
Architectural Decisions for HW/SW Partitioning
Based on Multiple Extra-Functional Properties

Gaetana Sapienza
ABB Corporate Research

and Mälardalen University, Västerås, Sweden

gaetana.sapienza@se.abb.com

Ivica Crnkovic
Mälardalen University

Västerås, Sweden

ivica.crnkovic@mdh.se

Pasqualina Potena
Universita’ degli Studi di Bergamo

Dalmine, Italy

pasqualina.potena@unibg.it

Abstract—Growing advances in hardware technologies are
enabling significant improvements in application performance by
the deployment of components to dedicated executable units. This
is particularly valid for Cyber Physical Systems in which the
applications are partitioned in HW and SW execution units. The
growing complexity of such systems, and increasing requirements,
both project- and product-related, makes the partitioning decision
process complex. Although different approaches to this decision
process have been proposed during recent decades, they lack the
ability to provide relevant decisions based on a larger number of
requirements and project/business constraints. A sound approach
to this problem is taking into account all relevant requirements
and constraints and their relations to the properties of the
components deployed either as HW or SW units. A typical
approach for managing a large number of criteria is a multi-
criteria decision analysis. This, in its turn, requires uniform
definitions of component properties and their realization in
respect to their HW/SW deployment. The aim of this paper is
twofold: a) to provide an architectural metamodel of component-
based applications with specifications of their properties with
respect to their partitioning, and b) to categorize component
properties in relation to HW/SW deployment. The metamodel
enables the transition of system requirements to system and
component properties. The categorization provides support for
architectural decisions. It is demonstrated through a property
guideline for the partitioning of the System Automation and
Control domain. The guideline is based on interviews with
practitioners and researchers, the experts in this domain.

I. INTRODUCTION

In recent years, diverse hardware technologies have enabled
a significant improvement in software performance. These
hardware technologies offer heterogeneous platforms consist-
ing of different computational units on which a particular
application utilizes the specific properties of the platform.
In addition to the already-present multicore CPUs, other
computational units such as GPUs (Graphical Process Unit)
and FPGA (Field-Programmable Gate Array) are becoming
available for general-purpose software applications. This capa-
bility introduces software into new domains, and enables more
sophisticated applications, but it also poses new challenges for
software development. Although the computational units are
characterized by particular features (such as full parallelism,
or fast process context switch) it is not always obvious which
parts of a software application should be deployed on which
unit. This is especially true for different types of embedded
systems, or cyber-physical systems (CPSs), which have spe-
cific requirements of runtime properties such as performance,
resource consumption, timing properties, dependability, and

lifecycle properties such as productions costs. In particular, the
architectural decision about HW/SW partitioning, i.e. which
application components will be implemented and deployed as
software executable units (e.g. the compiled C/C++ source
code), and which as hardware executable units (e.g. synthe-
sized from VHDL), is becoming increasingly challenging.
The partitioning decision is a known problem and there is a
considerable body of knowledge related to that (e.g., [43], [28],
[24]). In these approaches, a few factors are typically taken into
consideration for a trade-off partitioning decision: e.g. resource
availability (power, CPU utilization) and performance. How-
ever, due to the increased complexity and demands on system
and project performance efficiency, partitioning decisions are
related to many requirements, not only to run-time properties,
but also to project constraints (such as available expertise,
or development costs), or to business goals (such as devel-
opment of mass-products, or product-line, etc.). This makes
the design process quite complex and inaccurate in taking ad-
hoc decisions, or manually processing all requirements. While
many such decisions depend on the architects expertise and
gut feeling, it is not guaranteed that a good (not to say the
best) decision can be taken. To be able to come to an accurate
decision, we must take a systematic and, when possible, an
automatic approach to provide the decision.

In our previous work [38] and [39] we proposed a parti-
tioning decision process, MULTIPAR, for component-based
CPSs based on a) transformation of the requirements and
constraints to Extra-Functional Properties (EFPs) through Soft-
ware Architecture, and b) Multi-Criteria Decision Analysis
(MCDA) of component EFPs that depends on the compo-
nent implementation and deployment (as HW or SW units).
MULTIPAR enables the consideration of many component
EFPs identified in the architecting process, and the discovery
of a (semi)optimal deployment architecture in respect to the
HW/SW deployment. This approach is appealing since it takes
into consideration many requirements and many properties that
reflect not only run-time aspects but also business and de-
velopment project-related aspects. It does, however, introduce
a more complex decision process. To make such a process
feasible, two important questions must be addressed:

1) How to specify different EFPs in a uniform way so
that it is possible to use them in an deployment
analysis?

2) Which EFPs depend, and to which extent they depend
on the deployment?

The goal of this paper is twofold: a) to provide a theoretical

2014 IEEE/IFIP Conference on Software Architecture

978-1-4799-3412-6/14 $31.00 © 2014 IEEE

DOI 10.1109/WICSA.2014.19

175

model of component-based systems with HW/SW compo-
nents and their properties, and b) to categorize component
properties in respect to HW/SW deployment. The first part
includes the extension of some existing component models.
The extension is necessary because of the dual nature of
component implementations, namely as HW or SW units.
The second part includes an analysis of EFPs defined in
several standards and quality models, in respect to HW/SW
deployment, and then a discussion with researchers and in-
dustry experts in the Automation and Control domain, which
results in a comprehensive survey of EPFs and the impact
of the partitioning decisions on their values. The concrete
contribution of this paper is a) a component and EFP model for
HW/SW component-based systems, b) categorization of EFPs
in respect to partitioning, and c) analysis of the impact of
HW/SW partitioning on EFPs for the Control and Automation
domain, provided by experts from industry and academia.

The paper is structured as follows. Section 2 describes a
formal model of component-based CPSs including EFP speci-
fications. In Section 3, the paper gives the partitioning quality
framework with system architecture metamodel, together with
a categorization of EFPs. Section 4 provides an analysis of
EFPs in the System Automation and Control domain, based
on an empirical survey. Related work is described in Section
5 and, finally, Section 6 concludes the paper.

II. MODELING HW/SW COMPONENT-BASED SYSTEMS

The main idea of MULTIPAR is to automate the HW/SW
partitioning decision based on the properties of compo-
nents, either implemented as SW or HW. The MULTIPAR

approach uses the Model-Driven Architecture with (i) the
Platform-Independent Model (PIM) stage for initially achiev-
ing technology-independent design and (ii) the Platform-
Specific Model (PSM) stage for subsequently enabling HW-
specific and SW-specific designs. This implies first the de-
sign of the software architecture, with the identification of
components and the connection between them, and then the
design of the deployment view. The focus of MULTIPAR is the
partitioning decision process in the PSM architecting stage.

