
The Multi-Resource Server for Predictable
Execution on Multi-core Platforms

Rafia Inam, Nesredin Mahmud, Moris Behnam, Thomas Nolte, Mikael Sjödin
Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

Email: rafia.inam@mdh.se

Abstract—In this paper we present an implementation and
demonstration of the Multi-Resource Server (MRS) which en-
ables predictable execution of real-time applications on multi-core
platforms. The MRS provides temporal isolation both between
tasks running on the same core, as well as, between tasks running
on different cores. The latter could, without MRS, interfere with
each other due to contention on a shared memory bus.

We demonstrate that MRS can be used to ”encapsulate” legacy
systems and to give them enough resources to fulfill their purpose.
In our case study a legacy media-player is integrated with several
resource-hungry tasks running at a different core. We show that
without MRS the media-player starts to drop frames due to
the interference from other tasks; while introduction of MRS
alleviates this problem. Another part of our demonstration shows
how traditional periodic real-time tasks can be kept schedulable
even when tasks with high memory-demand are added to the
system.

Index Terms—hierarchical scheduling, CPU resource, memory
resource, memory bandwidth, Linux, kernel, real-time systems.

I. INTRODUCTION

Using multi-cores for real-time applications presents many
challenges. One such challenge is to achieve and maintain
predictable execution of concurrent tasks that compete for
both CPU- and memory-bandwidth resources. On uni-core
platforms, the server-based scheduling approach successfully
bounds the interference between the applications running [1],
[2], [3]. However, this approach is limited to provisioning
of the CPU resource only and it does not take the memory
bandwidth problem into account, the latter problem often being
inherited from when migrating software from a single-core
to a multi-core architecture. In this paper we target statically
partitioned multi-core real-time systems. For these systems
we present the Multi-Resource Server (MRS) technology that
schedules the two resources CPU- and memory-bandwidth, in
order to achieve a predictable execution of embedded real-time
systems.

In statically partitioned multi-core systems, concurrent tasks
allocated to the same core interfere with each other by com-
peting for CPU-bandwidth (we call this local interference),
and concurrent tasks allocated to different cores interfere
by competing for memory-bandwidth (we call this global
interference). In addition to these sources of interference,
tasks can also experience both local and global cache-pollution
interference. If needed, e.g. for hard real-time systems, cache

This work is supported by the Knowledge Foundation (KK-Stiftelsen), via
the research programme PPMSched.

pollution can be relieved by cache-partitioning techniques like
[4], [5], which are not within the scope of this paper. Thus,
the implementation of the MRS presented here is suitable for
soft real-time systems. However, if cache pollution can be
avoided (e.g., by cache partitioning [5] or by disabling caches,
or bounding caches by some static analysis technique [6], [7]),
the schedulability analysis presented in [8] paves the way for
using MRS also in hard real-time systems.

Additionally, we practically demonstrate the capability of
MRS to maintain a predictable execution of a legacy soft real-
time application. We show that MRS is not only useful when
developing new systems; it is also useful to encapsulate and
protect legacy applications, e.g., when performing a migration
of applications from a single core to a multi-core platform.
While our example uses a single task, the MRS allows for a
complete subsystem with a set of tasks (and potentially its own
scheduling algorithm) to be encapsulated in a server and then
share an allocation of CPU- and memory-bandwidth resources.
This is later demonstrated in a case-study using a synthetic
setup.

We have presented the basic idea of the MRS approach
in [8] where a theoretical analysis framework is provided to
assess the composability of applications/subsystems. In this
paper, we focus on the implementation of the server, and
its evaluation using (1) a case study and (2) a synthetic
experimental setup. Partitioned scheduling is considered in
which servers and tasks are statically allocated to a specific
core. The rationale for looking at statically partitioned systems
is due to our industrial partners’ preference.
The main contributions of this paper are:

• We present the first implementation of the MRS1. This
implementation is made as a user-space library for Linux
running on COTS hardware.

• We demonstrate how the MRS can be used to preserve the
functionality of a legacy application when it is executed
on a single core while another core executes tasks with
adverse memory behavior.

• We demonstrate for a synthetic task-set how the MRS
can be used to isolate tasks from each other to prevent
adverse behavior of some tasks to negatively impact other
tasks.

• We measure the overhead of memory related parts of the

1The MRS implementation is available as an open source project at http:
//www.idt.mdh.se/∼MemSched/

http://www.idt.mdh.se/~MemSched/
http://www.idt.mdh.se/~MemSched/

MRS and we conclude that it is low.
Paper Outline: Section II explains system model, followed by
Section III that describes the MRS concept in details. A brief
overview of the software framework used to implement the
MRS is presented in Section IV. Implementation details are
covered in Section V. Section VI presents the evaluation setup
and Section VII describes a case study using a soft real-time
application. Synthetic evaluations are performed and results
are analyzed in Section VIII. Section IX presents the related
work, and finally, Section X concludes the paper.

II. SYSTEM MODEL

In this section we present our target hardware platform, the
system model that we use, and the assumptions that we follow.

A. Architecture

In our work we assume the architecture to consist of a pro-
cessor with a set of identical cores that all have uniform access
to the main memory. Each core has a set of local resources;
primarily a set of caches for instructions and data. The system
has a set of resources that are shared amongst all cores; this
will typically be the last-level cache, main-memory and the
shared memory bus. Our architecture is industrially relevant
and is the first step towards more advanced architectures.

We assume that a local cache miss is stalling, which means
that whenever there is a miss in a local cache the core is
stalling until the cache-line is fetched from memory. We
focus on the shared memory bus and we assume that all
accesses to the shared memory and the last-level cache go
through the same bus, and that the bus serves one request at
a time. It is worth noticing that any single-core could easily
generate enough memory traffic to saturate the memory bus
by executing memory intensive tasks.

B. Server model

Our scheduling model for the multi-core platform can be
viewed as a set of trees, with one parent node and many
leaf nodes per core, as illustrated in Figure 1. The parent
node is a node scheduler and leaf nodes are the servers. Each
server has its own set of tasks that are scheduled by a local
scheduler. The node scheduler is responsible for dispatching
the servers according to their bandwidth reservations (which
include both CPU- and memory-bandwidth). The local sched-
uler then schedules its task set according to a server-internal
scheduling policy.

Each server Ss is allocated a budget for CPU- and memory-
bandwidth according to 〈Ps, Qs,Ms〉, where Ps is the period
of the server, Qs is the amount of CPU-time allocated to
the server each period, and Ms is the number of allowed
memory requests in each period. The CPU-bandwidth of a
server is thus Qs/Ps and we assume that the total CPU-
bandwidth for each core is not more than 100%. Ms/Ps is
the memory-bandwidth for Ss, and we assume that the total
memory-bandwidth allocated to servers on all cores is not
more than what can be served on the shared memory bus.

