
A Server-based Approach for Overrun Management
in Multi-Core Real-Time Systems

Meng Liu1, Moris Behnam1, Shinpei Kato2, Thomas Nolte1

1Mälardalen University, Västerås, Sweden
2Nagoya University, Nagoya, Japan

Email: 1{meng.liu, moris.behnam, thomas.nolte}@mdh.se
2shinpei@is.nagoya-u.ac.jp

Abstract—This paper presents a server-based framework for
task overrun management in multi-core real-time systems. Unlike
most existing scheduling methods which usually assume a single
upper bound of the Worst-Case Execution Time (WCET) for
each task, our approach targets scenarios with task overruns.
The main idea of our framework is to employ Synchronized
Deferrable Servers (SDS) to deal with globally scheduled task
overruns, while a partitioned scheduling approach is applied on
regular task executions. Moreover, we provide a deterministic
Worst-Case Response Time (WCRT) analysis focusing on hard
timing constraints, along with a probabilistic analysis of Dead-
line Miss Ratio (DMR) for soft real-time applications. In the
evaluation phase, we have implemented two types of experiments
evaluating different timing constraints.

I. INTRODUCTION

A. Motivation
The motivation of this paper originates from the overrun

problem in some industrial real-time embedded systems. For
some applications the estimated Worst-Case Execution Time
(WCET) may be violated during runtime. For example, path
planning and perception tasks in mobility robots have diversity
in their execution times. As a result, if we do not handle
task overruns in a proper way, the reliability of a system
can be seriously impacted. This kind of problem has been
addressed in [1], where a resource reservation methodology
is proposed. Due to the usage of resource reservation mech-
anisms, systems can adapt themselves to runtime changes.
Under resource reservation mechanisms, each task (or task
set) can have a reserved processor bandwidth, such that it
will not be influenced by emergent incidents (e.g. overruns
from other tasks). Nevertheless, as far as we know, for most
existing resource reservation mechanisms, the scenario that
the execution of a certain task exceeds its reserved bandwidth
has not been well concerned from the schedulability point
of view, especially looking at the context of multi-core real-
time systems. In other words, due to the task isolation by
resource reservation mechanisms, the overrun of a task may
not impact the execution of other tasks. However, the actual
overrun of this particular task is not well managed in most

This work is supported by the Swedish Research Council, via the research
project START.

existing approaches, and as a result the schedulability for the
task with overruns may be very low.

On another hand, in many real-time control applications,
the execution time of a task may vary greatly [2]. For those
applications, a task usually has a short execution time during
most of the time, while the WCET rarely occurs. As a result,
the use of the WCET can obviously affect the performance
optimization of a system. This problem can be even worse
in soft real-time systems. Therefore, we need a scheduling
framework which can handle the above problem and at the
same time guarantee system schedulability. Some works tar-
geting a similar problem have been proposed (e.g. [2][3]).
In those works, each task gets a reserved bandwidth based
on their mostly occurred execution time, while the executions
exceeding the reserved capacity (e.g. when the WCET occurs)
are handled by an overrun management. Unfortunately, those
works only focus on single-core systems.

In order to tackle the overrun problem in the setting of
multi-core systems, in this paper, we present a new Synchro-
nized Deferrable Server (SDS) based hierarchical scheduling
framework to handle task overruns. Moreover, schedulability
analysis is provided targeting both hard and soft real-time
applications.

B. Contributions

• We propose an SDS-based scheduling approach for multi-
core real-time systems, which, we believe, is the first
framework concerning the holistic schedulablity of both
regular task executions and overruns in multi-core real-
time systems. In our framework, task overruns are only
processed in the globally shared servers. By isolating
overruns from regular task executions, each task can get a
guaranteed service for its regular execution, and overruns
can be processed by the spare slacks in the system via
SDSs. As a result, our framework can spare many tasks
from missing their deadlines due to the occurrence of
overruns in the system. This framework can be utilized in
different ways. For example, the concept of task overruns
in this paper can be considered as extra fault recovering
executions from a fault-tolerant perspective, or another
critical level of executions from a mixed-criticality point
of view.

• A deterministic Worst-Case Response Time (WCRT)
analysis for our framework is provided. This analysis
can provide a sufficient schedulability test regarding hard
timing constraints.

• We also propose a method to compute an upper bound
of the Deadline Miss Ratio (DMR) of each task in
our framework targeting soft real-time applications. The
estimated DMR can be utilized for variant purposes. For
example, it can be used to predict temporal drops of frame
rates for path planning and perception tasks.

• Regarding different timing constraints, we have imple-
mented a number of experiments. We explicitly exam-
ined the effects of different system parameters. The
comparisons between different allocation algorithms and
different server bandwidth selection schemes are provided
along with discussions regarding the observations. Ac-
cording to the experimental results, our global overrun
management framework always outperforms the local
overrun-handling solutions.

C. Related Work

A lot of researchers have been working on task schedul-
ing problems for multi-core real-time systems. The tradi-
tional scheduling methods for multi-core systems can be
categorized into two types: partitioned and global scheduling.
In partitioned scheduling, tasks are statically allocated on
different processors. Once a task is assigned to a certain
processor, it cannot migrate to any other processors. Due
to this feature, the tasks in the same processor can always
be scheduled under uniprocessor scheduling algorithms (e.g.
Rate Monotonic (RM) [4], Deadline Monotonic (DM) [5],
Earliest Deadline First (EDF) [6]). While the disadvantage
of partitioned scheduling is that the task allocation problem
can be considered as a bin packing problem which is NP-hard
[7]. Under global scheduling, tasks are usually controlled in
a common queue shared among processors, and a task can
migrate from one processor to another. In this case, those
well developed theories for uniprocessors may not be valid
any more, because different features of multi-core systems
(e.g. parallel executions) need to be taken into account. An-
other type of approach which is known as semi-partitioned
scheduling has also been developed (e.g. [8][9]). This type
of scheduling is a combination of the traditional partitioned
and global scheduling, where some tasks are partitioned on
different processors and the other tasks are globally scheduled.

Some works have also been proposed regarding hierarchical
scheduling approaches (e.g. [10][11][12][1]). Under hierarchi-
cal scheduling, a certain processor bandwidth (i.e. usually
denoted by a server) can be reserved for different purposes
(e.g. to handle aperiodic tasks), and different schedulers can
be integrated in one system. Due to the usage of resource reser-
vation mechanisms, systems can adapt themselves to runtime
changes. Under resource reservation mechanisms, each task (or
task set) can have a reserved processor bandwidth, such that
it will not be influenced by emergent incidents (e.g. overruns
from other tasks). In [13], the authors proposed a Synchro-

nized Deferrable Server (SDS) based hierarchical scheduling
method, where the migrating tasks are processed only in the
globally shared servers. Our framework can be considered as
a type of hierarchical scheduling employing SDSs, where both
partitioned and global scheduling are involved.

