
International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 15, January 2014

19

Design, Analysis and Implementation of Improved

Adaptive Fault Tolerant Model for Cruise Control

Multiprocessor System

Annam Swetha
Amrita Viswa Vidyapeetam

Coimbatore, India

Radhamani Pillay V
Amrita Viswa Vidyapeetam

Coimbatore, India

Sasikumar Punnekkat
Mälardalen University

Sweden

ABSTRACT

Safety or mission critical applications have to recover from an

error within an acceptable time window or it may potentially

lead to disastrous effects or higher costs. The usual industrial

practice is to employ fault tolerance using hardware

redundancy where costs are highly exorbitant depending on

the mission. In this paper, we present a framework for

adaptive fault tolerance on the commonly used hardware

redundancy. This proposed model gives enhanced resource

management and improved system performance under normal

runtime and provides minimal safe functionality under error

conditions. A new scheduling method, a combination of

dynamic planning and dynamic best effort approach has been

designed for joint scheduling of periodic and aperiodic tasks

which also include online reconfiguration for error

management. This fault recovery technique allows all critical

tasks to meet their deadlines and the system continues

functioning with minimal safe functionality upon errors. This

model has been analyzed and evaluated on a practical case

study of a Cruise Control System vis- à-vis a traditional

redundancy scheme with simulation and validated with

appropriate performance metrics. The results demonstrate the

high performance throughput and process speedup (Execution

time of process) that can be gained by applying this model to

an m-processor redundancy model and the advantages can be

accrued specially in the field of avionics in terms of

fuel/weight ratio.

General Terms

Redundancy, Safety critical systems, real time scheduling

Keywords

Fault tolerance, resource management, Cruise control system,

Process speedup.

1. INTRODUCTION
Safety critical systems are increasingly being employed in

multiprocessor embedded platforms. The hardware

redundancy traditionally employed for dependability increases

the complexity and the cost of the system. As the level of

redundancy goes up, indirectly this can lead to more faults

and cost can become prohibitive. Under normal operation

conditions the redundant units are not employed and hence the

computing resources are being underutilized. These

computing resources can be efficiently utilized and during

fault condition dependability can be assured by the method

explored in this paper.

Using task level criticality, where critical tasks have to meet

their deadlines to avoid catastrophic effects, the proposed

model ensures fault tolerance by scheduling the critical tasks

on all the processors and sharing the noncritical tasks among

the processors. By this approach the redundant units are

efficiently utilized and there by the performance of the system

is improved. The proposed scheduling scheme is denoted as

Enhanced Resource Management Scheme (ERMS) and is

evaluated in comparison with Traditional Redundancy

Scheme (TRS). A Cruise Control System (CCS) which is one

of the major safety critical unit in automotives is taken as a

case study for the implementation of the proposed scheme and

is validated with the suitable performance metrics. The main

function of the CCS is to maintain a constant speed which is

set by the driver there by reducing the work load of the driver.

The rest of the paper is organized as follows. Section 2

references the literature survey and Section 3 gives the

background study of scheduling of fault tolerant real time

systems and the case study of the cruise control system. In

section 4, the system model with TRS and proposed ERMS

approach is discussed and the implementation of the case

study has been detailed. In Section 5 the analysis and

simulation results with performance evaluation is presented.

The conclusion and future scope is given in Section 6.

2. RELATED WORKS
Multiprocessor real-time scheduling theory has it origins in

the late 1970’s. The seminal paper of Liu(’78) [2] heavily

influenced the course of research in this area for two decades.

During the 1980’s and 1990’s partitioned approaches, with a

fixed allocation of tasks to processors was preferred compared

to global approach. In 1997, Phillips et al.[3] in his paper

proposed the advantages of global scheduling which renewed

interest in global scheduling algorithms.