An equally important approach in MULTIPAR is the reuse
of existing components, for which we not only have the
available implementation, but also specifications of their EFPs
within a particular context (e.g. execution platform, implemen-
tation, etc.). A critical part of this kind of approach is breaking
the system requirements down into component requirements,
and then selecting the most appropriate components, i.e. select-
ing the components whose properties provide the best solutions
in respect to the requirements.

We extend the component-based development (CBD) tech-
nique a well-known approach in SW development but not used
for development of both HW and SW - to represent HW
components as well. We adapt the component-based system
formalism provided in [13] in order to define (i) the system as
a number of components able to represent both SW and HW
components, (ii) the interconnections between the components,
and (iii) the platform on which the components are deployed.

We define a system S that consists of a platform P and a
set of applications A that includes n applications Ai, i.e.

S =< P,A > where A = {Ai}, i = 1..k (1)

Note that the platform can be distributed, i.e. it can consist
of different and multiple execution units. We consider applica-
tions built from new and existing components, i.e. component-
based applications. A component-based application CBA is
formally described as a pair of the following elements:

CBA =< C,B > (2)

where C represents the set of components in which the
application is decomposed1; B represents the set of bindings
interconnecting the components, referred to as connectors.

A component is meant to be a modular, deployable,
reusable and replaceable self-contained unit of one or more
functionalities of the application. It can be implemented and
deployed as HW or SW, i.e. it can either be synthesized into
HW blocks or compiled into SW executable machine code.
Some examples of CPS application components are: a PI-
regulator, a Robot-axis controller, a FIR filter, etc.

Each component C (later deployed as either HW or SW) is
characterized by a number of properties: functional properties,
specified by its interface I and extra-functional properties
(EFPs):

C =< I, P > (3)

Functional properties are expressed as provided interface. In
addition a component has a required interface that specifies the
functions the component is using. A simple example of the
interface with respect to a PI-Controller component may be
the error signal as required interface and the controlled output
as provided interface. Examples of EFPs are: execution time,
memory size, reliability, etc. For each component C, which
is represented as a model (i.e. a specification), there can exist
more implementations, i.e. component variants.

C = {Ci} : i = 1..n (4)

Ci =< I, Pi > , Pi ⊆ P (5)

Where Ci is the i-th instance (also called a variant) associated
to the component C and n is the total number of variants for
that component. Each variant implements the same interface,
but the EFPs, defined as Pi may vary from variant to variant.

Pi = {Pij} : j = 1..m (6)

where m is a number of specified properties for Ci.

Note that this is significantly different to the specification
in most component models (see in [13]), in which components
comply to the same rules, i.e. to the same interface and the
same EFPs. The different implementations of a component not
only provide different values of the same properties, but may
also have different properties. This is a direct consequence of
their implementations that can be SW or HW.

1If not explicitly specified differently, by ”components” we assume ”appli-
cation components”

176

Required and Exhibited Properties. The EFPs specified
above are the properties exhibited by the components, i.e.
they are immanent parts of the component instances. We
designate these properties as PiE . These are different from the
required properties [12]. The required properties PiA are the
required values of the component properties which are derived
from the application requirements, the project constraints,
and the architectural analysis. The application requirements
typically consider run-time aspects of the application, and the
required properties PiA derived from the application require-
ments define the values related to the run-time component
properties. Examples of PiA are component execution time,
and memory size that can be allocated by the component.
The project constraints are usually related to the product
lifecycle and business issues, and PiP represents the required
properties derived from these project constraints. For instance,
PiP related to the efforts and costs are the time estimated for
components adaptation, design, and testing, or the cost needed
for purchasing Intellectual Properties (IP) components.

For a particular application, not all available component
properties are of interest, but only a subset that includes those
properties that are identified from the application requirements
and project constraints. Additionally, a component instance
may not have all properties specified that are defined as
required properties. In this case the architect/expert has to
provide the values of these properties, either by estimation,
by measurement or from historical data. To achieve correct
design partitioning, a set of all the relevant exhibited properties
PiE must satisfy the required properties PiA and PiP for each
component instance Ci.

PiE |= {PiA, PiP } (7)

The condition (7) is required but it does not necessarily
provide an optimal solution. Many configurations from differ-
ent instances can satisfy this rule. To find an optimal solution,
a cost function that includes the weighted sum of the properties
must be defined. There exist different methods to provide this
result, one of which is a Multi-Criteria Decision Analysis
(MCDA).

III. THE PARTITIONING QUALITY FRAMEWORK

The next steps in our formalization are i) specification of
a property metamodel which is able to encompass the hetero-
geneity derived by the intrinsically different nature of HW or
SW components, and ii) categorization of EFPs with respect
to their sensitivity to the HW/SW partitioning decisions.

A. Component property metamodel

The property metamodel is a part of the entire component-
based system metamodel, which is based on the defini-
tions from the previous section. Figure 1 shows a simpli-
fied overview of the component-based system; a completed
metamodel and detailed description can be found in [39].
Note that here, in contrast to typical metamodels for software
components, different variants of the same component can have
different EFPs. A component variant type is related to the
component implementation: it can be SW, HW, or ”virtual”; the

������

�	��
���

�����	�	�

���
����	���	���
���
��

��
��	�

��		���

������
� ��
��	�����
�� �������	
��
������

��
��	�������
�
�� �
�������
����������

�����	�	��������
���������	

������
����
��
��	������

� ��
� ��
� 	���� �

!""#

$�����

!

!

!
!

!

!""#

!

$	
��
�� !""#

!

$%&�� !""#

!

!
!

!""#

!

Fig. 1. Component-based System Metamodel (Simplified Overview)

”virtual” type is defined for not yet implemented components.

Figure 2 shows an overview of the diagram describing the
Component Extra-Functional Property. The key entities of this
metamodel are: the Component Extra-Functional Property, the
ComponentVariantPropertyValue and the ComponentProperty-
Category.

�����	�	���
��	��
���
�������
�� ��������	
���
�� 	
��� ''��
'�

���
����	���	���
���
��

������
����
��
��������

� ���(��
� &��
�
� ����(
� %����
��)�
� ����)
�
� *�����+����

���
�
�� ,����'*��'������
�� &���
����&���
������
�� ������,����'�����

��	����
�� -+�
��. ����-+�
��. ������
�� *�)�������%)���������*�)�������%)�����������
�� ���'���',�
���
+�����/�.�����

�����	�	��
���
������� �
�
�� ��������/
��(������/��������������/
��(�����

�
+���
'��
�	�����

���	��������	
�� *��'������
�� *�'����
���
�� �
��
�� ��0��1�*

������
����
�����	�	��
���
�������� �
���

� /-�����2/ �%3-�4
� �%�&-�, �/%���2/ �%3-�4
� �%/����4���2/ �%3-�4

������
����
�����	�	��
���
������ �
���
� ��&%/4/�%
� �����,%
� ��-5%/���%� �%*
� 2����%����%� �%*

������
����
!����	��������
� %���, �%*
� ,% ���%*
� ��,�� �%*

������
����
���
��"	���

!""#

!

