
Performance Preservation using Servers
for Predictable Execution and Integration

Rafia Inam
Mälardalen Real-Time Research Centre

Mälardalen University, Västerås, Sweden
Email: rafia.inam@mdh.se

Abstract—In real-time embedded systems the components and
components integration must satisfy both functional correctness
and extra-functional correctness, such as satisfying timing prop-
erties. Deploying multiple real-time components on a physical
node poses timing problems in components’s integration. These
timing problems during integration further effect predictability
and reusability of real-time components.

We propose a novel concept of runnable virtual node (RVN)
whose interaction with the environment is bounded both by
a functional and a temporal interface, and the validity of its
internal temporal behaviour is preserved when integrated with
other components or when reused in a new environment. Our
realization of RVN exploits the latest techniques for hierarchical
scheduling framework to achieve temporal isolation, and the
principles from component-based software-engineering to achieve
functional isolation. Proof-of-concept case studies executed on an
AVR based 32- bit micro-controller demonstrates the preserving
of real-time properties within components for predictable inte-
gration and reusability in a new environment without altering
its temporal behaviour in both hierarchical scheduling and RVN
contexts.

We also take a step ahead towards expanding the performance
preserving servers’ concept for multicore platform on which the
scheduling of real-time tasks is inherently unpredictable due
to the contention for shared physical memory and caches. It
results in proposing and implementation of a novel type of
server, called Multi-Resource Server (MRS) which controls the
access to both CPU and memory bandwidth resources such
that the execution of real-time tasks become predictable. The
MRS provides temporal isolation both between tasks running on
the same core, as well as, between tasks running on different
cores. Further, we provide the schedulability analysis for MRS
to provide predictable performance when composing multiple
components on a shared multi-core platform.

Index Terms—Component integration, predictable execution,
server-based scheduling, memory throttling, CPU resource, mem-
ory resource, memory bandwidth.

I. INTRODUCTION

In embedded real-time systems, a continuous increasing
trend in size and complexity of embedded software has ob-
served during the last decades. To battle this trend, modern
software-development technologies are being adopted by the
real-time industry. The reuse of legacy code is an answer to
main challenges of development cost, time to market, and to
the increasing complexity of these applications. The trend of
software use and reuse is observed in embedded software for
automotive, consumer electronics and avionics applications

This work is supervised by Prof. Mikael Sjödin and Dr. Moris Behnam.

areas. Moreover, many industrial systems are developed in
an evolutionary fashion, reusing components from previous
versions or from related products [1]. For example, modern
cars contain nearly 100 million lines of code running on
around 70 to 100 embedded processors [2]. The new Boeing
787 ”Dreamliner” is a recent example with a significant pro-
portion of reused modules from another Boeing airplane [3].
It means that components are reused and re-integrated in
new environments. For systems with real-time requirements,
this integration and reuse in a new environment poses new
challenges.

A. Research Problem and Challenges

Composition/integration of real-time applications (also re-
ferred to as components in [4]) can be explained as the
mechanical task of wiring components together [1]. For real-
time embedded systems the components and components
integration must satisfy (1) functional correctness and (2)
extra-functional i.e. temporal correctness such as satisfying
timing properties. Temporal behavior of real-time components
poses more difficulties in their integration. When multiple
components are deployed on the same hardware node the
timing behavior of each of the components is typically altered
in unpredictable ways. This means that a component that is
found correct during unit testing may fail, due to a change
in temporal behavior, when integrated in a system. Even if a
new component is still operating correctly in the system, the
integration could cause a previously integrated (and correctly
operating) component to fail. Similarly, the temporal behavior
of a component is altered if the component is reused in a new
system. Further the reuse of a component is restricted because
it is very difficult to know beforehand if the component will
pass a schedulability test in a new system. For real-time
embedded systems, methodologies and techniques are required
to provide temporal isolation so that the timing properties
could be guaranteed.