J. Von Neumann [4], E. F. Moore, C. E. Shannon, [5] and

their successors developed theories of using redundancy to

build reliable logic structures from less reliable components,

whose faults were masked by the presence of multiple

redundant components. The theories of masking redundancy

were unified by W. H. Pierce as the concept of failure

tolerance in 1965 [6]. In 1967, A. Avizienis integrated

masking with the practical techniques of error detection, fault

diagnosis, and recovery into the concept of fault-tolerant

systems [7]. Further a fault tolerant scheduling algorithm for

multiprocessors was analyzed by Ghosh [8]. Krishna and Shin

[9] proposed a fault tolerant scheme for quick recovery of

tasks from failure. Oh and Son.[10] proposed a scheme that

enhances the fault tolerance in static realtime scheduling.

Later he proposed the concept of online scheduling of

multiple versions of tasks on the minimum number of

processors under the RM scheduling policy[11]. Manimaran

[12] has proposed dynamic algorithms to schedule real-time

tasks on multiprocessors by employing the primary backup

fault-tolerance strategy. Mahmud Pathan[13] presented a new

scheduling algorithm that integrates timeliness and criticality

to fault tolerance. In[14, 15,16] the authors have proposed an

improved resource managements technique with an innovative

fault tolerant paradigm. This technique enhances the

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 15, January 2014

20

performance of the system and effectively utilizes the

additional resources. One of the applications of safety critical

systems is Cruise Control System, a prototype of which has

been developed in the year 1987, as part of an initiative of the

European Union EUREKA program[17]. Its main objective is

to reduce the driver workload and make the drive more

comfortable by automatically adjusting the speed of the

vehicle with regard to the surroundings.

3. BACKGROUND STUDY
Multiprocessor scheduling consists of global scheduling and

partitioned scheduling where the former has a global

scheduler, scheduling all the tasks to the available processors

and in the latter tasks are pre-allocated to the processors[3].

The local scheduler in each processor determines the schedule

for each processor using an uniprocessor scheduling policy.

Uniprocessor scheduling consists of offline scheduling and

online scheduling where in former case a complete knowledge

of the task set and time attributes are known and scheduling

decisions are pre-computed offline and in latter case

scheduling decisions are made during runtime, Audsley[18].

Online scheduling is flexible and adaptive but incurs

significant overheads.

3.1 Scheduling Paradigms:
Static table-driven approach-These perform static

schedulability analysis and the resulting schedule (or table, as

it is usually called) is used at run time to decide when a task

must begin execution.

Static priority driven preemptive approach - These perform

static schedulability analysis but unlike in the previous

approach, no explicit schedule is constructed. At run time,

tasks are executed with “highest priority first” principle.

Dynamic planning-based approach - Unlike the previous two

approaches, feasibility is checked at run time, i.e., a

dynamically arriving task is accepted for execution only if it

found feasible. One of the results of the feasibility analysis is

a schedule or plan that is used to decide when a task can begin

execution.

Dynamic best effort approach - Here no feasibility checking is

done. The system tries to do its best to meet deadlines. But

since no guarantees are provided, a task may be aborted

during its execution [19].

From the above approaches following are selected for

implementation in this work

Static table-driven approach - Periodic task scheduling during

run-time normal mode. Given task characteristics, a table is

constructed, that identifies the start and completion time of

each task and tasks are dispatched according to this table.

Dynamic online best planning approach - Mixed Task

scheduling during normal run-time mode. It provides the

flexibility of dynamic planning approach with the

predictability of best effort that checks for feasibility. In this

approach after the arrival of aperiodic task, an attempt is made

to create a schedule that contains the previously guaranteed

tasks as well as the aperiodic task.

3.2 Fault tolerance
Fault tolerance is achieved through redundancy, Avizienis [7].

Some types of redundancy are hardware redundancy, based on

replication of physical components, software redundancy,

which provides different software versions of tasks,

preferably written independently. Time Redundancy based on

multiple executions of a task on the same hardware in

different instances of time. Two general approaches proposed

for hardware fault recovery are fault masking and dynamic

recovery. Fault masking is a structural redundancy technique

that completely masks the faults with in a set or redundant

modules, their outputs are voted to remove the errors caused

by the faulty module [20]. Triple Modular redundancy (TMR)

is a commonly used form of fault masking in which the

circuitry is triplicated and voted. Dynamic recovery is a

technique used when only one copy of computation is running

at a time and it involves automated self repair. In this case

special mechanisms are required to detect faults in the

modules, switch out a faulty module and switch in a spare

module.

