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ABSTRACT
Differential Evolution is a stochastic and meta-heuristic
technique that has been proved powerful for solving real-
valued optimization problems in high-dimensional spaces.
However, Differential Evolution does not guarantee to con-
verge to the global optimum and it is easily to become
trapped in a local optimum. In this paper, we aim to en-
hance Differential Evolution with Random Local Search to
increase its ability to avoid local optimum. The proposed
new algorithm is called Differential Evolution with Ran-
dom Local Search (DERLS). The advantage of Random
Local Search used in DERLS is that it is simple and fast
in computation. The results of experiments have demon-
strated that our DERLS algorithm can bring appreciable
improvement for the acquired solutions in difficult opti-
mization problems.
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1 Introduction

Optimization is an important issue in solving many real
world problems in industrial and scientific applications.
Generally, numerical optimization techniques can be di-
vided into two categories: point-based transition and
population-based transition [1]. Population-based transi-
tion works with a population of possible solutions, and
new generations are created from old populations to pro-
gressively improve the precision of the results. Over the
last years, various models of genetic algorithms [2] and
memetic algorithms [3], [4] were proposed as representa-
tives of the population-based schemes, which have been
shown to be powerful means to solve many real-world op-
timization problems.

Differential Evolution (DE) is another category of
the population-based approaches for optimization. It is a
stochastic and meta-heuristic evolutionary algorithm, first
proposed in 1997 [5]. After that a lot of works have been
done by many researchers to further improve its perfor-
mance. Previous researches have demonstrated that DE
represents a powerful tool to solve problems with real-

valued parameters [6], [7], and also in high-dimensional
spaces [8].

However, there is one problem that DE sometimes
converges too fast. This would be good for the majority
of unimodal functions yet a risk for multi-modal functions.
The search process with DE is very likely to get stuck into
a local optimum in the multimodal situations and there is
no mechanism in classic DE to reduce the chance of this to
happen.

In this paper we aim to create a new function into
DE to increase its ability to avoid local optimum, in our
case, local minimum. Our idea is to combine Random Lo-
cal Search (RLS) into a classic DE algorithm. Although
this topic has been addressed by other researchers (see ex-
amples in [9], [10], [11], [12], and [13]), the local search
strategies used in other works are different from ours and
are more computational expensive. The advantages of the
RLS strategy employed in our DE algorithm is that it is
simple and fast in computation. The results of experiments
have demonstrated that the simple RLS strategy combined
with DE can lead to substantial improvement of results in
difficult optimization problems.

The rest of the paper is organized as follows. Section
2 briefly describes some related works. Classic DE algo-
rithm and a proposed algorithm of DE combined with RLS
are explained in Section 3. Section 4 presents and com-
pares the results. Finally, in Section 5 the paper concludes
with remarks on conclusion and future works.

2 Related Work

Since the first proposal of DE in 1997 [14], a lot of works
have been done to improve the search ability of this algo-
rithm.

Ali, Pant and Nagar [9] proposed two different local
search algorithms, namely Trigonometric Local Search and
Interpolated Local Search, which were applied to refine the
best solution and two random solutions in every generation
respectively.

Local search differential evolution was developed in
[10] where a new local search operator was used on every
individual in the population with a probability. The search
strategy attempted to find a random better solution between
trial vector and the best solution in the generation.
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Dai, Zhou, Zhang and Jiang [11] combined Orthog-
onal Local Search with DE in the so-called OLSDE (Or-
thogonal Local Search Differential Evolution) algorithm.
Therein two individuals were randomly selected from the
population at each iteration for local refinements.

Pei-chong, Xu and Xiao-hong [12] proposed a DE
with Chaos Local Search (CLS). CLS was applied on 20%
of the population after running of original DE to obtain su-
perior global convergence and robustness in solving global
optimization problem.

Poikolainen and Neri [13] proposed a DE with Deter-
ministic Local Search; this algorithm is called Differential
evolution with concurrent fitness based local search (DEcf-
bLS). They apply Local Search in the most promising so-
lutions.