!

!

/������������������+'
��(���

!""

!""#$�)
����

!

!

!

Fig. 2. Component Extra-Functional Property Metamodel

Component Extra-Functional Property. The central core is
represented by the component EFP entity which abstracts a
component property. It belongs to a specific category as mod-
eled by the ComponentPropertyCategory and has an associated
set of values related to a specific component variant.

ComponentPropertyCategory. There exist several different
categories of properties. This categorization is used to group
similar properties. The categories are listed through the Com-
ponentPropertyCategories as shown in Figure 2. Each category
can also be divided into subcategories. This enables catego-
rizations that follow different standards, or it can be used
for grouping complex properties that are related to a number
of other (sub)properties - for example a performance, or a
categorization used in a particular domain to group strongly

177

related properties, for instance, the COST subcategory can
include costs for the design, implementation, verification and
validation, and maintenance. The definition of the subcategory
refers to the value associated to a specific component variant.

ComponentVariantPropertyValue. The ComponentVariant-
PropertyValue abstracts the value associated with the property.
Each value has associated (i) a metric to quantitatively or
qualitatively express the value (or set of), and defined through
a description, a format (described by the FormatType entity),
and (ii) a context which serves to capture the conditions
under which the value is estimated, simulated or measured
(as described by the ObtainedAsType).

B. The categorization of partitioning-related properties

The main driving question in this research is which are
the properties whose values strongly depend on the parti-
tioning decisions, and which properties are independent of
the partitioning? To answer this question we provide (i) a
list of possible EFPs and their categorization following the
metamodel shown in Figure 2, and (ii) an analysis of the EFPs
in respect to their dependencies on the partitioning.

To provide a list of all possible EFPs we use three
types of sources a) existing quality models and standards; b)
existing literature related to the partitioning decisions; and c)
experience from the practice provided by experts in the field.

• Quality models and standards. Specifically, we ex-
ploited the following standards and quality models.

1) ISO/IEC International Standard Software
product Quality Requirements and Evaluation
(SQuaRE) [20] defined for software qualities,
i.e. an extension of the International Standard
ISO/IEC 9126 [21], which was extensively
exploited in the state of the art;

2) Several well-known quality classifications, in
particular the McCall’s quality model [27],
the Boehm’s quality model [5], the Laprie’s
dependability tree (attributes) [1];

3) The quality attribute utility tree modified
for embedded hardware platforms (later re-
ferred to as HW-ATAM) [36] based on the
well-known Architecture Tradeoff Analysis
Method (ATAM-CYC [22]);

• State Of The Art (SOTA). There is a rich body of
knowledge related to HW/SW partitioning. We have
extracted the EFPs addressed in these works. The
details of this work are given in Section 5 (Related
Work).

• State Of The Practice (SOPA). We provided a survey
carried out within the iFEST (industrial Framework
for Embedded Systems Tools) Artemis JU research
project , with a consortium of more than 20 companies
and universities2 in which discussion was held with
the project members about important EFPs and their
relation to the HW/SW partitioning. To this end, we
conducted an empirical study that, in combination
with the survey, included data collection through in-
depth interviews with experts and researchers from

2iFEST - http://www.artemis-ifest.eu/

both companies involved in the iFEST project, and
companies and universities in Sweden. The details of
this study are presented in Section 4.

We categorized the EFPs in three main categories: i)
LifCycle EFPs; ii) RunTime EFPs; and iii) Project/Business-
related EFPs. As presented in [12], the system lifecycle per-
spective encompasses those properties which are related to
the system development process and its maintenance, while
the runtime perspective interests those properties whose be-
havior is visible, applicable, and measurable at run-time. In
summary, all identified and of-interest properties are divided
into three categories, namely ”LifeCycle”, ”RunTime” and
”Project/Business-related”.

Table I reports the details of our categorization. The table
is structured by category i.e. it is divided into LifeCycle,
RunTime and Project/Business-related. Each category is then
divided into subcategories, which group properties having
similar descriptions. This is done in order to improve un-
derstandability of the categorization. However, as in most of
the cases in Table I, this does not preclude a subcategory
from also being a property. In particular, in Table I each
category is organized as follows: the first and second columns
represent the subcategories and the group of related properties,
respectively. For instance, in the first row of the LifeCycle
category, Usability is a subcategory grouping properties such
as Appropriateness, Recognizability, User error protection,
User interface aesthetics, Learnability and Training. In addition
to the subcategory name, the sources from which the property
is taken are reported. The categorization follows the classifica-
tion in the standards and quality models (SQuaRE, ISO9126,
McCall, etc.) as much as possible. Using the example just
mentioned above, for the Usability subcategory we have to
exploit both the SQuaRE and the McCalls quality model in
order to identify its related properties. For each property (i.e.,
related to a given subcategory), its source is also reported in
parenthesis.

We can observe that LifeCycle properties are present in
the largest quantity. Short descriptions (titles) of the properties
can be found in [37]. Many of those properties are difficult to
measure. The RunTime properties are extensively studied in
research and used in practice, and it is possible to express many
of them quantitatively. The Project-related properties are time-
and effort-related properties, as properties of project-related
activities. The Business-related properties consider types of
products (like mass products, product families, and similar). A
relevant observation is that some properties have subcategories
in different categories. For instance, Reliability is a RunTime
property, but many LifeCycle properties have direct impact on
the reliability. Such properties are marked in the table with an
”*”.

IV. SURVEY OF EFPS IN THE AUTOMATION AND

CONTROL DOMAIN

Table I presents a list of possible EFP candidates which
may be important in the partitioning decision process. The
influence of partitioning on specific EFP also depends on other
factors, for example on particular architectural solutions, or the
overall goals of the application, so it is not possible to provide

178

TABLE I. LIFECYCLE CATEGORY, RUNTIME CATEGORY, PROJECT/BUSINESS-RELATED CATEGORIES.