3.3 Safety critical systems
Safety critical systems are hard real time systems where

missing deadlines of critical tasks results in catastrophic

effects, Knight [21]. With the advent of increased

development in on-chip technology multiprocessors came into

existence for highly complex and sophisticated systems like

safety critical systems. Well known examples of such systems

include medical devices, avionics, aircraft flight control

system, and nuclear systems.

Tasks in safety critical systems Periodic tasks are time driven

tasks which occur at regular intervals of time, example - task

which monitors the temperature of the patient in a patient

monitoring system. Aperiodic tasks are event driven tasks

which occur due to dynamic changes in the environment or

they can be user initiated tasks, example - task that is

activated on detecting an abnormality in the condition of the

patient.

Task set consists of a set of tasks in an application classified

as critical, non-critical and optional tasks based on the

criticality level of the task. In some sense, non-critical and

optional tasks can be considered as soft real time tasks. In

general, all controlling and actuating tasks are considered as

critical tasks and sensing tasks are considered as non-critical

tasks. One such critical task is the task in the patient

monitoring system which controls the oxygen supply to the

patient in ICU.

Task graph Task set is transformed in to task graph where

tasks are related by dependency. The generated graph consists

of set of nodes corresponding to tasks and a set of edges

corresponding to task dependencies.

A new way of fault tolerant scheduling in safety critical

multiprocessors is explained in detail in [14, 15, 16], where

the task level criticality has been explored to schedule the

tasks in multiple processors. This ensures the safe

functionality of the system even during the occurrence of fault

by operating in different modes where certain optional tasks

and non-critical tasks are dropped.

3.4 Performance metrics
In order to measure the performance of the fault tolerant

scheme, the following performance metrics are chosen.

3.4.1 Effective Utilization Ue
It is the normalized utilization of the processors during the

execution of an application Ramamritham[22].

3.4.2 Process Speedup Sp
Process Speedup indicates the overall execution time for the

process, Davis [23].

3.4.3 Guarantee ratio Gr
It is the ratio of arriving aperiodic tasks that can effectively

meet their deadlines to the number of tasks that are scheduled

on the processor, Manimaran[24].

3.4.4 Average response time Ra
It is the average response time of soft aperiodic tasks that are

scheduled on the processors, Sprunt [25].

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 15, January 2014

21

3.4.5 Deadline miss ratio Dr
It is the ratio of tasks that has missed the deadline to the total

number of tasks in the system, Chenyang[26].

3.5 Case study: Cruise Control System
The Cruise Control System (CCS) is characterized as an

embedded real time system having a number of processors,

sensors and actuators. The functionality of the system is based

on assuming different classes or tasks that interact among

each other in real time, Staines[27]. The tasks identified in the

cruise control system can be categorized as periodic and

aperiodic (user initiated).

i. Periodic tasks – all sensing actions

ii. User initiated tasks – Brake application and

acceleration

3.5.1 Basic tasks
 Sensors scan processes (GPS, User Interface (UI),

Brake, Accelerator, Engine)

 Get current speed

 Compute control values

 Update parameters

 Send adjustment value to throttle

3.5.2 Monitoring functions

 Global positioning system monitoring using GPS

system

 Monitoring the user interface

 Monitoring the brake using brake sensor

 Monitoring the accelerator using accel sensor

 Engine monitoring using engine sensor

 Monitoring the speed using wheel revolution sensor

3.5.3 Control functions
 Comparing the current speed and desired speed,

suitable control signal is generated either to increase

or decrease the speed

 Update the parameters

3.5.4 Actuating functions
 Based on the control signal, throttle actuator is

controlled to maintain the desired speed

4. APPROACH

4.1 Objectives
1. Design of fault tolerant model for CCS in

 i) TRS

 ii) ERMS models

2. Implementation of the proposed models

i) Analysis

ii) Simulation

3. Validating the performance of ERMS model over TRS with

suitable performance metrics.

4.2 Assumptions
1. Constraints for redundancy are based on the number of

parallelizable non-critical tasks and their utilizations.