One promising technique for integrating complex real-time
components on a single processor to overcome these deficien-
cies is a Hierarchical Scheduling Framework (HSF) [5], [4]
in which the components are executed as servers with the
specified budgets and periods. It supports CPU-time sharing
among components or applications, hence isolating compo-
nents’ functionality from each other for, e.g., temporal fault
containment, compositional verification, and unit testing. It



also supplies an efficient mechanism (i) to provide predictable
integration of components by rendering temporal partitioning
among components, (ii) to support independent development
and analysis of real-time components, and (iii) to provide
the analysis of integrated components at the system level [4].
HSF has been proposed to develop complex real-time systems
by enabling temporal isolation and predictable integration of
software-functions [6].

However, integrating HSF within a component technology
for embedded real-time systems raises challenges of preserv-
ing the timing properties within components to apply these
properties during components’ integration and deployment on
unicore hardware platform, and to guarantee the temporal
properties of real-time components for their predictable in-
tegration and reusability. Another challenge during compo-
nent integration is to provide communication among various
components of a target software system. This communication
should also be predictable in case of real-time components and
do not affect the schedulability of tasks.

Using multicore platforms for real-time applications
presents more challenges due to shared resources like shared
last-level caches and memory-bus. One such challenge is to
achieve and maintain predictable execution of concurrent tasks
that compete for both CPU- and memory-bandwidth resources
and share caches. On unicore platforms, the server-based
scheduling approach successfully bounds the interference be-
tween the applications running [7], [8], [4]. However, this
approach is limited in provisioning of the CPU-resource only
and it does not take care about the activities that are located on
different cores and can still interfere with other applications in
an unpredictable manner hence imposing negative impact on
system performance and real-time guarantees. A main source
of such an unpredictable negative impact is the contention for
shared physical memory. In commercially existing hardware,
there are currently no mechanisms that allow a core to protect
itself from negative impact if another core starts stealing its
memory bandwidth or starts polluting the shared cache. For
performance-critical real-time systems, overcoming this prob-
lem is paramount. Thus the memory-bandwidth should also be
considered to guarantee predictable performance of real-time
applications that are located in different cores for multicore
platforms, especially when migrating or reusing software from
a single-core to a multi-core architecture. Hence, there is a
need to develop software technologies to track, and eventually
police, the consumed memory-bandwidth in order to achieve
predictable software execution on multi-core platform.

While the incorporation of memory-bandwidth resource into
the server-based scheduling increases the predictable execution
of real-time applications on different cores, the shared caches
still hinders the predictability and is another challenge that
we plan to target. The scheduling alone (i.e. controlling the
allocation of resources over time) is not enough to achieve
complete timing isolation. The cache pollution can have a
tangible effect on timing properties of tasks executing in
different servers and there is a strong need to investigate in
either implementing some cache-partitioning techniques (like

[9]) or bounding caches using some static analysis technique
(like [10]).

Further, the schedulability analysis for the newly proposed
server-based approach is another challenge that we target.

Please note that in this work we focus on the schedulability
of tasks, i.e. meeting their deadlines, as the main timing prop-
erty to achieve predictability. A component’s timing behaviour
is predictable during its integration and reuse, as long as the
schedulability of tasks that have been validated during its
development within a component is guaranteed when multiple
components are integrated together.

B. Research Goal and Refined Research Challenges

The overall goal of the research is: to provide methods and
tools to achieve the predictable execution and integration of
run-time components with real-time properties.

The research goal can be refined and formulated into the
following research challenges:

1) Achieving predictability during real-time components’
integration and their reuse.

2) Developing runtime mechanisms to preserve the tem-
poral properties within real-time components and to
integrate legacy code in new environment.

3) Integrating HSF technique within the CBSE to improve
today’s embedded system development by reusing pre-
served temporal properties.

4) Providing analysis framework for components’ integra-
tion.

II. CONTRIBUTIONS

The aim of the research work is to preserve the timing
properties of the real-time components to achieve predictable
integrations and reusability of those components. To achieve
this, new methods and techniques for embedded real-time
systems are introduced where timing properties of the compo-
nents are preserved, in order to make the integration of real-
time components’ predictable. Further the real-time properties
of the components are maintained for reuse in real-time
embedded systems. The main contributions of the thesis are
as follows:

A. Implementation of HSF for unicore platform

This contribution addresses challenges 1 and 2. We have
provided a two-level hierarchical scheduling support for
FreeRTOS operating system with the consideration of minimal
modifications in FreeRTOS kernel [11]. FreeRTOS [12] is a
portable open source real-time scheduler and is selected for
HSF implementation because of its main properties like small
and scalable, support for more than twenty different hardware
architectures, and easy to extend and maintain.