Several works focusing on the overrun problems have been
proposed in literature. In [2], the authors present an approach
to handle task overruns targeting the EDF algorithm. They
proposed a rate adaption method based on the Constant
Bandwidth Server algorithm [14] to fully utilize a processor. In
[3], the authors compared several scheduling algorithms con-
sidering task overruns. These algorithms include both classical
priority based (DM and EDF) and server based scheduling
algorithms. However, most of the existing scheduling frame-
works considering task overruns only focus on single core
systems, and our framework targets multi-core systems.

The rest of this paper is organized as follows. Section II
introduces the system model and the scheduling policy of our
framework. In Section III, we propose a deterministic WCRT
analysis, as well as a probabilistic analysis of DMRs. The
results and observations of our experiments are discussed in
Section IV. Finally, in Section V, we conclude the paper and
provide some thoughts about future works.

II. SYSTEM MODEL

A. Task Model

In our model, a multi-core system includes a set of pe-
riodic or sporadic tasks k = {τ1,τ2, ...,τN}. Each task can
be characterized as τi = {Ti,

−→
Ci ,Pi,Di}. A period Ti denotes

the minimum inter-arrival times between successive instances
of a task. A matrix

−→
Ci represents the execution times of a

task along with the corresponding probabilities, which will be
explained in detail in the next paragraph. Each task owns a
fixed priority Pi, which is used for the local scheduling on
a processor (i.e. the priority of a task has nothing to do with
any other tasks which are executed on another processor). The
timing constraint is given by the relative deadline Di of a task.
A system is considered to be acceptable when the Deadline
Miss Ratio (DMR) (i.e. the probability of the response time of
a random task instance to exceed its deadline) does not exceed
a certain bound P̂rDMR. In a valid hard real-time system, all the
tasks are supposed to meet their respective deadlines (i.e. the
response times do not exceed their deadlines), which means
that P̂rDMR

= 0. In this paper, we only assume constrained
deadlines (i.e. Di ≤ Ti). Due to the fact that in our task
model, the regular execution time of a task is given by an
upper bound instead of a certain distribution, we can only
generate a corresponding upper bound of the response time
of a regular execution. As a result, the DMRs computed in
this paper only focus on the occurrence of overruns, which
is different from the concept of DMR used in some existing
probabilistic analysis (e.g [15]). In other words, for each task
τi, our analysis provides an approximated upper bound of
its DMR rather than an exact DMR. Moreover, we assume
that overheads caused by preemptions and migrations are

negligible or included in the execution times (as discussed
in [16]).

Instead of using a single upper bound of the execution time
of a task, in our system model, the execution time of each

task τi is characterized by a 2×2 matrix
−→
Ci =

(CR
i CO

i
PrR

i PrO
i

)
.

In most cases, the execution time of a task is bounded by its
regular WCET CR

i , which is associated with a probability PrR
i

(i.e. PrR
i represents the probability of that only the regular

execution occurs without an overrun). However, sometimes
because of certain factors (e.g. system errors, hardware effects,
etc.), a task may include an overrun. Due to this extra
execution, the WCET of τi may be increased up to CR+

i
(CR+

i > CR
i). The upper bound of the execution time of the

overrun can be acquired accordingly as CO
i =CR+

i −CR
i , which

is associated with a probability PrO
i (PrO

i = 1−PR
i). If CO

i and
PrO

i for each task τi equate to 0, this task model will be the
same as the traditional task model with single execution time
bounds. Moreover, we assume that for each task, there can be
at most one instance processed in the system at each time.
In other words, when a job of a task is ready to be released,
if the execution of its previous instance from the same task
has not been completed, the system should either discard the
newly arrived instance or its previous instance (depending on
specific applications). In our future work, we will further relax
this assumption.
B. Deferrable Servers

We employ the concept of Deferrable Servers (DS) in our
multi-core system model (similar to [13]). A DS can be consid-
ered as a periodic task, which has its own replenishment period
Ts and capacity Cs. Within each replenishment period (Ts), a
DS can execute pending workloads until all of its capacity
(Cs) is consumed. At the beginning of each replenishment
period, the capacity of a DS will be replenished up to Cs.
In our model, we assume that each processor contains at
most one DS, which has the highest priority among all the
tasks located in the same processor. In other words, once a
DS detects assigned workloads and meanwhile it still holds
available capacity within the current replenishment period, this
DS will preempt the execution of other tasks in the same
processor. If a DS has consumed all of its capacity for a period,
the remaining workloads need to wait until the arrival of the
next replenishment period.

In this paper, we assume that the deferrable servers on
different processors are synchronized. In other words, all the
servers have the same initial phase (i.e. released simultane-
ously), and share a common replenishment period. However,
different servers may have different capacities, which depend
on the workloads on each processor. Therefore, we employ
the same notation as in [13] to represent an m-SDS (i.e.
Synchronized Deferrable Servers on m processors)1, that is
(Ts, C1

s , C2
s , ..., Cm

s). We also assume that the capacities in the
tuple are sorted in a descending order (i.e. ∀k, Ck

s ≥ Ck+1
s).

The SDS parameters (Ts and Ci
s) can be selected in many

different ways. As discussed above, we can consider a DS as
a task with the highest priority in each processor. Therefore,

using an optimal fixed-priority scheduling algorithm (e.g. Rate
Monotonic (RM)), a valid Ts can be selected based on the
periods of other tasks in the same processor. Given a certain
utilization U i

s of a DS, the corresponding capacity can be
calculated accordingly (i.e. Ci

s = Ts ·U i
s).

We divide the whole capacity of a processor into two parts.
The first part is used to process the regular executions of
partitioned tasks, where the execution time of a task is upper
bounded by CR

i . All the remaining capacity in each processor
can be assigned to the SDS. Unlike [13] and [17], the servers
in our model are only used to execute the overruns of tasks in a
system but not any complete task, where the overrun of a task
is upper bounded by CO

i . Moreover, the regular executions of
tasks are statically partitioned on different processors, while
the overruns are processed on the globally shared SDSs. In
other words, only the overruns of tasks can migrate from
one processor to another. In this paper, we assume that the
overruns are scheduled employing a stated global First-In-
First-Out (FIFO) queue, where each instance in the queue may
have either a Waiting state or a Running state.

By isolating the overrun of a task from its continuation of
the regular execution to globally shared servers, we can in
some manner decrease the probability of that an overrun of a
task may cause more overruns of other tasks. In other words,
each task is provided a guaranteed bandwidth for its regular
executions, which may not be much affected by the overruns
of other tasks especially when some extremely long overruns
occur.

C. Scheduling Policy

Regarding the regular execution and the overrun of a task,
the scheduling mechanism is separated into two levels as
follows.

1) Scheduling for Regular Executions:
• The regular executions of all the tasks are allocated on

different processors using a certain allocation algorithm,
such as First-Fit, Worst-Fit, Best-Fit, etc ([7][18]).

• Within each processor, all the tasks together with the
local SDS (if there is one) are scheduled using a fixed-
priority uniprocessor scheduling algorithm. Note that an
SDS always has the highest local priority.

2) Scheduling for Overruns:
• Once the execution time of a task exceeds a certain

bound (i.e. the upper bound of its regular execution CR
i),

this task needs to release the processor immediately. The
remaining execution of this task τO

i will be appended to
the end of a stated global FIFO queue Qg, τO

i will then
be marked with a Waiting state.