2. Non critical periodic tasks are preemptable.

3. An existence of appropriate watchdog mechanism is

assumed to be present that enables the detection of

processor failures with a bounded latency.

4. Priority of non-critical task is assumed to be greater than

the priority of the soft aperiodic task.

5. Hard aperiodic task is assumed to have the highest

priority compared to critical tasks

6. A fixed time interval between the faults is assumed to be

present in the system.

7. Execution time of each task is assumed to be worst case

execution time(WCET) which includes all time

overheads like context switches due to preemptions and

communication costs between processors.

8. Each aperiodic task is assumed to a single event without

any bursts.

4.3 Model schematic
Table 1: Task Set of CCS
P-periodic , Ap - Aperiodic tasks, Op – Periodic optional tasks

The task set of CCS with its task attributes is given in Table 1.

The periodic tasks τ1 to τ5 are classified as non-critical sensing

tasks that can be parallelizable. Tasks τ6, τ7 are classified as

critical tasks which compute the control values and perform

the actuating function, they are precedence constrained with

sensing tasks. Tasks τ9, τ10 are considered as optional tasks

which improves the performance of the CCS by calculating

the slope ahead using GPS mechanism. During the occurrence

of faults, some of the optional tasks can be neglected to

maintain the safe functionality of the system. Tasks τ11,τ12 are

aperiodic tasks which are user or environment initiative. τ11 is

classified as critical tasks since the brake pedal pressed by the

driver has to be processed immediately to avoid the

catastrophic effects.

Figure. 2 represents the fault tolerant model of CCS with a

dual processor system and a master node for the given system.

Global clock - It provides synchronization between the

components of the model

Health check - A self check logic circuit in each processor

periodically sends the health status of the processor as an

ALIVE signal to the global real time executive manager.

Sl.
no

Tasks / nature (P/Ap/OP) Proce
ssors

Ci Di Ti

1. Monitoring the Speed τNC1 (P) P1 3 15 30

2. Monitoring acceleration τ NC2 (P) P1 2 10 20

3. Monitoring the CCS clutch τ NC3 (P) P2 2 10 20

4. Monitoring the brakes τ NC4 (P) P2 3 15 30

5. Monitoring proximity sensor τ NC5(P) P1 2 15 20

6. Computing the control values τ C6 (P) P1,P2 10 55 60

7. Actuating the throttle valves τ C7 (P) P1,P2 5 30 60

8. Updating the parameters in τ NC8(P) P1 10 15 20

9. Sensing the GPS data τ OP9 (Op) P1|P2 2 - 20

10. Computing the slope τ OP10(Op) P1|P2 10 - 60

11. Brake Pedal Press τ HA11 (Ap) P1,P2 1 10 10

12. Change in speed due to uneven road

conditions τ SA12 (Ap)

P1|P2 5 6 3

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 15, January 2014

22

 Fig 2: Schematic representation of the model

Global Real time executive manager (GREM) - The GREM

acts as a master node, maintains the global task table matrix,

updation table matrix during runtime and monitors the health

status of the processors. Absence of the ALIVE signal

indicates the permanent failure of the processor under which a

fault recovery algorithm reallocates the tasks of the failed

units to the rest of the units by dynamic online

reconfiguration.

Global table matrix - This table consists of all the tasks of

CCS with its task attributes, nature and criticality of the task.

Updation table - This table indicates the remaining utilization

of the processors and the level of criticality of each task that is

executed in each processor. It is updated for every instance of

time based on the information from each processor.

Local table matrix – Each processor is provided with a local

table matrix which indicates the tasks that are to be executed

by the processor.

4.3.1 Methodology for task allocation using TRS
In the traditional redundancy scheme, all the tasks in a task set

are assigned and executed at the same instance in both the

processors. The system continues to function with full

functionality even during the failure of one processor.

Algorithm TaAl - TRS represents task allocation in TRS in

processors P1, P2.