Core m

Node Scheduler

. . .
Local Scheduler

τ1,1 τ1,j. . .

Local Scheduler

τn,1 τn,j. . .

SubSystem 1 SubSystem n

<Q1, M1, P1 > <Qn, Mn, Pn >

Core n

Node Scheduler

. . .
Local Scheduler

τ1,1 τ1,j. . .

Local Scheduler

τn,1 τn,j. . .

SubSystem 1 SubSystem n

<Q1, M1, P1 > <Qn, Mn, Pn >

. . .

Memory Bus

Memory requests Memory requests

Sh
ar

ed

re
so

ur
ce

Fig. 1: The multi-resource server model

Server parameters can be obtained using analysis [8] or from
domain expertise.

During run-time each server is associated with two dynamic
attributes qs and ms which represent the amount of available
CPU- and memory-budgets respectively. The implementation
in this paper uses Fixed Priority Pre-emptive Scheduling
(FPPS) policy for both node scheduling and server scheduling.

We assume that each server is assigned to one core and that
its associated tasks will always execute only on that core i.e.,
we use the partitioned multiprocessor scheduling technique.
The terms memory-bandwidth reservation and memory reser-
vation are used interchangeably in the rest of the paper.

C. Task model

We are considering a simple sporadic task model in which
each task τi is represented as τi(Ti, Ci, Di) where Ti denotes
the minimum inter-arrival time of task τi with Worst-Case
Execution Time WCETi and deadline Di, where Di ≤ Ti.
Each task τi has a fixed priority ρi. During the execution of
tasks, memory requests can be made arbitrary at any time
which can cause cache misses, i.e., the model of memory
requests of each task is not known in advance.

III. THE MULTI-RESOURCE SERVER

The goal of the MRS is to provide temporal isolations
through resource reservation approaches in the context of CPU
bandwidth reservation [9] and memory bandwidth reserva-
tion [10]. The following subsections explain the MRS server
and mechanisms used to manage memory budget of the server.

A. The MRS mechanism

We explain the MRS using the following rules:
Rule 1: The MRS server is of periodic type, i.e., it replenishes
both CPU- and memory-budgets to the maximum values pe-
riodically. At the beginning of each server period its dynamic
attributes are set as qs = Qs,ms =Ms.
Rule 2: In each core, a node scheduler is responsible to
schedule all ready servers. A server is in the ready state if
its remaining budgets are greater than zero, i.e. qs > 0 and
ms > 0. The scheduled server applies its associated local
scheduler to schedule its ready tasks.

Rule 3: The CPU resource that is used by a task will
be decremented from its associated server’s CPU dynamic
attribute qs, i.e., if a task τi executes x time units then
qs = qs − x.
Rule 4: The number of memory requests issued by each
task will be decremented from its associated server memory
dynamic attribute ms, i.e., if a task τi issues y requests then
ms = ms − y.
Rule 5: A server is in a suspended state if any of its CPU-
or memory-budget is depleted, i.e., if ms = 0 or qs = 0 then
ms = qs = 0 and the server is suspended until the next server
period. Thus, if any of the budgets is depleted then the other
remaining budget will be discarded.
Rule 6: We use the idling periodic server strategy [11] for
CPU reservation, i.e., if the scheduled server has remaining
budget but there is no task ready then it simply idles away its
budget until a task becomes ready or the budget depletes.

Note that the MRS follows exactly the rules of the idling
server type except for the additional rules related to the
memory requests. The memory part of the server behaves
like a deferrable server [12] where the capacity of the server
is consumed only whenever a memory request is made. The
presented rules guarantee that a server only consumes its given
CPU budget which limits its effect on the other servers that
share the same core. The rules also guarantee that a server
only consumes its give memory budget, which limits its effect
on servers that are located in different cores. In addition and
due to the interaction between the two different types of the
budgets of the MRS server, the server may overrun its CPU
budget. This may happen when a task in a server issues a
memory request just before the CPU budget depletion. Since
the core is stalling until the memory request is served then
the server suspension will be delayed and an overrun can
occur. The amount of overrun can be at most equal to the
time to serve one memory request. In this paper we ignore
such overruns since they are negligible compare to our clock
resolution, but for hard real-time analysis the overruns are
considered in the analysis of the MRS server [8].

We explain the execution of a MRS using a simple example
of a subsystem that consists of five tasks τ1, ..., τ5 where tasks
are ordered by their priorities in a descendent order i.e. τ1 has
the highest priority and τ5 has the lowest priority. Figure 2
shows a possible execution scenario of tasks inside a server
Ss(Ps, Qs,Ms). At the first budget period, we assume that
τ5 is the only ready task and it issues a memory request
and then waits until the request is served, and after a very
small time τ4 is released and it preempts the execution of τ5
when the request is served (during core stalling, no task is
allowed to execute) and it issues a memory request. Assume
that Ms = 2, the memory budget depletes when the request
is served and the remaining CPU budget is dropped. As a
result the server execution will be suspended until the next
budget period. The tasks τ1 and τ2 are activated within the first
budget period but cannot execute due to the budget expiration
of the server. These tasks will get a chance to execute in the
next period when the server will be replenished to its full

resources. In second budget period, the highest priority ready
task τ1 executes.

τ4

t

Ps

τ5
τ2

τ1

qs

ms

τ1 τ2

Qs

Ms

τ5 τ4

t

t

Legend:
Processor stalling

Release time

Memory access

Unused CPU budget

Ps

τ3

Qs

Example 1

Fig. 2: An example illustrating the execution of the MRS

The implementation of the periodic server types considering
the CPU-budget has been studied extensively (e.g. [13], [14],
[15], [16], [17]). However, the main challenge is to add the
memory budget and to consider the interactions between the
two different types of budgets, more specifically Rule 4 and
Rule 5. To implement these additional rules related to the
memory part we need to track the memory requests issued
by tasks within each server. We explain this in the following
sections:

B. Determining the consumed memory budget (ms)

In many cases, a continuous determination and tracking
of the consumed memory-bandwidth is very difficult without
using a dedicated external hardware that monitors the memory
bus. Since we target the use of standard hardware, we use
a software-based technique similar to what has been used
in [10], [18].