We extend FreeRTOS scheduler for idling periodic [13]
and deferrable [14] servers using fixed-priority preemptive
scheduling at both global and local levels. We performed
a detailed experimental evaluation on the implementation to
test its temporal behavior and overhead measures of the
implementation on an AVR-based 32-bit EVK1100 board.



Further, We extend our scheduler to support resource shar-
ing among arbitrary tasks which execute in arbitrary compo-
nents [15]. We also provide support for legacy server along
with wrappers for old operating system APIs to reuse the
legacy code without the need of modifying the legacy code.
We extended our initial implementation with these properties
and evaluated on the same target platform using a legacy
FreeRTOS application and a set of synthetic experiments [15].

B. Presentation and realization of RVN concept

To address the challenges of preserving the timing prop-
erties within components and to apply these properties dur-
ing components’ integration and reuse (addressing first three
challenges), we have proposed and realized the concept of
a runnable virtual node (RVN) [16], [17], [18]. The RVN is
intended for coarse-grained components for single node de-
ployment and with potential internal multitasking. We integrate
our HSF implementation within a component technology for
embedded real-time systems in order to provide guaranteed
temporal properties of real-time components, and predictable
integrations and reusability of those components. An RVN
represents the functionality of software-component (or a set
of integrated components) combined with allocated timing
resources and a real-time scheduler to be executed as a server
in the HSF. Thus the functional properties (functionality of
components) are combined and preserved with their extra-
functional properties (timing requirement) in the virtual nodes.
In this way it encapsulates the behavior with respect to
timing and resource usage and becomes a reusable executable
component in addition to the design-time components.

Moreover, we have implemented a server-based communi-
cation strategy that supports predictable integration and reuse
of the timing properties of RVNs by keeping the communica-
tion code in a separate server [19]. This strategy incorporates
the maintainability and flexibility to change the communica-
tion code without affecting the timing properties of RVNs.
We have evaluated the server-based strategy with a more
direct communication strategy for efficiency and reusability
properties of RVNs. Hence using RVNs and server-based
inter-RVN communication, complex real-time systems can
be developed as a set of well defined reusable components
encapsulating functional and timing properties [20]. The work
is based on the ProCom component-technology [21], however,
we believe that our concept is applicable also to commercial
component technologies like AADL, AUTOSAR [17].

C. Presentation and realization of Multi-Resource Server for
multicore platform

In this contribution we address challenges 1 and 2, and
target statically partitioned multi-core real-time systems. We
present the Multi-Resource Server (MRS) technology that
schedules the resources CPU- and memory-bandwidth, and
shared cache in order to achieve a predictable execution
of embedded real-time systems [22], [23]. A first step in
achieving predictable execution is to accurately measure the
amount of consumed memory-bandwidth for each application

and secondly to incorporate the cache partitioning. Such
measurements can be used to track down bottlenecks, provide
better partitioning among cores, and ultimately be used to
arbitrate and police accesses to the memory bus and shared
caches.

MRS enables predictable execution of real-time applica-
tions on multi-core platforms through resource reservation
approaches in the context of CPU-bandwidth reservation and
memory-bandwidth reservation. The MRS provides temporal
isolation both between tasks running on the same core, as well
as, between tasks running on different cores. The latter could,
without MRS, interfere with each other due to contention on
a shared memory bus.

We have implemented the MRS as a user-space library
for Linux running on multicore COTS hardware [24]. We
have incorporated the CPU- and memory-resources and we
intend to bound the cache access as well. We demonstrate
how the MRS can be used to preserve the functionality of a
legacy application when it is executed on a single core while
another core executes tasks with adverse memory behavior. We
demonstrate for a synthetic task-set how the MRS can be used
to isolate tasks from each other to prevent adverse behavior
of some tasks to negatively impact other tasks.

D. Proof-of-concept case studies
In this contribution we validate our solutions of 1st, 2nd, and

3rd challenges. Although the synthetic experiments confirm
the correctness of the approaches, the example case studies
validate that the approaches can be used practically.