Algorithm for Task allocation in TRS (TaAl - TRS)

Input: τ is a given task set of periodic tasks stored in GREM
Output: TRS schedule in normal mode

1: for i = 1 to n do

2: schedule the task in both P1 P2

3: end

3: for each clock pulse do

4: Trigger the transmission of ALIVE signal in P1 and P2

5: Update GREM

6: end

4.3.2 Methodology for task allocation using ERMS
In ERMS scheme, an innovative paradigm for load sharing

using task level criticality is introduced, where critical tasks

are replicated in both the processors and non-critical tasks are

shared among the processors. The additional slack time which

is made available by the ERMS is effectively utilized for

scheduling the arriving aperiodic tasks and extra optional

tasks. Algorithm TaAl - ERMS represents the task allocation

in ERMS considering a dual processor system.

Algorithm for Task allocation (TaAl - ERMS)

Input: τ is a given task set of periodic tasks stored in GREM

Output: ERMS schedule in normal mode

1: for i = 1 to n do

2: Check the criticality of task

3: Set time(P1), time(P2) corresponding to the required

workload of the processor

4: if (Non-critical) then

5: if (time(P1) > time(P2))

6: Add task to Processor P1

7: if (time(P1) < time (P2) then

8: Add task to processor P2

9: if (Critical) then

10: Add task to both P1 and P2

11: for each clock pulse do

12: Trigger the transmission of ALIVE signal in P1 and P2

13: Update GREM

Under normal mode each processor continues to execute the

tasks assigned to it until the arrival of aperiodic tasks. For

each aperiodic task arrival GREM executes the admission

control algorithm by checking the criticality of the arriving

task and assigning it to the processors.

Algorithm for scheduling arriving aperiodic tasks (Al-ADCT)

Input: Aperiodic task with known execution time and time

 period

Output: Selection of efficient processor for the execution of

 Aperiodic task

1: for arriving aperiodic task do

2: Check the criticality of aperiodic task

3: if (Critical) then

4: schedule the task immediately in both the processors
5: if (Non-critical) then

6: if (time(P1) > time(P2)) then

7: add the aperiodic task to the task queue of P1
8: schedule the aperiodic task during the available slack

 time of P1

9: if (time(P1) < time(P2)) then

10: add the aperiodic task to the task queue of P2
11: schedule the aperiodic task during the available slack

time of P2

Figure 3 presents the flowchart of the proposed algorithm

under normal mode. The local executive in both the

processors contains the task table which it has to execute and

follows a table driven scheduling. On the arrival of each soft

aperiodic task, processor is checked for the feasible window

of execution for scheduling the arriving task.

Under fault mode where one of the processors fails

permanently, GREM reallocates all the non-critical tasks of

the failed processor to the functioning processor.

Algorithm for fault mode

Input: An external or internal cause leading to permanent

failure of a processor

Output: Fault tolerant ERMS schedule

1: for i =1 to hyper period do

2: if (Alive signal (P1) is absent) then

3: GREM reallocates the non-critical tasks of P1 to P2

without violating the precedence constraints

4: if (Alive signal (P2) is absent) then

5: GREM reallocates the non-critical tasks of P2 to P1

without violating the precedence constraints

 Global Real time Executive Manager (GREM)

Global task matrix

Updation table

Processor P1

Local table matrix

Processor P2

Local table matrix

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 15, January 2014

23

5. IMPLEMENTATION
The fault tolerant models proposed in section 4 are analyzed

and simulated using suitable tool box.

5.1 Analysis
Scheduling Analysis of the models of the two fault tolerant

schemes and their corresponding results are shown in

Figure 4. Figure 4(a),(b) represents the normal mode

scheduling of ERMS and TRS with the given task allocation

algorithms. Figure 4(c),(d) represents the scheduling of hard

aperiodic task arrival at 5th time unit in ERMS and TRS.

Figure 4(e),(f) represents the error recovery scheduling when

fault occurs in processor P1 at 5th time unit for ERMS and

TRS respectively.

