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ABSTRACT 

Safety or mission critical applications have to recover from an 

error within an acceptable time window or it may potentially 

lead to disastrous effects or higher costs. The usual industrial 

practice is to employ fault tolerance using hardware 

redundancy where costs are highly exorbitant depending on 

the mission. In this paper, we present a framework for 

adaptive fault tolerance on the commonly used hardware 

redundancy. This proposed model gives enhanced resource 

management and improved system performance under normal 

runtime and provides minimal safe functionality under error 

conditions. A new scheduling method, a combination of 

dynamic planning and dynamic best effort approach has been 

designed for joint scheduling of periodic and aperiodic tasks 

which also include online reconfiguration for error 

management. This fault recovery technique allows all critical 

tasks to meet their deadlines and the system continues 

functioning with minimal safe functionality upon errors. This 

model has been analyzed and evaluated on a practical case 

study of a Cruise Control System vis- à-vis a traditional 

redundancy scheme with simulation and validated with 

appropriate performance metrics. The results demonstrate the 

high performance throughput and process speedup (Execution 

time of process) that can be gained by applying this model to 

an m-processor redundancy model and the advantages can be 

accrued specially in the field of avionics in terms of 

fuel/weight ratio.  

General Terms 

Redundancy, Safety critical systems, real time scheduling 

Keywords 

Fault tolerance, resource management, Cruise control system, 

Process speedup. 

1. INTRODUCTION 
Safety critical systems are increasingly being employed in 

multiprocessor embedded platforms. The hardware 

redundancy traditionally employed for dependability increases 

the complexity and the cost of the system. As the level of 

redundancy goes up, indirectly this can lead to more faults 

and cost can become prohibitive. Under normal operation 

conditions the redundant units are not employed and hence the 

computing resources are being underutilized. These 

computing resources can be efficiently utilized and during 

fault condition dependability can be assured by the method 

explored in this paper.  

Using task level criticality, where critical tasks have to meet 

their deadlines to avoid catastrophic effects, the proposed 

model ensures fault tolerance by scheduling the critical tasks 

on all the processors and sharing the noncritical tasks among 

the processors. By this approach the redundant units are 

efficiently utilized and there by the performance of the system 

is improved. The proposed scheduling scheme is denoted as 

Enhanced Resource Management Scheme (ERMS) and is 

evaluated in comparison with Traditional Redundancy 

Scheme (TRS). A Cruise Control System (CCS) which is one 

of the major safety critical unit in automotives is taken as a 

case study for the implementation of the proposed scheme and 

is validated with the suitable performance metrics. The main 

function of the CCS is to maintain a constant speed which is 

set by the driver there by reducing the work load of the driver.   

The rest of the paper is organized as follows. Section 2 

references the literature survey and Section 3 gives the 

background study of scheduling of fault tolerant real time 

systems and the case  study of the cruise control system. In 

section 4, the  system model with TRS and proposed ERMS 

approach is discussed and the implementation of the  case 

study has been  detailed. In Section 5 the analysis and 

simulation results with performance evaluation is presented. 

The conclusion and future scope is given in Section 6. 

2. RELATED WORKS 
Multiprocessor real-time scheduling theory has it origins in 

the late 1970’s. The seminal paper of Liu(’78) [2] heavily 

influenced the course of research in this area for two decades. 

During the 1980’s and 1990’s partitioned approaches, with a 

fixed allocation of tasks to processors was preferred compared 

to global approach. In 1997, Phillips et al.[3] in his paper 

proposed the advantages of global scheduling which renewed 

interest in global scheduling algorithms. 

 

J. Von Neumann [4], E. F. Moore, C. E. Shannon, [5] and 

their successors developed theories of using redundancy to 

build reliable logic structures from less reliable components, 

whose faults were masked by the presence of multiple 

redundant components. The theories of masking redundancy 

were unified by W. H. Pierce as the concept of failure 

tolerance in 1965 [6]. In 1967, A. Avizienis integrated 

masking with the practical techniques of error detection, fault 

diagnosis, and recovery into the concept of fault-tolerant 

systems [7]. Further a fault tolerant scheduling algorithm for 

multiprocessors was analyzed by Ghosh [8]. Krishna and Shin 

[9]  proposed a fault tolerant scheme for quick recovery of 

tasks from failure. Oh and Son.[10] proposed a scheme that 

enhances the fault tolerance in static realtime scheduling. 