Most modern processors host a range of Performance Moni-
tor Counters (PMCs) which can be used to infer the amount of
resources consumed and are used to implement software-based
memory throttling. These counters are hardware registers at-
tached with the processor and they contain measures of various
programmable events occurring in the processor. Different
processor architectures provide different sets of performance
counters which makes determination of the consumed memory
budget ms more or less easy and accurate.

C. Online monitoring and policing of ms

To provide continuous online monitoring of the consumed
memory-bandwidth, we need to continuously monitor counters
and store their values. Performance counters are usually pro-
grammable and they can be configured to generate an interrupt
at overflow, and hence they can be configured to count
different types of events. For any given CPU architecture,
its usage depends on issues like available events to count,
number of available counters (often a small set of counters
are available to be programmed to count various events), and
the characteristics of the memory-bus.

In our work we implement servers that enforce/police the
consumed bandwidth. To perform enforcement, an accurate
and non-intrusive estimate of the bandwidth consumptions is

very important. For policing purposes, using alarms could
potentially provide the most accurate approach for accounting
of the consumed bandwidth. One method could be to poll
the performance monitor counters at each memory-request
generation to evaluate ms. Another method could be to allow
an application to generate at most y events before being
policed by initializing the event accordingly (Rule 4), in this
case an event would be generated after y number of requests.
This could obviously result in a situation where ms < 0,
which at a first glance would seem inappropriate (or, for hard
real-time systems, even dangerous).

IV. SOFTWARE FRAMEWORK

The Linux operating system has been selected to be used
for the implementation of the multi-resource server approach.
The ExSched [15] framework has been used to support hard
real-time behavior in Linux. Using this framework, real-time
schedulers are developed without the need to patch or modify
the main kernel itself. ExSched has been shown to suffer
from some overheads. However, for our implementation of
a research prototype for realizing the MRS these overheads
are acceptable and in our implementation we only focus on
the overheads generated by our new MRS functions, not
the overhead incurred by the ExSched framework itself. Our
selection of the framework is based on our study presented
in [19].

The ExSched framework supports a user-space library and a
loadable kernel module to control the CPU scheduler without
modifying the underlying scheduler. The kernel module uses
native Linux-kernel primitives and exports them as a simplified
interface. Different plug-ins are provided that schedule tasks
(user-space applications) using these interfaces. The flow of
function calls of user-space applications to the Linux kernel
through the core module are described in detail in [15].
New plug-ins can be developed by extending the scheduling
policies, for example two hierarchical scheduler plug-ins (for
fixed-priority scheduling and for EDF scheduling) and three
multi-core scheduler plug-ins are presented in [15]. Since we
use hierarchial scheduling for the MRS, we explain below how
a two-level fixed-priority hierarchial scheduler is implemented
in ExSched.

The uni-core hierarchical scheduler plug-in supports a two-
level hierarchical scheduler and it schedules tasks within
their servers [15]. All tasks are initially migrated to core
0 and they are assigned to their specific servers at system
start using job_init_plugin. Tasks are executed periodically
using the rt_wait_for_period API that internally calls the
job_complete_plugin and job_release_plugin interfaces.
Two main interrupt-handler functions to handle the server’s ac-
tivation and depletion activities are server_release_handler

and server_complete_handler, respectively. They are trig-
gered by server release and deplete events through timer acti-
vations. These functions release a server (along with its tasks)
with its full CPU-budget to execute and suspend the server at
its CPU-budget depletion (along with its tasks) respectively. A
server ready queue and a server release queue are implemented

using bitmaps (as Linux 2.6 native task ready-queue) to store
the ready and depleted servers respectively.

V. MRS IMPLEMENTATION

The implementation details of the MRS in the context
of partitioned multi-core scheduling are presented here. The
hierarchical scheduler implemented in the ExSched framework
manages the CPU-budget using FPPS at both levels of schedul-
ing [15]. We extend the hierarchical scheduler to support the
memory-budget and we extend it for multi-core platforms by
implementing partitioned scheduling.

A. MRS design for partitioned HSF

Global structures: To implement a partitioned multi-core
hierarchical scheduler, an SERVERS[] array of server_struct

type, and an per_CPU[NR_RT_CPUS] array of perCPU_struct

type are used in the system globally as depicted in Figure 3.
All other structures including timers and queues for servers are
maintained per core. The SERVERS[] array holds all servers
in the system. The only reason why the global variable
SERVERS[] is maintained as an implementation choice is that
a user API to create servers will be much easier and also to
preserve the API scheme used by ExSched.
perCPU_struct structure: This structure contains core
id, a timer and two queues, a SERVER_READY_QUEUE and a
SERVER_RELEASE_QUEUE, to schedule servers on that core.
Both server-queues are of bitmap extension type arrays of
pointers. The timer is used to activate the server events on
that core2. A server can be either in SERVER_READY_QUEUE or
SERVER_RELEASE_QUEUE at any time, and is implied as ready
(Rule 2) or inactive (Rule 5) respectively. Only one high-
est priority servers from the SERVER_READY_QUEUE executes
at a time on each core. The perCPU_struct also contains
an severs[NR_OF_SERVERS] array that is used for mapping
servers to a specific core, and it stores all servers’ IDs that
are allocated to that core. This local severs array’s index is
mapped to the global SERVERS[] array’s index for a faster
access of server parameters during decisions making like
comparing priority, updating remaining budget, referring to
period etc.
Server control block: This contains all information needed
by an MRS server in a server_struct, i.e. the period

(Ps), priority, budget (Qs), remaining_budget (qs),
budget_expiration_time and a task_list that points to tasks
belonging to the server as presented in Figure 3. To execute
the server on a particular core, the CPU_id variable is added
to the server_struct. Further, the mem_budget (Ms) and
remain_mem_budget (ms) variables are added to monitor the
memory-bandwidth consumption of MRS.
Server release and complete handlers: The two timer event
handlers used to control activation and deactivation of servers
in the multi-core HSF are server_release_handler() and
server_complete_handler(), respectively. These handlers are
triggered when previously setup timer events expire due to pe-
riodic activation, budget depletion or pre-emption by a higher

2More details on queues and timers can be found in code or in [15].

Id

SERVER_READY_QUEUE

SERVER_RELEASE_QUEUE

timer

servers[NR_OF_SERVERS]

Id
period
priority
running
budget

remain_budget
budget_expiration_time
*task_list[MAX_NR_OF_TASKS_I

N_SERVER]
#ifdef USE_MEMSCHED

 cpu_id
 mem_budget

 rem_mem_budget
#endif

Real time tasks

...