The random local search method developed for this
paper differs from the aforementioned works in that it in-
herently is a limited hill climbing search. Random explo-
ration is performed successively on different single vari-
ables and only a small subset of the variables are randomly
selected to be involved in the local search process. This lo-
cal search method is very attractive in being well scalable
to large optimization problems. It is naturally adequate to
solve separable problems. However, in cooperation with
DE, it is capable of exploring along all dimensions of the
search space at the same time.

3 Proposed Algorithm to Avoid Local Opti-
mum

In this Section we will first introduce the classic DE ap-
proach and then present our proposed algorithm that com-
bines classic DE with RLS.

3.1 Classic Differential Evolution

DE is an algorithm based on population with N

p

individu-
als. Every individual in the population represents a possible
solution to the problem to be solved. One individual in the
population is represented by X

i,g

with i = 1, 2, . . . , N
p

and g is the index of the generation. DE has three main
operators: mutation, recombination and selection. The ex-
planation of these operators is given below:

MUTATION. This operation creates a different solu-
tion for every individual using other individuals in the same
population. The vector for the mutated solution is called
noisy vector and it is represented like V

i,g

. There are a few
possible ways to mutate the current population [15] and the
meaning of the name is DE/x/y/z, where x means the vector
to be mutated, y is the number of difference vectors used in
the equation and z denotes the recombination used, we al-
ways uses binomial and it will be explained below; three of
them are listed below

• DE/rand/1/bin:

V

i,g

= X

r1,g + F ⇥ (X
r2,g �X

r3,g) (1)

• DE/best/1/bin:

V

i,g

= X

best,g

+ F ⇥ (X
r1,g �X

r2,g) (2)

• DE/current-to-best/1/bin:

V

i,g

= X

i,g

+F1⇥(X
best,g

�X

i,g

)+F2⇥(X
r1,g�X

r2,g)
(3)

where r1, r2, r3 2 {1, 2, . . . , N
p

} are randomly created
integers and F , F1 and F2 are constant factors in the in-
terval (0,2]. X

best,g

means the best solution in the genera-
tion g and X

i,g

represents individual i in the generation g.
The Eq. (1) means for every individuals in the population
we choose one randomly individual and we plus this one
with the difference between others two randomly individu-
als multiply for a constant. The Eq. (2) is the same than Eq.
(1) but we change the first randomly individual for the best
individual in that generation. In Eq. (3) we plus the current
value with a difference between the best individual and we
plus this with difference between two random individuals,
those two differences need to be multiply for constants.

RECOMBINATION. This operation combines all the
individuals in the population with the noisy vectors cre-
ated in the mutation stage. Such new solutions created are
called trial vectors and we use T

i,g

to represent the trial vec-
tor corresponding to individual i in the generation g. The
parameters in the trial vector are decided according to Eq.
(4).

T

i,g

[j] =

(
V

i,g

[j] if rand[0, 1] < Pr or j = j

rand

X

i,g

[j] otherwise
(4)

where j represents the index of parameters in a vector,
j

rand

is a random number between 1 and N

p

to ensure that
at least one value from the noisy vector will be delivered to
the trial vector and Pr is the probability of recombination.
Eq. (4) means that we choose randomly every component
between the individual X

i,g

and the noisy vector V
i,g

.
SELECTION. By this operation we compare a trial

vector and its parent solution in the population to decide
the winner to enter the next generation. Hence, if the prob-
lem of interest is minimization, the individuals in the new
generation are generated using Eq. (5) as follows:

X

i,g+1 =

(
T

i,g

if f(T
i,g

) < f(X
i,g

)

X

i,g

otherwise
(5)

where f(T
i,g

) means the fitness of T
i,g

and f(X
i,g

) denotes
the fitness of X

i,g

. the Eq. (5) chooses the best individual
between X

i,g

and T

i,g

comparing their fitness values.
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The Pseudocode of differential evolution is giving be-
low:

Differential Evolution
1. Initialize the population with randomly created

individuals.
2. Calculate the fitness values of all individuals in the

population
3. While the termination condition is not satisfied do
4. Create noisy vectors using a mutation strategy in

Eq. (1), (2), (3)
5. Create trial vectors by recombining noisy vectors

with parent vectors according to Eq. (4).
6. Evaluate trial vectors with their fitness values
7. Select winning vectors according to Eq. (5) as

individuals in the new generation
8. End while.