LifeCycle Category
Subcategory Property

Usability (SQuaRE, McCall)

Appropriateness

recognizability (SQuaRE)

User error protection (SQuaRE)

User interface aesthetics (SQuaRE)

Learnability (SQuaRE)

Training (McCall)

Integrity* (McCall) Access audit (McCall)

Reliability* (SQuaRE) Maturity (SQuaRE)

Security* (SQuaRE) Accountability (SQuaRE)

Compatibility (SQuaRE, McCall)

Compatibility (SQuaRE)

Interoperability (McCall)

Communication Commonality

(McCall)

Data Commonality (McCall)

Modifiability (SQuaRE, Boehm)

Modifiability (SQuaRE)

Expandibility (McCall)

Scalability (HW-ATAM, SOPA)

Upgradability (SOPA)

Augmentability (Boehm)

Structuredness (Boehm)

Maintainability (SQuaRE, McCall)

Maintainability

(SQuaRE, MaCall, Laprie)

Analysability (SQuaRE)

Reusability (SQuaRE)

Conciseness (McCall)

Modularity (SQuaRE)

Testability (McCall)

Testability (SQuaRE, HW-ATAM)

Instrumentation (McCall)

Simplicity (McCall)

Generality (McCall)

Debuggability (SOPA)

Understandability (Boehm)
Understandability (Boehm)

Legibility (Boehm)

Flexibility (McCall)
Flexibility (McCall)

Self-descriptiveness (Boehm)

Human Engineering (Boehm)
Human Engineering (Boehm)

Communicativeness (Boehm)

LifeCycle Category
Subcategory Property

Correctness (McCall)

Correctness (McCall)

Completeness (McCall)

Consistency (McCall)

Traceability (McCall)

Portability (SQuaRE)

Portability (SQuaRE)

Adaptability (SQuaRE)

Installability (SQuaRE)

Replaceability (SQuaRE)

Platform Independency (McCall)

Integrability (SOPA)

Project/Business related Category
Subcategory Property

Maintainability*

Integration with legacy

system (SOPA)

Product support (SOPA)

Volatile requirements (SOPA)

Production type

Mass production (SOPA)

Single/Small production (SOPA)

Product variability (SOPA)

Product lifetime (SOPA)

Cost

Design Cost (SOPA)

Implementation Cost (SOPA)

Integration Cost (SOPA)

Testing Cost (SOPA)

Production Cost (SOPA)

Maintenance Cost (SOPA)

Development Environment Cost (SOPA)

Maintenance Environment Cost (SOPA)

Lead Time

Design Lead Time (SOPA)

Implementation Lead Time (SOPA)

Integration Lead Time (SOPA)

Testing Lead Time (SOPA)

Production Lead Time (SOPA)

Maintenance Lead Time (SOPA)

Time-to-market (HW-ATAM, SOPA)

Project Team

Distributed project

environment (SOPA)

Available expertise (SOPA)

RunTime Category
Subcategory Property

Usability (SQuaRE)
Operability (SQuaRE)

Accessibility (SQuaRE)

Integrity (McCall) Access control (McCall)

Reliability (SQuaRE, McCall)

Reliability (SQuaRE)

Accuracy (McCall)

Error Tolerance (McCall)

Availability (SQuaRE)

Fault tolerance (SQuaRE)

Recoverability (SQuaRE)

Self-containedness (Boehm)

Security (SQuaRE)

Security (SQuaRE)

Authenticity (SQuaRE)

Confidentiality (SQuaRE, Laprie)

Integrity (SQuaRE, Laprie)

Non-repudiation (SQuaRE)

Modifiability* (SOTA) Configurability (HW-ATAM)

Functional Suitability (SQuaRE)

Functional Suitability (SQuaRE)

Functional Appropriateness (SQuaRE)

Functional Completness (SQuaRE)

Functional Correctness (SQuaRE)

Dependability (Laprie)

Dependability (Laprie)

Safety (Laprie)

Robusteness (HW-ATAM)

Schedulability (SOTA, SOPA)

Performance (SQuaRE)

Performance Efficiency (SQuaRE)

Resource Utilization (SQuaRE)

Time Behaviour (SQuaRE)

Capacity (SQuaRE)

Power Consumption

(HW-ATAM, SOTA, SOPA)

Compatibility (SQuaRE)
Co-existence (SQuaRE)

Interoperability (SQuaRE)

a general list valid for any type of application. However,
in specific domains in which there are similar architectural
solutions, and similar non-functional requirements, it is more
feasible to provide such a list. We aim to identify which EFPs
are of interest for partitioning in the Automation and Control
domain, which covers a vast range of business domains,
such as energy generation and transportation, industrial plants
(chemical, pulp and paper, food industry), medical instruments,
etc.

In order to achieve this goal we conducted an interview-
survey involving several companies working in the Automation
and Control domain. We specifically targeted companies whose
products vary from low voltage systems (e.g. motor controllers,
industrial robots) up to systems for controlling electric power
transmission lines. The interview-survey research followed a
method specified in [3]. An overview of data collected is
presented here. Complete documentation of the results can be
found in [37].

A. Objective

To identify the key partitioning properties for the afore-
mentioned domain, for each EFP from Table I we pose the
following questions:

RQ1 Does the partitioning choice (HW or SW) have a direct
impact on the property?

RQ1 To ensure or achieve this property would you prefer to
have a solution in HW or SW or it Does Not Matter?

With these two research questions, we aim to (i) identify the
EFPs which have the most impact on the partitioning decisions
(related to RQ1), and (ii) provide guidance for architects
(related to RQ1 and RQ2) by highlighting a default preference
(HW or SW) for the realization of each property.

B. Survey Design and Process

The interview-survey was carried out among 15 experts.
The participants were selected based on their affiliation and
expertise. The participants were selected from industry (in total
five companies and an industrial research center) and from
academia (two universities). All participants had more than five
years of experience as system architects (i.e., experience with
both HW and SW design) and nine of them had been working
for more than 15 years in the field. In addition, we selected the
participants according to their prevailing work experience, with
the participants pool balanced as follows: five specialists with
prevalent work experience in HW design, five specialists in SW
design, and five specialists in both HW and SW design. Table
II summarizes the distribution of the participants with respect
to their work experience (i.e. work specialization, affiliation
and years of experience in the field).

The interaction with the participants was organized in two
phases: 1) an introduction to the interview-survey, which was
arranged in the form of individual face-to-face meetings. The
purpose of the meetings was to get the participant familiar with
the overall goal of the research, presenting the EFP catego-
rizations, running through the EFP lists, and finally explaining

179

TABLE II. DISTRIBUTION AMONG THE PARTICIPANTS

No Profession Affiliation Expert Experience

1 System Architect Industry HW 15 years
2 System Architect Industry HW 15 years
3 Senior Developer Industry HW 5 years
4 Principal Industrial Scientist Industry/University HW 15 years
5 Principal Industrial Scientist Industry/University HW 15 years

6 Senior System Architect Industry SW 15 years
7 Industrial Scientist Industry/University SW 15 years
8 Researcher Industry/University SW 5 years
9 Professor Industry/University SW 15 years

10 Researcher University SW 5 years

11 Senior Product Manager Industry HW/SW 15 years
12 Senior Developer Industry HW/SW 5 years
13 Industrial Scientist Industry/University HW/SW 5 years
14 Senior Researcher University HW/SW 5 years
16 Professor University HW/SW 5 years

TABLE III. EXAMPLE OF QUESTIONNAIRE RECORDS FOR THE

LIFECYCLE CATEGORY

RQ1. Does the partition choice (SW or HW) have a direct impact on the property?
RQ2. To ensure/achieve this property would you prefer to have a solution in HW or
SW or it does not matter?