SERVERS

TCB

...

perf_event *event

READY QUEUE

bitmap_extension

bitmap(int)

bitmap:33-64

Bitmap:1-32

RELEASE QUEUE

bitmap_extension

...

task_struct

per_cpu

server_structperCPU_struct

Legend:

A holds a structure of type B

A B A holds a reference to B

A B

Fig. 3: MRS design for partitioned HSF

priority server. Multiple activities are performed in these
handlers such as budget updating, task enqueuing/dequeuing,
new timer setup etc. More details can be found in code.

B. Implementing memory throttling by configuring and access-
ing counters

On multi-core processors each core usually contains its own
set of hardware performance counters making it possible to
account for memory events happening on a given proces-
sor. We implement the performance counters by using the
perf_event interface of the Linux kernel. We use this interface
within our implementation, and create and install performance
counter events in the PMU3. When implementing the memory
throttling, architecture specific performance-counters need to
be used. Our current implementation is adapted for the Intel
Core 2 architecture which has on-chip L1 and L2 caches.
Thus, for this architecture it makes most sense to measure
and throttle on the L2 cache-misses.

To account for the L2 misses incurred by a specific server,
several reservation schemes in perf_event can be used,
namely per-task or per-core assignment. Since multiple servers
execute on each core, the per-core assignment scheme does not
suit our problem. Therefore, we configure the counter for the
per-task scheme, thereby accounting for events for only those
tasks that belong to the server. In order to save and restore
the counter registers upon a task context-switch, a struct

perf_event * event structure is added to the task control
block as shown in Figure 3.

A memory-requests counting event is created using struct

perf_event* init_counter (task_struct* task, int

cpu) API. Since tasks are statically allocated to a specific
core, the event is also bound with the task and the core. It is
configured to monitor hardware events (PERF_TYPE_HARDWARE)
and to measure the L2 misses (PERF_COUNT_HW_CACHE_MISSES)
in the kernel space. The counting event is created when a task
calls its task_run function at its initialization and connects
to its server.

C. Online monitoring and policing of the memory budget

For online monitoring of the memory-budget, the perfor-
mance counter is configured to cause an interrupt at an over-
flow. The sample_period is set to 1 to call the overflow han-

3Performance Monitoring Unit (PMU) in the Intel architecture where
performance counters are implemented.

dler memory_overflow_handler() at each memory-request.
The memory budget of the event-generating tasks’ server is
decremented in the handler, i.e. ms −−; remain_mem_budget
variable of each servers server_struct is used to monitor the
consumption.

At memory-budget exhaustion (Rule 5), the
memory_server_complete_handler() is called to enforce the
server depletion. This handler works in the same manner
as of server_complete_handler(), except that it is not an
interrupt handler itself, rather it is called from the interrupt
handler. It sets up the next activation time of the depleted
server, it deactivates/dequeues the server along with its task
set, and it activates/enqueues the next highest priority server
with its tasks. If no server is ready at that time, then the idle
tasks or other low priority tasks of Linux will execute.

VI. EVALUATION SETUP

A. Hardware and software platforms

All experiments are performed on an Intel core 2 CPU 6700
with two cores running at a frequency of 2.66 GHz having
32+32KB of local L1 instruction- and data-cache, and sharing
an L2 cache of size 4MB. The frequency scaling is disabled
to prevent the system from going into power-save modes and
reducing its clock-frequency. With this setup the architecture
is able to support a memory load of 133K memory-requests
(counted as L2 cache-misses) per second.

We use Ubuntu 10.04.4 LTS with Linux kernel version
3.6.0-rt. The scheduler resolution (system tick) is set to 1ms.
The standard C library is used for programming and all
programs are compiled using the gcc compiler.

B. The behavior of synthetic tasks

Two different synthetic task-types are used in the case study
and in the synthetic evaluations, namely normal task, and
memory intensive task, their behavior is described here:

The normal task generates a relatively low number of
requests per server period as compared to the memory in-
tensive task. The task’s code iterates a dynamic linked list
consisting of a total of 140000 nodes (each node is of 8
bytes, and the size of the list is approximately 1MB) and it
assigns an integer value to the single data item of the list.
The WCET of the task is dependent on the selected number
of iterations. In our investigation, the use of this dynamic
linked list generates a good amount of reads and writes to

the memory. Some accesses goes to the cache (due to good
locality of consecutively allocated memory blocks) but we also
get a quite large amount of cache misses, resulting in memory
requests on the shared bus.

The memory intensive task generates a very high number of
requests per server period. The task iterates through the same
kind of linked list as the normal task except that the number
of nodes in the list is increased by 4 times. Consequently,
the list size (list size is slightly greater than L2 cache size i.e.
4MB) becomes much bigger than the list size of a normal task.
Further, the task is executed continuously (i.e. it never goes
idle waiting for a new period) within a server, thus the task is
only bounded by its server’s reservation and it will execute as
much as the server allows it to. Hence, this task will heavily
affect other tasks’ execution in the system due to its unbounded
execution time and a very high memory-bandwidth usage.

VII. CASE STUDY: EXECUTING A LEGACY APPLICATION

The purpose of this experiment is (1) to show that a legacy
application that works well when executed on one core may
fail to deliver its service if applications on other cores consume
too much resources, and (2) to show that if applications
resource utilization are bounded with the MRS, then we can
protect the legacy application and allow it to deliver its service.

We use a soft real-time legacy application: mplayer4, that
decodes and plays an audio/video file and it requires continu-
ous access to memory to fetch and process video frames.

Server Core Priority Period CPU-budget
mplayer 0 High 15 10
Server0 1 High 80 12
Server1 1 Low 80 12

TABLE I: The servers’ specification for the case study.

mplayer demands a high amount of memory-bandwidth to
display the video at an acceptable rate. Further, the timing
is important for mplayer, otherwise it starts dropping video
frames affecting the quality of service. We execute mplayer
as a task within a server on core 0 that is bounded only by
its server’s CPU reservation. On the other core, we execute
synthetic tasks within servers. Note that mplayer server is
not throttled for memory-bandwidth in all experiments of the
case study. We throttle servers executing on core 1 to observe
the effect of bounding memory-bandwidth usage of core 1 on
mplayer which is executing on core 0.

For the case study we have executed a high-definition HD
video, i.e. a trailer of Avatar ([H264] 1920x800 24bpp) of a
total of 260 seconds duration. To assess the performance of the
quality of service delivered by mplayer, we use the number
of dropped frames as our benchmark. The servers used for
the case study are presented in Table I. The case study is
performed in three steps, presented below. In these steps, the
servers’ priority, period, and CPU-budget remain the same as
given in Table I, while the tasks’ behaviour and the memory-
budget vary in different experiments. Server and task period,

4http://www.mplayerhq.hu

CPU-budget, and Worst Case Execution Time (WCET) values
are presented in ms, while the memory-budget is provided as
a number of memory-requests in Tables I and II. The details
for these steps are presented here:

1) : we executed mplayer with our example video-file as a
stand-alone application on core 0 to find its normal execution
behavior having all resources available. We found that it drops
0% of the frames while playing the video at a rate of 25fps.
These measures are later compared when mplayer is executed
along with other MRSs in the system and the resources are
shared among all applications/subsystems.

