
Regression Verification of AADL Models through Slicing of
System Dependence Graphs

Andreas Johnsen, Kristina Lundqvist, Paul Pettersson, Kaj Hänninen
School of Innovation, Design and Engineering

Mälardalen University
Västerås, Sweden

{andreas.johnsen,kristina.lundqvist,paul.pettersson,kaj.hanninen}@mdh.se

ABSTRACT
Design artifacts of embedded systems are subjected to a
number of modifications during the development process.
Verified artifacts that subsequently are modified must nec-
essarily be re-verified to ensure that no faults have been
introduced in response to the modification. We collectively
call this type of verification as regression verification. In this
paper, we contribute with a technique for selective regression
verification of embedded systems modeled in the Architec-
ture Analysis and Design Language (AADL). The technique
can be used with any AADL-based verification technique to
efficiently perform regression verification by only selecting
verification sequences that cover parts that are affected by
the modification for re-execution. This allows for the avoid-
ance of unnecessary re-verification, and thereby unnecessary
costs. The selection is based on the concept of specification
slicing through system dependence graphs (SDGs) such that
the effect of a modification can be identified.

Keywords
software architectures, AADL, regression verification, spec-
ification slicing, system dependence graph

1. INTRODUCTION
Software verification of embedded systems consumes a

majority of the development cost [6]. Numerous research
efforts have been devoted to the development of more effi-
cient regression testing techniques as studies show that re-
gression testing consumes up to one-third of the total devel-
opment cost of a software system [5]. Although the efficiency
of regression testing is highly important, empirical studies
show that the majority of development faults are introduced
by incorrect, incomplete, and inconsistent specifications and
models (we use the terms “specification” and “model” inter-
changeably) [10]. Such artifacts are, in addition to a sig-
nificant source of fault introduction, also often subjected
to a large number of modifications. Hence, they are also

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
QoSA’14, June 30–July 4, 2014, Marcq-en-Baroeul, France
Copyright 2014 ACM 978-1-4503-2576-9/14/06 ...$15.00.
http://dx.doi.org/10.1145/2602576.2602589.

subjected to regression verification activities in form of re-
viewing, inspection, simulation, model-checking, etc., which
efficiency may be even more important than the efficiency
of regression testing.

The techniques used to perform regression verification of
specifications and models do seldom identify the effect the
modification has on the artifact under analysis. A modifica-
tion does not only affect the behavior of the part that explic-
itly has been modified, but also the behavior of any other
part that is dependent on it. By contrast, a modification
does typically not affect the complete artifact. As the effect
of a modification is not analyzed, there is little understand-
ing of which parts of the artifact that, directly or indirectly,
are affected by the modification and must be re-verified.
This type of problem is essential for selective (efficient) re-
gression testing [5] and, logically, for selective regression ver-
ification of specifications and models as well. A rerun of all
already existing and still valid verification sequences, in ad-
dition to possibly newly created sequences to cover possibly
added parts, is in this case necessary to ensure that no new
faults follow from a modification. A rerun-all approach may
be significantly more time-consuming and costly, depending
on the extent of unnecessary exercised parts, compared to a
selective approach where only the necessary verification se-
quences are executed, i.e., where only parts that are affected
by the modification are exercised.

The contribution of this paper is a technique for selective
regression verification of embedded systems modeled in the
Architecture Analysis and Design Language (AADL) [2] –
an overview of AADL can be found in [8]. The technique
uses the concepts of specification slicing [9] and system de-
pendence graphs [7] to identify the parts of a modified AADL
model that are directly or indirectly affected by the modi-
fication and must be covered by verification sequences in
the regression verification process. It can therefor be used
with any AADL-based verification technique to efficiently
perform regression verification.

The approach originates from the regression testing tech-
nique proposed by Bates and Horwitz in [3] who used pro-
gram slicing [14] algorithms on so called program dependence
graphs [12] to determine which parts of a software program
that are affected by a modification and need to be retested.
Both specification slicing and system dependence graphs,
which backgrounds are presented in Section 2, are extensions
of these concepts and can be used for the same purpose as
of the approach proposed by Bates and Horwitz. The con-
cept of program slicing is to remove statements, instructions,
and variables that do not have an effect on and are not af-

fected by the value of a variable at some program point
(statement or instruction) referred to as the slicing crite-
rion. Causal relationships to the value of a variable at some
point are determined by the control and data dependencies
of the system. These are commonly expressed through a di-
rected graph [13], such as a program dependence graph or,
the more expressive, system dependence graph. The parts
that have causal relationships to the value of the variable
are thus determined by computing the transitive closure of
the dependence graph on the slicing criterion. The parts
that do not have an effect on the value of the variable are
removed by computing the backward (with respect to the di-
rections of the arrows of the graph) transitive closure, known
as backward-slicing. The parts that are not affected by the
point are removed by computing the forward transitive clo-
sure, known as forward-slicing [13].

The technique we propose for selective regression verifica-
tion comprises four main steps. The first step is to use the
algorithms and rules presented in Section 4 to generate the
system dependence graphs of an AADL model and its modi-
fied version. These algorithms and rules are defined upon an
abstract syntax of AADL, presented in Section 3, that has
been tailored for the purpose of slicing. The two graphs are
then compared according to the criteria presented in Sec-
tion 5 to precisely identify the modification in the graph of
the modified AADL model. With the modification consti-
tuting the slicing criterion, backward- and forward-slicing
techniques presented in Section 5 are used to identify the el-
ements of the model that have an effect on and are affected
by the modification. These must be covered by verification
sequences in the regression verification process. Note that
the behavior of elements included in the backward-slice but
not in the forward-slice is not dependent on the slicing cri-
terion and does not need to be re-verified. However, they
are necessary to be executed in the regression verification
process (for full coverage) since the behavior of the modified
part is dependent on those elements. A running example
of applying the technique is initiated by an AADL model
presented in Section 3.

The proposed slicing technique is also a contribution to
the AADL community as it can be used for comprehen-
sion, analysis, verification and validation, maintenance, vec-
torization and parallelization, integration, removal of un-
reachable/dead software, worst case execution time analy-
sis, compilation and code generation, reuse, etc., as most
other forward- and backward-capable slicing algorithms [13,
7]. There exist to our knowledge no such contribution. In
Section 6, we elaborate on the limitations of our work and
possibilities for future work and present some concluding
remarks.