• Once there is no job marked with Waiting ahead of
τO

i in Qg (i.e. all jobs ahead of τO
i are in the Running

state), τO
i will be dispatched2 to an available SDS which

has remaining capacity within the current replenishment

1In our framework, the number of SDSs is smaller than or equal to the
number of processors in the system (i.e. some processors may not contain
any SDSs).

period. If there are more than one available server, the
one with the lowest index will be selected. As soon as
τO

i is assigned to an SDS, the state of τO
i will be changed

to Running.
• Once an SDS receives some workload, it will immediately

preempt the executions of other local tasks until all of
its capacity within the current replenishment period is
consumed or the workload is completely processed.

• Once an SDS completes the execution of an overrun τO
i ,

τO
i will be removed from Qg. If this SDS still has some

remaining capacity, it will continue to process another
pending workload which is the first job with a Waiting
state in Qg.

• If the capacity of an SDS is exhausted while processing
τO

i , the remaining execution will be suspended. Then the
remaining part of τO

i will preempt the execution of the
last Running job which is queued after τO

i in Qg, and the
state of this preempted job will be changed to Waiting.
If τO

i is the last Running job in Qg (i.e. all jobs queued
after τO

i are in the Waiting state), τO
i will go to the Waiting

state.
• If all the servers have already exhausted their capacities,

the remaining workloads of overruns need to wait until
the arrival of the next replenishment period.

III. SCHEDULABILITY ANALYSIS

In this section, we present a response-time based schedula-
bility analysis for the above system model. First, we present
the calculation of the deterministic upper bounds of task
WCRTs, which focuses on hard real-time constraints. In the
second subsection, we propose an approach to calculate an
upper bound of the DMR of each task, which can be utilized
in soft real-time systems.

A. Deterministic Worst-Case Response Time Analysis

As we introduced in Section II, in our task model, the
worst-case response time of a task consists of two sources:
the regular execution and the overrun execution. Therefore,
we can compute the WCRT of a task τi as

Ri = RR
i +RO

i (1)

where RR
i and RO

i represent the response times of the reg-
ular execution and the overrun execution respectively. We
will present the calculation of RR

i and RO
i in the following

subsections.
In this paper, the release jitter (i.e. the timing duration

between the arrival and the release of a task instance) is
not considered for simplicity. Therefore, while analyzing the
schedulability of a system, we only need to compare Ri with
Di.

2Note that τO
i will still be kept in Qg at this phase.

1) WCRT of Regular Executions: As mentioned in our
scheduling policy, the partitioned regular executions of tasks
are scheduled using a fixed-priority uniprocessor scheduling
algorithm, where an SDS can be considered as a periodic task.
Therefore, we can simply utilize the existing approaches (e.g.
[19][20]) to compute RR

i .
Considering that we assume a preemptive mechanism in

our model, RR
i should3 only consist of the upper bound of

the regular execution time CR
i and the interference IR

i caused
by other tasks in the same processor with higher priorities
(including the SDS). Therefore, we can compute RR

i as

RR
i (n+1) =CR

i + IR
i

=CR
i + ∑

∀τ j∈hp(τi)
∧τ j∈Si

dRR
i (n)
Tj
e ·CR

j +

(dRR
i (n)−Cs(i)

Ts
e+1) ·Cs(i)

(2)

where the task set Si contains all the regular tasks assigned
on the processor where task τi is located, and Cs(i) denotes
the maximum capacity of the SDS on that processor. The task
set hp(τi) includes all the regular tasks whose priorities are
higher than or equal to Pi. If there is no SDS on the processor,
Cs(i) = 0 in Eq. 2.

Note that while calculating the interference caused by the
SDS, we cannot simply consider it as other regular tasks
because of the carry-in instance of an SDS. More details can
be found in [21] or Appendix A.

Eq. 2 can be solved using a fixed point iteration solution.
We can start the calculation with RR

i (0) = CR
i +Cs(i), and

iteratively compute RR
i (n+1) until: 1) RR

i (n+1)> Di, which
means that τi has missed its deadline; 2) or RR

i (n+1) = RR
i (n),

in which case RR
i (n+1) is considered as the final result.

We need to emphasize that the above equation can only
provide an upper bound of RR

i but not the exact worst-case
result due to the pessimism. Eq. 2 assumes that an SDS is
completely occupied all the time, which may not be necessary
in reality. As a result, the above computation gives a sufficient
but not necessary schedulability test.

2) WCRT of Overruns: As introduced in Section II, the
overruns of tasks are scheduled in a global FIFO queue and can
be processed by the SDSs on different processors4. Therefore,
once the overrun of a task arrives at the global FIFO queue
Qg, it only needs to wait for the executions of task overruns
which are queued ahead. All the task overruns cannot preempt
any other earlier arrived task overrun. Note that sometimes the
execution of a task overrun τO

i may be suspended because the
current SDS has exhausted its capacity. Then τO

i may preempt
the execution of the jobs which are queued after τO

i .

3Note that in this paper the resource sharing problem is not taken into
account for simplicity, therefore, the blocking term is not included in our
calculation.

4We assume that the overrun of a task cannot be executed on two or more
SDSs simultaneously.

As shown in Figure 1, the workloads queued ahead of τO
i

is denoted by QWi, and the workload of τO
i is upper bounded

by CO
i .

𝜏𝑥
𝑂 𝜏𝑦

𝑂 𝜏𝑖
𝑂

𝑄𝑔

𝑄𝑊𝑖 𝐶𝑖
𝑂

Head Tail

Fig. 1. A global FIFO queue Qg.

We use SO
i to denote the time instant when τO

i starts to
be executed. The response time of τO

i may consist of the
processing time for the workloads which are queued ahead
of τO

i (i.e. the time duration from the beginning of QWi to SO
i ,

denoted by rH
i), and the processing time of τO

i itself (i.e. the
time interval from SO

i to the end of τO
i , denoted by rB

i). We
compute RO

i as

RO
i = Ts−Cm

s + rH
i + rB

i (3)

where Ts−Cm
s represents the maximum waiting time before

the start of QWi (i.e. denoted as the critical head ĤC
k in [13]).

This upper bound may include pessimism unless all the SDSs
have the same capacity (i.e. C1

s = C2
s = ... = Cm

s). The proof
of ĤC

k can be found in Lemma 1 in [13].
Before computing rH

i , we need to find an upper bound of
the queueing workloads QWi.

Lemma 1. While computing QWi, we only need to consider
the queueing workloads QWi ahead of a task overrun τO

i which
is upper bounded by

QWi = ∑
∀τ j∈k
∧τ j 6=τi

CO
j (4)

Proof: As mentioned in Section II, we assume that each
instance of a task cannot be released unless the execution of
its previous instance is finished. Due to the feature of a FIFO
queue, a later arrived job cannot preempt the executions of
the jobs which are queued ahead in the queue. If the analyzed
instance τO

i gets interference from two or more jobs of another
task overrun τO

j , these instances of τO
j must be queued ahead of

τO
i together in Qg. This will apparently cause a contradiction

of the above assumption. Therefore, while computing the
workloads ahead of τO

i in Qg, we only need to consider at
most one instance of overrun for each other task in the system.