3.2 Differential Evolution Enhanced with Random
Local Search (DERLS)

In order to increase the capability to escape from a local
optimum, we propose to incorporate a random local search
(RLS) strategy into the classic DE algorithm. The RLS
strategy will be applied every time when a new generation
is created for further improvement. The idea of our algo-
rithm is use RLS in each generation of DE. When one gen-
eration of DE ends, then, we apply RLS only to the best
solution, trying to avoid the local optimum.

The basic idea of local search is to explore in the clos-
est neighborhood. There are actually a number of alterna-
tives for local search, such as Gradient search [1] and Sim-
plex method [16], but in our paper, we adopt RLS strategy
to allow more randomness while still pressing down extra
computational cost.

With our RLS strategy, we attempt to avoid the lo-
cal optimum by doing small random ”jumps” into more
promising regions in the space of solution. We could use
this strategy to the whole population but the problem is that,
if we do that, we spend a lot of time and resources trying
to improve bad solution. Therefore our RLS tries to find
better solution from the best solution in every generation.
To do that, this RLS choose 10% elements of the best solu-
tion, changing these values to others values randomly in the
range of the problem, creating a new solution. If the RLS
does not improve the solution, it tries again with the same
process M tries without improvement. If RLS improve the
actual best solution, then we restart the tries and we change
the best solution for this new solution.

The pseudocode of RLS is given below:

RLS (applied to the best individual):

1. Set i = 1;
2. while (i <= M ) Do
3. Candidates = {1, 2, . . . , dimension}
4. Set j = 1
5. while j < ↵⇥ dimension Do
6. Randomly selection k from Candidates
7. Assign a random possible value to parameter k of

the vector
8. Remove k from Candidates;
9. Set j = j + 1
10. End while (line 5)
11. If this new solution is better than the parent, then
12. Replace the parent solution with the new one, set

i = 1
13. else set i = i+ 1
14. End if
15. end while (line 2)

in the RLS algorithm, M is equals to the numbers of times
that we are trying to improve the current best solution and
↵ is the percent of the totally values of one individual that
we need to change.

The proposed DE algorithm with combined RLS is
formulated with the pseudocode in the following. First we
need to mutate the population, and a few possible ways are
available for this operation. In the experiments shown later,
we only used the mutation strategies in Eq. (1) and (2).
After mutation, we do crossover to recombine noisy and
parent vectors according to Eq. (4). Then the winning so-
lutions are selected based on comparison of the fitness val-
ues of the trial and parent vectors, according to Eq. (5).
The winning solutions form a new generation and the best
individual from it is identified. Subsequently RLS is ex-
ecuted on the best solution of the population for possible
improvements. If a new better solution is found by RLS, it
is introduced into the population as replacement of an old
individual.

The working procedure of DERLS is formulated as
follows

DERLS:

1. Initialize population with random individuals
2. Evaluate the individuals in the population with fitness

values
3. while the termination condition is not met Do
4. Mutate the population according Eq. (1), (2) or (3)
5. Recombine noisy vectors with parent vectors

according Eq. (4)
6. Select the winning vectors as individuals of the new

generation according to Eq. (5)
7. Choose the best individual from the population
8. Apply RLS to the best individual
9. Actualize the best individual
10. End while
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Table 1. The eight functions used in the experiments
FUNCTION RANGE MINIMUM
f1(x) =