 Fig 4(a): ERMS scheduling under normal mode

Fig 4(b): TRS scheduling under normal mode

Fig 4(c): ERMS scheduling with hard aperiodic task

arrival at 5th unit

Fig 4(d): TRS scheduling with hard aperiodic task arrival

at 5th unit

Fig 4(e): ERMS schedule when fault occurs in P1 at 5th

unit

Fig 4(e): TRS schedule when fault occurs in P1 at 5th unit

5.2 Simulation
The simulation of the proposed fault tolerant algorithm is

carried out in Matlab with the help of Time Optimisation

Resource and SCHEduling (TORSCHE) toolbox. The

periodic task set in Table 1 is input to the global task table in

0 10 20 30 40

P1

P2

0 10 20 30 40

P1

P2

0 10 20 30 40

P1

P2

0 10 20 30 40

P1

P2

0 10 20 30 40

P1

P2

0 10 20 30 40

P1

P2

GREM

Local Executive Local Executive

Health check Health check

Table driven

scheduling

 Arrival of

aperiodic

task?

Continue scheduling

Feasible

window of

execution?

 Execute the

aperiodic task

Updates

Y

Y

N

N

Critical Non-critical

tasks

Optional tasks

Hard Aperiodic task

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 15, January 2014

24

the GREM. The work load is assumed to be 80% and the two

processors have been assigned a set of tasks based on

criticality (Section 4) table driven scheduling has been

implemented in both the processors. Graphical user

interface(GUI) have been designed to project the scheduling

results during various working conditions of the system.

Figure 5 represents the simulation results of the ERMS in

Matlab where all the tasks of CCS are grouped into a single

task set considering the precedence constraints. Figure 5(a)

represents ERMS scheduling under normal mode where

critical tasks are duplicated on both the processors and non-

critical tasks are shared among the processors using load

balancing techniques. Each sensing task is assumed to be

storing its results in a particular memory location specified in

wrapping code associated with each task. The control task τ6

which is dependent on all the sensing tasks is assumed to

fetch the results through inter process communication. Figure

5(b) represents TRS scheduling strategy where all the tasks τ1

to τ8 are duplicated in both the processors.

Fig 5(a): ERMS under Normal mode with periodic tasks

Fig 5(b) : TRS under Normal mode with periodic tasks

Fig 5(c): ERMS under Normal mode with hard aperiodic

task at 25th unit

Fig 5(d): ERMS under normal mode with soft aperiodic

task at 25th unit

Fig 5(e): ERMS under Fault mode with P1 failure at 7th

unit

Fig 5(f): ERMS under Fault mode with P2 failure at 3rd

unit

Figure 5(c) represents ERMS scheduling with an hard

aperiodic tasks τ HA11 arriving at 20th time unit with an

execution time of 1unit. The arriving aperiodic task is

scheduled on processor P1, P2. Figure 5(d) represents ERMS

scheduling with a soft aperiodic task τSA12 arriving at 20th

time unit with an execution time of 5 units. It is scheduled on

processor P2 in the available slack time at 32nd time unit.

Figure 5(e) represents ERMS scheduling algorithm in fault

mode where processor P1 is considered to have failed after

the completion of execution of task τNC5 at 7th time unit.

GREM reallocates the non-critical tasks τNC1, τNC2, τNC5, τNC6

of processor P1 to P2.

Figure 5(f) represents ERMS scheduling with an occurrence

of failure on processor P2 in between the execution of task

τNC4 at 3rd time unit. GREM reallocated the remaining non-

critical tasks to Processor P1 and τNC4 is resumed back in P2

followed by the critical tasks. In the next hyper period

GREM reschedules all the non-critical task on processor P1.

The simulation results reveal the effectiveness of the proposed

ERMS scheme in comparison with the TRS scheme. Under

normal mode it increases the speed of the execution by

efficiently utilizing the available processors. As a result of

this, the execution time of the entire process of CCS reduces

to 32time units in comparison with 37time units of TRS

algorithm. It also provide an extra slack time of approximately

13% in comparison with TRS algorithm. In fault mode the

system operates with minimal safe functionality by making

sure that all the critical periodic and aperiodic tasks meet

their stringent deadlines.

6. EVALUATION

6.1 Process speedup Sp

Figure 6 indicates the execution time of the application by

ERMS and TRS given as 32 and 37 time units respectively.