Once we have acquired the upper bound of QWi, we can
utilize part of the analysis presented in [13] to compute
rH

i . Both our scheduling policy and the scheduling algorithm
presented in [13] can satisfy the work-conserving property (i.e.
a processor will always be occupied whenever there is pending
workload on it). The basic idea of the following computation is
that the SDSs in the analyzed system are always busy within
the time interval from the beginning of QWi to SO

i , and the

latest occurrence of SO
i will result in the maximum rH

i under
a given starting instant of QWi. The proofs of the following
computation can be found in [13].

rH
i = (d QWi

∑
m
i=1 Ci

s
e−1) ·Ts + tres (5)

where

tres =

QW res

i
m

i f QW res
i ≤ δ(m)

Ck+1
s +

QW res
i −δ(k+1)

k
i f δ(k+1)< QW res

i ≤ δ(k),

∀k ∈ [1,m−1]
(6)

QW res
i = QWi− (d QWi

∑
m
i=1 Ci

s
e−1) ·

m

∑
i=1

Ci
s (7)

δ(k) =
m

∑
j=k

C j
s +Ck

s · (k−1), ∀k ∈ [1,m] (8)

In Eq. 7, d QWi
∑

m
i=1 Ci

s
e − 1 denotes the number of complete

replenishment periods that QWi may consume. Consequently,
tres represents the processing time of the residual workloads of
QWi in the last replenishment period (i.e. the capacities within
this period are not exhausted). Based on tres, we can compute
rB

i .

Lemma 2. An upper bound of rB
i can be computed as

rB
i =

{
CO

i i f CO
i ≤C1

s − tres

Ts− tres +CRPO
i ·Ts +Cres

i Otherwise
(9)

where

Cres
i =CO

i − (C1
s − tres)−CRPO

i ·C1
s (10)

CRPO
i = d

CO
i − (C1

s − tres)

C1
s

e−1 (11)

Proof: As we discussed above, while τO
i is executing

on a server, the jobs which are queued after τO
i may occupy

other servers at the same time, that will definitely increase the
response time of τO

i . In the worst case, we can assume that
when τO

i is being processed on a server, there are always some
jobs consuming all the other servers simultaneously. Under this
assumption, we can compute the upper bound of rB

i according
to different sizes of CO

i . The proof is given in Appendix B.
3) Calculation of WCRT: Based on the upper bounds of

RR
i (Eq. 2) and RO

i (Eq. 3) computed above, we can derive an
upper bound of Ri using Eq. 1. We need to confess that our
analysis provides a sufficient but not necessary schedulability
test due to the pessimism involved in the computation. We will
further improve the analysis by decreasing pessimism in our
future work.

B. Deadline Miss Ratio Calculation

In our task model, the regular WCET of a task is given by a
single upper bound instead of a certain distribution. Moreover,
the regular execution of each task is assumed to be mandatory,
which means that the occurrence probability of τR

i is 100% for
any task τi. Therefore, no matter if a task instance experiences
an overrun or not, the regular WCRT is deterministically upper
bounded by RR

i . In other words, the probabilities in
−→
Ci are

not involved while computing the response times of regular
executions.

On the other hand, while computing RO
i , the occurrence

probability of a task overrun (i.e. PrO
i) can be taken into

account. For simplicity, in this paper, we only consider the
probabilities in QWi-related computations, while the other
parts of Ri still use the upper bounds computed in the previous
subsections5.

Lemma 1 implies that at most only one instance of each
task overrun (except τO

i) needs to be included in QWi. As
described in our task model, the occurrence probability of a
task overrun τO

i is given by PrO
i . Therefore, we can derive a

discrete probability distribution of QWi by

FQWi = ∏
∀τ j∈k
∧τ j 6=τi

ϒ
O
i (12)

where
ϒ

O
i = (

0, CO
i

PrR
i ,PrO

i
) (13)

n

∏
k=1

= ϒ
O
1 ⊗ϒ

O
2 ⊗ ...⊗ϒ

O
n (14)

ϒ
O
x ⊗ϒ

O
y = (

0, CO
x , CO

y , CO
x +CO

y
PrR

x ·PrR
y , PrO

x ·PrR
y , PrR

x ·PrO
y , PrO

x ·PrO
y
) (15)

As defined above, FQWi can also be considered as a two-

dimensional matrix (i.e. FQWi =
(c1

QWi
... cN

QWi
pr1

QWi
... prN

QWi

)
, and

the size is (N,2)).
Apparently, in Eq. 5, QWi is the only effective factor, since

all the other factors are fixed or based on QWi. Therefore, we
can define Eq. 5 as a single variable function,

rH
i (X) = (d X

∑
m
i=1 Ci

s
e−1) ·Ts + tres (16)

This function returns the result of rH
i along with the tres

computed by the sub-equation (Eq. 6). In the same manner,
Eq. 9 can be defined as a function of tres, and Eq. 3 can
be defined as a function of rH

i and rB
i . Then we can use

Algorithm 1 to compute an upper bound of the DMR of τi.
According to different possible quantiles of QWi, we can

respectively compute the corresponding response times of τi
(Algorithm 1 line 6-10). The quantiles of QWi only make sense

5Considering the probabilities in the whole computation of Ri may result
in an exponentially increased computing time. Therefore, we leave the further
investigation to our future work.

6Note that if the response time of the regular task execution of the analyzed
task has already exceeded its deadline, we directly set its DMR to 1 and
terminate the algorithm immediately.

Algorithm 1 Calculation of DMRi

1: Initialize τi, pd fi← null,DMRi← 0
2: RR

i ← Eq. 26

3: FQWi ← Eq. 12
4: (N,2)← sizeo f (FQWi)
5: for all k in [1,N] do
6: rH ← 0, tres← 0,rB← 0,ri← 0
7: rH , tres← Eq. 5(ck

QWi
)

8: rB← Eq. 9(tres)
9: RO

i ← Eq. 3(rH ,rB)
10: Ri← RR

i +Ro
i

11: append (Ri, prk
QWi
·PrO

i) to pd fi
12: end for
13: (q,2)← sizeo f (pd fi)
14: for all j in [1,q] do
15: if pd fi[j−1][0]> Di then
16: DMRi+= pd fi[j−1][1]
17: end if
18: end for
19: return DMRi

when the overrun of τi indeed occurs. Otherwise RO
i is always

0 and Ri is constantly equal to RR
i . Therefore, we also need

to take PrO
i into account while deriving the distribution of Ri

(Algorithm 1 line 11). Based on the distribution of Ri, we can
compute an upper bound of DMRi (Algorithm 1 line 14-18,
where pd fi denotes the created probability density function of
the response times of τi).

Similar to our deterministic WCRT calculation, the DMRi
may also include pessimism because some parts of the re-
sponse time still use upper bounds (e.g. Ts−Cm

s in Eq. 3).

IV. EVALUATION

In this section, we present some results and observations
from our experiments. We have implemented two types of
experiments regarding hard and soft timing constraints respec-
tively.