Later he proposed the concept of online scheduling of 

multiple versions of tasks on the minimum number of 

processors under the RM scheduling policy[11]. Manimaran 

[12] has proposed dynamic algorithms to schedule real-time 

tasks on multiprocessors by employing the primary backup 

fault-tolerance strategy. Mahmud Pathan[13] presented a new 

scheduling algorithm that integrates  timeliness and criticality 

to fault tolerance. In[14, 15,16] the authors have proposed an 

improved resource managements technique with an innovative 

fault tolerant paradigm. This technique enhances the 



International Journal of Computer Applications (0975 – 8887)  

Volume 86 – No 15, January 2014 

20 

performance of the system and effectively utilizes the 

additional resources.  One of the applications of safety critical 

systems is Cruise Control System,  a prototype of which has 

been developed in the year 1987, as part of an initiative of the 

European Union EUREKA program[17]. Its main objective is 

to reduce the driver workload and make the drive more 

comfortable by automatically adjusting the speed of the 

vehicle with regard to the surroundings. 

3. BACKGROUND STUDY 
Multiprocessor scheduling consists of global scheduling and 

partitioned scheduling where the former has a global 

scheduler, scheduling all the tasks to the available processors 

and in the latter tasks are pre-allocated to the processors[3]. 

The local scheduler in each processor determines the schedule 

for each processor using an uniprocessor scheduling policy. 

Uniprocessor scheduling consists of offline scheduling and 

online scheduling where in former case a complete knowledge 

of the task set and time attributes are known and scheduling 

decisions are pre-computed offline and in latter case  

scheduling decisions are made during runtime, Audsley[18]. 

Online scheduling is flexible and adaptive but incurs 

significant overheads. 

3.1 Scheduling Paradigms: 
Static table-driven approach-These perform static 

schedulability analysis and the resulting schedule (or table, as 

it is usually called) is used at run time to decide when a task 

must begin execution. 

Static priority driven preemptive approach - These perform 

static schedulability analysis but unlike in the previous 

approach, no explicit schedule is constructed. At run time, 

tasks are executed with “highest priority first” principle. 

Dynamic planning-based approach - Unlike the previous two 

approaches, feasibility is checked at run time, i.e., a 

dynamically arriving task is accepted for execution only if it 

found feasible. One of the results of the feasibility analysis is 

a schedule or plan that is used to decide when a task can begin 

execution. 

Dynamic best effort approach - Here no feasibility checking is 

done. The system tries to do its best to meet deadlines. But 

since no guarantees are provided, a task may be aborted 

during its execution [19]. 

  

From the above approaches following are selected for  

implementation in this work 

Static table-driven approach - Periodic task scheduling during 

run-time normal mode. Given task characteristics, a table is 

constructed, that identifies the start and completion time of 

each task and tasks are dispatched according to this table. 

Dynamic online best planning approach - Mixed Task 

scheduling during normal run-time mode. It provides the 

flexibility of dynamic planning approach with the 

predictability of best effort  that  checks for feasibility. In this 

approach after the arrival of aperiodic task, an attempt is made 

to create a schedule that contains the previously guaranteed 

tasks as well as the  aperiodic task. 

3.2 Fault tolerance 
Fault tolerance is achieved through redundancy, Avizienis [7]. 

Some types of redundancy are hardware redundancy, based on 

replication of physical components, software redundancy, 

which   provides   different software versions of tasks, 

preferably written independently. Time Redundancy  based on 

multiple executions of a task on the same hardware in 

different instances of time. Two general approaches proposed 

for hardware fault recovery are fault masking and dynamic 

recovery. Fault masking is a structural redundancy technique 

that completely masks the faults with in a set or redundant 

modules, their outputs are voted to remove the errors caused 

by the faulty module [20]. Triple Modular redundancy (TMR) 

is a commonly used form of fault masking in which the 

circuitry is triplicated and voted. Dynamic recovery is a 

technique used when only one copy of computation is running 

at a time and it involves automated self repair.  In this case 

special mechanisms are required to detect faults in the 

modules, switch out a faulty module and switch in a spare 

module.  

