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Abstract—The feasibility of preemptive and non-preemptive
scheduling has been well investigated on uniprocessor and
multiprocessor platforms under both Fixed Priority Scheduling
(FPS) and Earliest Deadline First (EDF) paradigms. While
feasibility of limited preemptive scheduling under FPS has been
addressed on both uniprocssor and multiprocessor platforms,
under EDF it has been investigated only on uniprocessors, and
a similar analysis for multiprocessor platforms is still missing.

In this paper, we introduce global Limited Preemptive
Earliest Deadline First (g-LP-EDF) scheduling, and propose the
associated feasibility analysis to complete the above described
feasibility analysis spectrum. Specifically, we derive a sufficient
condition that guarantees g-LP-EDF feasibility of sporadic real-
time tasks which directly provides a global Non-Preemptive
Earliest Deadline First (g-NP-EDF) feasibility test. We then
study the interplay between g-LP-EDF feasibility and processor
speed, in order to quantify the sub-optimality of g-NP-EDF in
terms of the minimum speed-up required to guarantee g-NP-
EDF feasibility of all feasible tasksets. The results presented in
this paper complement our previous results on uniprocessors,
and provide a unified result on the sub-optimality of non-
preemptive EDF on both uniprocessor and multiprocessor
platforms.

I. INTRODUCTION

The multi-core revolution has lead to a revived interest
among researchers and practitioners, particularly in the field
of real-time embedded systems, to leverage on the ability
of multiprocessing systems to provide higher performance.
However the use of multi-core systems in real-time ap-
plications requires a careful consideration of the resulting
hardware-software ecosystem. For example, preemptively
scheduling hard real-time tasks on multi-core platforms typi-
cally imply high preemption and migration related overheads
(potentially causing deadline misses) resulting from specific
hardware features, such as caches, that on the other hand sig-
nificantly improve average system-performance. Preemption
and migration overheads are typically composed of cache
related preemption and migration delays (CPMD), pipeline
delays and context switch overheads in addition to the
increased bus contention costs [1] [2] [3]. The CPMDs are
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temporal overheads incurred by a preempted task due to loss
of cache affinity, that may jeopardize the temporal correct-
ness of the system. Loss of cache affinity also increases bus
contention in the system due to frequent accesses to off-chip
memory, and translates as temporal overheads [2]. The delay
incurred by the scheduler to suspend the currently executing
task, save its context, and prepare the execution environment
for the preempting task forms the context switch overheads.
Preemptions may also require flushing of the instruction
pipeline and reloading it with new set of instructions, which
also translates as temporal overheads in the schedule. High
preemption and migration related overheads are considered
to be an emerging problem in many real-time applications
[4] [3] [1], e.g., in autonomous vehicles where data intensive
operations, such as advanced planning and tracking, form a
critical part of the software.

A major part of real-time scheduling theory deals with
fully preemptive scheduling of periodic and sporadic real-
time tasks on uniprocessor [5] [6] [7] [8] and multiprocessor
[9] [10] [11] [12] platforms. In the worst case, fully preemp-
tive scheduling can lead to prohibitively high preemption
and migration related overheads potentially causing deadline
misses [2] [13] [14]. This for example happens when 1)
there is a large number of preemptions/migrations or 2) these
preemptions/migrations occur at points in code where the
cost of preemption/migration is significantly high. Bui et. al
[15] observed that CPMDs can increase the task execution
times by 33% as the overheads can be as high as 655µs for
a single preemption.

Non-preemptive scheduling [4] [16] [17] [18] [19] is often
favored in resource constrained applications over preemptive
scheduling due to its low runtime overhead, low memory
requirements and reduced susceptibility to transient faults
[13]. However, the fact that non-preemptive scheduling can
be infeasible even at arbitrarily low processor utilization
due to blocking on higher priority tasks [20] discouraged
extensive adoption of non-preemptive scheduling. Conse-
quently, non-preemptive scheduling has been less investi-
gated when compared to preemptive scheduling since the
work by Jeffay et al. [4]. One way to address blocking
related infeasibility under non-preemptive scheduling, while
also minimizing potentially pernicious preemption costs, is



to limit preemptions to selected points in the task code such
that the resulting blocking as well as the newly introduced
preemption cost will not result in an unschedulable system.
Limiting preemptions to pre-determined points in the task
code, like non-preemptive scheduling, has the additional ad-
vantage of achieving a more simplified and efficient WCET
analysis [20]. A number of recent works [21] [22] [23]
[24] [25] examined the possibility of limiting preemptions in
order to take advantage of the best of preemptive and non-
preemptive paradigms. However, all these efforts focused
on uniprocessor systems (a detailed survey is available in
[26]). Davis et al. [27] recently presented a schedulability
analysis technique for the global fixed priority scheduling
with deferred preemptions. They showed that multiprocessor
fixed priority schedulability can be improved by carefully
choosing the task priorities as well as the length of their
final non-preemptive regions.