2. BACKGROUND
The idea of slicing specifications was first introduced by

Oda and Araki [11]. The idea is based on the concept of pro-
gram slicing through control and data flow analysis, origi-
nally defined by Weiser [14]. Ottenstein and Ottenstein [12]
later showed how program slicing algorithms could be de-
fined in terms of operations on so called program dependence
graphs (PDG) – a method also used for effectively slicing
specifications [9]. A PDG is a directed graph of different
types of vertices (nodes) and edges (arcs), where vertices
represent the statements and predicate expressions of a sin-
gle monolithic program, and where edges represent control

and data dependencies among those vertices. Each PDG
consists of a distinguished entry vertex representing the en-
try into the program. Essentially, a PDG is the union of
a control dependence graph (CDG), where edges describe
the control conditions on which the execution of vertices de-
pends, and a flow dependence graph (FDG), where edges de-
scribe the data variables on which the operations of vertices
depend [12]. Both graphs can be generated by analyzing the
control flow graph (CFG) [1] of a program.

To be able to perform program slicing in the more gen-
eral case where a program consists of multiple procedures,
Horwitz et al. [7] introduced the so called system dependence
graph (SDG). SDGs extend the expressiveness of PDGs such
that procedure calls and parameter passing (by value) can
be integrated.

3. PRELIMINARIES
In this section we present an example of an AADL model

and an abstract syntax for AADL. Rules and algorithms for
slicing AADL models through SDGs are then defined upon
the abstract syntax in Section 4 and Section 5 while they
are applied to the AADL example.

The AADL example, shown in Table 1 and Table 2, com-
prises an embedded system partly consisting of a process
component process.impl that reads data produced by a dual
modular redundant sensor and presents it to the opera-
tor through a display (sensors and display are not shown).
process.impl has two periodically dispatched thread sub-
components, thread A and thread B, which are instances of
thread 1.impl and thread 2.impl respectively. These threads
provide the functionality together with three static (shared)
data subcomponents, sensorData 1, sensorData 2, and dis-
playData 1, whereby interactions with the sensors and the
display are performed. The function of thread 1.impl, as de-
scribed by its behavior specification, is simply to read the
sensor data and to send it to thread 2.impl through the con-
nected ports. The function of thread 2.impl is to compare
the two received values and, if they are unequal, display the
mean value or, if they are equal, display the value.

The abstract syntax for AADL is defined in terms of a
tuple including constructs that determine the control and
data dependencies of an AADL model. Let part1.part2 de-
note that part2 is a set, sequence, or element of the set,
sequence, or element part1. An AADL model is a tuple:

AADLMDL = 〈COMP, T HR,DAT A,SUB, C, CALL〉

COMP = {comp1, comp2, . . . , compn} denotes the set of
software components in the architecture, where T HR de-
notes the subset of thread components, DAT A denotes the
subset of data components, and SUB denotes the subset of
subprogram components. Let thr, data, and sub range over
T HR, DAT A, and SUB respectively.

A thread thr = 〈DAT A S,SUB S,DP, EP, EDP,DA,
SA,MSM,BM〉 has a set of data subcomponents DAT A S
⊆ DAT A; a set of subprogram subcomponents SUB S ⊆
SUB; a set of data ports DP = {dp(data) | dp(data) is
an in/out/in out data port of data type data ∈ DAT A
and of the form port (see Table 3)}; a set of event ports
EP = {ep | ep is an in/out/in out event port and of the
form port}; a set of event data ports EDP = {edp(data) |
edp(data) is an in/out/in out event data port of data type
data ∈ DAT A and of the form port}; a set of data accesses
DA = {da(data) | da(data) is a data access to shared data

data ∈ DAT A and of the form component access}; a set
of subprogram accesses SA = {sa(sub) | sa(sub) is a sub-
program access to subprogram sub ∈ SUB and of the form
component access}; a Mode State Machine MSM; and a
Behavioral Model BM.

Table 1: Running AADL example.
...
process implementation process.impl

subcomponents
thread A: thread thread 1.impl;
thread B: thread thread 2.impl;
sensorData 1 : data Base Types::Integer;
sensorData 2 : data Base Types::Integer;
displayData 1 : data Base Types::Integer;
connections
Connection 1: data port thread A.output 1 –>
thread B.input 1;
Connection 2: data port thread A.output 2 –>
thread B.input 2;
Connection 3: access sensorData 1 –>
thread A.sensor data 1;
Connection 4: access sensorData 2 –>
thread A.sensor data 2;

end process.impl;

thread thread 1
features
output 1: out data port Base Types::Integer;
output 2: out data port Base Types::Integer;
sensor data 1 : requires data access sensorData 1;
sensor data 2 : requires data access sensorData 2;

end thread 1;

thread implementation thread 1.impl
properties
Dispatch Protocol => Periodic; Period => 50ms;
annex behavior specification {**
states
s0: initial complete final state;
transitions
s0 –[on dispatch]–>s0 { output 1 := sensor data 1;
output 2 := sensor data 2 };
**};

end thread 1.impl;

thread thread 2
features
input 1: in data port Base Types::Integer;
input 2: in data port Base Types::Integer;
display data 1 : requires data access displayData 1;

end thread 2;

thread implementation thread 2.impl
properties
Dispatch Protocol => Periodic; Period => 50ms;
annex behavior specification {**
variables
sensor 1, sensor 2, tmp: Base Types::Integer;
states
s0: initial complete final state;
s1: state;
transitions
s0 –[on dispatch]–>s1 { sensor 1 := input 1;
sensor 2 := input 2 };
s1 [2] –[sensor 1 != sensor 2]–>s0 { mean!(sensor 1,
sensor 2,tmp); display data := tmp };
s1 [1] –[sensor 1 = sensor 2]–>s0 { display data
:= sensor 1 };

**};
end thread 2.impl;
...

Table 2: Continuation of running example.
...
subprogram mean

features
x : in parameter Base Types::Integer;
y : in parameter Base Types::Integer;
z : out parameter Base Types::Integer;

end mean;

subprogram implementation mean.impl
annex behavior specification {**
states
s0: initial state;
s1: final state;
transitions
s0 –[]–>s1 { z := (x + y)/2 };
**};

end mean.impl;
...

A subprogram sub = 〈DAT A S,SP, EP, EDP,DA,SA,
MSM,BM〉 has a set of data subcomponents DAT A S ⊆
DAT A; a set of subprogram parameters SP = {sp(data) |
sp is an in/out/in out parameter of data type data ∈ DAT A
and of the form parameter }; a set of event ports EP =
{ep | ep is an out event port of data type d ∈ DAT A};
a set of event data ports EDP = {edp(data) | edp(data)
is an out event data port of data type data ∈ DAT A}; a
set of data accesses DA = {da(data) | da(data) is a data
access to shared data data ∈ DAT A}; a set of subprogram
accesses SA = {sa(sub) | sa(sub) is a subprogram access
to subprogram sub ∈ SUB}; a Mode State Machine MSM;
and a Behavioral Model BM.