 

3.3 Safety critical systems 
Safety critical systems are hard real time systems where 

missing deadlines of critical tasks results in catastrophic 

effects, Knight [21]. With the advent of increased 

development in on-chip technology multiprocessors came into 

existence for highly complex and sophisticated systems like 

safety critical systems. Well known examples of such systems 

include medical devices, avionics, aircraft flight control 

system, and nuclear systems. 

Tasks in safety critical systems Periodic tasks are time driven 

tasks which occur at regular intervals of time, example -  task 

which monitors the temperature of the patient in a patient    

monitoring system. Aperiodic tasks are event driven tasks 

which occur due to dynamic changes in  the environment or 

they can be user initiated tasks, example -  task that is 

activated on detecting an abnormality  in the condition of the 

patient. 

Task set consists of a set of tasks in an application classified 

as critical, non-critical and optional tasks based on the 

criticality level of the task. In some sense, non-critical and 

optional tasks can be considered as soft real time tasks. In 

general, all controlling and actuating tasks are considered as 

critical tasks and sensing tasks are considered as non-critical 

tasks. One such critical task is the task in the patient 

monitoring system which controls the oxygen supply to the 

patient in ICU. 

Task graph Task set is transformed in to task graph where 

tasks are related by dependency. The generated graph consists 

of set of nodes corresponding to tasks and a set of edges 

corresponding to task dependencies.     

A new way of fault tolerant scheduling in safety critical 

multiprocessors is explained in detail in [14, 15, 16], where 

the task level criticality has been explored to schedule the 

tasks in multiple processors. This ensures the safe 

functionality of the system even during the occurrence of fault 

by operating in different modes where certain optional tasks 

and non-critical tasks are dropped. 

3.4 Performance metrics 
In order to measure the performance  of the fault tolerant 

scheme, the following performance metrics are chosen. 

3.4.1 Effective Utilization Ue 
It is the normalized utilization of the processors during the 

execution of an application Ramamritham[22]. 

3.4.2 Process Speedup Sp 
Process Speedup indicates the overall execution time for  the 

process, Davis [23]. 

3.4.3 Guarantee ratio Gr 
It is the ratio of arriving aperiodic tasks that can effectively 

meet their deadlines to the number of  tasks that are scheduled 

on the processor,  Manimaran[24]. 

3.4.4 Average response time Ra 
It is the average response time of soft aperiodic tasks that are 

scheduled on the processors, Sprunt [25]. 



International Journal of Computer Applications (0975 – 8887)  

Volume 86 – No 15, January 2014 

21 

3.4.5 Deadline miss ratio Dr 
It is the ratio of tasks that has missed the deadline to the total 

number of tasks in the system, Chenyang[26]. 

 

3.5 Case study: Cruise Control System  
The  Cruise Control System (CCS)  is characterized as  an 

embedded real time system having a number of processors, 

sensors and actuators. The functionality of the system is based 

on assuming different classes or tasks that interact among 

each other in real time, Staines[27]. The tasks identified in the 

cruise control system can be categorized as periodic and 

aperiodic (user initiated). 

i. Periodic tasks – all sensing actions 

ii. User initiated tasks – Brake application  and 

acceleration 

 

3.5.1 Basic tasks 
 Sensors scan processes (GPS, User Interface (UI), 

Brake, Accelerator, Engine) 

 Get current speed 

 Compute control values 

 Update parameters 

 Send adjustment value to throttle 

 

3.5.2  Monitoring functions 

 Global positioning system monitoring using GPS 

system 

 Monitoring the user interface 

 Monitoring the brake using brake sensor 

 Monitoring the accelerator using accel sensor 

 Engine monitoring using engine sensor 

 Monitoring the speed using wheel revolution sensor 

 

3.5.3 Control functions 
 Comparing the current speed and desired speed, 

suitable control signal is generated either to increase 

or decrease the speed 

 Update the parameters 

 

3.5.4 Actuating functions 
 Based on the control signal, throttle actuator is 

controlled to maintain the desired speed 

 

4.  APPROACH  

4.1 Objectives 
1. Design of fault tolerant model for CCS in 

 i) TRS 

 ii) ERMS  models 

2. Implementation of the proposed models 

i) Analysis 

ii) Simulation 

3. Validating the performance of ERMS model over TRS with 

suitable performance metrics. 