Resource augmentation was first introduced by Kalyana-
sundaram et al. [28], showing that faster processors can
achieve the same effect as clairvoyance. In [29], we derived
the resource augmentation bound that guarantees the fault
tolerance feasibility of a set of real-time tasks under an
error burst of known upper-bounded length. Davis et al.
[30] [31] [32] derived the upper and lower bounds on
the processor speed-up required for a fixed priority sched-
uler to schedule all the tasksets scheduled by an optimal
scheduling algorithm, leveraging on the optimality of EDF.
In their work, the ‘goodness’ or sub-optimality of FPS
with respect to an optimal scheduling algorithm such as
EDF, is quantified by the processor speed-up required to
guarantee the FPS schedulability of the set of all feasible
tasks that are schedulable by an optimal algorithm. We later
derived the resource augmentation bound that guarantees
non-preemptive feasibility of a uniprocessor feasible taskset
[33]. We showed that, augmenting the scheduler with a faster
processor provides a system designer with the possibility of
guaranteeing a specified limited preemptive behavior that
minimizes the preemption related overheads, and hence
broaden the set of schedulable tasksets.

Phillips et al. [12] showed that the resource augmentation
bound that guarantees global preemptive EDF (g-P-EDF)
feasibility of real-time tasks is equal to

(
2− 1

m

)
. Baruah et

al. [34] presented a test, improving upon [35], to determine
the global preemptive EDF feasibility of real-time tasks. This
test has a speed-up bound

(
2− 1

m

)
, and is hence a speed-

up optimal test (please see [34] for more details). In this
paper, we extend Baruah et al.’s work [34] and examine the
possibility of limiting preemptions in global EDF. We also
study how the preemptive behavior of a taskset changes with
respect to the processor speed. The main contributions of this
paper are as follows:

1) We first propose a global Limited Preemptive Earliest
Deadline First (g-LP-EDF) schedulability analysis for
sporadic real-time tasks. Specifically, we derive a

sufficient condition that guarantees that every task in
the taskset can execute non-preemptively for known
upper-bounded length L. This test can then be trivially
extended to determine the global Non-Preemptive EDF
(g-NP-EDF) feasibility of sporadic real-time tasks.

2) We then quantify the sub-optimality of g-NP-EDF
by first examining the consequence of increasing the
processor speed on g-LP-EDF feasibility, and then
deriving the upper-bound on the speed-up that guar-
antees a specified limited preemptive as well as non-
preemptive behavior of the taskset.

The rest of the paper is organized as follows: We present
the system model in Section II and derive the conditions
for g-LP-EDF feasibility in Section III, followed by the
resource augmentation bounds in Section IV. We then derive
tighter bounds of the speed-up factors in Section V before
concluding in Section VI.

II. MODELS AND NOTATIONS

In this section, we introduce the notations used in the rest
of the paper, including the task and processor model and the
scheduling model.

A. Task and Processor Model
We consider a set of n sporadic real-time tasks Γ=

{τ1, τ2, ...τn} executing on m identical processors. Each
τi is characterized by a minimum inter-arrival time Ti, a
worst case execution requirement Ci, and a relative deadline
Di ≤ Ti. The tasks are ordered according to their increasing
deadlines, i.e., Di ≤ Di+1, 1 ≤ i < n, and Dmin is
used to denote D1. Similarly, the largest execution time is
denoted by Cmax = max

∀τi∈Γ
Ci. Without loss of generality,

we assume that the default speed of all processors is s = 1.
In common with [28] [30] [31] [32] [12] [34], we make
the simplifying assumption that task execution times scale
linearly with the processor speed in order to focus on
the theoretical consequences of processor speed-up on the
preemptive behavior of real-time tasks under global EDF.
In other words we assume that when a processor that is
two times faster is used, the worst case execution time
becomes Ci

2 , ∀τi ∈ Γ. The model also allows us to use
the terms ‘processor speed-up factor’ and ‘processor speed’
interchangeably. Changing the processor speed from s = 1
to s = a, is equivalent to speeding up the processor by a
factor ‘a’.

We assume that each task τi can execute non-preemptively
for a duration Li (called its non-preemptive region), and the
largest non-preemptive execution of any such task is given
by L = max

∀τi∈Γ
(Li). Each of these tasks in Γ generates a

sequence of jobs J where a job in J is represented by Jk.
The density of a task τi is defined as δi = Ci

Di
and the

maximum density is defined as

δmax = max
∀τi∈Γ

{
Ci
Di

}



We also define

δ̂max = max
∀τi∈Γ

{
Ci

Di − L

}
B. Global Limited Preemptive Scheduling Model

We assume a deadline based scheduler: in any time
interval [ta, tf ), first m jobs having the earliest deadlines are
assigned to the m processors, with ties broken arbitrarily.
Whenever a higher priority job Ji is released and all m
processors are busy, with at least one processor executing a
lower priority job, all the lower priority jobs begin executing
non-preemptively for at most L time units. After at most L
time units, the scheduler reschedules the entire set of tasks.
In other words, Ji preempts the lowest priority executing job
after getting blocked for at most L time units, or is allocated
to the first processor that becomes idle. Since after a pre-
emption the task can resume either on the same processor or
on a different processor, for convenience, whenever we refer
to a preemption we mean preemptions and/or migrations.