Let DP U , EP U , EDP U , SP U , DA U and SA U de-
note the union of all sets of component data ports, event
ports, event data ports, parameters, data accesses, and sub-
progam accesses respectively. C denotes the set of connec-
tions in the architecture, C = {c(source, destination) | c is
a port connection from source ∈ DP U ∪EP U ∪EDP U to
destination ∈ DP U ∪ EP U ∪ EDP U of the form
port connection; or a data access connection (access to shared
data) from source ∈ DAT A to destination ∈ DA U of the
form data access connection; or a subprogram access con-
nection from source ∈ SUB to destination ∈ SA U of
the form subp access connection; or a parameter connection
from source ∈ SP U ∪ DP U ∪ EDP U to destination ∈
SP U∪DP U∪EDP U and 〈source, destination〉 /∈ DP U×
DP U ∪ DP U × EDP U ∪ EDPU × DP U of the form pa-
rameter connection}.
CALL denotes the set of subprogram calls in the archi-

tecture, CALL = {call(sub) | call is a subprogram call to
sub ∈ SUB of the form subprogram call}.

A Behavioral Model compi.BM = 〈S, so, CPL,FIL,
VAR, T R〉 has a set of states S of the form state; an ini-
tial state s0 ∈ S; a set of complete states CPL ⊆ S; a
set of final states FIL ⊆ S; a set of typed variables VAR
of the form variable; and a set of state transitions T R ⊆
S × PRI × G × ACT × S of the form state transition. A
state s /∈ CPL ∪ FIL ∪ s0 is called an execution state. We

shall use the denotation s
pri,g,act−−−−−→ s′ iff 〈s, pri, g, act, s′〉 ∈

T R. pri ∈ N is the priority of the transition. g is a
(possibly empty) set of guards, which are predicates (also
known as execute conditions) over local variables, compo-
nent (compi) in ports, component in parameters, subcom-
ponent (compi.sub sj) out ports, subcomponent out param-

eters, data subcomponents, or accesses to shared data com-
ponents iff s /∈ CPL ∪ FIL; or predicates (also known
as dispatch conditions) over (dispatch triggered by) event
ports or event data ports (including receipt of a call) iff
s ∈ CPL. act is a (possibly empty) set of actions which
are sequences (elements of a sequence are separated by “;”
and executes in that order) and sets (separated by “&” and
executes non-deterministically) of: subprogram calls with
arguments of the form sub!(list) where sub ∈ SUB and
list ∈ ARG × ARG∗ where ARG is the union of local
variables, component (compi) in ports and parameters, sub-
component (compi.sub sj) out ports and parameters, data
subcomponents, and accesses to shared data components;
of assignments of the form target := expr where target ∈
V AR∪compi.DATA∪compi.DA∪compi.DP ∪compi.EP ∪
compi.EDP where expr is an arithmetic expression over lo-
cal variables, component in ports and parameters, subcom-
ponent out ports and parameters, data subcomponents, and
accesses to shared data components; and of timed actions
of the form computation(min .. max) which represent
the use of the bounded CPU in terms of a duration between
min ∈ N and max ∈ N time units.

A Mode State Machine compi.MSM = 〈M,mo,MTR〉
has a set of operational states (runtime configurations) called
modes M of the form mode; an initial mode m0 ∈ S; and a
set of mode transitions MTR ⊆M×T RI×M of the form

mode transition. We shall use the denotation m
tri−−→ m′ iff

〈s, tri, s′〉 ∈ MT R. T RI is a set of triggers which is the
union of component (compi) in event and event data ports,
and subcomponent (compi.sub sj) out event and event data
ports.

The complete semantics of the above abstract syntax is
available in the AADL standard [2] and the Behavioral An-
nex [4].

4. SLICING THROUGH SYSTEM DEPEN-
DENCE GRAPHS

Let EXPR be the set of possible expressions described
by the abstract syntax. The slicing algorithm we propose
builds on the general definition of program slicing originally
discussed by Weiser [14]:

Definition 1. A backward slice of an AADL model with
respect to slicing criterion CRI = 〈comp, expr, var〉, where
expr ∈ EXPR is an expression within comp, and var is a
variable or data component defined/assigned or used/read
at expr, consists of all control flow and data flow determin-
ing expressions of the model that the value of var at expr
in comp possibly depend on. A forward AADL slice with
respect to slicing criterion CRI = 〈comp, expr, var〉 consists
of all control flow and data flow determining expressions of
the model that possible are dependent on the value of var
at expr in comp.

As usual, there exist two types of dependencies: control
dependence and data dependence.

Definition 2. An AADL expression expr1 ∈ EXPR is
control-dependent on an AADL expression expr2 ∈ EXPR
if expr2 possibly decides whether expr1 will be executed or
not. expr1 is data-dependent on expr2 if expr2 defines a
data variable possibly used by an execution of expr1.

Control and data dependencies of an AADL model are
represented by its SDG. A SDG is generated through a pro-
cess of algorithms starting with the generation of the CFGs
of the components representing concurrent units of sequen-
tial execution: thread and subprogram components. The
control flow through such a component is determined by its
behavioral model that represents its logical execution, i.e.
the CFG of a component is generated based on its behav-
ioral model. Algorithms can then be applied to the CFGs
to determine the internal control and data dependencies of
each component. The set of (internal) control dependencies
and the set of (internal) data dependencies of a component
yield the CDG and the FDG of a component, respectively.
The PDG of each component is then formed by merging
their corresponding CDG and FDG. PDGs do not, however,
have the ability to describe interdependencies among compo-
nents. AADL models express control and data flow interac-
tions among components throughout the architecture, from
sensors to actuators through software components. The
possible interactions among software components are rep-
resented by four different types of connections: port connec-
tions, data access connections, subprogram calls, and param-
eter connections. These expressions explicitly yield control
and data dependencies and are similar to the dependencies
that can be represented in a SDG, but not in a PDG, i.e.,
calls and parameter (data) passing. In order to generate
the SDG of an AADL model, the set of PDGs of an AADL
model must be integrated with these interdependencies.

In Section 4.1, we describe how CFGs of an AADL model
are generated. In Section 4.2, we describe how PDGs are
generated by performing operations on the CFGs, and in
Section 4.3, we describe how to generate the SDG of an
AADL model from the set of PDGs, which can be sliced for
the purpose of selective regression verification as described
in Section 5.

4.1 Generating Control Flow Graphs
The set of CFGs of an AADL model is generated by

mapping the behavioral model (compi.BM) of each thread
component and subprogram component to its corresponding
CFG as described in Algorithm 1.