Property Name Property Description RQ1 RQ2

Access Audit The ease with which the component itself
and data can be checked for compliance with
standards or other requirements (McCall).

YES HW

Accountability The degree to which the actions of an entity
can be traced uniquely to the entity (SQuaRE).

YES HW

Structuredness The degree to which a component possesses
a definite pattern of organization of its inter-
dependent parts (Boehm)

YES HW

how to fill out the questionnaire; and 2) the completion of the
questionnaire by the participants.

The questionnaire consists of three main parts, related to
the three main EFP categories. For each EFP specified in Table
I the participants answered RQ1 and RQ2, as shown in Table
III. The complete questionnaire is presented in [37].

C. Results

The collected data is presented in Figures 3, 4, 5,
which summarize the results related to each category respec-
tively, i.e. LifeCycle (Figure 3), RunTime (Figure 4) and
Project/Business-related (Figure 5 EFPs). Each figure contains
two stacked bar graphs, the one on left showing the RQ1
results and the one on the right reporting the RQ2 results.
The properties in the graphs are sorted in descending order,
according to the impact on a given property (provided by
RQ1), as judged by the participants. For each graph the
vertical axis label reports the properties per category. There
are 44 properties for the LifeCycle category, 31 properties for
the RunTime category and 24 for the Project/Business-related
category.

The graphs show percentage distributions of the answers
(YES or NO) for the Partitioning Impact graph, and HW, SW
or DNM (Does Not Matter) for Preference (HW-SW) graph.

D. Analysis

To start analyzing the results, we introduce two indices:

The Impact Partitioning Factor (IPF), which gives a
statistical measure of the impact that a given property has on
the partitioning decisions for the specific domain. This index is
used to analyze the results with respect to RQ1. It is calculated
by the ratio in percentage between the total number of positive
answers and the number of participants. We interpret the IPF
according to the Fleiss Kappa agreement interpretation3, (60-
100 % - a substantial or almost perfect agreement).

TABLE IV. IPF INTERPRETATION

Impact Partitioning Factor Interpretation
0-40% YES, (60-100% NO) No Impact on Partitioning
40-60% YES, (30-70% NO) Unclear Impact
60-100% YES, (0-40% NO) Clear Impact on Partitioning

The Preferable Deployment Choice (PDC), which gives
a statistical measure of the deployment preference for each
possibility, i.e. HW, SW or DNM (”Does Not Matter”) with
respect to the given property for this specific domain. This
index is used to analyze the results with respect to RQ2. In
this case we also use the Fleiss Kappa interpretation.

LifeCycle Category. Adaptability, Flexibility, and Mantain-
ability result in an ”almost perfect IPF” as it can be observed
in Figure 3, (above 80%), which we interpret as a clear impact
of the partitioning on these properties. The properties such as
Installability, Analyzability, Expandibility, Platform Indepen-
dency, Portability, Access control, Augmentability, Integrabil-
ity, Modifiability, and Upgradability have a ”substantial IPF”
(above 61%), so a substantial agreement that these properties
are clearly affected by the partitioning decision. Conversely,
the properties Accountability, Communication Commonality,
Consistency, User Error Protection, Completeness, Data Com-
monality, Self-descriptiveness, Simplicity, Training, Under-
standability, Access Audit, Maturity, Learnability, Legibility,
Structuredness, Traceability, Appropriateness, Appropriateness
Recognizability, Usability, Correctness, Human Engineering,
and Communicativeness belong to a set of EFPs that are not
sensitive to the partitioning decision. With regards to RQ2 (i.e.
a preferable solution) we can point out that the preferable
solutions for the EFPs with a clear partitioning impact are
software implementations.

RunTime Category. In this category the Power Consumption
property is the only one that shows a clear impact of the
partitioning on these type of properties. Nevertheless, prop-
erties like Co-existence, Performance, Efficiency, Recover-
ability, Time Behavior, Reliability, and Security show a
substantial agreement in the understanding of a clear impact
of the partitioning on these properties. In contrast to the
LifeCycle properties, here the hardware solutions prevail to
achieve or ensure these properties in an advantageous way.
The properties Functional Correctness, Accessibility, Authen-
ticity, Functional Appropriateness, Functional Completeness,
Operability, Functional Suitability, and Non-repudiation are
not directly affected by partitioning.

Project/Business-related Category. By looking at the results
in Figure 5 we can conclude that the partitioning decisions in
the vast majority have an impact on the Business- and Project-
related EPFs (that are directly related to the project constraints
and business goals). In the majority, the software solutions

3Fleiss Kappa - http://en.wikipedia.org/wiki/Fleiss’ kappa

180

prevail. There is large number of properties here which have
either an ”almost perfect IPF” (6 EPFs of 24 properties in
total, compared to 3 of 44 in the LifeCycle category and 1 of
31 the RunTime category) or a ”substantial IPF” (10 EFPs of
24). With respect to the”almost perfect IPF”, it is interesting
to note that the Maintenance-related properties (i.e. cost and
lead time) have a clear impact similar to the Maintainability
property in the LifeCycle category, as well as a preference for
a SW implementation solution.

General remarks. General remarks in relation to the current
state of the art are as follows: (i) with respect to the Run-
Time EFPs, the results show a confirmation of the common
properties used in literature, and some new properties (such
as Recoverability); and (ii) with respect to LifeCycle and
Project/Business-related EFPs, it is observed that many new
properties are considered important for the partitioning deci-
sion process. In particular, the outcomes confirm our hypothe-
sis that project and business constraints should be considered
in partitioning decisions, which is in general missing in the
state of the art and practice today.

E. Validity

In this section we address the validity of our empirical
study. To this end, we discuss the following main types of
validity threats proposed in [47].

Construct Validity. As common practice, in order to assure
a high construct validity (i.e., a high relation between the
theory behind our study and its observation), we used indi-
rect measures (such as the reported working hours for the
questionnaire review taken as a measure of effort) to conduct
all steps of our work. The steps span from questionnaire
preparation through recruitment of respondents to evaluation
of results. Measures have been used in order to, for example:
(1) avoid mono-operation bias by selecting participants with
different backgrounds and work experience (see Section IV-B);
and (2) assure rigorous planning of the study with a solid
protocol for data collection and analysis. Additional threats
to construct validity are represented by, for example: (1) the
questionnaire structure that facilitates the data collection; (2)
the individual face-to-face meetings, based on a presentation
illustrating the key concepts leading the research, to get the
participant familiar with the overall goal of the study; and (3)
the anonymity and confidentiality guaranteed in the processing
of the results to avoid evaluation apprehension.