C. Forced Forward Demand Bound Function

The demand of a sequence of jobs J over a time interval
of length t is defined as the cumulative execution time of
all the jobs in J scheduled in that interval. The minimum
demand of a given sequence of jobs generated over an
interval of length t is defined as the minimum amount of
execution that the sequence of jobs could require within t
in order to meet all its deadlines. This concept has been
extended to sporadic task systems, where a task τi’s maxmin
demand over an interval of length t is defined as the largest
minimum demand by any sequence of jobs that could be
legally generated by τi in t [34].

Baruah et al. [34] introduced the forced forward demand
bound function (FF-DBF) that generalized the above con-
cepts on a set of speed-σ processors. The FF-DBF of any
task τi over a time interval of length t is defined as [34]:

FF-DBF(τi, t, σ) = qiCi +


Ci if ri ≥ Di

Ci − (Di − ri)σ ifDi > ri ≥ Di − Ci

σ
0 otherwise

where, σ is a positive real-number and,

qi
def
=
⌊
t
Ti

⌋
and

ri
def
= t mod Ti

The FF-DBF of the taskset, denoted by FF-DBF(Γ, t, σ) is
given by,

FF-DBF(Γ, t, σ) =
∑
∀τi

FF-DBF(τi, t, σ)

Consequently, the FF-DBF(τi, t, σ) can be seen as the
maxmin demand of τi over an interval of length t, where the
execution outside the interval occurs on a speed-σ processor.

III. THE GLOBAL LP-EDF FEASIBILITY OF SPORADIC
REAL-TIME TASKS

We follow a method similar to the one used by Baruah
et al. in [34]. Let A denote a work conserving limited pre-
emptive algorithm that misses a deadline while scheduling
some legal collection of jobs generated by the taskset Γ.
We derive a condition for this to be true by examining A’s
behavior on some minimal legal collection of jobs generated
by Γ on which it misses a deadline. Let t0 denote the time
instant at which a deadline miss occurred due to the limited
preemptive execution of some job, and let J1 be the job that
missed the deadline. The arrival time of J1 is denoted as t1.
Let s denote a constant satisfying δ̂max ≤ s ≤ 1. Since J1

misses a deadline due to a blocking of duration no greater
than L, it must be the case that J1 has executed for strictly
less than (t0 − t1 − L)× s.

Consider a sequence J ′ of jobs Ji, time instants ti, and
an index q according the following pseudo-code:

1 for i← 2, 3, ... do
2 Let Ji denote a job that
3 -arrives at some time instant ti < ti−1;
4 -has a deadline after ti−1;
5 -has not completed execution by ti−1;
6 -has executed for strictly less than (ti−1 − ti)× s

time units over the interval [ti, ti−1);
7 if there is no such job then
8 q = (i− 1);
9 break out of for loop;

We define a subset J ⊂ J ′ comprising of k jobs: Let Jk
represent the last job among the jobs in J ′ that is blocked
by a lower priority job— so that we can analyze the effect
of blocking on the deadline miss at t0. Then the subset J is
composed of the jobs Ji, i = k, ..., 1. We then calculate the
total executions that occur in the schedule over the interval
[tk, t0), that lead to a deadline miss at t0.

Let xi denote the total length of the time intervals in
[ti, ti−1) during which job Ji executes.

Observation III.1.
k∑
i=1

xi < (t0 − tk − L)× s

Proof: According to our assumption, for each job Ji,
2 ≤ i ≤ k,

xi < (ti−1 − ti)× s

Summing up over all 2 ≤ i ≤ k, we get:

k∑
i=2

xi < (t1 − tk)× s



Remember that J1 has executed for

x1 < (t0 − t1 − L)× s

Therefore,
k∑
i=2

xi + x1 < (t1 − tk)× s+ (t0 − t1 − L)× s

Hence,
k∑
i=1

xi < (t0 − tk − L)× s

Let W denote the amount of execution that occurs in the
schedule over the interval [tk, t0). In [tk, t0) lower priority
job executions may interfere with the jobs in J leading
to a deadline miss at t0— we refer to these executions
as the blocking executions. Let Ŵ denote the amount of
execution that occurs in the schedule over the interval
[tk, t0), excluding the blocking executions that interfere with
J . Similarly, let Wi denote the amount of execution that
occurs over the interval [ti, ti−1), excluding the blocking

executions that interfere with J , and hence Ŵ =
k∑
i=1

Wi.

Finally, let Yi denote the amount of blocking executions
during the interval [ti, ti−1), that interfere with J , leading
to a deadline miss at t0.

In the following, we derive a lower bound on W , which

is the sum of Ŵ and
k∑
i=1

Yi.

Observation III.2.

W > (m− (m− 1)× s) (t0 − tk − L) +mL

Proof: We have assumed that Ji has not completed
its execution by time instant ti−1. Over [ti, ti−1), all m
processors must be executing i) Ji, ii) jobs having higher
priority than job Ji or iii) blocking executions from lower
priority tasks. Therefore, whenever Ji or blocking executions
are not using the processors, all m processors must be
executing higher priority jobs.