2) : we inserted two MRSs on core 1, each executing two
tasks as given in Table II. Note that a higher number means
a higher priority for tasks. Without memory reservation on
MRSs, the mplayer dropped 1% of the frames due to the global
interference. However, mplayer executed with 0% dropped
frames when the MRSs on core 1 are throttled with a memory-
budget of 1100. Hence, using MRSs, mplayer can be executed
with desired results, which was not possible without MRS.

Task Server Priority Period WCET
Task1 Server0 98 160 10
Task2 Server0 97 160 14
Task3 Server1 98 200 8
Task4 Server1 97 200 8

TABLE II: Tasks properties and their assignment to servers.

3) : we introduced heavier memory-traffic by executing
two memory intensive tasks, where each server on core 1
is executing one task. As mentioned previously, both tasks
execute continuously, bounded by their server’s CPU-budgets
respectively, and produce a heavy memory traffic.

Executing the system without memory reservation on MRSs
produce a bad effect due to a global interference on mplayer
by dropping 5% of the frames. This effect is significantly
reduced by throttling two MRSs on core 1: with a memory-
budget of 750 requests, the dropped frames decreased to
3%; and with a memory-budget of 200, the dropped frames
decreased to 0.3% (only 17 frames dropped from a total of
5013 frames). Hence, using MRSs, mplayer can be executed
with limited and acceptable effect on its performance, which
was not possible without MRS. This case study shows that a
predictable execution of a legacy uni-core application can be
achieved on a multi-core platform by providing both temporal-
and memory-bandwidth isolations through the usage of MRSs.

When running the memory intensive task-behavior on core 1
we see a slight decrease in the performance of mplayer
compared to the normal task-behavior. While we have not
investigated the reason for this decrease in detail, we hypoth-
esize that the reason is related to increased cache-pollution in
the shared L2 cache – making the mplayer experience more
cache-misses and thus performing slightly worse. In the next
section we show that cache-pollution is an issue that matters
and that it can cause temporal interference among tasks.

VIII. SYNTHETIC EVALUATION – RESULTS AND ANALYSIS

Here, we measure performance overheads of the implemen-
tation and we evaluate the timing isolation of the MRS using
a set of synthetic tasks.

A. Performance assessments

We present the overheads for memory related functionality
of the MRS. The first measured overhead is of executing the
Performance Monitor Counters (PMC) and it is negligible as
it only writes to a register of a core. The overhead of the
interrupt function to handle overflow memory_interrupt() is
56ns (nano seconds) on average. This interrupt is called at
each memory-request. Since the architecture can support a
maximum of 133K memory-requests per second, this means
in worst case 0.7% overhead for our interrupts.

Other overhead measures are the time required to execute
(1) the server_release_handler() function that activates
servers and its tasks at the server’s activation time, (2) the
server_complete_handler() that suspends servers and its
tasks at server’s CPU-budget depletion, and finally (3) the
memory_server_complete_handler() that suspends servers
and its tasks at server’s memory-budget depletion. Two sce-
narios are accounted for each of these functions: first, the
function is called when no other active server was on the
core (the idle task was executing) and a server context-switch
will occur to execute the newly released server; and second,
another active server was executing on the core, in this case a
server context-switch may occur to execute the newly released
server depending upon the server’s priority. The overhead of
a server context-switch is included within the measures.

The system is executed for 5 minutes and overhead mea-
sures are extracted for each scenario as presented in Table III.
The Count column in the table represents the total number
of times that a particular scenario executed and then average,
minimum, maximum, and standard deviation on these values
are calculated and presented. All values are given in micro-
seconds (µs). It is obvious from the table that overheads are
very low, i.e no more than 0.68% for all functions for our
experiments. The total overheads of the system are high for
the underlying ExSched framework due to having a kernel
modification-free solution and these overheads are presented
in [15].

B. Synthetic experiments

Synthetic experiments are performed by executing a schedu-
lable example consisting of five servers along with their task
sets on both cores for 10 seconds. Two servers, i.e. Server0
and Server1 are executed on core 0, while all other servers
are executed on core 1. The servers’ timing properties and
their assignment to the CPU-core is given in Table IV. Tasks’
properties and their assignment to their corresponding server
is given in Table V. To execute our tasks before the Linux
tasks and to avoid task pre-emptions due to other Linux tasks,
we have assigned the highest priority values to tasks.

All synthetic experiments are performed in two steps: first
executing all servers and tasks without memory reservation

Server Core Priority Period CPU-budget Memory-budget
Server0 0 High 24 8 650
Server1 0 Low 40 16 750
Server2 1 Medium 40 8 900
Server3 1 High 80 12 1100
Server4 1 Low 80 12 1100

TABLE IV: The servers’ specification to test the behaviors.

Task Server Priority Period WCET
Task1 Server0 98 40 2
Task2 Server0 97 48 4
Task3 Server1 98 60 8
Task4 Server2 98 60 4
Task5 Server2 97 160 10
Task6 Server3 97 160 14
Task7 Server4 98 200 8
Task8 Server4 97 200 8

TABLE V: Tasks properties and their assignment to servers.

using a simple idling periodic server; and then executing
using memory reservation as the MRS. The number of missed
deadlines for all tasks are measured for both steps to examine
the effect of global interference and to reveal the memory
reservation and performance isolation properties of the MRS.

1) Experiment 1: Memory-bandwidth reservation: This ex-
periment is performed to illustrate the memory-bandwidth
reservation of MRS in the context of a schedulable system by
means of a trace of execution and by calculating the number
of missed deadlines for all tasks. To fully utilize the CPU-
and memory-resources, we execute the server and task sets
described in Section VIII-B on both cores using only normal
tasks in the servers. Each experiment is executed in two steps
and the total sum of missed deadlines for all tasks is measured.
Since normal tasks are low memory-intensive and they require
a low number of resources, they get a good chance to execute
and thereby never miss their deadlines.