A. Experiment Settings

1) Task Generations: In this paper, we use the UUniFast-
Discard [16] algorithm to generate task sets for a 4-core
system. Each task set consists of n tasks (n ∈ [5,30] with a
granularity of 5) with a total utilization 4×Ut , where Ut (i.e.
the average utilization bound of each processor) is selected
from [0.1, 0.6] with a granularity of 0.1. The period of each
task is randomly selected from a uniform distribution with
the range of [50000, 100000]. The deadline of each task is
assumed to equate to its period. The execution time of a task
overrun (CO

i) is selected based on a certain percentage of
its regular execution time (CR

i). This percentage is uniformly
selected within the range of (0, 150%). Moreover, we assume
that all the tasks in our experiments can have overruns.

2) Allocation of Regular Executions: In the following ex-
periments, for the regular task executions, we employ the RM
scheduling algorithm within each processor. When we partition

regular task executions, we take into account both the First-Fit
(FF) and Worst-Fit (WF) bin-packing algorithms.

Under the FF allocation algorithm, a new task τi is first
assigned to an unfull processor with the lowest index. Then
we check the schedulability of all the tasks (based on their
regular execution times) in this processor. If all the tasks can
meet their deadlines, then τi will be kept in this processor,
and we start to allocate another unassigned task. Otherwise,
we need to remove τi from this processor, and try to assign it
to the next processor. If at the end τi cannot be assigned to any
processor, the system is considered to be unschedulable. Due
to the feature of the FF algorithm, the processors are usually
unevenly utilized (i.e. the processors with lower indexes are
usually highly occupied, while the others may contain much
less workload). In this case, the response time of a task in
a heavy-loaded processor may be very close to its deadline.
As a result, if the overruns of all the tasks are still executed
in the processors where their regular executions are located
(which is called No Overrun Management (NOM) scheduling
hereinafter), they are quite likely to miss their deadlines.

Under the WF algorithm, a new task τi will be assigned
to the processor on which can leave the most capacity left
over after this allocation. In other words, if τi can fit in
several processors (i.e. all the regular task executions on these
processors are schedulable after the allocation), we choose the
processor with the lowest task utilization to allocate τi. If τi
cannot fit in any processor, the system will be considered as
unschedulable. For most cases, the loads of the whole system
are almost evenly distributed on all processors.

3) SDS Parameters Selection: The replenishment period of
a set of SDS is randomly selected in the range [1000, 10000]
with a granularity of 1000 (same as [13]). In our experiments,
we examine three bandwidth selection schemes.

In [13], the bandwidth of an SDS is chosen from (0.15,
0.3, and 0.5). Based on randomly selected replenishment
periods, SDSs with different capacities are generated. The
work in [13] provides a combination of global and partitioned
scheduling, where the servers are used to process globally
scheduled tasks. However, in our framework, the servers are
only used to execute the overruns of partitioned tasks. We
want to provide a guaranteed service to each task regarding
its regular execution, so that the overrun of a task may impact
other regular task executions as little as possible. Therefore,
we select the parameters of an SDS (i.e. replenishment period
and capacity) based on the slack remaining on each processor
after the task allocation process. This is similar to the idea of
the Slack Stealer which is presented in [22]. The details of the
selection process are illustrated in Appendix C.

In Appendix C, the SDS capacity selection is based on
response time analysis, therefore, we call it Response Time
based Slack Stealer (RTSS) hereinafter. Besides the RTSS,
we also consider an Utilization based Slack Stealer (USS).
Under the USS scheme, the bandwidth of an SDS is also
selected based on the remaining capacity of the corresponding
processor, but the calculation is based on utilizations rather
than response times. The Liu & Layland utilization bound [4]

implies that as the number of tasks goes up, the affordable total
task utilization will be decreased from 1. On another hand, if
we use most remaining capacity, the response time of some
regular task executions may be very close to their deadline.
As a result, these tasks cannot afford any overruns. Therefore,
we can only partially utilize the remaining capacity. In our
experiments, the SDS bandwidth selection is based on some
percentage (within the range of [0.1,0.6]) of the remaining
capacity.

Similar to [13], we also consider an even SDS bandwidth
allocation scheme (denoted by EVEN). Under this scheme, all
the SDSs have the same bandwidth, which is randomly chosen
from [0.1,0.3] with a granularity of 0.05.

B. Experiments for Hard Real-Time Applications

In the first set of experiments, we focus on the deter-
ministic WCRT analysis which is utilized under hard timing
constraints. For each task set, we respectively apply our global
SDS-based framework with different bandwidth selection
schemes, as well as some local overrun management solutions
presented in [3]. In [3], the authors used a Sporadic Server [23]
based overrun management scheme for fixed priority systems
with single core, which can be considered as a local overrun
management solution in a multi-core system. Under the local
overrun management scheme, the overruns of tasks are handled
by the local servers (i.e. no migrations). Regarding different
server bandwidth selection schemes, the results of the local
management solution are marked as Local-RTSS, Local-USS
and Local-EVEN. The comparison results are provided along
with some observations.

1) Effects of System Parameters: First, we try to examine
how partitioning algorithms and SDS bandwidth selection
schemes can affect the schedulability of this framework. We
implement several separate sets of experiments to investigate
the impact of different effective factors (e.g. the number of
tasks, the total task utilization, etc.). Within each experiment
set, the observed factor is fixed for each sub experiment
set, while all the other parameters are randomly selected as
mentioned in the above subsections.

a) Number of Tasks: The first experiment set is regarding
the number of tasks in the whole system. Given the total
utilization of a task set, if the number of tasks is low, the
utilization of each task will be high. In this case, the number
of overruns is also low, but the execution times of overruns
can become longer since we set the overrun time of each task
based on its regular execution time. On another hand, when
the number of tasks is high, the utilization of each task is
mostly low. As a result, the execution time of each overrun is
usually small, but the number of overruns becomes high. When
we increase the number of tasks, we cannot clearly observe
a trend of the schedulability changes, because the number of
overruns and the execution times of overruns are balancing
each other all the time.

As shown in Figure 2.a, under the FF allocation algorithm,
the RTSS and USS server bandwidth selection scheme have
very close performance, which are always much better than the

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

5 10 15 20 25 30
0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

0,3 0,6 0,9 1,2 1,5
0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0,1 0,2 0,3 0,4 0,5 0,6

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

5 10 15 20 25 30
0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

0,3 0,6 0,9 1,2 1,5
0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

0,1 0,2 0,3 0,4 0,5 0,6

RTSS EVEN USS Local-RTSS Local-EVEN Local-USS

(b) (a) (c)

(d) (e) (f)

Fig. 2. Comparison between the FF (Figure a&b&c) and WF (Figure d&e&f) based framework regarding different system parameters. The y axis in these
figures denotes the schedulability ratio per 1000 experimental observations. The x axis in Figure a&d denotes the number of tasks. The x axis in Figure b&e
denotes the overrun percentage regarding regular executions. The x axis in Figure c&f denotes the average total task utilization for each core.