It shows that the ERMS speeds up the process by reducing

the total execution time of the process by 13% over the TRS.

Critical Non-critical

tasks

Optional tasks

Hard Aperiodic task Soft Aperiodic task

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 15, January 2014

25

 Fig 6: Process Speedup of TRS and ERMS

6.2 Effective Utilization Ue
Figure 7 indicates the normalized utilization of TRS and

ERMS as 84.3% and 54.3% respectively. The ERMS

provides an additional 33% computing time for execution of

extra optional tasks as compared to TRS.

 Fig 7: Effective Utilization of TRS and ERMS

6.3 Average response time of aperiodic

tasks Ra

Figure 8 indicates the average response time of the system to

arrivals of soft aperiodic tasks for TRS and ERMS scheme. It

shows how ERMS effectively reduces the average response

time of soft aperiodic tasks as compared to TRS.

 Fig 8 : Average response time of aperiodic tasks

6.4 Guarantee ratio Ge
Figure 9 indicates the guarantee ratio of ERMS with varying

workloads. At a minimal workload of 60%, ratio is

approximately 1 in both normal and fault mode. As the work

load increases guarantee ratio decreases with minimal safe

functionality being maintained. At 80% workload, the ratio

decreases by 50% in normal mode and 70% in fault mode.

6.5 Deadline miss ratio Dr
Figure 10 indicates the deadline miss ratio of ERMS with

varying workloads. At a workload of 60%, there is no

deadline miss occurring in normal mode. As the work load,

there is an increase in deadline miss ratio by 50% in normal

mode and 66% in fault mode for a workload of 80%.

 Fig 9 :Guarantee ratio

 Fig 10: Dead line miss ratio

7. CONCLUSION
In this paper, a fault tolerant multiprocessor scheduling of

cruise control system with effective resource management has

been proposed. The comparison of performance metrics of

ERMS over a traditional redundancy scheme demonstrates the

improvement in the performance which provides an

additional 33% computing time resources for the execution

of extra optional tasks as compared to TRS. The ERMS

speeds up the process by reducing the total execution time of

the process by 13% over the TRS under runtime normal

mode. The response time of the soft aperiodic tasks is reduced

by implementing the dynamic planning based approach and

efficiently utilizing the extra slack margin available. The

results conclude the gains that can be obtained in terms of

high performance throughput and process speed up if this

model is extended to an m-processor redundancy model

specially in the field of avionics where the advantages can be

highly appreciable in terms of fuel/weight ratio. Further this

algorithm can be extended to more complex applications like

avionics, missile launching, etc. to improve the system

performance.

8. REFERENCES
[1] J.W. Layland and C. L. Liu, “Scheduling algorithms for

multiprogramming in hard real-time environment”,

Journal of the ACM 20 (1973), no. 1, 46-61.

[2] C.L. Liu, “Scheduling algorithms for multiprocessors in

a hard real-time environment”. JPL Space Programs

Summary, vol. 37-60, pp. 28-31, 1969.

[3] C.A. Phillips, C. Stein, E. Torng, J. Wein, “Optimal

 time-critical scheduling via resource augmentation”. In

Proceedings of the ACM Symposium on theory of

Computing 1997.

[4] J. von Neumann. Probabilistic logics and the synthesis of

reliable organisms from unreliable components. In C. E.

Shannon and J. McCarthy, editors, Annals of Math

Studies, numbers 34, pages 43-98. Princeton Univ. Press,

1956.

0

0.2

0.4

0.6

0.8

1

1.2

60% 70% 80%

Normal mode

Fault mode

0

0.2

0.4

0.6

0.8

60% 70% 80%

Normal mode

Fault mode

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 15, January 2014

26

[5] E.F. Moore and C.E. Shannon. Reliable circuits using

less reliable relays. J. Franklin Institute, 262:191-208

and 281-297, Sept/Oc. 1956.

[6] W.H. Pierce. Failure-Tolerant Computer Design.

Academic Press, 1965.

[7] Avizienis A., “Design of Fault-Tolerant Computers” Fall

Joint Computer Conference 1967 [Aviz67].