The visualization of the execution for the MRS on core 0
is presented in Figure 4. The execution trace of core 1 shows
the same behavior; we omit it due to limitation of space in the
paper. In the diagram, the horizontal axis represents the time
in ms starting from 0. In the task’s visualization, the arrow
represents task arrival, a gray rectangle means task execution,
a white rectangle represents either a local pre-emption by
another task in the same server or a global pre-emption due
to its server’s budget depletion or its server’s pre-emption
by a higher priority server. In the server’s visualization, the
numbers along the vertical axis are the server’s CPU-capacity
and the number along the diagonal line represents the memory-
capacity (or the number of requests made by the server) during
the period. The diagonal line represents the server execution,
the vertical line shows the server depletion due to memory-
budget, while the horizontal line represents either the waiting
time for the next activation (when the budget has depleted) or
the waiting for its turn to execute (when some other higher
priority server is executing). There is one idle task per core
that executes only when no task is ready on the core.

Note that it is clear from the diagram that all servers and

Scenarios server release handler() server complete handler() memory server complete handler()
Count Avg. Min. Max. St. Dev. Count Avg. Min. Max. St. Dev. Count Avg. Min. Max. St. Dev.

No other active server 7443 5.9758 2 17 1.9047 6025 6.0211 2 21 2.8607 1239 5.5343 4 7 0.5180
Another active server 2478 7.3010 5 15 0.7192 11125 6.895 3 17 1.3890 1250 5.529 4 12 0.7557

TABLE III: Overhead measures for the memory related functionality of the MRS.

Fig. 4: Memory-bandwidth reservation of MRS: an execution trace of core 0 - using the normal tasks

tasks execute smoothly because of enough available resources.
At the start of the system, both servers deplete due to their
memory-budget exhaustion since the caches are empty and the
system fetches a lot of data during this time to properly start
the execution. This effect has been observed in all experiments.

2) Experiment 2: Performance isolation effect of memory
reservation: This experiment is performed to illustrate the
memory-isolation effect among the MRSs due to memory
bandwidth reservation, even during the overload situation. For
example, if one MRS is overloaded and its tasks miss-behave,
produce a large number of memory requests, and fill-up the
memory-bandwidth, it should not affect the execution of other
MRSs in the system.

For this purpose, all servers execute the normal tasks except
Server1 that executes the memory intensive task as Task3

for longer duration and produces an increased number of
memory-requests. The experiment is executed without- and
with memory reservation steps and traces of execution for both
steps for core 0 are presented in Figures 5 and 6 respectively.
The total sum of deadline misses (No.of DMisses) during the
total number of task’s activation (Tot. Activations) by all
tasks is also measured and is presented in Table VI.

Server1 is over-flooding the system with its memory-
bandwidth usage thereby highly affecting the execution of all
other tasks in the system when executed without memory-
throttling as obvious from looking at Figure 5 and from
the number of deadline-misses outlined in Table VI. Tasks
of other servers miss their deadlines due to the reduced
availability of memory-bandwidth. Both the local and the
global interference has been observed here. However, when
the same setup is executed by enabling memory reservation
in the MRS, Server1 gets bounded by its memory-budget and
its overloaded memory-bandwidth usage keeps on reducing its

affect on the execution behavior of other servers and tasks in
the system, and finally at the memory-budget of 100 requests
per period, the number of deadline-misses become 0 for all
normal tasks as obvious from the forth column of Table VI.

Note that when executed without memory reservation, the
execution of tasks of Server0 becomes unpredictable. Not only
the tasks’ executions times are increased a lot but they are also
generating a varying number of memory-requests, as obvious
from Figure 5. Due to space reasons, the idle task execution
is removed from the figure. Since the memory-bandwidth
requirement from normal tasks is not as high as from memory
intensive task, we consider that it is the bad effect of not only
the high bandwidth usage but also of the cache pollution from
Task3. However, we observe from the detailed execution trace
of Figure 6 with memory reservation that the execution times
of the normal tasks are slightly increased in very few periods.
Mostly the trace of Server0 and its tasks resemble the trace
of experiment 1 with normal tasks in Figure 4. This could be
due to the cache pollution effect.The use of the MRS highly
reduces the cache pollution by limiting the high-demanding
bandwidth server, but it could not delete it completely.

To further investigate the effect of Server1 on other servers
in the system and to confirm that the bad-effect on tasks’
executions is only due to this server, we perform a third step
by reserving all servers for memory except Server1 and we
measured the deadline miss count. As it is clear from the sixth
column of Table VI, tasks suffer from the global interference
and cache pollution and they miss their deadlines due to the
un-bounded amount of memory requests from Server1.

3) Experiment 3: Reducing cache pollution by memory
reservation: To further investigate the cache pollution effect
and its reduction due to the memory reservation, we execute
a cache polluting task in Server1. All other servers and tasks

Fig. 5: Execution trace without memory reservation on Core 0 - using the memory intensive tasks

Fig. 6: Trace showing temporal- and memory-isolation among MRSs - using the memory intensive tasks

Tasks
Without memory reservation With memory reservation throttling all servers except server1

No.of DMisses Tot. Activations No.of DMisses Tot. Activations No.of DMisses Tot. Activations
Task1 0 249 0 236 0 238
Task2 1 206 0 197 0 198
Task4 0 166 0 157 3 155
Task5 22 35 0 59 24 29
Task6 2 60 0 59 24 34
Task7 0 50 0 47 0 48
Task8 1 48 0 47 0 47

TABLE VI: Comparison of deadline misses by tasks to evaluate the behavior of memory-throttling.

have the same specifications and they execute the same code
as presented in Experiment 1.

The cache polluting task is designed to examine the cache
pollution effects and it is executed continuously in a server like
the memory intensive task. However, its code is modified in
two ways: first the size of the linked list is now multiplied by
10 to make the cache polluted; secondly, it dynamically creates
nodes for two linked lists, reads the data from the first list and
writes to the second list, and then deletes the nodes. Note that
the caches have limited effect in this case of extreme cache
pollution since the data size is much bigger than the cache
size and additionally it is constantly changing over a chunk
of memory due to allocations and de-allocations of memory
in the same iteration. Therefore, this task represents the worst
case of memory access pattern.

We observed that without memory-throttling, all tasks miss
their deadlines many times as expected. However when we
executed the experiment using MRSs with memory-throttling,

there were always either two or three different tasks missing
their deadlines once per execution, hence either two or three
deadlines were always missed (due to space reasons we are
not presenting all the data here). This experiment shows that
our solution has the potential to reduce the cache pollution
problem, however not solving it completely.