Definition 3. A control flow graph CFG(compi.BM) =
〈V,A〉 of a (possibly concurrent) component of sequential ex-
ecution compi is a directed graph of a set of vertices V = {v |
v ∈ EXPR∪〈“ENTRY ”, comp〉∪〈“REENTRY ”, comp〉∪
〈“EXIT”, comp〉} representing AADL expressions, and a
set of arcs A ⊆ V ×V describing how control flows through
the vertices. Vertex v1 of an arc 〈v1, v2〉 ∈ A is called a
predecessor of v2 whereas vertex v2 is called a succes-
sor of v1. A vertex can have zero, one, or two succes-
sors. Let outdegree(v) be a function mapping the num-
ber of successors to a vertex v and indegree(v) the number
of predecessors. A vertex v with outdegree(v) = 2 repre-
sents a so called control expression including a Boolean
condition. The two outgoing arcs of v are attributed with
〈v, vx〉T (TRUE) and 〈v, vy〉F (FALSE) and correspond to
the control flow in response to the evaluation of the condi-
tion. The 〈“ENTRY ”, comp〉 vertex represents the point
of the component comp through which control enters and
outdegree(〈“ENTRY ”, comp〉) = 1. A 〈“REENTRY ”,
comp〉 vertex represents a point of the component comp
through which control suspends, and reenters when the com-
ponent has been reactivated/dispatched after the suspension

Table 3: AADL Grammar in Backus-Naur Form (BNF)
port connection ::= identifier : (data port | event port | event data port) source port reference (−−− >>> | −−− >>>>>>)

destination port reference

data access connection ::= identifier : data access data component reference (−−− >>> | <<< −−− >>>) access require reference

subp access connection ::= identifier : subprogram access subprogram component reference <<< −−− >>> access require reference

parameter connection ::= identifier : parameter source parameter reference −−− >>> destination parameter reference

subprogram call ::= identifier : subprogram subprogram reference

port ::= identifier : (in | out | inout) (data port | event data port | event) data component reference

component access ::= identifier : requires (data access | subprogram access) component reference

parameter ::= identifier : (in | out | in out) parameter [data component reference]

state ::= state identifier : [initial][complete][final] state

variable ::= variable declarator : data component reference

state transition ::= [identifier [priority] :] source state identifier −[guard]− > destination state identifier [action]

mode ::= identifier : [initial] mode

mode transition ::= [identifier :] source mode identifier −[trigger]− > destination mode identifier

and outdegree(〈“ENTRY ”, comp〉) = 1. The 〈“EXIT”,
comp〉 vertex represents the point of the component comp
through which control exits/stops and outdegree(EXIT) =
0. A path P = v1v2 · · · vn of CFG is a sequence of vertices
such that n ≥ 2 and for i = 1, 2, . . . , n − 1, 〈vi, vi+1〉 ∈ A.
A path P = v1v2 · · · vn is called a basic block if v1 6=
ENTRY ∪ REENTRY , outdegree(v1) = 1, for n > 2 and
i = 2, 3 . . . , n − 1, indegree(vi) = 1 and outdegree(vi) = 1,
and indegree(vn) = 1 and outdegree(vn) ≥ 2.

For simplicity, we assume that a compi.BM only includes
deterministic behavior when defining the transformation to a
CFG(compi.BM). The assumption restricts the behavioral
model (BM) such that actions of transitions cannot be of
sets (i.e. actions must be of sequences), multiple outgoing
edges from the same state must not have equivalent priorities
(which otherwise execute non-deterministically), and there
can only be one final state.

In a BM, the atomic expressions which define executable
operations are guards and actions of state transitions. Hence,
the vertices of CFG(compi.BM) represent guards and ac-
tions of state transitions in compi.BM. Each state transi-
tion yields a fixed execution order of operations: the guard
of the transitions is first computed, and if evaluated to the
Boolean value TRUE, the sequence of actions of the tran-
sition is executed according to the order of the sequence.

Consequently, each transition s
pri,g,act−−−−−→ s′, where act =

action1; action2; ...; actionn is a sequence of n actions (ex-
ecutes deterministically according to the sequence), maps
to a CFG construct of one vertex v1 = g representing the
guard of the state transition, a basic block of n vertices v2 =
action1, v3 = action2, . . . , vn+1 = actionn representing the
actions of the state transition, and n arcs 〈v1, v2〉T , 〈v2, v3〉,
. . . , 〈vn, vn+1〉 representing the control flow through the ex-
ecutable operations. Note that the arc from the guard to
the first action is attributed with a “T”. Let stateTrToV :
T R → P(V) be a function mapping a state transition to a
set of vertices, and stateTrToA : T R → P(A) to a set of

arcs such that stateTrToV (s
pri,g,act−−−−−→ s′) = {v1, v2, v3, . . . ,

vn+1} and stateTrToA(s
pri,g,act−−−−−→ s′) = {〈v1, v2〉T , 〈v2, v3〉,

. . . , 〈vn, vn+1〉} where v1 = g, v2 = action1, v3 = action2,

. . . , vn+1 = actionn. The fixed execution order of opera-
tions is repeated throughout the BM until a final state is
reached, regardless of the evaluation of the guard – and un-
der the assumptions that the model is free from deadlocks.

If evaluated to the Boolean value TRUE, the actions are ex-
ecuted, resulting in the arrival of a new state s′, whereupon
the transition going out from s′ with the highest priority is
executed according to the fixed order. If the guard is evalu-
ated to the Boolean value FALSE, another state transition
going out from s with the (next) highest priority is exe-
cuted in the fixed order. Let guardV ertex : T R → V be

a function mapping a state transition s
pri,g,act−−−−−→ s′ to the

vertex vx representing the guard of the state transition. Let
lastActionV ertex : T R → V be a function mapping a state

transition s
pri,g,act−−−−−→ s′ to the vertex vx representing the

last action of the state transition. Let guardV ertexPrio :
S × N → V ∪ {FALSE} be a function mapping a state s
to the vertex vx representing the guard of the state tran-
sition going out from v and with the highest priority, or
with the highest priority but less than n if a natural num-
ber is given as argument, or FALSE if there exist no such
vertex. In the case of an evaluation of a guard to TRUE,
the control flow from the last action of the transition to the
guard of the second transition with the highest priority is

simply represented by an arc 〈lastActionV ertex(s
pri,g,act−−−−−→

s′), guardV ertexPrio(s′)〉. In case of an evaluation to
FALSE, the control flow to the guard with the (next) high-
est priority is represented by an (FALSE-)arc 〈guardV ertex

(s
pri,g,act−−−−−→ s′), guardV ertexPrio(s, pri)〉F .