 

4.2  Assumptions 
1. Constraints for redundancy are based on the number of 

parallelizable non-critical tasks and their utilizations. 

2. Non critical periodic tasks are preemptable.  

3. An existence of appropriate watchdog mechanism is 

assumed to be present that enables the detection of 

processor failures with a bounded latency. 

4. Priority of non-critical task is assumed to be greater than 

the priority of the soft aperiodic task.   

5. Hard aperiodic task is assumed to have the highest 

priority compared to critical tasks 

6. A fixed time interval between the faults is assumed to be 

present in the system. 

7. Execution time of each task is assumed to be worst case 

execution time(WCET) which includes all time 

overheads like context switches due to preemptions and 

communication costs between processors. 

8. Each aperiodic task is assumed to a single event without 

any bursts. 

 

4.3  Model schematic 
Table 1: Task Set of CCS 
P-periodic , Ap - Aperiodic tasks, Op – Periodic optional tasks 

 

The task set of CCS with its task attributes is given in Table 1. 

The periodic tasks τ1 to τ5 are classified as non-critical sensing 

tasks that can be parallelizable. Tasks τ6, τ7  are classified as 

critical tasks which compute the control values and perform 

the actuating function, they are precedence constrained with 

sensing tasks. Tasks τ9, τ10 are considered as optional tasks 

which improves the performance of the CCS by calculating 

the slope ahead using GPS mechanism. During the occurrence 

of faults, some of the optional tasks can be neglected to 

maintain the safe functionality of the system. Tasks τ11,τ12 are 

aperiodic tasks which are user or environment initiative. τ11 is 

classified as critical tasks since the brake pedal pressed by the 

driver has to be processed immediately to avoid the 

catastrophic effects.  

Figure. 2 represents the fault tolerant model of CCS with a 

dual processor system and a master node for the given system. 

Global clock - It provides synchronization between the 

components of the model 

Health check - A self check logic circuit in each processor 

periodically sends the health status of the processor as an 

ALIVE signal to the global real time executive manager.  

  

 

 

 

 

 

 

Sl.
no 

Tasks / nature (P/Ap/OP) Proce
ssors 

Ci Di Ti 

1. Monitoring the Speed  τNC1 (P) P1 3 15 30 

2. Monitoring acceleration   τ NC2 (P) P1 2 10 20 

3. Monitoring the CCS clutch  τ NC3 (P) P2 2 10 20 

4. Monitoring the brakes   τ NC4 (P) P2 3 15 30 

5. Monitoring proximity sensor τ NC5(P) P1 2 15 20 

6. Computing the control values  τ C6 (P) P1,P2 10 55 60 

7. Actuating the throttle valves  τ C7 (P) P1,P2 5 30 60 

8. Updating the parameters in   τ NC8(P) P1 10 15 20 

9. Sensing the GPS data  τ OP9 (Op) P1|P2 2 - 20 

10. Computing the slope  τ OP10(Op) P1|P2 10 - 60 

11. Brake Pedal Press  τ HA11 (Ap) P1,P2 1 10 10 

12. Change in speed due to uneven road 

conditions  τ SA12 (Ap)  

P1|P2 5 6 3 
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            Fig 2: Schematic representation of the model 

 

Global Real time executive manager (GREM) - The GREM 

acts as a master node, maintains the global task table matrix, 

updation table matrix during runtime and monitors the health 

status of the processors. Absence of the ALIVE signal 

indicates the permanent failure of the processor under which a 

fault recovery algorithm reallocates the tasks of the failed 

units to the rest of the units by dynamic online 

reconfiguration. 