Internal Validity. As done in [46], we addressed the confound-
ing variables representing a major potential source of bias in
empirical studies ”by exclusion and randomization”. Exclusion
concerns the fact that we did not select participants who were
not sufficiently experienced in HW or SW design. On the
one hand, we carefully balanced our pool of participants (see
Section IV-B) according to their prevailing work experience
and affiliation. On the other hand, we have used a random
sample of the population in order to avoid the well-know
problem of selection bias [48]. Moreover, we addressed the
issue of ambiguously and poorly-worded questions [46] as
described in the following points. (1) Before being released to
the participants the questionnaire was iteratively reviewed by
university and industry experts. Moreover, our questionnaire
was based on well-assessed standards and quality models

�� ��� ��� ��� ��� ����

	
��������

����������

�������������

������������

	�����������

�����
������

����������
��

���������

	!"���������

���"�������

��
���������

#$��������

%�"��
������

&��$�������

'��!""������

(��������

����!�������

)��������

&����������

��
!�����

*�!�������

%����������$�����+��$�

*����$�������

	$$�!�������

&���!��$�����&��

&�������$�

%��������������$���

&����������

'���&���������

#���,
��$����-�����

#�����$��

)������"

%�
�����
������

	$$�����!
�

��!���

.����������

.�"������

#�!$!��
����

)��$�������

	��������������*�$�"�

%�������

&����$����

/!������"�������"

&���!��$��-�����

�����������	
�����

#01�2 /01�2 '3�1�2

�� ��� ��� ��� ��� ����

	
��������

����������

�������������

������������

	�����������

�����
������

����������
��

���������

	!"���������

���"�������

��
���������

#$��������

%�"��
������

&��$�������

'��!""������

(��������

����!�������

)��������

&����������

��
!�����

*�!�������

%����������$�����+��$�

*����$�������

	$$�!�������

&���!��$�����&��

&�������$�

%��������������$���

&����������

'���&���������

#���,
��$����-�����

#�����$��

)������"

%�
�����
������

	$$�����!
�

��!���

.����������

.�"������

#�!$!��
����

)��$�������

	��������������*�$�"�

%�������

&����$����

/!������"�������"

&���!��$��-�����

������������	������

4��1�2 3�1�2

��������� ����������

Fig. 3. LifeCycle Property Graphs. Partitioning Impact (left). HW/SW
Deployment Preference (right).

(see Section III-B). (2) To let the participants understand
the background and objective of this work, we performed
individual face-to-face meetings. In addition, we piloted the
respondents’ work in different interactions.

External Validity. This validity deals with the generalization
of the results outside the scope of the study. Based on
discussions with the experts, our assumption is that the results
are applicable to the Automation and Control domain, i.e. to
a population having our adopted sampling profile. It was not
the intention of this paper to deal with different application
domains, but we intend to work on this aspect by analyzing
possible changes in the results when domain features are
adjusted.

Conclusion Validity. This validity is focused on how sure

181

�� ��� ��� ��� ��� ����

��5���&���!�����
&�,������$�

���������$������$���$�
*�$�-��������

)����6�+�-��!�
	$$����$�����

*���������
#�$!���

	$$!��$�
&����"!�������

������)������$�
��!��������$�

���"���
#$+�
!�������

&����
�������
'����
������

��������������
*���!�$��%���7����

#����
	-���������

&���$��
*��!������

#���,$������
����
�!�$������&����$����

	$$���������
	!+���$��

�!�$������	�������������
�!�$������&���������

8���������
�!�$������#!�������

3��,���!
�����

�����������	
�����

/01�2 #01�2 '3�1�2

�� ��� ��� ��� ��� ����

��5���&���!�����
&�,������$�

���������$������$���$�
*�$�-��������

)����6�+�-��!�
	$$����$�����

*���������
#�$!���

	$$!��$�
&����"!�������

������)������$�
��!��������$�

���"���
#$+�
!�������

&����
�������
'����
������

��������������
*���!�$��%���7����

#����
	-���������

&���$��
*��!������

#���,$������
����
�!�$������&����$����

	$$���������
	!+���$��

�!�$������	�������������
�!�$������&���������

8���������
�!�$������#!�������

3��,���!
�����

������������	������

4��1�2 3�1�2

�������	����������

Fig. 4. RunTime Property Graphs. Partitioning Impact (left). HW/SW
Deployment Preference (right)

�� ��� ��� ��� ��� ����

�������������&��
���
!$����&��

��������$��&��
���
!$����.��
�)���

��������$��.��
�)���
��������
!$���

�������������.��
�)���
)���,�,���9�

)����"�&��
���"������.��
�)���

)����"�.��
�)���
���
!$�-���������

���
!$��������
���"������&��

��������$����-��������&��
	-����������������

'���"��&��
'���"��.��
�)���

'�-����������-��������&��
���"������5�+���"�$�������

:���������;!�������
���
!$��!����

#��"��<#��������
!$���
'�����!�
����=�$>

�����������	
�����

#01�2 /01�2 '3�1�2

�� ��� ��� ��� ��� ����

�������������&��
���
!$����&��

��������$��&��
���
!$����.��
�)���

��������$��.��
�)���
��������
!$���

�������������.��
�)���
)���,�,���9�

)����"�&��
���"������.��
�)���

)����"�.��
�)���
���
!$�-���������

���
!$��������
���"������&��

��������$����-��������&��
	-����������������

'���"��&��
'���"��.��
�)���

'�-����������-��������&��
���"������5�+���"�$�������

:���������;!�������
���
!$��!����

#��"��<#��������
!$���
'�����!�
����=�$���-�������

������������	������

4��1�2 3�1�2

������� !�������������"	����������

Fig. 5. Project/Business-related Property Graphs. Partitioning Impact (left).
HW/SW Deployment Preference (right)

we can be of drawing correct conclusions about the relation
between the treatment and the actual outcome we observed.
We achieved reliable results by piloting the questionnaire in
multiple interactions, and by providing the participants with
key concepts on the study. We also assured a reliable treatment
implementation by using the same treatment/procedure with
all participants (e.g., we distributed the same questionnaire).
We found the right heterogeneity among the respondents (i.e.,

we carefully defined our pool of participants by not using a
very diverse group of respondents) by selecting the participants
from a population general enough to not reduce the external
validity.

V. RELATED WORK

The work related to our research can be divided into
three categories: (i) partitioning and HW/SW co-design; (ii)
analysis of EFPs for embedded systems; and (iii) design space
exploration.