It should be mentioned that actions may be of if, while
and for constructs. Such an action comprises multiple ver-
tices where control can leave the construct (action) from
several vertices rather than a single one. In such constructs
are predicates and nested actions also represented through
distinguished vertices. Assume that vx represents a control
predicate expression of a loop or conditional, and vy rep-
resents an action expression immediately nested within the
loop or condition. If vx is the predicate of a conditional
expression the arc 〈vx, vy〉 is labeled with “T” or “F” ac-
cording to weather vy exists in the then branch, elsif or
else branch. If vx is the predicate of a while- or for-loop,
the arc 〈vx, vy〉 is labeled with “T”. In case a state transition
consists of an action sequence where the last action consists
of an if construct, each (nested) action ending the control
flow of the construct, including the current state transition,
must be connected to the subsequent transition guard ver-
tex, REENTRY vertex, or EXIT vertex by an arc.

Algorithm 1 Algorithm for generating control flow graphs

Input: compi.BM = 〈S, so, CPL,FIL,VAR, T R〉 and T Rrel ⊆
T R
Output: CFG(compi) = 〈V,A〉
1: V ← ∅ ∪ {〈”ENTRY ”, compi〉, 〈”EXIT”, compi〉}
2: A← ∅
3: for all s

pri,g,act−−−−−−→ s′ ∈ T Rrel do . generate vertices and arcs
for each relevant transition

4: V ← V ∪ stateTrToV (s
pri,g,act−−−−−−→ s′)

5: A← A ∪ stateTrToA(s
pri,g,act−−−−−−→ s′)

6: end for
7: A ← A ∪ {〈〈”ENTRY ”, compi〉, guardV ertexPrio(firstState(

compi.BM))〉 . Generate the arc representing control flow from
the ENTRY vertex to the guard vertex with highest priority

8: for all cplj ∈ CPL do . generate possible REENTRY vertices

9: if ∃s pri,g,act−−−−−−→ s′ ∈ T Rrel[s
′ = cplj] then

10: V ← V ∪ {”REENTRYj”}
11: A← A ∪ {〈”REENTRYj”, guardV ertexPrio(s′)〉} .

Any control flow to ”REENTRYj” will successively flow to
guardV ertexPrio(s′)

12: end if
13: end for

14: for all s
pri,g,act−−−−−−→ s′ ∈ T Rrel do . Generate arcs to connect

each transition representation to the subsequent guard, complete
state (reentry) or final state representation

15: if s′ ∈ CPL) then

16: A← A ∪ {〈lastActionV ertex(s
pri,g,act−−−−−−→ s′), CPLState

V ertex(s′)〉}
17: else if s′ ∈ FIL then

18: A← A ∪ {〈lastActionV ertex(s
pri,g,act−−−−−−→ s′), 〈”EXIT”,

compi〉〉}
19: elseA ← A ∪ {〈lastActionV ertex(s

pri,g,act−−−−−−→ s′), guard
V ertexPrio(s′)〉}

20: end if
21: if guardV ertexPrio(s, pri) then . generate a false arc if a

subsequent guard exists

22: A ← A ∪ {〈guardV ertex(s
pri,g,act−−−−−−→ s′), guard

V ertexPrio(s, pri)〉F }
23: end if
24: end for
25: return 〈V,A〉

The complete flow of control, i.e. the possible orders in
which transitions are executed, is determined by the possi-
ble orders states can be visited through state transitions (the
possible paths in the BM) and by the priorities of the state
transitions. A BM of a subprogram component has: one
initial state representing the starting point of a call; zero or
more intermediate execution states representing the logical
execution between start and completion of a call; and one
final state representing the completion of a call. Thus, the
initial state of a subprogram maps to an ENTRY vertex
whereas the final state maps to an EXIT vertex. A BM
of a thread component, on the other hand, has: one initial
state representing the state (halted) of the thread before
it is initialized; zero or more intermediate execution states
representing the initialization steps (such as checking cor-
rectness of initial values of input and output ports) of the
thread between the initial state and one, first, complete state
(any path from the initial state will reach the same complete
state before any other complete state); one or more complete
states representing that the thread has suspended itself and
is awaiting dispatch/reactivation (the first complete state
reached from an initial state does also represent completion
of initialization the first time it is reached); zero or more
intermediate execution states representing logical execution
between dispatches, that is, from and back to a complete

state or between complete states; and one final state repre-
senting completion of finalization.

Execution of a subprogram component is triggered by in-
coming calls where the transition out from the initial state
with the highest priority (if several) and with valid execute
conditions is executed. A thread component, on the other
hand, must first be initialized by an initialize action trig-
gered when the process containing the thread is completely
loaded into its virtual address space before it can be exe-
cuted. An initialize action triggers the transition out from
the initial state eventually leading to one, first, complete
state. A state transition to a complete state means that the
thread is calling an“await dispatch”run-time service, where-
upon the thread is suspended after the action of the state
transition has been executed. A dispatch of the thread com-
ponent is triggered according to the dispatch conditions of
the transitions out from the current complete state and the
specified scheduling protocol of the thread. Dispatches of a
periodic thread are solely triggered by a clock and the time
interval (period) specified with the thread. In this case, dis-
patch conditions (guards of transitions out from complete
states) are left empty. Dispatches of aperiodic, sporadic,
timed and hybrid threads are essentially triggered by the
arrival of an event or an event data at an event or event
data port of the thread, or a remote subprogram call arriv-
ing to a provides subprogram access feature of the thread.
By default, any arrival of event, event data or subprogram
call triggers a dispatch where dispatch conditions restrict
the number of triggers if modeled. In either case, an input-

Figure 1: The CFG of thread 2.

compute-output model of execution is triggered. Input on
in ports is frozen at the time of dispatch, where input from
each port connection is read and assigned to a correspond-
ing port variable which value (by default) is not affected by
new arrivals for the remainder of the current dispatch. Out-
put on out ports is transmitted through the connections at
the time of completion, deadline or at specific output times
according to an Output T ime property. For simplicity, we
assume that the output is transmitted at completion. A

state transition to a final state means that the thread com-
pletes and is calling a “finalize” run-time service, whereupon
the thread terminates after the action of the state transi-
tion has been executed. Consequently, a BM of a thread
component, in contrast to a BM of a subprogram compo-
nent, expresses state transitions which are not relevant to
the logical execution (such as initialization transitions).