P
n

i=1 x
2
i

[-100,100] 0
f2(x) =

P
n

i=1 |xi

|+
Q

n

i=1 |xi

| [-10,10] 0
f3(x) =

P
n

i=1(
P

i

j=1 xj

)2 [-100,100] 0
f4(x) = max

i

{|x
i

|, 1  i  n} [-100,100] 0
f5(x) =

P
n�1
i=1 [100⇥ (x

i+1 � x

2
i

)2 + (x
i

� 1)2] [-30,30] 0
f6(x) =

P
n

i=1(xi

+ 0.5)2 [-100,100] 0
f7(x) =

P
n

i=1 i⇥ x

4
i

+ random[0, 1) [-1.28,1.28] 0
f8(x) =

P
n

i=1 �x

i

⇥ sin(
p
|x

i

|) [-500,500] -12569.5
f9(x) =

P
n

i=1[x
2
i

� 10⇥ cos(2⇥ ⇡ ⇥ x

i

) + 10] [-5.12,5.12] 0

f10(x) = -20 ⇥exp(�0.2⇥
q

1
n

⇥
P

n

i=1 x
2
i

)� exp( 1
n

⇥
P

n

i=1 cos(2⇡xi

)) + 20 + e [-32,32] 0
f11(x) = 1

4000 ⇥
P

n

i=1 x
2
i

�
Q

n

i=1 cos(
xip
i

) + 1 [-600,600] 0

4 Experiments and Results

To examine the capability of the proposed algorithm in
solving real-valued optimization problems, we used the
eleven mathematical functions [17] listed in Table 1 in the
experiments to compare the results found by our algorithm
and true global optimal solutions of these functions. Func-
tions 1, 2, 3, 4, 5, 6 and 7 in the table are unimodal and
functions 8, 9, 10 and 11 are multi-modal. All these func-
tions contain 30 parameters/variables. We ran our algo-
rithm 50 times on each function in attempts to find best
solutions for them. The numbers of evaluations performed
in optimizing the respective functions are given in Table 2.
We had this number of evaluation because we ran the ex-
periments with the same number of generation than [17].
In our experiments we used M = 5, ↵ = 0.1, N

p

= 60,
F = 0.9 and P

r

= 0.85.
The experiments were conducted as follows. First,

we compared classic DE with our DERLS algorithm both
using DE/rand/1/bin as the mutation strategy. Secondly,
we employed the DE/best/1/bin mutation strategy to the
classic DE and DERLS algorithm for comparison. Finally,
we compared both mutation strategies (DE/rand/1/bin and
DE/best/1/bin) in classic DE and then demonstrated how
the inferior strategy could be enhanced by integration RLS.
The results in boldface mean that these variants are the best
option to that function

4.1 DERLS versus Classic DE with DE/rand/1/bin
Strategy

First, we intended to compare classic DE and DERLS un-
der the DE/rand/1/bin mutation strategy. The experiment
results obtained on the eight test functions are illustrated
in Table 3. This table shows us the mean errors and stan-
dard deviations that were obtained with experiments on all
the functions. Throughout the paper we use error to denote
the difference between the best result acquired and the true
global optimum value.

Table 2. Evaluations per function

FUNCTION NUM. EVALUATION
F1 90000
F2 120000
F3 300000
F4 300000
F5 1200000
F6 90000
F7 180000
F8 540000
F9 300000
F10 90000
F11 120000

We can see in this table that DERLS acquired better
results in functions 3, 4, 5, 6, 8, 10 and 11. Particularly, in
the most challenging task of function 8, the improvement
with DERLS is highly significant, decreasing mean error
from 1470 to 270. On functions 1, 2, 7, and 9 DERLS did
not dominate over classic DE, but the results were quite
similar with trivial differences. Therefore we can conclude
that DERLS generally is stronger than classic DE if both
adopt the DE/rand/1/bin mutation strategy.

4.2 DERLS versus Classic DE with DE/best/1/bin
Strategy

In this subsection, we shall compare DERLS and classic
DE using DE/best/1/bin as the mutation strategy. Our pur-
pose is to check, with the other mutation strategy, whether
we can obtain the same conclusion as that we got before
with the DE/rand/1/bin strategy. The experiments produced
the results as listed in Table 4.

416



Table 3. Comparison of results under DE/rand/1/bin strategy
FUNCTION DE DERLS DE-DERLS

ERROR Std.DEV ERROR Std.DEV
F1 2,28E-02 1,90E-02 1,36E-01 5,49E-02 -1,13E-01
F2 1,49E-02 4,53E-03 3,69E-02 1,77E-01 -2,20E-02
F3 6,06E+01 3,30E+01 3,08E+01 1,75E+01 2,98E+01
F4 4,62E+00 4,36E+00 2,41E+00 2,84E+00 2,21E+00
F5 3,99E-01 1,21E+00 1,60E-01 7,90E-01 2,39E-01
F6 2,31E-01 1,17E-01 1,92E-01 3,18E-01 3,90E-02
F7 2,14E-02 6,11E-03 2,59E-02 1,51E-02 -4,50E-03
F8 1,47E+03 4,08E+02 2,70E+02 1,59E+02 1,20E+03
F9 1,31E+01 3,83E+00 1,86E+01 7,22E+00 -5,50E+00