Since virtual node is an integrated concept within the Pro-
Com component model [21], we implemented an example case
study in the PRIDE tool [25] that supports the development
of systems using ProCom components running on the HSF
implementation [11]. We have used ProCom components for
development of a cruise controller and an adaptive cruise
controller for automotive applications. Our motivating case
study is simple, but exercises the execution-time properties
and evaluates the integration and reusability of the run-time
components. The case study demonstrates the temporal-fault
containment within an RVN as well as the reuse of RVNs in
new environment thereby facilitating predictable integration.

For MRS, we have demonstrated that MRS can be used
to ”encapsulate” legacy systems and to give them enough
resources to fulfill their purpose [24]. In our case study a
legacy media-player is integrated with several resource-hungry
tasks running at a different core. We show that without MRS
the media-player starts to drop frames due to the interference
from other tasks; while the use of MRS alleviates this problem.

E. Presenting schedulability analysis for MRS
In this contribution we address challenge 4, and we describe

the problem of achieving composability of independently
developed real-time subsystems to be executed on a multi-
core platform, and we provide a solution to tackle it [26].
First, we evaluate existing work for achieving real-time pre-
dictability on multi-cores and illustrate their lack with respect
to composability.



Secondly, to analyze that the multi-resource servers provide
composable hierarchical scheduling on multi-core platforms,
we extend traditional schedulabity analysis for the multi-
resource server. We outline a theoretical framework to provide
hard real-time guarantees for tasks executing inside a multi-
resource server and have presented a local schedulability
analysis technique to assess the composability of subsystems
containing hard real-time tasks [26]. Using the compositional
analysis technique, the system schedulability is checked by
composing the subsystems interfaces which abstracts the re-
source demand of subsystems [4].

III. CONCLUSIONS AND FUTURE WORK

We have presented and implemented the concept of runable
virtual node to bind the functional and temporal properties
within the component to achieve predictable integration of
real-time components. Our results demonstrate this predictable
effect during component’s reuse as well. Furthermore, we have
presented and implemented the server-based communication
strategy to make the communication among RVNs predictable.

For multicore platforms, the scheduling is inherently un-
predictable due to the shared resources (in addition to CPU)
like last-level shared caches, memory-bus and memory. We
have proposed a solution of using Multi-Resource Server that
supports both the CPU- and memory bus-portioning among
applications executing on concurrent cores. We have imple-
mented the server and our results have shown improvements in
isolation. However, our solution does not guarantee complete
isolation, as last-level cache and memory is still shared among
applications.

In future, we intend to implement some software-based
cache-partitioning technique (like [9]) to support complete
temporal isolation on multicore platforms as well. Page col-
oring is a software-based technique that provides both cache-
partitioning and memory partitioning by assigning memory
pages to the caches. We intend to enhance the isolation of MRS
by incorporating this technique. We provided the initial local
compositional schedulabitlity analysis for the server in [26].
We also intend to complete the schedulability analysis for
MRS by incorporating the cache effects and the bus scheduling
into it.

REFERENCES

[1] I. Crnkovic and M. Larsson, editors. Building Reliable Component-
Based Software Systems. Artech House publisher, 2002. ISBN 1-58053-
327-2.

[2] R. N. Charette. ”This car runs on code”. Spectrum, 46(2),
2009. ”http://spectrum.ieee.org/greentech/advanced-cars/this-car-runs-
on-code”.

[3] Charlotte Adams. Product focus: Cots operating systems: Boarding the
boeing 787, 2005. [Online]. Available: http://www.aviationtoday.com/,
last checked: 20.03.2013.

[4] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proc. 24th IEEE Real-Time Systems Symposium (RTSS’
03), pages 2–13, December 2003.

[5] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open
environment. In Proc. 18th IEEE Real-Time Systems Symposium (RTSS’
97), December 1997.

[6] T. Nolte, I. Shin, M. Behnam, and M. Sjödin. A Synchronization
Protocol for Temporal Isolation of Software Components in Vehicular
Systems. IEEE Transactions on Industrial Informatics, 5(4):375–387,
November 2009.

[7] J. P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced aperiodic
responsiveness in hard real-time environments. In Proc. 8th IEEE Real-
Time Systems Symposium (RTSS’ 87), pages 261–270, December 1987.