The relevant set of state transitions includes each tran-
sition that exists on every path from every complete state
in the BM. Each of these are either from a complete state
to a complete state, execution state, or a final state; or
from an execution state to a complete state, an execution
state, or a final state. Thus, the first complete state reached
from an initial state maps to an ENTRY vertex, any sub-
sequently reachable complete states, including the one first
reached from an initial state, maps to a REENTRY vertex.
The final state maps to an EXIT vertex. Let firstState :
P(S)×S ×P(S)×P(S)×P(VAR)×P(T R)→ CPL be a
function mapping a BM to the initial state if the BM is of
a subprogram component, or the first complete state reach-
able from the initial state if the BM is of a thread com-
ponent. Let CPLStateV ertex : CPL → V be a function
mapping a complete state to its corresponding REENTRY
vertex. Note that the first complete state is mapped to
both an ENTRY and an REENTRY vertex if there exist
a transition back to the state. However, there exist only one
distinguished ENTRY vertex, so there is no need to define
a function to retrieve it. Let T Rrel ⊆ T R be the relevant
set of state transitions of a BM. If the BM is of a subpro-
gram component, then T Rrel = T R. The transformation
from a compi.BM to the corresponding CFG(compi.BM)
can then be calculated as shown in Algorithm 1. The result
of applying the algorithm on thread 2.impl of the running
example (Table 1) is shown in Figure 1.

Each state transition out from or to a complete state com-
prises interactions (of control, data, or both) with other com-
ponents if the thread has in ports or out ports connected to
them, respectively. These are relevant to the logical exe-
cution but not considered in the CFG, however, they are
considered when constructing the SDG from PDGs as de-
scribed in Section 4.3.

4.2 Generating Program Dependence Graphs
A CDG(compi) or a FDG(compi) of a component is a

directed graph 〈V,A〉 of a set of CFG vertices V and arcs
A ⊆ V × V of the form 〈v, v′〉c or 〈v, v′〉d. An arc 〈v1, v2〉c
labeled with “c” represents that v2 is control-dependent on
v1. An arc 〈v1, v2〉d labeled with “d” represents that v2 is
data (flow) dependent on v1.

A PDG(compi) of a component is simply the union of
CDG(compi) and FDG(compi). Control dependencies of
a CFG are calculated by so called dominator vertices [12].
Assume that vx, vy and vz are vertices of CFG(compi.BM).
A vertex vx is post-dominated by a vertex vy if every path
from vx to the EXIT vertex includes vy. Control dependency
is then defined as:

Definition 4. A vertex vy is control-dependent 〈vx, vy〉c
on a vertex vx iff 1) vx is an ENTRY or an REENTRY
vertex and vy is not nested within any loop or conditional
vertex, or 2) there exists a path P from vx to vy such that
any vertex vz in P is post-dominated by vy, and vx is not
post-dominated by vy (vx must be a control expression).

An algorithm to generate the corresponding CDG of a
CFG, based on this definition of control dependency, can
be found in [12]. The corresponding CDG of the CFG in
Figure 1 is shown in Figure 2.

Figure 2: The CDG of thread 2.

Data dependencies of a CFG are calculated by so called
def-use pairs. Assume that vx is a vertex that defines/assigns
variable var, and vy is a vertex that uses/reads var. Flow-
dependency is then defined as:

Definition 5. A vertex vy is data-dependent 〈vx, vy〉d
on a vertex vx iff vx defines/assigns a variable var that is
used/read by vy, and there exists a path P from vx to vy
such that any vertex vz in P does not define/assign var.

Figure 3: The FDG of thread 2.

Since each thread dispatch and subprogram activation in-
cludes assignments to input port and parameter variables
if the component has such connections, a control flow from
an ENTRY and REENTRY vertex includes assignment
which are not represented in a CFG. Interactions between
components are considered when constructing the SDG, how-
ever, to calculate all possible data dependencies it is assumed
that all necessary initial assignments occur in the ENTRY
vertex of a subprogram, and in the dispatch condition ver-
tices of ENTRY and REENTRY vertices of a thread. In

addition, a vertex including a subprogram call includes as-
signment of return values to in data ports connected with
the out parameters of the called subprogram. Such assign-
ments are assumed to occur in the vertex including the call.
The corresponding FDG of the CFG in Figure 1 is shown in
Figure 3.

4.3 Generating the System Dependence Graph
SDGs, as originally defined in [7], extend the expressive-

ness of PDGs such that procedure calls and parameter (data)
passing (by value) can be integrated. The extension consists
of five distinguished types of vertices to accurately represent
the semantics of procedure calls and parameter passing: call
vertices (subprogram(arg0, arg1, . . . , argm, var0, var1, . . . ,
varn) where m,n ∈ N), representing call sites; actual-in ver-
tices ({tempi in = argi | i ∈ N and 0 ≤ i ≤ m}), represent-
ing assignments that copy the values of the actual arguments
of call sites to temporary “in” variables; formal-in vertices
({parameteri = tempi in | i ∈ N and 0 ≤ i ≤ m}), repre-
senting assignments that copy the values of temporary “in”
variables to the formal parameters of procedures; formal-out
vertices ({tempi out = returni | i ∈ N and 0 ≤ i ≤ n}),
representing assignments that copy the values of return vari-
ables of procedures to temporary“out”variables; and actual-
out vertices ({vari = tempi out | i ∈ N and 0 ≤ i ≤ n}),
representing assignments that copy the values of tempo-
rary “out” variables to the variables assigned by the calls.
Actual-in and actual-out vertices are control-dependent on
the call vertex, whereas formal-in and formal-out vertices
are control-dependent on the entry vertex (of the called sub-
program). In addition, the extension includes three distin-
guished types of dependence edges, which also maintain a
clear structure of the system: call edges, representing the
control dependence between a call site and the entry of the
called procedure; parameter-in edges, representing the data
dependence between an actual-in vertex and the correspond-
ing formal-in vertex; parameter-out edges, representing the
data dependence between a formal-out vertex and the cor-
responding actual-out vertex. A SDG is basically formed
by: 1) representing each procedure of a program by a PDG
extended with vertices for procedure calls and parameter
passing; 2) connecting call vertices of PDGs to the entries of
the corresponding called PDGs through call edges; and con-
necting actual-in vertices to formal-in vertices and formal-
out vertices to actual-out vertices through parameter-in and
parameter-out edges respectively. In AADL, however, there
are additional types of interdependencies than procedure
calls and parameter passing. The original definition of a
SDG must therefore be extended to be applicable to AADL
models.

A SDG(AADLMDL) of an AADL model is a directed
graph 〈V,A〉 of a set of CFG vertices V and arcs A ⊆
V × V of the form 〈v, v′〉c, 〈v, v′〉d, 〈v, v′〉call, 〈v, v′〉p−in,
〈v, v′〉p−out, and 〈v, v′〉mode representing control, data, call
and event, data passing by value and reference, and mode
dependencies. A SDG of an AADL model is formed by
generating the set of PDGs, and annotating them to in-
clude interdependencies between the set of PDGs, such as
shown in Figure 4 where the SDG of our running example
is presented. The possible interactions among components
are represented by four different types of connections: port
connections, data access connections, subprogram calls, and

Figure 4: The SDG of the AADL example.

parameter connections. Ports, parameters, and data compo-
nents are accessible as typed data variables.