IX. RELATED WORK

The problem of contention of shared resources has gained a
significant importance in the context of multi-core embedded
systems. CPU time partitioning is one technique to pro-
vide predictable execution on unicore platforms. In avionics,
ARINC-653 is used as a platform to implement partitioned
software with emphasis on predictability and safety-critical
issues [20]. It provides fully deterministic top-level Time
Division Multiple Access (TDMA) based schedule. A kernel-
level implementation to support partitioning and hierarchical
scheduling in ARINC-653 for Linux is provided in [21].

Some highly predictable TDMA based techniques are used
to access the shared resources (memory bus arbitration) using
a multiprocessor systems-on-chip (SoC) architecture. Rosen
et al. [22] measured the effects of cache misses on the shared
bus traffic where the memory accesses are confined at the
beginning and at the end of the tasks. Later Schranzhofer
et al. [23] relaxed the assumption of fixed positions for the
bus access by arbitrating the shared bus. TDMA arbitration
techniques eliminate the interference of other tasks due to
accessing shared resources through isolation; however, they
are limited in the usage of only a specified hardware. Akesson
et al. [24] proposed a two-step approach to share a predictable
SDRAM memory controller for real-time systems. This is a
key component in CoMPSoC [25]. Stuijk et al. [26] used Syn-
chronous Dataflow Graphs (SDFG) for allocating resources on
a heterogeneous multi-processor system and provided through-
put guarantees on multiprocessor systems-on-chip (MP-SoC).
Zimmer et al. [27] used constraint programming to optimally
maps tasks on network-on-chip (NoC), developed a TDMA-
like approach to ensure separation of analysis for commu-
nication messages on NoC and then designed/implemented a
heuristic-based solver to solve message-based NoC contention.

All these approaches are based on special hardware archi-
tectures. Our approach, however, uses COTS hardware and it is
software based using performance counters which are available
in almost all processors.

Pellizzoni et al. [28] initially proposed the division of tasks
into superblock sets by managing most of the memory requests
either at the start or at the end of the execution blocks. This
idea of superblocks was later used in TDMA arbitration [23].
Bak et al. presented a memory aware scheduling for multi-
core systems in [29]. They use PRedictable Execution Model
(PREM) [30] compliant task sets for their simulation-based
evaluations. However, PREM requires modifications in the
existing code, hence this approach is not compliant with our
goal to execute legacy systems on the multi-core platform.

Some approaches to WCET analysis are emerging which
analyze memory-bus contention, e.g. [31]. However, WCET-
approaches do not tackle system wide issues and do not give
any direct support to provide isolation between subsystems.

Schliecker et al. [6] have presented a method to bound the
shared resource load by computing the maximum number of
consecutive cache misses generated during a specified time
interval. The joint bound is presented for a set of tasks exe-
cuting on the same core covering the effects of both intrinsic
and pre-emption related cache misses. A tighter upper bound
on the number of requests is presented by Dasari et al. [7]
where they solve the problem of interleaving cache effects by
using non-preemptive task scheduling. They have used PMCs
in the Intel platform running the VxWorks operating system
to measure the number of requests that can be issued by a
task. However, these works lack the consideration of shared
memory-bandwidth and the use of memory servers to limit the
access to memory-bandwidth.

Recently a server-based approach to bound the memory
load of low priority non-critical tasks executing on non-

critical cores was presented by Yun et al. in [10] for an Intel
architecture running Linux. In their model, one memory server
is implemented on each non-critical core to limit memory
requests generated by tasks that are located on that core.
Hence the interference from other non-critical cores on the
critical core is bounded. The servers are implemented on Linux
using cgroups in [10]. This approach might not be suitable
for those real systems that may contain more than one critical
application. In addition, using one memory server in each non-
critical core will degrade the performance of all applications in
that core even if the core contains only one memory intensive
task. This work has been extended in [18] by using a memory
reclaiming technique when a core is not fully utilizing its
allocated memory budget, and is implemented as a dynamic
loadable Linux kernel module with some small modifications
in the main kernel.

We propose a more general approach by implementing the
MRS that handles both time and memory aspects reserved
resources. Multiple subsystem/applications can share one core
through multiple MRS’s. Our memory throttling mechanism is
proposed per server level instead of per core level (as in [10],
[18]) and thereby the time and memory reservation aspects are
applied per server.

X. CONCLUSIONS

We have presented the first implementation of the Multi-
Resource Server (MRS) for reserving both CPU- and memory-
bandwidth on multi-core systems. We have evaluated the
implementation of MRS and the results show that overhead
of our implemented functionality is low. Furthermore, we
have demonstrated the MRS suitability to execute legacy uni-
core applications in a predictable manner on a multi-core
platform by limiting interference between applications running
on different cores.

Our demonstration shows that scheduling alone (i.e. con-
trolling the allocation of resources over time) is not enough
to achieve complete timing isolation. We observe that cache-
pollution can have a tangible effect on timing properties of
tasks executing in different serves. However, we also show
that MRS, itself, can be used to mitigate cache-pollution since
it bounds the effect on the shared cache for each server.
Nevertheless, we conclude that our MRS should be comple-
mented with some technique to remove/bound cache-pollution
amongst servers, e.g., accounting for it in the analysis [6], [7]
or implementing a cache partitioning solution [4], [5].

In spite of the advantage of providing a kernel modification-
free solution by ExSched framework, it includes some over-
heads by itself. One research direction is to look at other
implementation alternatives to achieve better performance.
Another future direction is to find an algorithm to calculate
the optimum budgets for both resources of the MRS. Some
smart online algorithms can be developed to assign the unused
capacity of one resource to another server to improve overall
average response times.

REFERENCES

[1] J. P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced aperiodic
responsiveness in hard real-time environments. In Proc. 8th IEEE Real-
Time Systems Symposium (RTSS’ 87), pages 261–270, December 1987.

[2] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic Task Scheduling for
Hard Real-Time Systems. Real-Time Systems, 1(1):27–60, June 1989.

[3] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proc. 24th IEEE Real-Time Systems Symposium (RTSS’
03), pages 2–13, December 2003.

[4] B.C. Ward, J.L. Herman, C.J. Kenna, and J.H. Anderson. Making
shared caches more predictable on multicore platforms. In Proc. 25th
Euromicro Conf. on Real-Time Systems (ECRTS’ 13), 2013.

[5] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni. Real-time cache management framework for multi-core archi-
tectures. In Proc. 19th IEEE Real-Time Technology and Applications
Symposium (RTAS’ 13), 2013.

[6] S. Schliecker and R. Ernst. Real-time Performance Analysis of Multipro-
cessor Systems with Shared Memory. ACM Transactions in Embedded
Computing Systems, 10(2):22:1–22:27, January 2011.

