability
and Coverage

b) Competency of personnel
c) Risk associated with the age of the evidence or
which version/configuration of a component it was
applied to. In other words, is it directly relevant to
our particular system.

d) Appropriateness of a technique for showing a par-
ticular property

2) Compliance to standards: this type of safety argument
would be used for a component developed using a
particular standard as a reference point. For example,
a component developed to ASIL B in ISO 26262 [5]
would have a particular design flow, with analysis
techniques at given points (some of which may or
may not be applied). The argument would capture
the depth of compliance. for reasons of space, this
argument is omitted from this paper, however the
reader is directed to similar work on these specific types
of argument in [14]

3) Traceability and specification: an argument should be
traceable to fundamental properties of the component
that we wish to assert, and we should be able to argue
about the qualities of the specification (see section
IV-E).

4) Proven in use: it may be possible to gather evidence
about a components operation, when it has been used
in a system. For example, we may have compelling ev-
idence about probabilities of hardware failure, or show
that a component has tolerance in difficult operating
environments. Capturing this in a safety argument

(along with any caveats or limitations on the data)
would be very valuable from a re-use perspective.

Argument patterns for each of 1, 3 and 4 are now
presented, using the GSN pattern extensions [13]. These
patterns contain high-level strategies for argument struc-
ture, with information to be instantiated contained within
braces.

D. Confidence in Evidence Argument Fragment Pattern
We anticipate that the most frequently used argument

fragment will be related to describing evidence, and its
provenance and quality. A pattern for this is shown in
Figure 6. The main purpose of this pattern is to capture
qualitative information about the confidence we have in a
piece of evidence. This type of argument may be re-used
for all kinds of different pieces of evidence, and may be
linked to some of the other argumentation fragments (as
will be discussed).
The top level goal AATop has three pieces of infor-

mation to be instantiated, the analysis technique type,
what we describe as “confidence” and also which specified
properties (or contracts as shown in the component meta-
model) are being demonstrated. Earlier, we noted that
the component argument modules would be most likely
to contain very generic information about how a specifica-
tion was met, rather than whether that specification was
correct (something that can only be assessed in a system
context). This pattern supports that viewpoint.

{Analysis technique X}
provides us with

{confidence} about
{properties 1..N}

G:ATTop

{Definition of
Confidence}

Con:Confidence

{Analysis technique}
results have {qualities}

G:ATQual

Effectiveness of {Analysis
technique} to show

{properties 1..N Type(s)}

G:ATEffect

Application of {Analysis
technique} had

{competency/tool/
appropriateness}

G:ATApplication

0..N

Fig. 6. Confidence Argument Pattern

A description of “confidence” is harder to define. It
may be very difficult to capture an implicit understanding
of how confident we are in the results, as it cannot be
quantified, and will depend on the weight of the argument
below. Nevertheless, it is useful to try and capture this
understanding in a concise manner if we can. Note that
we may also wish to state the limitations of the evidence
here too.
The goal ATQual should be instantiated 0 to N times

for the many different qualities of the evidence (indicated
by the arrow with the filled in circle). For example, we may
have some assurance of the results of a technique, such as
testing, due to code coverage. We may have assurance of
hardware tolerances due to stress testing in an appropriate
environment. We anticipate that more specific (but still

125

re-usable) versions of this argument pattern could be
produced for frequently used analysis technique types.
The goal ATApplication should describe how the

technique was performed. For example, were the personnel
suitably qualified or experienced in its application? Were
any tools used (e.g. fault tree management tools or static
code analysis tools) appropriate and correctly applied?
This will allow us to further assess our confidence in the
results.
Finally, the goal ATEffect refers to the general con-

fidence we have in the analysis technique and its appro-
priateness to show the properties we desire. For example,
some formal proof techniques are very useful to show func-
tional properties but not much use for timing assessments.
This information is not related to this specific component
development, but is much more general (and again re-
usable).
As an illustrative example, we consider a Worst Case

Execution Time (WCET) report, within which timing
analysis is presented for a component. The actual timings
are presented as properties within a component model.
Instantiated argument fragments might describe this data
as follows. AATop becomes “Statistical testing provides
us with 95% confidence of WCET 3ms”. Confidence de-
scription would include in how many tests we have done.
ATQual would be about the specific results, and show
that the longest path had been exercised and why 3ms
was the expected answer (for example). ATApplication
would be expanded to describe the tools used, the accuracy
of measurements etc.. Finally, ATEffect would describe
how effective statistical testing was for showing WCET,
as opposed to other methods. Note that the latter two
branches of the argument may also be re-usable, across
many instantiations of WCET arguments.