Port connections represent transfers of data (by value),
control, or both, depending on the type of interconnected in-
terfaces: data ports, event ports, or event data ports. A data
port connection can be accurately represented by an uni-
directional variant of SDG parameter passing including an
actual-in vertex connectioni temp = outdataport var and
a formal-in vertex indataport var = connectioni temp in-
terconnected through a parameter-in (data dependence) arc
denoted 〈connectioni temp = outdataport var, indataport
var = connectioni temp〉p−in. The actual-in vertex is con-

trol dependent on each REENTRY vertex and the EXIT
vertex of the sending thread (since we assume transfer of
output at completion). The formal-in vertex is control-
dependent on the dispatch condition vertices of the receiv-
ing thread. E.g., data port connection Connection 1 in
the AADL example (Table 1) maps to the actual-in ver-
tex “connection 1 := output 1” and the formal-in vertex
“Input 1 := connection 1” in Figure 4. An event port con-
nection can be accurately represented by an event port“call”
vertex outeventport var! (an exclamation mark denotes the
triggering of an event in AADL) and a target event port
variable vertex ineventport var interconnected through a
call (control dependence) arc denoted 〈outeventport var!,
ineventport var〉call. The dispatch condition vertices of the
receiving thread is control-dependent on the event port vari-
able vertex. Event data port connections can be represented
through an actual-in vertex connectioni temp = outevent

dataport var and a formal-in vertex ineventdataport var
= connectioni temp interconnected through both a param-
eter in arc and a call arc, where actual-in and formal-in
vertices are control-dependent on the sending and receiving
thread according to the union of data and event port con-
nections.

Subprogram calls represent transfers of control whereas pa-
rameter connections represent transfers of data (by value).
Control and data dependencies of subprogram calls with pa-
rameter connections can be represented as originally defined
in a SDG [7], however, where actual-in, formal-in, formal-
out, and actual-out vertices operates on port and parameter
variables. E.g., the subprogram call mean!(sensor 1,sensor
2,tmp) in the AADL example (Table 1) maps to actual-in
vertices “x in := sensor 1” and “y in := sensor 2”, formal-
in vertices “x := x in” and “y := y in”, formal-out vertex
“z out := z”, and actual-out vertex “tmp := z out” in Fig-
ure 4.

Data access connections to a common data component
may represent transfers of data (by reference) if there exist
both write-right (a component is able to write data) and
read-right (a component is able to read data) access connec-
tions. In case this condition holds, data dependence between
a write-right (connectioni) and a read-right (connectionj)
data access connection can be represented through a vari-
ant of SDG parameter passing including an actual-in ver-
tex connectioni−j temp = datacomp var, representing the
write-right connection, and an inverting formal-in vertex
datacomp var = connectioni−j temp, representing the read-
right connection, interconnected through a parameter-in arc.
We assume that a thread or a subprogram gets the data
source upon dispatch, and releases it upon a completion.
There are thereby no data dependencies among components
on the data component during the execution of a thread or
subprogram. Consequently, the actual-in vertex is control-
dependent on each REENTRY vertex and the EXIT ver-
tex of the sending thread, or the EXIT vertex of the sending
subprogram. The formal-in vertex is control-dependent on
the dispatch condition vertices of the receiving thread, or
the ENTRY vertex of the receiving subprogram.

The runtime configuration of subcomponents and their
interactions within a component may change if it is spec-
ified with modes. For each mode, it is possible to set the
active components and connections, mode-specific subpro-
gram calls, and mode-specific properties. Modes essentially
determine if complete components and interactions between
components will be executed or not and therefore express
control dependencies. Hence, entry vertices of components
and vertices involved with dependencies between compo-
nents may be control-dependent on modes. To accurately
represent the SDG of an AADL model, we extend the ex-
pressiveness of a SDG with a mode and a mode trigger vertex
type representing modes and mode triggers, and a mode de-
pendence arc type representing control dependence due to
modes. Each mode, except for the initial mode, in a mode
state machine is control-dependent on the previous mode
and the mode transition triggers of the mode transitions to

the mode. Hence, for each mode transition m
tri−−→ m′ of each

compi.MSM, the following vertices and dependence arcs
are generated:〈“MODE”,m〉 ∈ V , 〈“MODETRI”, tri〉 ∈
V , 〈“MODE”,m′〉 ∈ V , 〈〈“MODE”,m〉, 〈“MODE”,m′〉
〉mode ∈ A, and 〈〈“MODETRI”, tri〉, 〈“MODE”,m′〉〉mode

∈ A.

To complete the interdependencies between a set of PDGs
to form the SDG, a dependence construct according to above
description must be generated for each connection and mode
state machine. The constructs and PDGs are completely
integrated by adding a control, data, and/or a call depen-
dence edge for each definition, use, event call, and event
call retrieval of a port, parameter, or data component vari-
able of each PDG that yields a data or control dependency
with the added set of vertices. E.g., vertex “output 1 :=
sensor data 1” yields a data dependency with the added
actual-in vertex “connection 1 := output 1” in Figure 4 and
must be connected with a data dependence edge as shown.
Since we assume that output is sent on the time of com-
pletion, an actual-in or a formal-out vertex is only data-
dependent on the corresponding final definitions of the out
data port, out event data port, out parameter, or data com-
ponent variable of each thread dispatch or subprogram acti-
vation. Note that a CFG with multiple paths between dis-
patches may include multiple final definitions. An actual-in
vertex, of an event data port connection, or an event port
call vertex is control-dependent on the corresponding final
definitions and event calls. In addition, entry, actual-in,
formal-in, formal-out, and actual-out vertices that are de-
pendent on modes are connected to the corresponding mode
vertices through mode-dependence arcs.

Note that in the construction of a PDG, it is assumed
that initial assignments of in data or event data ports, in
parameters, and accessed data components variables, and
of return values of subprogram calls to in data ports occur
in ENTRY vertices of subprograms, dispatch vertices of
threads, and vertices including subprogram calls. In a SDG
are these assignments explicitly represented in formal-in and
actual-out vertices. Any data dependence on such vertices
is substituted with a data dependence on the corresponding
formal-in or actual-out vertex. E.g., vertex “sensor 1 :=
input 1” is data-dependent on formal-in vertex “Input 1 :=
connection 1” in Figure 4, rather than on the dispatch ver-
tex as in Figure 3. The corresponding SDG of the running
example according to the rules defined in this section is pre-
sented in Figure 4.