The lower bound for Wi, 2 ≤ i ≤ k, is given by:

Wi ≥ m(ti−1 − ti − xi) + xi − Yi

Therefore, the duration for which higher priority jobs exe-
cute in [tk, t0) is obtained by summing up all Wis:

Ŵ ≥ m(t0 − tk)− (m− 1)

k∑
i=1

xi −
k∑
i=1

Yi

Adding and subtracting mL to the right hand side of the
equation, we get:

Ŵ ≥ m(t0 − tk)−mL+mL− (m− 1)

k∑
i=1

xi −
k∑
i=1

Yi

Which gives:

Ŵ ≥ m(t0 − tk − L)− (m− 1)

k∑
i=1

xi +mL−
k∑
i=1

Yi

Substituting for
k∑
i=1

xi from Observation III.1, we obtain:

Ŵ > m(t0−tk−L)−(m−1)(t0−tk−L)×s+mL−
k∑
i=1

Yi

Which gives

Ŵ > (m− (m− 1)× s) (t0 − tk − L) +mL−
k∑
i=1

Yi

We get W by adding Ŵ and
k∑
i=1

Yi:

W > (m− (m− 1)× s) (t0−tk−L)+mL−
k∑
i=1

Yi+

k∑
i=1

Yi

⇒W > (m− (m− 1)× s) (t0 − tk − L) +mL

In the following, we derive an upper-bound on Yi that
denotes the amount of blocking executions happening during
the interval [ti, ti−1) interfering with job J1, leading to its
deadline miss.

Observation III.3.
k∑
i=1

Yi ≤ mL

Proof: According to our assumption Jk is the only
job in J that is blocked. This means that when job Jk is
released (at time instant tk), p ≥ 1 processors are executing
lower priority jobs. Therefore, the total blocking executions
happening in the interval [tk, t0), over all m processors, is
pL.

When all m processors are executing lower priority jobs
at the release time of Jk, all these jobs execute non-
preemptively for a duration L, and no more blocking ex-
ecutions occur after this (remember our assumption that Jk
is the only job in J that is blocked). Therefore, the maximum
blocking executions happening in the interval [tk, t0) over
all m processors is at most mL.

We now find an upper-bound on W in the following
observation.

Observation III.4. If the work-conserving algorithm is g-
LP-EDF, then,

W ≤ FF-DBF(τ, (t0 − tk), s) +mL

Proof: We are analyzing a minimal unschedulable col-
lection [34] of jobs J , where a deadline miss occurred due



to a limited preemptive execution of at most L time units.
Since the algorithm is g-LP-EDF, and the jobs in J do not
block each other, they execute according to their deadlines.
All the jobs in J (i.e., the jobs that are released in [tk, t0))
have their deadlines within the interval [tk, t0).

The amount of execution that jobs of any task τi contribute
to W is bounded from above by the scenario in which a job
of τi has its deadline at the end of the interval t0, and the
prior jobs arrive as early as possible. In this scenario, the
jobs of τi that contribute to W include:

1) at least qi
def
= b (t0−tk)

Ti
c jobs of τi with releases and

deadlines entirely in [tk, t0), and
2) (perhaps) an additional job that has its deadline at time

instant tk + ri, where ri
def
= (t0 − tk) mod Ti

In the case 2 above, there are two sub-cases:
2.a ri ≥ Di: In this case, the additional job with deadline

at tk+ri arrives at or after tk and hence its contribution
is Ci.

2.b ri < Di: In this case, the additional job with deadline
at tk+ri arrives prior to tk. Hence this job should have
completed at least (Di−ri)×s units of execution prior
to time instant tk. Therefore, the contribution of this job
to W is at most max(0, (Di − ri)× s).

From 1 and 2 above, we can conclude that the total contribu-
tion of τi to W is upper-bounded by FF-DBF(τi, t0− tk, s).
Summing up the total contributions of all such τi ∈ Γ, we
get,∑
∀τi∈Γ

FF-DBF(τi, (t0 − tk), s) = FF-DBF(Γ, (t0 − tk), s)

Finally, according to observation III.3, the total duration
for which blocking executions execute in [tk, t0) is upper-
bounded by mL. Hence,

W ≤ FF-DBF(Γ, (t0 − tk), s) +mL

Observation III.5. Suppose that a constrained deadline
sporadic task system Γ is not g-LP-EDF feasible upon m
unit-speed processors. For each s, s ≥ δ̂max, there is an
interval of length t such that

FF-DBF(Γ, t, s) > (m− (m− 1)s)(t− L)

Proof: The proof follows by chaining the lower bound
on W of Observation III.2 with the upper-bound of Obser-
vation III.4, where t = (t0 − tk).

The contrapositive of the Observation III.5 above repre-
sents a global limited preemptive EDF schedulability condi-
tion.

Theorem III.1. A taskset Γ, where every τi ∈ Γ executes
non-preemptively for a duration of at most Li time units, is
g-LP-EDF feasible if ∃σ : σ ≥ δ̂max such that ∀t ≥ 0,

FF-DBF(Γ, t, σ) ≤ (m− (m− 1)σ)(t− L)

Speed (slower) 

Speed (faster) 

Tasksets feasible 
at speed s=1 

x Tasksets feasible 
at speed s=x 

Tasksets feasible 
at speed s=1 

1

Figure 1. Feasibility bucket for tasksets on m processors (m ≥ 1)

where L = max
∀τi∈Γ

(Li)

Proof: The proof follows from the fact that we take the
contrapositive of Observation III.5.