F10 1,99E+01 1,36E-02 1,71E+00 4,46E+00 1,82E+00
F11 3,45E-05 2,35E-05 2,86E-05 3,12E-05 5,90E-06

Table 4. Comparison of results under DE/best/1/bin strategy
FUNCTION DE DERLS DE-DERLS

ERROR Std.DEV ERROR Std.DEV
F1 2,04E-06 2,23E-06 3,20E+00 1,43E+01 -3,20E+00
F2 3,53E-05 1,65E-04 8,61E-01 1,74E+00 -8,61E-01
F3 5,00E+02 1,82E+03 1,59E-02 1,42E-02 5,00E+02
F4 1,62E-02 2,87E-02 1,66E-02 2,15E-02 -4,00E-04
F5 1,12E+00 1,81E+00 2,67E+00 5,93E+00 -1,55E+00
F6 1,59E-06 1,64E-06 6,52E+01 1,51E+02 -6,52E+01
F7 1,70E-02 5,29E-03 9,73E-02 2,12E-01 -8,03E-02
F8 3,09E+03 8,77E+02 4,70E+02 1,95E+02 2,62E+03
F9 4,43E+01 1,17E+01 2,61E+01 8,08E+00 1,82E+01

F10 1,43E+01 8,88E+00 3,19E+00 4,93E+00 1,11E+01
F11 0,00E+00 0,00E+00 5,46E-03 1,71E-02 -5,46E-03

Table 5. Comparison of results of two mutation strategies
FUNCTION DE/best/1/bin DE/rand/1/bin DE b-DE r

ERROR Std.DEV ERROR Std.DEV
F1 2,04E-06 2,23E-06 2,28E-02 1,90E-02 -2,28E-02
F2 3,53E-05 1,65E-04 1,49E-02 4,53E-03 -1,49E-02
F3 5,00E+02 1,82E+03 6,06E+01 3,30E+01 4,39E+02
F4 1,62E-02 2,87E-02 4,62E+00 4,36E+00 -4,60E+00
F5 1,12E+00 1,81E+00 3,99E-01 1,21E+00 7,21E-01
F6 1,59E-06 1,64E-06 2,31E-01 1,17E-01 -2,31E-01
F7 1,70E-02 5,29E-03 2,14E-02 6,11E-03 -4,40E-03
F8 3,09E+03 8,77E+02 1,47E+03 4,08E+02 1,62E+03
F9 4,43E+01 1,17E+01 1,31E+01 3,83E+00 3,12E+01

F10 1,43E+01 8,88E+00 1,99E+01 1,36E-02 -5,60E+00
F11 0,00E+00 0,00E+00 3,45E-05 2,35E-05 -3,45E-05

.
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Table 6. Comparison DERLS best strategy with DE rand strategy
FUNCTION DERLS with DE/best/1/bin DE/rand/1/bin DERLS b-DE r

ERROR Std.DEV ERROR Std.DEV
F1 3,20E+00 1,43E+01 2,28E-02 1,90E-02 3,18E+00
F2 8,61E-02 1,74E+00 1,49E-02 4,53E-03 7,12E-02
F3 1,59E-02 1,42E-02 6,06E+01 3,30E+01 -6,06E+01
F4 1,66E-02 2,15E-02 4,62E+00 4,36E+00 -4,60E+00
F5 2,67E+00 5,93E+00 3,99E-01 1,21E+00 2,27E+00
F6 6,52E+01 1,51E+02 2,31E-01 1,17E-01 6,50E+01
F7 9,73E-02 2,12E-01 2,14E-02 6,11E-03 7,59E-02
F8 4,70E+02 1,95E+02 1,47E+03 4,08E+02 -1,00E+03
F9 2,61E+01 8,08E+00 1,31E+01 3,83E+00 1,30E+01