5. SLICING AND SELECTION
Through comparison of SDGs generated from the archi-

tecture model and its modified version, the modifications
can be identified and their effects on the system architec-
ture can be traced by slicing the modified model with re-
spect to the variables assigned or used in the modifications.
A modification is defined as an added or changed vertex, or
a vertex which dependency on another vertex has been re-
moved, added or changed. Verification sequences which do
not cover modified or affected vertices, i.e., the sliced model,
can then be disregarded to generate a more efficient subset
for regression verification.

A backward-slice of an AADL model with respect to slic-
ing criterion CRI = 〈comp, expr, var〉 and a SDG = 〈V,A〉
is simply the subset of vertices Vb−slice ⊆ V that are back-
wards reachable (through arcs) from vertex expr ∈ V (in-
cluding expr ∈ V). A forward-slice, on the other hand, is
simply the subset of vertices Vf−slice ⊆ V that are forward
reachable (through arcs) from vertex expr ∈ V (including
expr ∈ V).

As an example, consider the SDG of our running example
and assume that there exist a prior SDG of a prior version

of the AADL model in Table 1 and Table 2. Further as-
sume that according to a comparison between the two SDGs,
the vertex “z := (x + y)/2” is a changed vertex and consti-
tutes the modification and therefore also the slicing criterion.
The forward-slice Vf−slice = {“z := (x + y)/2”, “z out :=
z”, “tmp := z out”, “display data := tmp”} includes the set
of elements of the AADL model that may exhibit a different
behavior with respect to the prior version and thus must
be re-verified. Any previous verification sequence covering
any of these vertices should therefore be re-executed since
it may generate a different result. The backward slice in-
cludes all vertices that may affect the behavior of the mod-
ification and, depending on the verification technique (e.g.
unit- or system-level verification) and the coverage criteria
(e.g. statement, condition, or path coverage), can be used
to guide the selection process. There are two extremes: 1) if
the technique has the ability to directly execute the modifi-
cation (e.g. directly call a modified subprogram rather than
stimulating the system with input that eventually causes
a call to the modified subprogram) and the coverage crite-
ria allow it, none of the vertices in the backward slice ex-
cept for the modification and vertices also included in the
forward-slice may be covered, and 2) if the coverage crite-
ria require all possible scenarios in which the modification
may be executed to be covered, all vertices of the back-
ward slice must be covered (in fact, all paths of the back-
ward slice must be covered for full coverage). Despite ver-
ification technique and coverage criteria, vertices that are
not included in the forward nor backward transitive clo-
sure {“sensor 1 = sensor 2”, “display data := sensor 1”}
can, with respect to the modification, be confidentially disre-
garded in the regression verification process. With auxiliary
vertices (ENTRY and EXIT) excluded, this constitutes a
2/23 ≈ 9% to 19/23 ≈ 83% reduction of exercised elements.

6. CONCLUSIONS
In this paper we presented a technique for selective re-

gression verification of AADL models through slicing. We
showed how it can be applied to reduce the scope of re-
verification due to modifications. The technique allows for a
more efficient regression verification process and could there-
fore result in significant cost and time savings.

In the current form, the technique may however intro-
duce a slight overestimation of the data and control depen-
dencies between concurrently executed tasks, by not taking
into account dynamic properties such as patterns of (timed)
scheduling and concurrency protocols for access to shared
memory (critical regions). These properties may, in a com-
plex manner, constrain the possible flows of control and data
between concurrent tasks and, thus, the possible number of
dependencies. A future area of improvement is an inclu-
sion of such dynamic properties to generate more precise
dependencies. The overestimation however makes interde-
pendences between tasks easy and fast to compute, which
advocate the overhead a selective approach yields compared
to a rerun-all approach. The downside is that some elements
may still be unnecessarily exercised in the regression verifi-
cation process, which delimits the return on the investment.
The possible return in terms of time-efficiency with respect
to a non-selective approach is a subject for future research.
In the running example of this paper, the technique resulted
in a 9% to 83% reduction of exercised elements. As slicing

of SDGs can be performed in linear time [7], such results
indicate a beneficial use.

7. REFERENCES
[1] F. E. Allen. Control flow analysis. SIGPLAN Not.,

5(7):1–19, July 1970.

[2] As-2 Embedded Computing Systems Committee SAE.
Architecture Analysis & Design Language (AADL).
SAE Standards no AS5506A, 2009.

[3] S. Bates and S. Horwitz. Incremental Program Testing
Using Program Dependence Graphs. In Proceedings of
the 20th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’93,
pages 384–396, New York, NY, USA, 1993. ACM.

[4] R. B. Franca, J.-P. Bodeveix, M. Filali, J.-F. Rolland,
D. Chemouil, and D. Thomas. The AADL behaviour
annex – experiments and roadmap. In ICECCS ’07:
Proceedings of the 12th IEEE International
Conference on Engineering Complex Computer
Systems, pages 377–382, Washington, DC, USA, 2007.
IEEE Computer Society.

[5] R. Gupta, M. Jean, M. J. Harrold, and M. L. Soffa.
An Approach to Regression Testing using Slicing. In
In Proceedings of the Conference on Software
Maintenance, pages 299–308. IEEE Computer Society
Press, 1992.

[6] M. J. Harrold. Testing: A Roadmap. In In The Future
of Software Engineering, pages 61–72. ACM Press,
2000.

[7] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. In Proceedings of the
ACM SIGPLAN 1988 conference on Programming
Language design and Implementation, PLDI ’88, pages
35–46, New York, NY, USA, 1988. ACM.

[8] A. Johnsen, K. Lundqvist, P. Pettersson, and
O. Jaradat. Automated Verification of
AADL-Specifications Using UPPAAL. Ninth IEEE
International Symposium on High-Assurance Systems
Engineering (HASE’05), 0:130–138, 2012.

[9] Juei Chang and Debra J. Richardson. Static and
Dynamic Specification Slicing. In In Proceedings of the
Fourth Irvine Software Symposium, 1994.

[10] N. G. Leveson. Safeware: system safety and
computers. ACM, New York, NY, USA, 1995.

[11] T. Oda and K. Araki. Specification slicing in formal
methods of software development. In Proceedings of
the 17th annual International computer software and
applications conference (COMPSAC’93), pages
313–319, 1993.

[12] K. J. Ottenstein and L. M. Ottenstein. The program
dependence graph in a software development
environment. SIGPLAN Not., 19(5):177–184, Apr.
1984.

[13] J. Silva. A Vocabulary of Program Slicing-based
Techniques. ACM Comput. Surv., 44(3):12:1–12:41,
June 2012.

[14] M. Weiser. Program slicing. In Proceedings of the 5th
international conference on Software engineering,
ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981.
IEEE Press.