Global table matrix - This table  consists of all the tasks of 

CCS with its task attributes, nature and criticality of the task.  

Updation table - This table  indicates the remaining utilization 

of the processors and the level of criticality of each task that is 

executed in each processor. It is updated for every instance of 

time based on the information from each processor.  

Local table matrix – Each processor is provided with a local 

table matrix which indicates the tasks that are to be executed 

by the processor. 

 

4.3.1 Methodology for task allocation using TRS  
In the traditional redundancy scheme, all the tasks in a task set 

are assigned and executed at the same instance in both the 

processors. The system continues to function with full 

functionality even during the failure of one processor.  

Algorithm TaAl - TRS  represents task allocation in TRS in 

processors P1, P2. 

 

Algorithm for Task allocation in TRS (TaAl - TRS) 

Input: τ  is a given task set of periodic tasks stored in GREM 
Output: TRS schedule in normal mode  

1: for i = 1 to n do 

2:       schedule the task in both P1 P2 

3: end    

3: for each clock pulse do 

4:        Trigger the transmission of ALIVE signal in P1 and P2 

5:  Update GREM 

6: end 

 

4.3.2 Methodology for task allocation using ERMS 
In ERMS scheme, an innovative paradigm for load sharing 

using task level criticality is introduced, where critical tasks 

are replicated in both the processors and non-critical tasks are 

shared among the processors. The additional slack time which 

is made available by the ERMS is effectively utilized for 

scheduling the arriving aperiodic tasks and extra optional 

tasks. Algorithm TaAl - ERMS represents the task allocation 

in ERMS considering a dual processor system.  

Algorithm for Task allocation (TaAl - ERMS) 

Input: τ  is a given task set of periodic tasks stored in GREM 

Output: ERMS schedule in normal mode 

1: for i = 1 to n do 

2:        Check the criticality of task 

3:     Set time(P1), time(P2) corresponding to the required       

workload of the processor                                   

4:     if (Non-critical) then 

5:        if (time(P1) > time(P2)) 

6:        Add task to Processor P1 

7:        if (time(P1) < time (P2) then 

8:        Add task to processor P2  

9:     if (Critical) then 

10:       Add task to both P1 and P2       

11:   for each clock pulse do 

12:        Trigger the transmission of ALIVE signal in P1 and P2 

13:    Update GREM  

 

Under normal mode each processor continues to execute the 

tasks assigned to it until the arrival of aperiodic tasks. For 

each aperiodic task arrival GREM executes the admission 

control algorithm by checking the criticality of the arriving 

task and assigning it to the processors.  

 

Algorithm for scheduling arriving aperiodic tasks (Al-ADCT)   

Input: Aperiodic task with known execution time and time           

            period 

Output: Selection of efficient processor for the execution of  

              Aperiodic task 

1: for arriving aperiodic task do 

2:        Check the criticality of aperiodic task 

3:  if (Critical) then 

4:         schedule the task immediately in both the processors  
5:  if (Non-critical) then       

6:       if (time(P1) > time(P2)) then 

7:         add the aperiodic task to the task queue of P1     
8:         schedule the aperiodic task during the available slack 

             time of P1 

9:       if (time(P1) < time(P2)) then 

10:         add the aperiodic task to the task queue of P2     
11:     schedule the aperiodic task during the available slack 

time of P2 

 

Figure 3 presents the flowchart of the proposed algorithm 

under normal mode. The local executive in both the 

processors contains the task table which it has to execute and 

follows a table driven scheduling. On the arrival of each soft 

aperiodic task, processor is checked for the feasible window 

of execution for scheduling the arriving task.   

Under fault mode where one of the processors fails 

permanently, GREM reallocates all the non-critical tasks of 

the failed processor to the functioning processor. 