F10 3,19E+00 4,93E+00 1,99E+01 1,36E-02 -1,67E+01
F11 5,46E-03 1,71E-02 3,45E-05 2,35E-05 5,43E-03

We can observe the results of these algorithms on Ta-
ble 4. First, we are going to compare both algorithms on
unimodal functions (functions 1 to 7). Although classic
DE performed better in 6 of the 7 (unimodal) functions,
the differences in three of them are actually minor with the
difference values being 3, 1.5 and 0.00546. Considerable
differences between DERLS and classic DE appeared on
functions 3 and 6. In function 3, DERLS almost found the
true optimum while the classic DE got a big, unacceptable
error of 500. On function 6, the results from DERLS were
still acceptable though they were inferior to those of clas-
sic DE. From the above comparisons, we can claim that
DERLS would be a more robust alternative if considering
a wide variety of unimodal functions.

Next we attempt to compare both algorithms in mul-
timodal functions. We can see in the table that DERLS per-
formed better than classic DE in three of the four functions
(functions 8, 9 and 10). Moreover, it is important to note
that the improvement acquired by DERLS on function 8 as
the most difficult problem is extremely significant, with the
difference value being 2620. Finally, in function 11, the
solution found by DERLS is so close to the true optimum
that its difference with that of classic DE is completely ig-
norable. Based on the above analysis, we can point out that
DERLS would be more appealing to apply to remain robust
in various situations and, in particular, to escape from local
optimum in multimodal functions.

4.3 DERLS with DE/best/1/bin Strategy versus Clas-
sic DE with DE/rand/1/bin Strategy

In this subsection, we want to compare the two mutation
strategies: DE/rand/1/bin and DE/best/1/bin. Then RLS
will be integrated with the inferior mutation strategy to see
if performance improvement would be possible by means
of local search.

First, we compare both strategies without local search
and the results are illustrated in Table 5. In Table 5 the

DE/best/1/bin mutation strategy seems to be better in seven
functions than DE/rand/1/bin, however the differences are
very small and actually unimportant. On the other side, the
DE/rand/1/bin strategy is much better in function 3, 8 and
9 bringing significant improvements. So we can conclude,
with these results, that classic DE with DE/rand/1/bin strat-
egy outperforms that with the other strategy

With the conclusion drawn above, we are now go-
ing to improve DE with DE/best/1/bin mutation strategy
by integrating it with RLS . Then we compare the results
of DERLS with DE/best/1/bin strategy against classic DE
with DE/rand/1/bin mutation strategy. The results are given
in Table 6.

With the first glimpse, we see that classic DE with
DE/rand/1/bin mutation strategy is better than DERLS with
DE/best/1/bin strategy in seven of the eleven functions.

However, the more important in our analysis is not if
it is better or not on the surface, but whether it dominates
its counterpart significantly. With this view in mind, we
shall compare the results on the unimodal functions and
multimodal functions respectively in the following.

In unimodal functions, classic DE is better in five of
the seven functions. There are 2 big differences in function
3 and function 6. DERLS is much better than DE in func-
tion 3, while in function 6 classic DE obviously dominates.
Hence we can claim that classic DE with DE/rand/1/bin
mutation strategy is likely to perform better than DERLS
with DE/best/1/bin strategy in most unimodal functions.

In multimodal functions, classic DE seems to outper-
form in two of the four functions. But now we would like
to consider more on the magnitude of the differences. In
function 8 DERLS is much better than classic DE, with the
mean error being 470 that is much smaller than the error of
1470 from classic DE. We should also notice that function
8 is a very difficult problem, on which the classic DE with
DE/best/1/bin mutation strategy obtained a large error at
3090. So we can see an extremely important improvement
here by inducing the local search. Also in function 10
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Table 7. DERLS versus Evolutionary Programming
FUNCTION DERLS CEP[17] FEP[17]

ERROR Std.DEV ERROR Std.DEV ERROR Std.DEV
F8 2,70E+02 1,59E+02 4,65E+03 6,35E+02 1,50E+01 5,26E+01
F9 1,86E+01 7,22E+00 8,90E+01 2,31E+01 4,60E-02 1,20E-02