[7] D. Dasari and B. Anderssom and V. Nelis and S.M. Petters and A.
Easwaran and L. Jinkyu . Response Time Analysis of COTS-Based
Multicores Considering the Contention on the Shared Memory Bus. In
Proc. of the IEEE International Conference on TrustCom ’11, Nov 2011.

[8] M. Behnam, R. Inam, T. Nolte, and M. Sjödin. Multi-core composability
in the face of memory bus contention. In 5th International Workshop on
Compositional Theory and Technology for Real-Time Embedded Systems
(CRTS’12). ACM, December 2012.

[9] I. Shin and I. Lee. Periodic Resource Model for Compositional Real-
Time Guarantees. In Proc. 24th IEEE Real-Time Systems Symposium
(RTSS’ 03), pages 2–13, December 2003.

[10] H. Yun and G. Yao and R. Pellizzoni and M. Caccamo and L. Sha.
Memory- access Control in Multiprocessor for Real-Time Systems with
Mixed Criticality. In Proc. 24th Euromicro Conf. on Real-Time Systems
(ECRTS’ 12), July 2012.

[11] L. Sha, J.P. Lehoczky, and R. Rajkumar. Solutions for some Practical
problems in Prioritised Preemptive Scheduling. In Proc. 7th IEEE Real-
Time Systems Symposium (RTSS’ 86), pages 181–191, December 1986.

[12] J.K. Strosnider, J.P. Lehoczky, and L. Sha. The Deferrable Server
Algorithm for Enhanced Aperiodic Responsiveness in Hard Real-time
Environments. IEEE Transactions on Computers, 44(1), 1995.

[13] Daeyoung Kim, Yann-Hang Lee, and M. Younis. Spirit-ukernel for
strongly partitione real-time systems. In Proc. of the 7th Interna-
tional conference on Real-Time Computing Systems and Applications
(RTCSA’00), 2000.

[14] R. Inam, J. Mäki-Turja, M. Sjödin, S. M. H. Ashjaei, and S. Afshar.
Support for Hierarchical Scheduling in FreeRTOS. In 16th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA’ 11), France, September 2011.

[15] M.Åsberg, T. Nolte, S. Kato, and R. Rajkumar. Exsched: An external cpu
scheduler framework for real-time systems. In 18th IEEE International
Conference (RTCSA’ 12), 2012.

[16] M.M.H.P. van den Heuvel, M. Holenderski, R. J. Bril, and J. J. Lukkien.
Constant-bandwidth supply for priority processing. IEEE Transactions
on Consumer Electronics (TCE), 57(2), 2011.

[17] R. Inam, J. Mäki-Turja, M. Sjödin, and M. Behnam. Hard Real-
time Support for Hierarchical Scheduling in FreeRTOS. In 7th Annual
Workshop (OSPERT’ 11), pages 51–60, Porto, Portugal, July 2011.

[18] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms. In Proc. 19th IEEE Real-Time Technology
and Applications Symposium (RTAS’ 13), 2013.

[19] R. Inam, J. Slatman, M. Behnam, M. Sjödin, and T. Nolte. Towards
implementing multi-resource server on multi-core Linux platform. In
18th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA’ 13), WiP, September 2013.

[20] S. Han and H.W. Jin. Full virtualization based ARINC - 653 partitioning.
In 30th IEEE/AIAA Digital Avionics Systems Conference, 2011.

[21] Sanghyun Han and Hyun-Wook Jin. Kernel-level ARINC-653 partition-
ing for Linux. In Proceedings of the 27th Annual ACM Symposium on
Applied Computing (SAC ’12), 2012.

[22] J. Rosen, A. Andrei, P. Eles, and Z. Peng. Bus Access Optimization
for Predictable Implementation of Real-Time Applications on Multi-

processor Systems-on-Chip. In Proc. 28th IEEE Real-Time Systems
Symposium (RTSS’ 07), pages 49–60, December 2007.

[23] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo.
Worst-case Response Time Analysis of Resource Access Models in
Multi-core Systems. In Design Automation Conference (DAC ’10), 2010.

[24] B. Akesson, K. Goossens, and M. Ringhofer. Predator: A Pre-
dictable SDRAM Memory Controller. In Int’l Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), pages
251–256, September 2007.

[25] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken. CoMPSoC:
A template for composable and predictable multi-processor system on
chips. ACM Trans. Des. Autom. Electron. Syst., 14(1):2:1–2:24, 2009.

[26] S. Stuijk, T. Basten, M. C W Geilen, and H. Corporaal. Multiprocessor
resource allocation for throughput-constrained synchronous dataflow
graphs. In Design Automation Conference, (DAC ’07), 2007.

[27] C. Zimmer and F. Mueller. Low contention mapping of real-time tasks
onto tilepro 64 core processors. In In (RTAS’ 12), 2012.

[28] R. Pellizzoni and A. Schranzhofer and J.-J.Chen and M. Caccamo and
L. Thiele. Worst Case Delay Analysis for Memory Interference in
Multicore Systems. In Proc. of the Conference on Design, Automation
and Test in Europe (DATE’ 10), pages 759–764, 2010.

[29] S. Bak and G. Yao and R. Pellizzoni and M. Caccamo. Memory-Aware
Scheduling of Multicore Task Sets for Real-Time Systems. In Proc. of
the (RTCSA ’12), 2012.

[30] R. Pellizzoni and E. Betti and S. Bak and G. Yao and J. Criswell and
M. Caccamo and R. Kegley. A PRedictable Execution Model for Cots-
based Embedded Systems. 2011.

[31] T. Kelter and H. Falk and P. Marwedel and S. Chattopadhyay and A.
Roychoudhury. Bus-Aware Multicore WCET Analysis Through TDMA
Offset Bounds. In Proc. 23th Euromicro Conf. on Real-Time Systems
(ECRTS’ 11), June 2011.

	Introduction
	System model
	Architecture
	Server model
	Task model

	The multi-resource server
	The MRS mechanism
	Determining the consumed memory budget (ms)
	Online monitoring and policing of ms

	Software framework
	MRS implementation
	MRS design for partitioned HSF
	Implementing memory throttling by configuring and accessing counters
	Online monitoring and policing of the memory budget

	Evaluation setup
	Hardware and software platforms
	The behavior of synthetic tasks

	Case study: Executing a legacy application
	
	
	

	Synthetic evaluation – Results and analysis
	Performance assessments
	Synthetic experiments
	Experiment 1: Memory-bandwidth reservation
	Experiment 2: Performance isolation effect of memory reservation
	Experiment 3: Reducing cache pollution by memory reservation

	Related work
	Conclusions
	References