EVEN bandwidth selection. Because these two schemes take
into account the actual remaining capacity on each core more
precisely. On another hand, the local overrun management
solution performs quite bad here. The main reason is that under
the FF algorithm, there is always a heavy loaded core which
has a very weak capability to handle overruns due to the quite
limited server bandwidth. Therefore, in this case, our global
overrun management framework performs much better.

As shown in Figure 2.d, under the WF partition algorithm,
the RTSS and USS bandwidth selection schemes are still better
than the EVEN scheme. Under the WF algorithm, all the
cores may provide much server bandwidth since the workloads
are almost evenly distributed. Therefore, it is not common
to see an extremely heavy loaded core in this case. That is
why the local overrun management solutions are much better
comparing to under the FF algorithm. However, the local
overrun management still cannot outperform our method, since
they do not utilize the capacities from other cores.

According to our server bandwidth selection schemes, if a
core is totally free, we use the whole core for overruns; if
a core has been assigned some regular task executions, we
partially use the remaining capacities. In other words, under
the FF algorithm, the total capacity for SDSs is usually larger
than under the WF algorithm; however, the FF algorithm is
strongly affected by the heavy loaded core.

Under the FF algorithm, when the number of tasks is low,

there is a high probability that some cores can be completely
used to handle overruns (i.e. workloads are distributed in the
cores with lower indexes). However, under the WF algorithm,
once the number of tasks is greater than the number of
cores, there will be no free core which can be totally used
for overruns. Therefore, as shown in the results, when the
number of tasks is low, the FF algorithm outperforms the WF
algorithm. However, when we increase the number of tasks,
the occurrence of free cores under the FF algorithm becomes
less frequent, but a heavy loaded core still usually exists. As a
result, the WF algorithm becomes better than the FF algorithm.

b) Overrun Execution Time: This set of experiments
focus on the execution times of task overruns. As shown in
Figure 2.b, under the FF algorithm, as the overrun time goes
up, the schedulability of the global schemes decreases slightly.
However, the performance of the local overrun management
methods goes down sharply (i.e. almost non-schedulable when
the overrun percentage exceeds 1.2). Under the WF algorithm
(as shown in Figure 2.e), the local overrun management
methods become much better, but still limited by the local
capacity on each core.

We notice that as the overrun time increases, the per-
formance under the WF algorithm drops faster than under
the FF algorithm. Under the FF algorithm, for the tasks on
the heavy loaded cores whose response times are close to
their deadlines, they have very weak capability to afford any

overrun. Therefore, those tasks are not very sensitive to the
changes of overrun times (i.e. they may always miss their
deadlines no matter the overrun percentage is 0.3 or 1.2). On
another hand, under the WF algorithm, heavy loaded cores do
not frequently appear. As a result, the main effective factor
for the performance changes in Figure 2.b&e is the total
overrun-handling capacity of a system. As we mentioned in the
previous subsection, the WF algorithm has a high probability
to provide less capacity than the FF algorithm, therefore, it
is more sensitive to the increase of overrun times. However,
when the overrun percentage is not very large (e.g. less than
0.9), the WF algorithm can always provide better performance
because it can avoid the influence of heavy loaded cores.

c) Task Utilization: In this set of experiments, we try to
examine the effect caused by the average total utilization of
regular tasks executions per core. The results are shown in
Figure 2.c&f. As the system utilization goes up, the schedula-
bility of all these methods decreases. When the average total
utilization of regular executions exceeds 0.5 on each core, it
is always non-schedulable.

When the utilization is very low (i.e. 0.1 per core), the
global overrun management framework under the FF algo-
rithm performs better than the WF algorithm. Similar to the
previous discussion, under the FF algorithm, when the system
utilization is low, there is a very high probability that some
cores are totally free which can be utilized to handle overruns.
However, under the WF algorithm, once the number of tasks
is greater than the number of cores, there will be no empty
cores in the system.

2) General Comparison: A general comparison is shown in
Figure 3. Here we summarize some key observations from the
above discussions. Apparently, our framework is always better
than the local overrun management solutions. Under the FF al-
gorithm, the RTSS server bandwidth selection scheme is better
than the USS approach. While under the WF algorithm, the
USS scheme becomes slightly better than the RTSS approach.
We need to point out that the RTSS algorithm may include
more overhead than the USS scheme due to the computation
of response times. Moreover, the FF algorithm has a higher
probability to provide larger total overrun-handling capacity
than the WF algorithm, because free cores are fully utilized.
However, the WF algorithm can avoid heavy loaded cores on
which the tasks may have weak capabilities to afford overruns.

3) Comparison with NOM scheduling: We also produced
some experiments to compare our framework with the NOM
scheduling (i.e. no overrun management). The results are
shown in Figure 4. Apparently, our framework always per-
forms better. We need to point out that, the experiments are
produced by analysis-based simulations. As we mentioned
in Section III, in order to reduce the computation time,
our schedulability analysis (both the deterministic and prob-
abilistic analysis) includes some approximations which can
lead to pessimism. Therefore, the actual performance of our
framework can be even better. In our future work, we will

RTSS EVEN USS Local-RTSS Local-EVEN Local-USS

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

FF WF

Fig. 3. FF VS. WF.

further remove the pessimism in the analysis, and examine
our framework from real implementations.

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

0,6 0,9 1,2 1,5

SDS-based

NOM scheduling

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

10 15 20 25 30

SDS-based

NOM scheduling

(a) (b)

Fig. 4. Global overrun management VS. No overrun management. The y
axis in these figures denotes the schedulability ratio per 1000 experimental
observations. The x axis in Figure a denotes the overrun percentage regarding
regular executions. The x axis in Figure b denotes the number of tasks. Note
that the connection lines in all the figures are just used for the convenience
of visualization.

C. Experiments for Soft Real-Time Applications

The second type of experiments take the probabilities of
overrun occurrences into account, which focus on soft timing
constraints. The systems are randomly generated in the same
ways as presented in Section IV-A. The occurrence probabili-
ties of task overruns are uniformly selected from the range [0,
5%].

As we know, the deterministic WCRT analysis assumes a
guaranteed worst-case scenario where the task overruns always
occur. However, the probability of that case may be very low
in reality. Therefore, for soft real-time applications, we can
set a DMR bound for the system under analysis. If the DMRs
of all the tasks in a system do not exceed the given bound,
we can still consider this system as acceptable. Due to the
page limitation, here we just show some of the results. In
this experiment set, we focus on the changes of the total task
utilization. The regular tasks allocation is based on the FF
algorithm, and the server bandwidth is selected with the USS
approach. As shown in Figure 5, when we increase the DMR
bound, the average schedulability ratio of the system gains an

obvious increase. That is why we believe that a probabilistic
task model is very important for soft real-time systems.

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0,1 0,2 0,3 0,4 0,5

Hard (SDS-based)

Hard (NOM scheduling)

Soft (DMR bound = 3%)

Soft (DMR bound = 5%)

Fig. 5. Global overrun management (deterministic and probabilistic) VS.
No overrun management. The y axis denotes the schedulability ratio per 1000
experimental observations. The x axis denotes the average total task utilization
for each core.