 

Algorithm for fault mode  

Input: An external or internal cause leading to permanent          

failure of a processor 

Output: Fault tolerant ERMS schedule  

1: for i =1 to hyper period do 

2:     if (Alive signal (P1) is absent) then 

3:       GREM reallocates the non-critical tasks of P1 to P2       

without violating the precedence constraints 

4:     if (Alive signal (P2) is absent) then 

5:       GREM reallocates the non-critical tasks of P2 to P1 

without violating the precedence constraints  

 

 

 

  Global Real time Executive Manager (GREM) 

Global task matrix 

Updation table 

Processor P1 

Local table matrix 

Processor P2 

Local table matrix 
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5.  IMPLEMENTATION 
The fault tolerant models proposed in section 4 are analyzed 

and simulated using suitable tool box. 

5.1 Analysis 
Scheduling Analysis of the models of the two fault tolerant 

schemes and their corresponding results are shown in     

Figure 4. Figure 4(a),(b) represents the normal mode 

scheduling of ERMS and TRS with the given task allocation 

algorithms. Figure 4(c),(d) represents the scheduling of hard 

aperiodic task arrival at 5th time unit in  ERMS and TRS. 

Figure 4(e),(f) represents the error recovery scheduling when 

fault occurs in processor P1 at 5th time unit for ERMS and 

TRS respectively. 

                            

 

 
       Fig 4(a): ERMS scheduling under normal mode 

 
        

Fig 4(b): TRS scheduling under normal mode 

 

 

 
Fig 4(c): ERMS scheduling with hard aperiodic task 

arrival at 5th unit 

 

 
Fig 4(d): TRS scheduling with hard aperiodic task arrival 

at 5th unit 

 

 
Fig 4(e): ERMS schedule when fault occurs in P1 at 5th 

unit 

 

 
Fig 4(e): TRS schedule when fault occurs in P1 at 5th unit 

 

5.2 Simulation 
The simulation of the proposed fault tolerant algorithm is 

carried out in Matlab with the help of Time Optimisation 

Resource and SCHEduling (TORSCHE) toolbox. The 

periodic task set in Table 1 is input to the global task table in 

0 10 20 30 40 

P1 

P2 

0 10 20 30 40 

P1 

P2 

0 10 20 30 40 

P1 

P2 

0 10 20 30 40 

P1 

P2 

0 10 20 30 40 

P1 

P2 
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the GREM. The work load is assumed to be 80% and the two 

processors have been assigned a set of tasks based on  

criticality (Section 4) table driven scheduling has been 

implemented in both the processors.  Graphical user 

interface(GUI) have been designed to project the scheduling 

results during various working conditions of the system. 

Figure 5 represents the simulation results of the ERMS in 

Matlab where all the tasks of CCS are grouped into a single 

task set considering the precedence constraints. Figure 5(a) 

represents ERMS scheduling under normal mode where 

critical tasks are duplicated on both the processors and non-

critical tasks are shared among the processors using load 

balancing techniques. Each sensing task is assumed to be 

storing its results in  a particular memory location specified in 

wrapping code associated with each task. The control task τ6 

which is dependent on all the sensing tasks is assumed to 

fetch the results through inter process communication. Figure 

5(b) represents TRS scheduling strategy where all the tasks τ1 

to τ8 are duplicated in both the processors.  

 

 

 
Fig 5(a): ERMS under Normal mode with periodic tasks 

 

 
Fig 5(b) : TRS under Normal mode with periodic tasks 

 

 

 
Fig 5(c): ERMS under Normal mode with hard  aperiodic 

task at 25th unit 

 
Fig 5(d): ERMS under normal mode with soft aperiodic 

task at 25th  unit 

 
Fig 5(e): ERMS under Fault mode with P1 failure at 7th 

unit 

 

 
Fig 5(f):  ERMS under Fault mode with P2 failure at 3rd  

unit 

 

Figure 5(c) represents ERMS scheduling with an hard 

aperiodic tasks τ HA11   arriving at 20th time unit with an 

execution time of 1unit. The arriving aperiodic task is 

scheduled on processor P1, P2. Figure 5(d) represents ERMS 

scheduling with a soft aperiodic task τSA12   arriving at 20th 

time unit with an execution time of 5 units. It is scheduled on 

processor P2 in the available slack time at 32nd time unit. 

Figure 5(e) represents ERMS scheduling algorithm in fault 

mode where processor P1 is considered to have   failed after 

the completion of execution of task τNC5 at 7th time unit. 