The intuition behind the above condition is that, in any
time interval of length t, the total amount of execution that
has to necessarily happen in that interval must be no greater
than t−L, so that even if the tasks are blocked (for a duration
≤ L), the tasks complete their execution no later than t.
Instantiating the above theorem in the context of a fully
non-preemptive scheduler, we get the following result for
g-NP-EDF scheduling.

Corollary III.1. A taskset Γ is g-NP-EDF feasible if ∃σ :
σ ≥ δ̂max such that ∀t ≥ 0

FF-DBF(Γ, t, σ) ≤ (m− (m− 1)σ)(t− Cmax)

where Cmax = max
∀τi∈Γ

(Ci)

We have thus obtained sufficient conditions for global
limited preemptive and non-preemptive EDF scheduling of
sporadic real-time tasks. We can now use an algorithm
similar to the one presented in [34] to determine the g-LP-
EDF schedulability of a given taskset.

IV. GLOBAL LP-EDF FEASIBILITY VS. PROCESSOR
SPEED

In this paper, one of our aims is to study how the preemp-
tive behavior of real-time tasks change with processor speed
under global EDF based scheduling on a multiprocessing
platform, which also allows us to quantify the sub-optimality
of g-NP-EDF scheduling in terms of bounds on the required
speed-up that guarantees g-NP-EDF feasibility. In a previous
work [33], we introduced the concept of feasibility bucket
that illustrated how preemptive behavior of uniprocessor
feasible real-time tasksets change with the processor speed.
In Figure 1, where we illustrate the concept of feasibility
bucket, the base of the bucket represents the set of real-
time tasksets feasible on m identical processors (m ≥ 1)
of speed s = 1. On increasing the speed to s = x more
tasksets become feasible, and the set of tasksets that were



Speed (slower) 

uniprocessor NP-EDF 
feasibility 

uniprocessor LP-EDF 
feasibility 

4L
Dmin

4Cmax
Dmin

1 uniprocessor 
feasibility 

Speed (faster) 

Figure 2. The uniprocessor LP-EDF feasibility bucket

originally feasible at speed s = 1 becomes a subset of
the set of tasksets feasible at speed s = x. In Figure 2
we illustrate our previous results, the feasibility bucket for
uniprocessor Limited Preemptive EDF (LP-EDF) feasibility
of real-time tasks [33]. The base of the bucket represents
the uniprocessor feasible tasksets on a processor of speed
s = 1, and on increasing the processor speed to 4L

Dmin
,

these tasksets become LP-EDF feasible on a uniprocessor.
On further increasing the processor speed to 4Cmax

Dmin
, they

become NP-EDF feasible on a uniprocessor.
In this paper, we extend the uniprocessor LP-EDF feasi-

bility bucket presented in Figure 2 to g-EDF— this is pre-
sented in Figure 3. The dotted bucket inside represents the
uniprocessor feasibility bucket, and is included to illustrate
how the uniprocessor EDF results extend to multiprocessor
g-EDF. We refer to this figure as the feasibility bucket for
global-LP-EDF scheduling of real-time tasks. The base of
the outer bucket denotes the set of all tasksets feasible on
m-processors of speed s = 1, and are henceforth referred to
as m-processor feasible tasksets. When the speed of all m
processors is increased to

(
2− 1

m

)
, all m-processor feasible

tasksets are guaranteed g-P-EDF feasibility (as shown in
[12]). We show that if the speed of all m processors is
further increased to

(
2− 1

m

)
4L

Dmin
, all m-processor feasible

tasksets are guaranteed g-LP-EDF feasibility such that every
task executes non-preemptively for a duration no more than
L. We also show that on increasing the speed of all m
processors to

(
2− 1

m

)
4Cmax

Dmin
, which corresponds to the

height of the outer bucket, all m-processor feasible tasksets
are guaranteed g-NP-EDF feasibility (on m-processors).

We now recall the following result from Baruah et al.
[34], which is a sufficient condition for global preemptive
EDF feasibility.

Theorem IV.1. A taskset Γ is g-P-EDF feasible if ∃σ : σ ≥
δmax such that ∀t ≥ 0,

FF-DBF(Γ, t, σ) ≤ (m− (m− 1)σ)t

We assume that the taskset is initially g-P-EDF feasible
and then use the above result by Baruah et al. [34] to
derive the following bound on the required speed-up that

Speed (slower) 

Bounds on Multiprocessors Bounds on Uniprocessors 

uniprocessor NP-EDF 
feasibility 

uniprocessor LP-EDF 
feasibility 
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1 m (and uni) processor 
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Figure 3. The multiprocessor g-LP-EDF feasibility bucket

guarantees g-LP-EDF feasibility. We first assume that the
condition in Theorem III.1 is not satisfied, and then calculate
the processor speed-up required to satisfy the condition in
Theorem III.1.

Lemma IV.1. The speed s that guarantees g-LP-EDF fea-
sibility of any g-P-EDF feasible taskset Γ, such that every
τi ∈ Γ can execute non-preemptively for a duration of at
most L, is given by

s ≤
(

x

x− 1

)
where, x = t

L , ∀t > 0.