Partitioning and HW/SW co-design. During the last few
decades, several approaches have been proposed to application
architecture partitioning and procedures oriented towards so-
lutions which satisfy performance requirements, e.g. [9], [24].
A wide range of approaches have been proposed in order to
automate/support the hardware/software partitioning activity
using different strategies such as dynamic programming [49],
heuristic algorithm based on the tabu search techniques [50],
integer programming [30], and genetic algorithms [32]. A
list that categorizes these approaches as well as other ap-
proaches focused on implementation issues, can be found in
[25] and [43]. However, all these approaches basically provide
guidelines to deciding which parts of the specification should
be implemented in software and which in hardware. They
do this by considering platform-related indicators, such as
potential speedups, area, communication overheads, locality
and regularity of computations [17]. Usually, they deal with a
few EFPs and are focused only on technical issues. However,
some partitioning approaches do exist which optimize the com-
bination of extra-functional requirements (e.g. design costs,
energy consumptions, performance, etc.) [44],[14], but are still
limited in their total number of properties. In order to provide
an answer to (i) the increase in complexity of the CPSs and
(ii) the advances in underlying hardware technologies when
it comes to the architectural partitioning decision, in contrast
to existing approaches to a component-based application we
propose a general and systematic methodology capable of
accounting many properties and based on MCDA techniques
which are, to the best of our knowledge, non-existent today.

Analysis of EFPs for embedded systems. In the last few
years, several research efforts have been devoted to the def-
inition of methods and tools able to predict and evaluate
the quality of embedded systems (e.g., [11], [23], and [33]).
In particular, different techniques have been introduced to
support the specific features of an embedded system (e.g., the
analysis of timing properties that are typically computational
and time consuming [7], or the management, preservation and
analysis reuse of EFPs that are also critical tasks [35], [10]).
Research efforts have been made to support the development
and adaptation of embedded systems. For example, component
models have been introduced to support the development of
embedded systems (e.g., [18], [41], and [29]), and approaches
to the adaptation of embedded systems under EFP constraints
have been proposed (see, e.g., [52], [53]). Several approaches
have also been introduced to estimate EFPs for software and
hardware implementations (see, for example [19], [40], [6] for
power and energy estimation). The run time of a hardware
implementation on a FPGA, for example in [4] is estimated
by exploiting the simulation and a performance model of the

182

FPGA. In contrast, a statistical approach is proposed in [16]
to estimate the execution time of embedded software.

The topic of the definition of metamodels to specify EFPs
has been also studied intensely. For example, in [54] fault
tolerance aspects were covered by using a metamodel, while
in [2] a service-oriented metamodel for distributed embedded
real-time systems covers real-time properties of services, like
response time, duration, and deadline.

Other challenges related to quality analysis are seen in
the strict design constraints (typical, for example, of mission-
critical systems [51]) that affect the interaction between hard-
ware and software components. Several papers have focused
on these hardware/software co-verification4 issues (see for
example [42] and [15]). In the recent decades, digital and
software designs methodologies have become more alike [28]
and, as already foreseen in [45] they require designers to
have a unified view of software and hardware, which converge
with the concurrent design of hardware/software [28] (see, for
example, the HWSWCO project5 and the co-design framework
in [8]).

Design space exploration: As recalled in [34], design space
exploration is an umbrella activity defined by a set of tasks
addressing aspects of representation, estimation, and explo-
ration algorithms. An overview of design space exploration
techniques, such as those used for System-on-a-Chip archi-
tectures can be found in [17]. Several frameworks and tools
have been built for the efficient multi-objective exploration
(e.g., energy/delay tradeoff [26], occupation of the FPGA,
load of the processor, and performance of the application
tradeoff [31]) of the candidate architectures in order to, for
example: (i) enable run-time resource management in the
context of multiple applications [26], or; (ii) simulate the
target system and dynamically profile the target applications by
exploiting heuristic algorithms for the reduction of the Pareto
set exploration time [31].

VI. CONCLUSION AND FUTURE WORK

In this paper, we have (i) presented a theoretical
component-based approach to support the deployment of CPSs
(as HW or SW components) into heterogeneous platforms
based on many EFPs, and (ii) categorized EFPs in relation to
the HW or SW deployment, and analyzed the HW/SW com-
ponent deployment impact on these EFPs in the Automation
and Control domain.

Specifically, with respect to the state of the art, the novelty
of our contributions can be summarized in the following points.
To the best of our knowledge, this is the first paper that (i)
proposes a metamodel that enables the management of both
application requirements and project/business constraints for
the CPS application deployment, and (ii) provides a catego-
rization for HW/SW deployment of EFPs, derived by different
quality models, standards, literature and the current state of
practice.

The analysis of the categorization has led to some inter-
esting findings: i) Although the values of EFPs depend on
the application architecture and the runtime context, there

4It is also called co-simulation in the hardware industry [8].
5http://hwswcodesign.gmv.com/

are EFPs that are strongly influenced by the partitioning
decision. In general HW solutions provide better runtime EFPs
related to system performance, while SW solutions provide
better characteristics of lifecycle EFPs, such as modifiability,
evolvability, and variability. ii) The project constraints play
important roles in the partitioning decision process which in
general lacks support in existing partitioning approaches.

Our intention with the categorization and partitioning im-
pact analysis is to provide support to system and software
architects in taking architectural deployment decisions. Addi-
tional work may be required in the specialization of the EFP
list, and in the partitioning impact on the EFPs. Furthermore,
the findings will be integrated into our MULTIPAR framework
in the form of semiautomatic support.

ACKNOWLEDGMENT

This research is supported by the Knowledge Foundation
through ITS-EASY, an Industrial Research School in Embed-
ded Software and Systems, and by the Swedish Foundation for
Strategic Research through the RALF3 project.

REFERENCES

[1] A. Avizienis, J.-C. Laprie, and B. Randell. Dependability and its threats
- A taxonomy. In R. Jacquart, editor, IFIP Congress Topical Sessions,
pages 91–120. Kluwer, 2004.

[2] M. Aziz, R. Mohamad, D. Jawawi, and R. Mamat. Service based meta-
model for the development of distributed embedded real-time systems.
Real-Time Systems, 49(5):563–579, 2013.

[3] E. Babbie. Survey Research Method, 2nd edition. Wadsworth Publishing
Company, 1990.

[4] P. Bjureus, M. Millberg, and A. Jantsch. FPGA resource and timing esti-
mation from Matlab execution traces. In Hardware/Software Codesign,
2002. CODES 2002. Proceedings of the Tenth International Symposium
on, pages 31–36, 2002.

[5] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of
software quality. In Proceedings of the 2nd international conference
on Software engineering, ICSE ’76, pages 592–605, Los Alamitos, CA,
USA, 1976. IEEE Computer Society Press.

[6] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto. The Impact
of Source Code Transformations on Software Power and Energy Con-
sumption. Journal of Circuits, Systems, and Computers, 11(5):477–502,
2002.

[7] J. Carlson. Timing analysis of component-based embedded systems.
In Proceedings of the 15th ACM SIGSOFT symposium on Component
Based Software Engineering, CBSE ’12, pages 151–156, New York,
NY, USA, 2012. ACM.