[8] D. Mosse, R. Melhem, and S. Ghosh, “Analysis of

fault tolerant multiprocessor scheduling algorithm” Proc.

IEEE Real Time Systems Symp, pp.129-139, Dec.1981

[9] C. M. Krishna and K. G. Shin, “On scheduling tasks with

a quick recovery from failure” Proc. Fault-tolerant

Comput. Symp, pp. 234-239, 1985.

[10] Y. Oh and S. H. Son, “Enhancing fault-tolerance in rate

monotonic scheduling,” Real-Time Systems, vol. 7, no.3,

1994.

[11] Y. Oh and S. H. Son, “Scheduling real-time tasks for

dependability,” Journal of Operational Research Society,

vol. 48, pp. 629-639, 1997.

[12] Manimaran G, “Fault tolerant dynamic schedule for

multiprocessor real time systems and its analysis”

Parallel and Distributed Systems, IEEE Transactions (vol

11) 1998.

[13] Mahmud Pathan, “Three Aspects of Real-Time

Multiprocessor Scheduling: Timeliness, Fault Tolerance,

Mixed Criticality” Göteborg, Sweden, 2012 ISBN: 978-

91-7385-754-3.

[14] Radhamani Pillay, Sasikumar Punnekkat, Senthil Kumar

Chandran, “An improved redundancy scheme for optimal

utilization of onboard Computers”, IEEE INDICON

2009, India

[15] Radhamani Pillay, Senthil Kumar Chandran, and

Sasikumar Punnekkat, “Optimizing resources in real-

time scheduling for fault tolerant processors”, IEEE,

International Conference on Parallel, Distributed and

Grid Computing (PDGC-2010), Solan India;

October2010.

[16] Senthil Kumar Chandran, Radhamani Pillay, Radu

Dobrin, and Sasikumar Punnekkat, “Efficient scheduling

with adaptive fault tolerance in heterogeneous

multiprocessor systems”, International Conference on

Computer and Electrical Engineering (ICCEE) Chengdu,

China; Nov 2010. China.

[17] Technical Report: “Adaptive Cruise Controllers – A

Literature Review”, Stefan Björnander, Mälardalen

University, Sweden 2008.

[18] N. Audsley, A. Burns, “Real time scheduling”,

Department of Computer Science,University of York,

UK.

[19] Krithi Ramamritham, member, IEEE, and John A.

Stankovic, fellow, IEEE “Scheduling Algorithms and

Operating Systems Support for Real-Time Systems”

[20] Sherin Abraham, Radhamani Pillay, “Fault Tolerance in

Safety Critical Applications” 2nd Intl. Conference on

Advanced Computing and Communication technologies

for High Performance Applications, December 2011, Cochin,

India.

[21] John C.Knight, “Safety Critical Systems: Challenges and

Directions”, Department of computer Science, University

of Virginia.

[22] Gurulingesh R, Neera Sharma, Krithi Ramamritham and

Sachitanand Malewar, “Efficient Real-Time Support for

Automotive Applications: A Case Study”, Indian

Institute of Technology Bombay.

[23] Robert I. Davis, Alan Burns, “A Survey of Hard Real-

Time Scheduling for Multiprocessor Systems”, Real-

Time Systems Research Group, Department of Computer

Science, University of York, York, UK.

[24] G.Manimaran, C.Siva Ram Murthy, “ A New Study for

Fault-tolerant Real-time Dynamic Scheduling

Algorithms”, Department of Computer Science and

Engineering, Indian Institute of Technology, Madras.

[25] Brinkley Sprunt, “Aperiodic Task Scheduling for Real-

Time Systems”, Ph.D. Dissertation, Department of

Electrical and Computer Engineering, Carnegie Mellon

University.

[26] Chenyang Lu, John A. Stankovic, Tarek F. Abdelzaher,

“Performance Specifications and Metrics for Adaptive

Real-Time Systems”, Department of Computer Science,

University of Virginia, Charlottesville.

[27] Anthony Spiteri Staines, “Modeling and Analysis of Real

Time Control Systems: A Cruise Control System Case

Study”, University of Malta, Malta.

IJCATM : www.ijcaonline.org