[8] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic Task Scheduling for
Hard Real-Time Systems. Real-Time Systems, 1(1):27–60, June 1989.

[9] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni. Real-time cache management framework for multi-core archi-
tectures. In Proc. 19th IEEE Real-Time Technology and Applications
Symposium (RTAS’ 13), pages 45–54, 2013.

[10] S. Schliecker and R. Ernst. Real-time Performance Analysis of Multipro-
cessor Systems with Shared Memory. ACM Transactions in Embedded
Computing Systems, 10(2):22:1–22:27, January 2011.

[11] R. Inam, J. Mäki-Turja, M. Sjödin, S. M. H. Ashjaei, and S. Afshar.
Support for Hierarchical Scheduling in FreeRTOS. In 16th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA’ 11), France, September 2011.

[12] Richard Barry. Using the FreeRTOS Real Time Kernel. Real Time
Engineers Ltd., 2010.

[13] L. Sha, J.P. Lehoczky, and R. Rajkumar. Solutions for some Practical
problems in Prioritised Preemptive Scheduling. In Proc. 7th IEEE Real-
Time Systems Symposium (RTSS’ 86), pages 181–191, December 1986.

[14] J.K. Strosnider, J.P. Lehoczky, and L. Sha. The Deferrable Server
Algorithm for Enhanced Aperiodic Responsiveness in Hard Real-time
Environments. IEEE Transactions on Computers, 44(1), 1995.

[15] R. Inam, J. Mäki-Turja, M. Sjödin, and M. Behnam. Hard Real-
time Support for Hierarchical Scheduling in FreeRTOS. In 7th Annual
Workshop (OSPERT’ 11), pages 51–60, Porto, Portugal, July 2011.

[16] Rafia Inam, Jukka Mäki-Turja, Jan Carlson, and Mikael Sjödin. Using
temporal isolation to achieve predictable integration of real-time com-
ponents. In 22nd Euromicro Conference on Real-Time Systems (ECRTS’
10) WiP Session, pages 17–20, July 2010.

[17] R. Inam, J. Mäki-Turja, J. Carlson, and M. Sjödin. Virtual Node – To
Achieve Temporal Isolation and Predictable Integration of Real-Time
Components. International Journal on Computing (JoC), 1(4), January
2012.

[18] R. Inam, J. Mäki-Turja, M. Sjödin, and J. Kunčar. Real-Time Component
Integration using Runnable Virtual Nodes. In Proc. of the 38th Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA’ 12).

[19] R. Inam and M. Sjödin. Implementing and Evaluating Communication-
Strategies in the ProCom Component Technology. In Proc. of the 24th
Euromicro Conference on Real-Time Systems (ECRTS’ 12), WiP. ACM
SIGBED Review, July 2012.

[20] R. Inam, J. Carlson, M. Sjödin, and J. Kunčar. Predictable integration
and reuse of executable real-time components. Journal of Systems and
Software, 91(0):147 – 162, 2014.

[21] Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson, and
Ivica Crnković. A Component Model for Control-Intensive Distributed
Embedded Systems. In 11th International Symposium on Component
Based Software Engineering, pages 310–317, October 2008.

[22] R. Inam, M. Sjödin, and M. Jägemar. Bandwidth Measurement using
Performance Counters for Predictable Multicore Software. In 17th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA’ 12), WiP, pages 1–4, September 2012.

[23] R. Inam, J. Slatman, M. Behnam, M. Sjödin, and T. Nolte. Towards
implementing Multi-Resource Server on multi-core Linux platform. In
18th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA’ 13), WiP, pages 1–4, September 2013.

[24] R. Inam, N. Mahmud, M. Behnam, T. Nolte, and M. Sjödin. The Multi-
Resource Server for predictable execution on multi-core platforms. In
(RTAS’ 14), April 2014.

[25] PRIDE Team. PRIDE: the PROGRESS Integrated Development Envi-
ronment, 2010. ”http://www.idt.mdh.se/pride/?id=documentation”.

[26] M. Behnam, R. Inam, T. Nolte, and M. Sjödin. Multi-core composability
in the face of memory bus contention. In 5th International Workshop on
Compositional Theory and Technology for Real-Time Embedded Systems
(CRTS’12). ACM, December 2012.