F10 1,71E+00 4,66E+00 9,20E+00 2,80E+00 1,80E-02 2,10E-03
F11 2,86E-05 3,12E-05 8,60E-02 1,20E-01 1,60E-02 2,20E-02

Table 8. DERLS versus others algorithms
FUNCTION DERLS PSO[18] arPSO[18] SEA[18]

ERROR Std.DEV ERROR Std.DEV ERROR Std.DEV ERROR Std.DEV
F8 2,70E+02 1,59E+02 5,38E+03 6,72E+02 3,97E+03 2,07E+03 9,01E+02 2,34E+02
F9 1,86E+01 7,22E+00 4,29E+01 1,62E+01 2,15E+00 4,91E+00 7,18E-01 9,22E-01

F10 1,71E+00 4,66E+00 1,40E+00 7,91E-01 1,87E-07 7,15E-08 1,05E-02 9,08E-04
F11 2,86E-05 3,12E-05 2,35E-02 3,42E-02 9,23E-02 3,41E-01 4,64E-03 3,96E-03

DERLS is better than DE with a difference of 16.7. In
function 9 classic DE seems better, but difference between
the results is only 13. Again, in function 11, the differ-
ence is tiny and both DERLS and classic DE got results
extremely close to the true global minimum. Therefore we
can claim that DERLS with DE/best/1/bin mutation strat-
egy has stronger ability than DE with DE/rand/1/bin muta-
tion strategy to deal with difficult multimodal functions.

4.4 DERLS versus Others Algorithms

In this last subsection we intend to compare DERLS with
several other evolutionary computing methods. This com-
parison will be done only on the multimodal functions
(functions 8, 9, 10 and 11), since our main goal is to help
DE in avoiding local optimum, which merely occurs in
multi-modal cases. We divide the experiments in two dif-
ferent parts: first we compare DERLS against classical evo-
lutionary programming (CEP) and fast evolutionary pro-
gramming (FEP) methods, and secondly we compare the
performance of DERLS with that of particle swarm opti-
mization (PSO), attractive and repulsive PSO (arPSO) and
simple evolutionary algorithm (SEA). The results of CEP
and FEP on functions 8, 9, 10 and 11 were reported in[17]
and the results of PSO, arPSO and SEA on the same func-
tions were given in [18].

The results of the first comparison are illustrated in
Table 7. In this table we can see that DERLS is always
better than CEP on all the four functions. Compared with
FEP, DERLS is better in function 11 yet inferior on the
other three functions. The superiority of FEP on most mul-
timodal functions may possibly be explained by the Cauchy
mutation function used, which enables very good search
ability in a large neighborhood.

The results for the second part of comparison are
shown in Table 8. We can see that DERLS obviously dom-
inates PSO, arPSO and SEA on functions 8 and 11. Espe-
cially, on function 8, the differences of results between

DERLS and the other compared methods are quite large.
On function 9, DERLS outperforms standard PSO but be-
haves less good than arPSO and SEA. Finally, on function
10, the result acquired by DERLS is comparable to those
of others with only minor differences.

Based on the above analysis, we would like to rank
FEP as the best and DERLS as the second best for tackling
multimodal functions.In particular, DERLS performs much
better than the others (except FEP) in function 8, which is
the most difficult problem to solve in the experiments.

5 Conclusion

In this paper, we propose DERLS as a new DE algorithm
which embeds random local search in its structure. We
examined the capability of DERLS in solving real-valued
optimization problems in experiments and the results we
obtained are favorable. It has been shown that DERLS is
stronger in multimodal functions than classic DE. More-
over, DERLS is not difficult to implement and it takes the
same time in calculation as classic DE. On the other hand,
in unimodal functions, DERLS is not able to bring mean-
ingful improvement.

Further work for improvement of DERLS will be car-
ried out in non-fixed neighborhood for local search as well
as the adaptive control of the intensity of random local
search during the evolutionary process. As direct appli-
cations, we are going to employ DERLS to solve various
industrial design problems such as parameter optimization
for analog circuits. We will also apply and test DERLS in
machine learning tasks such as automatic learning of fuzzy
knowledge bases [19], [20] and similarity model construc-
tion [21], [22] in case-based reasoning.
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