E. Specification Argument Fragment Pattern
This argument pattern relates to the quality of the

component model and its specification. Typically there
are three quality attributes related to a specification:
completeness, consistency and correctness.
1) Completeness refers to whether the specification cov-
ers all needed properties.

2) Consistency refers to whether the specification is
internally consistent, i.e. free of contradictions.

3) Correctness refers to whether the specification actu-
ally describes what the component does.

It was noted earlier, that modular arguments related
to components would typically deal with very generic
assertions about whether a component fulfils a specifi-
cation. We are assuming the use of component models,
that describe a number of different aspects relating to
a component, e.g. ports, events. It also has Contracts.
These contracts describe the component properties as a
series of assume/guarantee relations. A component model,
conforming to the component meta-model, should specify
most aspects of the component, but may not contain all

relevant properties (if they are not needed for the CBSE
process). Therefore, this pattern refers to the component
specification.
The pattern is shown in Figure 7 and has been designed

to be simple and flexible. The top-level goal, PropTop,
has three pieces of information to be instantiated: the
specification, the component, and a definition of sufficient.
The latter refers to the quality of the specification and may
be difficult to define. If we are developing a component to
conform with a particular standard there may be defini-
tions of sufficiency relating to the type of specification (e.g.
do we need to include all functions, all failure response for
out of range data, all timings) etc.. It is up to the developer
of a component to decide what is most appropriate here.
The remainder of the pattern is based on very generic

repetitions of different reviews of the specification (instan-
tiated for each review type, as indicated by the arrow).
The review may be manual, use a static analysis tool
or involve a formal proof. In each case, different sets of
properties may be being reviewed, depending on their
type (e.g. function or non-functional). Note that a further
argument fragment about the quality of review, similar to
the confidence argument), could also be provided.

{Specification} of
{Component X} is

{sufficiently} complete/
consistent/correct

G:PropTop

{Definition of
sufficient}

Con: DefSuff

{Review type M} of
{properties 0..N} reveals

{confidence}

G:RevSpec

Describe a number of
different reviews and

analyses for the componetent
specification as necessary

Strat:

1..M

{Properties 0..N}

Con:

Fig. 7. Specification Argument Pattern

F. Proven in Use Argument Fragment Pattern
Another aspect to component argumentation is to

present “proven in use” evidence. When a component has
been used in other systems before, evidence about its op-
eration may have been gathered, strengthening the initial
argument/evidence about the component. The difficulty
with this type of argument is that it is difficult to make
it outside of a specific system or context. For example, if
we have evidence of a hardware components’ likelihood
of physical failure from operational data, we need to
demonstrate that the physical environment was sufficiently
similar to the current environment for the evidence to be
comparable and relevant. This means that it may not be
possible to re-use the arguments or the evidence. However,
there is still a common form for this type of argument
which we have captured in the pattern in Figure 8.

126

The goal PIUTop has three pieces of information to
be instantiated: the component being referred to, the
properties about the component which are examined, and
the systems which it has been used in. Descriptions of
these systems should be presented as contexts in the
instantiated argument. The main thrust of the argument is
two pronged: on one hand each property (or sets of prop-
erties) is examined, alongside their evidence. We can re-
use the analysis technique pattern from section 1) for this.
The arguments would be repeated for multiple properties,
or sets of properties. This division of properties is at the
discretion of the developer.

{System M}

Con:OrigSys{Component A} {Properties
1..N} proven in use in

{Systems 1..M}

G:PiUTop

{System M} is
analogous

 to {Current System}

G:SysComp

{Property 1..N}
demonstrated via

{Evidence Y}

G:Prop

{{tier n} design}

hazCont
{{tier n} design}

hazCont

All inherited context

{Sysem M+}

Con: Inherited

Argue over
inherited context

and system
functions/purpose

Strat: Context

Inherited context from
{System M} is sufficiently

similar to, and not
contradictory with, {Current

System}

G:ConCompare

{System M} function/hazards
and purpose is similar to,
and not contradictory with