V. CONCLUSION AND FUTURE WORKS

In this paper, we present a Synchronized Deferrable Server
(SDS) based scheduling framework for multi-core real-time
systems, where task overruns are taken into account. In our
framework, task overruns are isolated from regular task exe-
cutions by migration of overruns to globally shared servers.
Consequently, many tasks can be saved from missing their
deadlines due to the occurrence of overruns in the system.
A deterministic Worst-Case Response Time (WCRT) analysis
and a probabilistic Deadline Miss Ratio (DMR) computation
are provided. Some systematic experiments regarding different
parameters have also been implemented. According to the
results of our experiments, our framework can always provide
a better performance than the local overrun management
schemes. When task overruns occur, our solution also always
outperform the scheduling method without overrun manage-
ment.

As mentioned above, both the deterministic WCRT analysis
and the probabilistic DMR computation presented in this paper
may include pessimism, because we utilize some guaranteed
approximations in our analysis to decrease the complexity.
Therefore, we need to further investigate some more explicit
analysis to reduce the pessimism. Moreover, the experiments
in this paper are produced by simulations. We will evaluate
further using real implementations where the scheduling over-
head will be investigated.

In our framework, the overruns are scheduled by a stated
global First-In-First-Out (FIFO) queue. In our future work, we
may utilize some other global scheduling mechanisms for task
overruns. Then we can try to find out the optimal solutions
under different system conditions. Moreover, we will also
further investigate other approaches to select server bandwidth.

REFERENCES

[1] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource kernels:
A resource-centric approach to real-time and multimedia systems,” in

Photonics West’98 Electronic Imaging. International Society for Optics
and Photonics, 1997, pp. 150–164.

[2] M. Caccamo, G. Buttazzo, and L. Sha, “Handling execution overruns
in hard real-time control systems,” Computers, IEEE Transactions on,
vol. 51, no. 7, pp. 835–849, 2002.

[3] M. K. Gardner and J. W.-S. Liu, “Performance of algorithms for
scheduling real-time systems with overrun and overload,” in the 11th
Euromicro Conference on Real-Time Systems, ECRTS’99. IEEE, 1999,
pp. 287–296.

[4] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61,
Jan 1973.

[5] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Performance evaluation, vol. 2,
no. 4, pp. 237–250, 1982.

[6] M. L. Dertouzos, “Control robotics: The procedural control of physical
processes,” in IFIP Congress, Proceedings., 1974, pp. 807–813.

[7] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Computing Surveys, vol. 43, no. 4, 2011.

[8] J. H. Anderson, V. Bud, and U. C. Devi, “An edf-based scheduling
algorithm for multiprocessor soft real-time systems,” in 17th Euromicro
Conference on Real-Time Systems, ECRTS’05, Proceedings. IEEE,
2005, pp. 199–208.

[9] S. Kato and N. Yamasaki, “Semi-partitioned fixed-priority scheduling
on multiprocessors,” in 15th IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS’09. IEEE, 2009, pp. 23–32.

[10] R. I. Davis and A. Burns, “Hierarchical fixed priority pre-emptive
scheduling,” in Real-Time Systems Symposium, RTSS’05, 26th IEEE
International. IEEE, 2005, pp. 10–pp.

[11] P. J. Cuijpers and R. J. Bril, “Towards budgeting in real-time calculus:
Deferrable servers,” in Formal Modeling and Analysis of Timed Systems.
Springer, 2007, pp. 98–113.

[12] G. Lipari and E. Bini, “A framework for hierarchical scheduling on
multiprocessors: from application requirements to run-time allocation,”
in Real-Time Systems Symposium, RTSS’10, IEEE 31st. IEEE, 2010,
pp. 249–258.

[13] H. Zhu, S. Goddard, and M. B. Dwyer, “Response time analysis of
hierarchical scheduling: The synchronized deferrable servers approach,”
in Real-Time Systems Symposium, RTSS’11, IEEE 32nd. IEEE, 2011,
pp. 239–248.

[14] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard
real-time systems,” in The 19th IEEE Real-Time Systems Symposium,
RTSS’98. IEEE, 1998, pp. 4–13.

[15] J. Diaz, D. Garcia, K. Kim, C. Lee, L. Lo Bello, J. Lopez, S. L. Min,
and O. Mirabella, “Stochastic analysis of periodic real-time systems,”
in 23rd IEEE Real-Time Systems Symposium, RTSS’02, 2002, pp. 289
– 300.

[16] R. I. Davis and A. Burns, “Priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems,” in Real-
Time Systems Symposium, RTSS’09, 30th IEEE. IEEE, 2009, pp. 398–
409.

[17] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-time envi-
ronments,” Computers, IEEE Transactions on, vol. 44, no. 1, pp. 73–91,
1995.

[18] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah, “A categorization of real-time multiprocessor scheduling
problems and algorithms,” Handbook on Scheduling Algorithms, Meth-
ods, and Models, pages, pp. 30–1, 2004.

[19] M. Joseph and P. Pandya, “Finding response times in a real-time system,”
in Computer Journal 29(5), Oct. 1986, pp. 390–395.

[20] N. Audsley, A. Burns, M.Richardson, K. Tindell, and A. Wellings, “Ap-
plying new scheduling theory to static priority pre-emptive scheduling,”
Software Engineering Journal, vol. 8, no. 5, pp. 284 –292, Sep. 1993.

[21] J. W. S. W. Liu, Real-Time Systems, 1st ed. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2000.

[22] J. Lehoczky and S. Ramos-Thuel, “An optimal algorithm for scheduling
soft-aperiodic tasks in fixed-priority preemptive systems,” in Real-Time
Systems Symposium, RTSS’92, 1992, pp. 110–123.

[23] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard-
real-time systems,” Real-Time Systems, vol. 1, no. 1, pp. 27–60, 1989.

APPENDIX A

While calculating the interference caused by the SDS, we
cannot simply consider it as other regular tasks because of the
carry-in instance of an SDS. For example, we assume that τi
is the task under analysis with a regular execution time 2 and
a period 10, and τ j is the SDS in the processor where τi is
located with a capacity 2, and a replenishment period 5. If
we consider τ j as a regular task, according to the traditional
RTA, the critical instance occurs when the jobs of τi and τ j are
released at the same time [19] (i.e. time t0 in Figure 6). Then
the calculated WCRT will be 4. However, a deferrable server
is different from a regular task, because it is influenced by its
own workloads but not the other tasks in the same processor.
In other words, the critical instance theory for regular task sets
is not valid for task sets with deferrable servers. As shown in
Figure 6, the critical instance of τi,k occurs when it is released
at time t1 but not t0. In this case, the correct WCRT should be
6. The difference between the above two critical instances just
depends on the beginning of the busy period. In order to create
the worst-case scenario, the first instance of the SDS should
be released as late as possible, and the following instances are
supposed to be released as early as possible. Therefore, we
can upper bound the interference due to the SDS by taking
one more instance of the SDS into account [21].

𝝉𝒊,𝒌

𝝉𝒋,𝒑 𝝉𝒋,𝒑−𝟏

𝒕𝟎 𝒕𝟏

Fig. 6. WCRT analysis with deferrable servers.