Proof: According to Theorem III.1, if a taskset is g-
LP-EDF feasible,

∃σ : σ ≥ δ̂max
such that ∀t ≥ 0 and L = max

∀τi∈Γ
(Li),

FF-DBF(Γ, t, σ) ≤ (m− (m− 1)σ)(t− L)

Suppose this is not true, i.e., ∀σ, ∀t ≥ 0,

FF-DBF(Γ, t, σ) > (m− (m− 1)σ)(t− L)

Since the taskset is g-P-EDF feasible, according to Theorem
IV.1,

∃σ : σ ≥ δmax,∀t ≥ 0

FF-DBF(Γ, t, σ) ≤ (m− (m− 1)σ)t

To achieve g-LP-EDF feasibility we can speed-up all m
processors such that, for the value of σ for which the Γ
is g-P-EDF feasible, the following holds true:

∀t ≥ 0 :
FF-DBF(Γ, t, σ)

s
≤ (m− (m− 1)σ)(t− L)

⇒ FF-DBF(Γ, t, σ) ≤ s ((m− (m− 1)σ)(t− L))

This means that the following condition should be satisfied
(since the taskset is both g-LP-EDF and g-P-EDF feasible).

s[m− (m− 1)σ](t− L) ≤ [m− (m− 1)σ]t⇒ s ≤ t

t− L



Substituting for x = t
L , we get,

s ≤ x

x− 1

We assumed that the taskset is m-processor feasible (and
also g-P-EDF feasible), and hence the maximum execution
requirement that has to be completely scheduled in any in-
terval of length t is at most t, over all processors. Informally
speaking, the above lemma indicates that it is sufficient to
speed-up all the processors such that the execution require-
ment of length t finishes executing in no greater than t−L
time units to guarantee g-LP-EDF feasibility (so that lower
priority jobs can utilize this slack of length L to execute
non-preemptively for at most L units).

Lemma IV.2. The speed s that guarantees g-LP-EDF fea-
sibility of an m-processor feasible taskset Γ, such that every
τi ∈ Γ can execute non-preemptively for a duration of at
most L, is given by

s ≤
(

2− 1

m

)(
x

x− 1

)
where, x = t

L , ∀t > 0.

Proof: According to Phillips et al. [12], the speed-up
required to guarantee g-P-EDF feasibility of all m-processor
feasible tasksets Γ is upper-bounded by

(
2− 1

m

)
. Lemma

IV.1 gives the processor speed-up bound that guarantees g-
LP-EDF feasibility of a g-P-EDF feasible taskset. Therefore,
the speed-up bound that guarantees g-LP-EDF feasibility of
all m-processor feasible tasksets is obtained by multiplying
the respective bounds.

We now derive the speed-up bound when t
L takes different

values, e.g., in the following lemma we derive the speed-up
bound when t

L ≥ 2.

Lemma IV.3. The speed s that guarantees g-LP-EDF fea-
sibility of an m-processor feasible taskset Γ, such that every
τi ∈ Γ can execute limited preemptively for a duration of at
most L, where t

L ≥ 2 and t > 0, is given by

s ≤
(

2− 1

m

)
× 2

Proof: Evaluating the limit of the equation in lemma
IV.2 at x = 2, we get

s =

(
2− 1

m

)
× 2

Evaluating the limit using l’Hopital’s rule as x tends to
infinity (∞), we get

s =

(
2− 1

m

)
Therefore, for any value of x ∈ [2,∞],

s ≤
(

2− 1

m

)
× 2

Lemma IV.4. The speed s that guarantees the g-LP-EDF
feasibility of an m-processor feasible taskset Γ, such that
every τi ∈ Γ can execute limited preemptively for a duration
of at most L, where 1 ≤ t

L < 2 and t > 0, is given by

s ≤
(

2− 1

m

)
× 4

Proof: When 1 ≤ t
L < 2, for any t > 0, we have

t ≥ L and t < 2L. Since the taskset is m-processor feasible,
in the worst case, the maximum execution requirement that
has to execute during any time interval of length t, over
all processors, is equal to t. Therefore, to guarantee limited
preemptive feasibility even under a blocking of at most L
units, it is sufficient to speed-up all the processors such
that execution requirement t in every time interval finish
in t−L time units. Informally speaking, we need to speed-
up all m-processors to create a slack of length L in every
time interval, which can be utilized by lower priority jobs
to finish executing their non-preemptive regions without
causing deadline misses.

Let us increase the processor speed by a factor of 2. We
will effectively have t′ = 2t clock ticks in the time interval
t over all processors. Therefore, t′

L ≥ 2 since 1 ≤ t
L < 2.

From lemma IV.3, the speed-up s′ required to guarantee g-
LP-EDF feasibility for the increased processor speed is

s′ ≤
(

2− 1

m

)
× 2

As we have already increased the processor speed by a
factor of 2, the processor speed that guarantees the g-LP-
EDF feasibility of the taskset Γ when 1 ≤ t

L < 2 is

s ≤
(

2− 1

m

)
× 4

Lemma IV.5. The speed s that guarantees the g-LP-EDF
feasibility of an m-processor feasible taskset Γ, such that
every τi ∈ Γ can execute limited preemptively for a duration
of at most L, where 0 < t

L < 1 and t > 0, is given by

s ≤
(

2− 1

m

)
× 4L

t

Proof: On increasing the processor speed to s = L
t ,

when t < L, the number of available clock ticks in the time
interval t increases from t to t′ = t × L

t = L, and thus
t′

L = 1. This is a special case of lemma IV.4, and hence

s′ ≤
(

2− 1

m

)
× 4

Since we had already increased the processor speed by L
t ,

the speed s that guarantees g-LP-EDF feasibility is

s ≤
(

2− 1

m

)
× 4L

t



We obtain the following theorem by combining the speed-
up bounds for the three cases presented above.