{Current System}

G:FnHazCompare

{Analysis technique X} provides
us with {confidence} about

{Properties 1..N} in {System M}

G:ATTop

ATArgs

{System M}

Con:OrigSys

{System M}

Con:OrigSys

1..M 1..N

1..N

Fig. 8. Proven In Use Argument Fragment

The other main strand to the argument is to examine
and compare the contexts in which the evidence was
gathered (goals ConCompare and FnHazCompare).
As there are lots of different pieces of contextual infor-
mation we need to ensure that it is compatible across
the whole range. Some contexts may be compatible (e.g.
processor used), but other orthogonal ones incompatible
(e.g. operating temperature range is different). In addition,
we need to consider whether the failure conditions, and
hazards being addressed were the same. This is, in some
ways, a more specialised version of context compatibility,
but it is the most pertinent one to safety critical system
development, hence we have specifically brought it out.
This strand should be repeated for all systems where the
proven in use evidence has been identified.

V. System Level Argument and Contracts

Once we have our component level arguments, we need
a system level argument framework in which they can
be used with minimal re-work and change. An important
issue is traceability of properties to hazards as well as
to evidence. As described earlier, the system level safety
argument will link to the component argument fragments
and should address the following:
1) Hazard analysis and risk assessment.
2) Traceability from high-level safety requirements to
low-level properties of the components within the

system.
We note that there is not optimal safety argument

structure in which all properties can be made explicit (the
argument may be directed per analysis, per component
or per hazard, making one more explicit than the other).
Merging these approaches for CBSE, the most pragmatic
solution (which supports isolated development of compo-
nent argument fragments for each component) is to have
some top town analysis driven argument, supported by
arguments about contributions from each component. A
typical top-level argument for this is shown in Figure
9. The argument is first broken down over each hazard,
and then over each safety requirement which addresses
the hazards. Component properties which address each
safety requirement are then to be matched, via safety
argument contracts as discussed at the end of this section.
Thus we have the relationships “Hazard is addressed by
Safety Requirements”, ”Safety Requirements are met by
Component Properties” . There are a number of elements
to be instantiated, as per the other patterns. In the top-
level goal the system itself needs to be described, as does
the meaning of “acceptably safe”. Typically, the latter is
given in terms of overall system failure probability, or
within the guidance of a particular standard. The rest of
the argument relies on instantiation for each hazard and
for each safety requirement.

{Safety Requirements
1..N} address {Hazard Y}

G:ReqHaz

Each hazard is
addressed by system

design

Strat: HazStrat

{Safety Requirements} for
{System X} are {sufficiently}
complete/consistent/correct

G: SysSafetyReq

SysSafeReqArg

{System X} is {acceptably
safe}

G:SysSafe

{Safety Req N} is met

Goal:
ReqNeedsSupport

Argue over each safety
Req

Strat: SRStrat

1..M

1..N

{Acceptably Safe}
definition

Con:

{System X}
definition

Con:

{Safety Requirements} for
{System X} are allocated to

{components}

G: AllSafetyReq

ReqTraceability

Fig. 9. System Level Argument Pattern
There are some caveats and drawbacks to this approach.

First, there may be a large number of hazards, and a
large number of safety requirements which may need to
be collected together and grouped. Some discussion of
methods to do are discussed by Hawkins in [15], however it
does rely on a certain amount of engineering judgment on
the part developer and there is no fixed guidance on how
to group relevant requirements. Similarly, the properties

127

relating to a particular safety requirement may overlap,
and the argument fragments, as constructed may not pro-
vide a direct mapping (see Figure 10). This paper doesn’t
provide any explicit guidance on this issue either, and it
is an area for future development. We do note, however,
that the CBSE and modelling aspects of the development
process should be able to provide a more formal, and
direct, process for matching component functionality to
system requirements, and should be able to give some
idea of the exact matches. An exact match within the
argument itself is not actually required, as long as we have
confidence that all the relevant properties are actually
there as required. For example, suppose that component A
has 10 grouped properties, 3 of which are needed to meet
a safety requirement. Further, suppose that component B
has 15 grouped properties, 2 of which are needed for the
same safety requirement. The evidence for both sets of
properties is via analysis, which is argued about for the
whole group (per component). It doesn’t matter that the
argument doesn’t directly show the individual traceability
(it would be unreadable if it did), as long as we have assur-
ance that the properties meeting the requirement are as
described. We do need some traceability recorded at some
point though, as shown in the goal AllSafetyReq (figure
9), with supporting evidence such as documentation or use
of a requirements tool.

Assumptions: ...
Pre-Conditions: …
Post-Conditions: …

Component
Model A

Hazard 1 Hazard 2 Hazard N...