GREM reallocates the non-critical tasks τNC1, τNC2, τNC5, τNC6 

of processor P1 to P2. 

Figure 5(f) represents ERMS scheduling with an occurrence 

of failure on processor P2 in between the execution of task 

τNC4 at 3rd time unit. GREM reallocated the remaining non-

critical tasks to Processor P1 and τNC4 is resumed back in P2 

followed by the critical  tasks. In the next hyper period 

GREM reschedules all the non-critical task on processor P1. 

 

The simulation results reveal the effectiveness of the proposed 

ERMS scheme in comparison with the TRS scheme. Under 

normal mode it increases the speed of the execution by 

efficiently utilizing the available processors. As a result of 

this, the execution time of the entire process of CCS reduces 

to 32time units in comparison with 37time units of TRS 

algorithm. It also provide an extra slack time of approximately 

13% in comparison with TRS algorithm. In fault mode the 

system operates with minimal safe functionality by making 

sure that all the critical periodic and aperiodic tasks meet 

their stringent deadlines.    

 

6.  EVALUATION 

6.1 Process speedup Sp 

Figure 6 indicates the execution time of the application by 

ERMS  and TRS given as 32  and 37 time  units respectively. 

It  shows  that the ERMS speeds up the process by reducing 

the total execution time of the process by  13% over the  TRS.   

 

 

Critical  Non-critical 

tasks 

Optional tasks 

Hard Aperiodic task Soft Aperiodic task 
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       Fig 6: Process Speedup of TRS and ERMS  

 

6.2  Effective Utilization Ue  
Figure 7 indicates the normalized utilization of TRS and 

ERMS as 84.3% and 54.3% respectively.  The ERMS 

provides an additional 33% computing time for execution of 

extra optional tasks as compared to TRS. 

 
  Fig 7: Effective Utilization of TRS and ERMS  

 

6.3 Average response time of aperiodic 

tasks Ra 

Figure 8 indicates the average response time of the system to 

arrivals of soft aperiodic tasks for TRS and ERMS scheme. It 

shows how ERMS effectively reduces the average response 

time of soft aperiodic tasks as compared to TRS.   

 
   Fig  8 : Average response time of aperiodic tasks 

 

6.4 Guarantee ratio Ge  
Figure 9 indicates the guarantee ratio of ERMS with varying 

workloads. At a minimal workload of 60%, ratio is 

approximately 1  in both normal and fault mode. As the work 

load increases guarantee ratio decreases with minimal safe 

functionality being maintained. At 80% workload, the ratio 

decreases by  50%  in normal mode and 70%  in  fault  mode. 

6.5 Deadline miss ratio Dr 
Figure 10 indicates the deadline miss ratio of ERMS with 

varying workloads. At a  workload of 60%, there is no 

deadline miss occurring in normal mode. As the work load, 

there is an increase in deadline miss ratio by 50% in normal 

mode and 66% in fault mode for a workload of 80%. 

 
                       Fig 9 :Guarantee ratio 

 

 
                      Fig 10: Dead line miss ratio 

 

7.  CONCLUSION 
In this paper, a fault tolerant multiprocessor scheduling of 

cruise control system with effective resource management has 

been proposed. The comparison of performance metrics of 

ERMS over a traditional redundancy scheme demonstrates the 

improvement in the performance which  provides an 

additional  33%  computing time resources for the execution 

of extra optional tasks  as compared to TRS. The ERMS 

speeds up the process by reducing the total execution time of 

the process by  13% over the  TRS  under runtime normal 

mode. The response time of the soft aperiodic tasks is reduced 

by implementing the dynamic planning based approach and 

efficiently utilizing the extra slack margin available. The 

results conclude the gains that  can be obtained in terms of   

high performance throughput and process speed up if this 

model is extended to an m-processor redundancy model 

specially in the field of avionics where the  advantages can be 

highly appreciable  in terms of fuel/weight ratio. Further this 

algorithm can be extended to more complex applications like 

avionics, missile launching, etc. to improve the system 

performance. 
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