Theorem IV.2. The speed s that guarantees the g-LP-EDF
feasibility of an m-processor feasible taskset Γ, such that
every τi ∈ Γ can execute limited preemptively for a duration
L in any time interval t > 0, is given by

s ≤
(

2− 1

m

)
× 4L

t

Proof: In the general case, L is bounded by the max-
imum of the execution times of the tasks in the taskset
(i.e., for their fully non-preemptive execution), and t by
the shortest deadline. Consequently, ∀τi, t

L > 0. It follows
from Lemmas IV.3 IV.4 IV.5 that the speed-up required to
guarantee g-LP-EDF feasibility in the general case is

s ≤
(

2− 1

m

)
× 4L

t

When t
L ≥ 2, we obtain

s ≤
(

2− 1

m

)
× 4

t
L

=

(
2− 1

m

)
× 4

2
=

(
2− 1

m

)
× 2

Similarly, when 1 ≤ t
L < 2, we obtain

s ≤
(

2− 1

m

)
× 4

t
L

=

(
2− 1

m

)
× 4

1
=

(
2− 1

m

)
× 4

Finally when 0 < t
L < 1, we have

s ≤
(

2− 1

m

)
× 4L

t

Therefore, for any t
L > 0, the speed-up required that

guarantees g-LP-EDF feasibility is

s ≤
(

2− 1

m

)
× 4L

t

Corollary IV.1. The speed s that guarantees the g-LP-EDF
feasibility of an m-processor feasible taskset Γ, such that
every τi ∈ Γ can execute limited preemptively for a duration
L, is given by

s ≤
(

2− 1

m

)
× 4L

Dmin

This is straightforward, as the value of t that maximizes(
2− 1

m

)
× 4L

t is the smallest value of t at which the
condition in Theorem III.1 should be evaluated, and is given
by t = D1 (Dmin) [34]. We obtain the sub-optimality
of g-NP-EDF by substituting L = Cmax, and is formally
presented in the following.

Corollary IV.2. The speed s that guarantees the g-NP-EDF
feasibility of an m-processor feasible taskset Γ is given by

s ≤
(

2− 1

m

)
× 4Cmax

Dmin

We hence obtain the resource augmentation bound, specif-
ically an upper-bound on the required processor speed-up,
that guarantees g-LP-EDF feasibility.

V. IMPROVED RESOURCE AUGMENTATION BOUNDS

In section IV, we presented a unified result on how the
preemptive behavior of a set of real-time tasks changes
with the processor speed on a multiprocessor system under
global EDF based scheduling. In this section, we derive
tighter speed-up bounds for the cases in Lemmas IV.4 and
IV.5. We know from Lemmas IV.4 and IV.5 that:

1) If 1 ≤ t
L < 2, then s ≤

(
2− 1

m

)
× 4

2) If 0 < t
L < 1, then s ≤

(
2− 1

m

)
× 4L

t

In the proof for case 1 above (i.e., Lemma IV.4), we
applied the bound derived in lemma IV.3 to obtain the
result. Similarly, we applied the bound derived in Lemma
IV.4 to derive the bound for case 2 above (i.e., Lemma
IV.5). However, if we examine the amount of execution
requirement that can be additionally executed per unit speed-
up, a tighter bound can be obtained for the two cases
enumerated above, as detailed in Observations V.1 and V.2.

Observation V.1. A tighter bound on the speed s that
guarantees the g-LP-EDF feasibility of an m-processor
feasible task set Γ, such that every τi ∈ Γ can execute limited
preemptively for a duration of at most L, where 1 ≤ t

L < 2
and t > 0, is given by

s ≤
(

2− 1

m

)
× 2

Proof: According to our assumption the task set is
m-processor feasible. Therefore, in any time interval of
length t, the maximum execution requirement that has to be
completely scheduled is at most t, over all the processors. To
guarantee limited preemptive feasibility, we need to ensure
that the execution requirement t completes in t − L time
units on every processor (so that lower priority jobs can
utilize this slack of length L to execute non-preemptively
for at most L units).

We know that, 1 ≤ t
Li

< 2 and thus we have t ≥ L
and t < 2L. In the worst case, all m-processors are fully
occupied during the interval of length t. Therefore it is not
possible to feasibly execute the non-preemptive region of
length L. Let us assume an increase in the processor speed
by a factor of 2. This implies that within an interval of length
t, there are in effect t′ = 2t clock ticks. It is clear that



2t ≥ L + t since t ≥ L. Thus, any lower priority job can
execute non-preemptively on any processor for a duration
L within t without causing deadline misses. Therefore, the
speed-up required for this case is exactly upper-bounded by
2.