Derived Safety
Requirements

Assumptions: ...
Pre-Conditions: …
Post-Conditions: …

Component
Model B

Fig. 10. Relationship of Components, SRs and Hazards

Finally, for completeness with respect to our overall
process, we may also need to create a safety argument
contract to link a safety requirement to a component
property, and can use the general pattern proposed in [8].
The top level goal for a safety argument contract links to
the bottom level goal in Figure 9 (ReqNeedsSupport).
It requires instantiation for each safety requirement or pos-
sibly group of safety requirements (noting the comments in
the previous paragraph). The strategy proposed is that all
contributions to a safety requirement (assumed to be of the
form of failures, as any condition leading to a system level
hazard will arise from a failure by definition) are examined.
These are separated as noted in figure 1, such that we look
for causes, effects and mitigations. As discussed in [8] the
inherited contexts for each component which meets the
safety requirement must be assessed for compatibility and
contradiction.

VI. Conclusions

This paper has presented an approach to safety arguing
for a CBSE approach, with the aim of supporting the re-
use of certification data and helping assess compatibility
of data and highlight design issues. This is based around
the production of a number of argument fragments per
component, which can be re-used and joined to a hazard
directed system level safety argument. We have presented
a number of fragment templates, designed to give a con-
sistent structure to the arguments, and provide guidance
as to the argument content. We have further presented an
outline for a system level argument, and a template for
SACs joining the fragments to the system level argument.
Future work will develop methods for grouping safety

requirements into appropriate groups, such as related to
timing or a specific hazard. Also, we will consider the
ability to re-use arguments cross-domain (e.g. from rail-
way to avionics). Although the patterns are generic, once
instantiated they will contain domain specific data. We
need to expose or identify data which is context sensitive
to help highlight issues when moving between domains.

Acknowledgement

We thanks the Swedish Foundation for Strategic Re-
search (SSF) SYNOPSIS Project and the EU Artemis
funded pSafeCer project for supporting this work.

References

[1] J. Fenn, R. Hawkins, P. Williams, T. Kelly, M. Banner and Y
Oakshott, “The who, where, how, why and when of modular and
incremental certification,” in 2nd IET International Conference
on System Safety. IET, November 2007.

[2] P. Conmy, “Safety analysis of computer resource management
software,” Ph.D. dissertation, University of York, 2005.

[3] J. Lions. Flight 501 failure: Report by the inquiry
board. [Online]. Available: http://www.ima.umn.edu/∼arnold/
disasters/ariane5rep.html

[4] Design Guidance and Certification Considerations, 1st ed.,
RTCA, EUROCAE, 2007.

[5] ISO 26262 Road Vehicles - Functional Safety, ISO, 2011.
[6] Automotive open system architecture. [Online]. Available:

http://www.autosar.org
[7] Philippa Conmy, Iain Bate, “Safe composition of real time

software,” in Proceedings of the 9th IEEE Symposium in High
Assurance Systems Engineering, 2005.

[8] J. Fenn, R. Hawkins, T. Kelly, P. Williams, “Safety case com-
position using contracts - refinements based on feedback from
an industrial case study,” in Proceedings of 15th Safety Critical
Systems Symposium (SSS’07). Springer, February 2007.

[9] Bastian Zimmer, Susanne Bürklen, Michael Knoop, Jens
Höfflinger, Mario Trapp, “Vertical safety interfaces - improving
the efficiency of modular certification,” Computer Safety, Reli-
ability, and Security, Lecture Notes in Computer Science, vol.
6894, pp. 29–42, 2011.

[10] ISO/IEC 19507 - Object Constraint Language, ISO, 2012.
[11] I. Habli, “Model-based assurance of safety-critical product

lines,” Ph.D. dissertation, University of York, 2009.
[12] N. Leveson, Safeware. Addison-Wesley, 1995.
[13] Origin Consulting on behalf of Contributors, “GSN community

standard.”
[14] P. Graydon, I. Habli, R. Hawkins, T. Kelly, J. Knight, “Arguing

conformance,” IEE Sofware, vol. 29, no. 3, 2012.
[15] R. Hawkins and T. Kelly, “A software safety argument pattern

catalogue,” University of York, Tech. Rep., 2011. [Online].
Available: http://www-users.cs.york.ac.uk/∼rhawkins/papers/
swsafetyargumentpatterncatalogue.pdf

128