APPENDIX B

Proof of Lemma 2: We can divide rB
i into two parts. The

first part is the processing time in the period, where QWi is
just finished. The time interval tres computed by Eq. 6 denotes
the processing time of QWi in its last replenishment period.
Assume that τO

i is assigned to the server Cz
s (1≤ y < z≤m)7.

Once τO
i has consumed the capacity of Cz

s , the processing
time of τO

i will be increased to Cz
s − tres. According to our

scheduling policy, τO
i can preempt any other jobs in Qg

at this moment, since all the workloads ahead of τO
i have

already left Qg. Then τO
i will preempt the execution of another

server Cy
s with a larger capacity, because under the worst-case

assumption, all the servers with lower capacities should have
exhausted their capacities. When the capacity of this server is
also consumed, the processing time of τO

i will be increased to
Cz

s − tres +Cy
s −Cz

s = Cy
s − tres. Then τO

i will occupy an even
larger SDS, until the largest one (C1

s) is consumed. Therefore,
the first part of rB

i can be computed by C1
s − tres.

If CO
i ≤ C1

s − tres, then rB
i = CO

i , because τO
i has already

finished in the first replenishment period (i.e. the second part

is 0).
If CO

i > C1
s − tres, we need to compute the second part of

rB
i which is the processing time after the first replenishment

period. If τo
i is large enough, the remaining processing time

(i.e. CO
i − (C1

s − tres)) may occupy several complete replenish-
ment periods (computed by Eq. 11) and a remaining execution
time Cres

i (computed by Eq. 10). Due to the same manner
of the above discussion, under the worst-case assumption,
the minimum capacity that τO

i can consume within each
replenishment period is C1

s . Therefore, the denominator in
Eq. 11 is C1

s . Based on the above discussion, the second part
of rB

i can be calculated by CRPO
i ·Ts +Cres

i .
While adding the above two parts together, we need to

include the gap between them. That gap is the time interval
between the time instant where all the SDS capacities have
been consumed in the first replenishment period (i.e. the end
of the first part), and the beginning of the second replenishment
period (i.e. the start of the second part). This gap can be upper
bounded as Ts−C1

s . Therefore, when CO
i > C1

s − tres, we can
compute rB

i as

rB
i =C1

s − tres +Ts−C1
s +CRPO

i ·Ts +Cres
i

= Ts− tres +CRPO
i ·Ts +Cres

i
(17)

APPENDIX C

A Slack-Stealer based SDS Bandwidth Selection Scheme:
For each processor, we apply Algorithm 2 to generate the
capacity of its own SDS. If the processor is empty, the capacity
of the processor will be fully assigned to the SDS (line 2-
4). Otherwise, we need to assign the free capacity of this
processor to the server, so that the created SDS will not impact
too much on the schedulability of the regular executions of all
the tasks on this processor.

Figure 7 shows the way that we find the slack capacity
of each processor. The basic idea is that we try to assign as
much capacity as possible to an SDS, while keeping that the
regular executions of all the tasks still meet their deadlines.
In Figure 7, the broken line represents the processor demand
which is given by the following function

PD(τi, t) =CR
i + ∑

∀τ j∈hp(τi)
∧τ j∈Si

d t
Tj
e ·CR

j (18)

The straight solid line denotes the capacity supplied by a
processor regarding time t. The first intersection point of
these two lines provides the WCRT of τR

i , which is the
theoretical base of the traditional response time analysis. If
we assign some processor capacities to an SDS, the supplied
capacities for the regular task executions will certainly be
decreased. In other words, while assigning capacities to an
SDS, we are shifting the straight line towards the downside
gradually (i.e. represented by the dashed lines). We can keep
shifting until the instant that a little more shifting space may
result in no intersection point before Di (i.e. τR

i is about to
miss its deadline). This maximum shifting space provides the

7Here we use Cx
s to denote the xth SDS as well as its capacity.

largest capacity of the SDS within the time duration Di, while
keeping τR

i still schedulable. However, if we fully utilize the
above slack, it is possible that the response time τi becomes
extremely close to its deadline. As a result, any overrun of
τi will cause it to miss its deadline. On the other hand,
if we decrease the server capacity to keep more slack, the
response times of overruns may be increased accordingly.
Therefore, in our experiments, we utilize the above slack with
different percentages (denoted by PerCs hereinafter)8. This
percentage is uniformly selected from the range of [0.1,0.6],
which can provide the maximum schedulability according
to our experimental observations. Based on a given Ts, we
can compute how much capacity can be assigned to each
replenishment period (line 17). We need to apply the above
process (line 6-17) on all the tasks in this processor. Then
the minimum computed capacity per replenishment period is
selected (line 18), so that all the regular task executions can
still meet their deadlines.

Time

Pr
oc

es
so

r D
em

an
d

𝐷𝑖 𝑅𝑖 𝑡1 𝑡2

Fig. 7. SDS capacity selection.

Algorithm 2 SDS Capacity Selection

1: Initialize Processork,Ts,Ck← Ts,PerCs

2: if no task on Processork then
3: return Ck
4: end if
5: for all τi in Processork do
6: Lbound←WCRT (τi)
7: Ubound← Di
8: CheckPoints← []
9: CheckPoints⇐ Di

10: for all τ j in Processork do
11: CheckPoints⇐ ReleaseTimes(τ j,Lbound,Ubound)
12: end for
13: maxSlack← 0
14: for all pt in CheckPoints do
15: maxSlack←MAX(maxSlack, pt−PD(τi, pt−1))
16: end for
17: maxCs← maxSlack

dDi
Ts e+1

∗PerCs

18: Ck←MIN(Ck,maxCs)
19: end for
20: return Ck

8Note that for the empty processors (i.e. without any assigned regular task
executions), we still fully utilize their capacities.

APPENDIX D

Notations used in this paper:
τi: a task in the multi-processor system under analysis
τR

i : the regular execution of τi
τO

i : the overrun of τO
i−→

Ci : the execution time matrix of τi
CR

i : the upper bound of the execution time of τR
i

CO
i : the upper bound of the execution time of τO

i
Ck

s : the capacity of the kth (k ∈ [1,m]) SDS
Di: the relative deadline of τi
DMRi: the deadline miss ratio of τi (only considering the
occurrence of overruns)
FQWi : a discrete probability density function of QWi (Eq. 12)
Ti: the period of task τi
Ts: the replenishment period of a set of SDSs
Pi: the fixed priority of τi
PD(τi, t): the processor demand function
PrO

i : the probability of the occurrence of τO
i

PrR
i : the probability of the occurrence of τR

i (without overrun)
Qg: the stated global FIFO queue in the analyzed system
QWi: the workloads queued together with τO

i which are ahead
of of τO

i in Qg
Ri: the total worst-case response time of τi
RR

i : the worst-case response time of τR
i

RO
i : the worst-case response time of τO

i
rH

i : the upper bound of processing time of QWi (Eq. 5)
rB

i : the upper bound of processing time of τO
i itself (Eq. 9)

Uk
s : the utilization (density) of an SDS