According to Phillips et al. [12] the upper-bound on the
speed-up that guarantees g-P-EDF feasibility of the set of
all m-processor feasible task sets is

(
2− 1

m

)
. Therefore, to

guarantee g-LP-EDF feasibility, when 1 ≤ t
Li
< 2 and t >

0, the value of s should be

s ≤
(

2− 1

m

)
× 2

Observation V.2. A tighter bound on the speed s that
guarantees the g-LP-EDF feasibility of an m-processor
feasible task set Γ, such that every τi ∈ Γ can execute limited
preemptively for a duration of at most L, where 0 < t

L < 1
and t > 0, is given by

s ≤
(

2− 1

m

)
× 2L

t

Proof: On increasing the processor speed to s = L
t ,

the number of clock ticks in any time interval t increases
from t to t′ = t× L

t = L. We can now execute the original
execution requirement of length t and L − t units of the
non-preemptive region L, using the L clock ticks in the time
interval t at speed S = L

t . Let the remaining length of the
non-preemptive region that cannot be executed without a
deadline miss in the interval t, be denoted by L′ = t. We
know that t < L, thus, in effect we get t′

L′ = L
t > 1.

Using lemma IV.3, and observation V.1, the exact upper-
bound on the speed (denoted by s′), that guarantees g-LP-
EDF feasibility is s′ ≤

(
2− 1

m

)
× 2.

Since we had already increased the processor speed by
L
t , the exact upper-bound on the actual speed s is:

s ≤
(

2− 1

m

)
× 2L

t

We however do not integrate these results to our main sec-
tion for the sake of obtaining a unified result on the effect of
processor speed on the preemptive behavior. This is because
the bound s ≤

(
2− 1

m

)
× 2L

t does not generalize to the case
when t

L ≥ 2. When t
L ≥ 2, we get s ≤

(
2− 1

m

)
, which

contradicts Lemma IV.3. However, they are interesting since
they indicate that the actual bound on the speed-up required
to guarantee the feasibility of a specified limited preemptive
behavior is, in practice, lower than the theoretically derived
one.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we derived a sufficient condition for g-
LP-EDF feasibility of sporadic real-time tasks. Our test

builds on the well known g-P-EDF feasibility test presented
by Baruah et al. [34]. We also demonstrate how g-LP-
EDF feasibility changes with respect to processor speed,
and use this to quantify the sub-optimality of g-NP-EDF.
Remarkably, our results on uniprocessors extend directly
to the multiprocessor case. This allows us to present a
unified result on how the feasibility of limiting preemptions
under EDF based scheduling changes with processor speed
on uniprocessor and multiprocessor platforms, enabling us
to present a unified result on the sub-optimality of non-
preemptive EDF on both the platforms. The results presented
in this paper can be applied to account for suspensions in
global EDF. Current multiprocessor schedulability analysis
techniques, particularly all the global EDF analysis, are
unable to account for suspensions [36]. If a taskset is deemed
g-LP-EDF feasible by our method, in every time interval
there exists a slack of length L on all m processors. In
the context of a limited preemptive scheduler, this slack of
length L enables the limited preemptive execution of lower
priority tasks for a duration of at most L. However, in the
context of a fully preemptive scheduler, tasks can utilize this
slack to potentially suspend for a duration of no more than
L, without causing a deadline miss— a detailed study will
be presented in a future work.

This paper opens up a number of additional questions
on real-time multiprocessor scheduling. As a future work,
we plan to examine if the relationship between speed and
preemptive behavior holds for any sustainable scheduler. We
also plan to examine the effects of having more processors
on the preemptive behavior, and how it influences the speed-
up bound. Information about the bound on the number
of processors, and bound on the speed-up may allow us
to design more efficient scheduling algorithms and derive
corresponding schedulability tests.
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VII. APPENDIX

This appendix corrects a minor representational error in
the paper, specifically in Theorem IV.2. In Theorem IV.2,
the speed-up bound in given as,

s ≤
(

2− 1

m

)
× 4L

t

However, the above equation does not emphasize on the fact
that, instead of the value given by L

t , we should consider
the limiting values of L

t , given by,
1
2 if t

L ≥ 2
1 if 1 ≤ t

L < 2
L
t if 0 < t

L < 1

In order to integrate this information to the theorems, we
define a function f(L, t) given by,

f(L, t) =


1
2 if t

L ≥ 2
1 if 1 ≤ t

L < 2
L
t if 0 < t

L < 1

The speed-up bound in Theorem IV.2 should be:

s ≤
(

2− 1

m

)
× 4f(L, t)

Therefore, the speed-up bound in corollary IV.1 should be:

s ≤
(

2− 1

m

)
× 4f(L,Dmin)

Similarly, the speed-up bound in Corollary III.1 should be:

s ≤
(

2− 1

m

)
× 4f(Cmax, Dmin)

Consequently, the revised uniprocessor feasibility bucket is
given in Figure 4 and the revised feasibility bucket for global
EDF is given in Figure 5.
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feasibility 

4 f (L,Dmin )

uniprocessor NP-EDF 
feasibility 

4 f (Cmax,Dmin )
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1
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x
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Figure 4. The revised uniprocessor LP-EDF feasibility bucket

Bounds on Multiprocessors Bounds on Uniprocessors 
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Figure 5. The revised multiprocessor g-LP-EDF feasibility bucket