[8] A. Cau, R. Hale, J. Dimitrov, H. Zedan, B. C. Moszkowski, M. Man-
junathaiah, and M. Spivey. A Compositional Framework for Hard-
ware/Software Co-Design. Design Autom. for Emb. Sys., 6(4):367–399,
2002.

[9] K. B. Chehida and M. Auguin. HW/SW partitioning approach for
reconfigurable system design. In Proceedings of the 2002 international
conference on Compilers, architecture, and synthesis for embedded
systems, CASES ’02, pages 247–251, New York, NY, USA, 2002. ACM.

[10] A. Cicchetti, F. Ciccozzi, T. Leveque, and S. Sentilles. Evolution man-
agement of extra-functional properties in component-based embedded
systems. In CBSE, pages 93–102, 2011.

[11] P. Costa, G. Coulson, C. Mascolo, L. Mottola, G. P. Picco, and
S. Zachariadis. Reconfigurable Component-based Middleware for
Networked Embedded Systems. IJWIN, 14(2):149–162, 2007.

[12] I. Crnkovic, M. Larsson, and O. Preiss. Concerning Predictability
in Dependable Component-Based Systems: Classification of Quality
Attributes. Architecting Dependable Systems III, pages 257–278, 2005.

[13] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. V. Chaudron. A
Classification Framework for Software Component Models. Software
Engineering, IEEE Transactions on, 37(5):593–615, 2011.

183

[14] R. P. Dick and N. K. Jha. MOCSYN: multiobjective core-based single-
chip system synthesis. In Proceedings of the conference on Design,
automation and test in Europe, DATE ’99, New York, NY, USA, 1999.
ACM.

[15] M. El Shobaki. Verification of embedded real-time systems using
hardware/software co-simulation. In Euromicro Conference, 1998.
Proceedings. 24th, volume 1, pages 46–50 vol.1, 1998.

[16] P. Giusto, G. Martin, and E. Harcourt. Reliable estimation of execution
time of embedded software. In Proceedings of the conference on Design,
automation and test in Europe, DATE ’01, pages 580–589, 2001.

[17] M. Gries. Methods for evaluating and covering the design space during
early design development. Integration, 38(2):131–183, 2004.

[18] H. Hansson, M. Akerholm, I. Crnkovic, and M. Torngren. SaveCCM -
a component model for safety-critical real-time systems. In Euromicro
Conference, 2004. Proceedings. 30th, pages 627–635, 2004.

[19] J. Henkel and Y. Li. Avalanche: an environment for design space explo-
ration and optimization of low-power embedded systems. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 10(4):454–
468, 2002.

[20] ISO/IEC 25000. Software product Quality Requirements and Evaluation
(SQuaRE), Guide to SQuaRE. In International Standard Organization,
June.

[21] ISO/IEC 9126. Information Technology - Product Quality - Part1:
Quality Model. In International Standard ISO/IEC 9126, International
Standard Organization, June.

[22] R. Kazman, M. H. Klein, M. Barbacci, T. A. Longstaff, H. F. Lipson,
and S. J. Carrière. The Architecture Tradeoff Analysis Method. In
ICECCS, pages 68–78. IEEE Computer Society, 1998.

[23] D. Lohmann, W. Schroder-Preikschat, and O. Spinczyk. Functional and
non-functional properties in a family of embedded operating systems. In
Object-Oriented Real-Time Dependable Systems, 2005. WORDS 2005.
10th IEEE International Workshop on, pages 413–420, 2005.

[24] M. López-Vallejo and J. C. López. On the hardware-software parti-
tioning problem: System modeling and partitioning techniques. ACM
Trans. Des. Autom. Electron. Syst., 8(3):269–297, July 2003.

[25] M. López-Vallejo and J. C. López. On the hardware-software parti-
tioning problem: System modeling and partitioning techniques. ACM
Trans. Des. Autom. Electron. Syst., 8(3):269–297, July 2003.

[26] G. Mariani, V. Sima, G. Palermo, V. Zaccaria, C. Silvano, and K. Ber-
tels. Using multi-objective design space exploration to enable run-
time resource management for reconfigurable architectures. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2012, pages
1379–1384, 2012.

[27] J. McCall, P. Richards, and G. Walters. Factors in Software Quality.
Volume I: Concepts and Definitions of Software Quality. AD A049.
General Electric, 1977.

[28] G. D. Micheli and R. K. Gupta. Hardware/Software Co-Design. IEEE
MICRO, 85:349–365, 1997.

[29] J. F. Navas, J.-P. Babau, and J. Pulou. A component-based run-time
evolution infrastructure for resource-constrained embedded systems.
In Proceedings of the ninth international conference on Generative
programming and component engineering, GPCE ’10, pages 73–82,
New York, NY, USA, 2010. ACM.

[30] R. Niemann and P. Marwedel. Hardware/software partitioning using
integer programming. In European Design and Test Conference, 1996.
ED TC 96. Proceedings, pages 473–479, 1996.

[31] G. Palermo, C. Silvano, and V. Zaccaria. Multi-objective design space
exploration of embedded systems. J. Embedded Computing, 1(3):305–
316, 2005.

[32] M. Purnaprajna, M. Reformat, and W. Pedrycz. Genetic algorithms for
hardware-software partitioning and optimal resource allocation. Journal
of Systems Architecture, 53(7):339 – 354, 2007.

[33] U. B. K. Ramesh, S. Sentilles, and I. Crnkovic. Energy management
in embedded systems: Towards a taxonomy. In R. Kazman, P. Lago,
N. Meyer, M. Morisio, H. A. Müller, F. Paulisch, G. Scanniello, and
O. Zimmermann, editors, GREENS, pages 41–44. IEEE, 2012.

[34] J. T. Russell and M. F. Jacome. Embedded architect: a tool for early
performance evaluation of embedded software. In Proceedings of the
25th International Conference on Software Engineering, ICSE ’03,
pages 824–825. IEEE Computer Society, 2003.

[35] M. Saadatmand and M. Sjödin. Towards Accurate Monitoring of Extra-
Functional Properties in Real-Time Embedded Systems. In K. R. P. H.
Leung and P. Muenchaisri, editors, APSEC, pages 338–341. IEEE, 2012.

[36] F. Salewski and A. Taylor. Systematic considerations for the application
of FPGAs in industrial applications. In Industrial Electronics, 2008.
ISIE 2008. IEEE International Symposium on, pages 2009–2015, 2008.

[37] G. Sapienza, I. Crnkovic, and P. Potena. Technical Re-
port: Architectural Decisions for HW/SW Partitioning based on
multiple Extra-Functional Properties. Technical report, School
of Innovation, Design and Engineering, Mälardalen University,
http://www.es.mdh.se/pdf publications/3132.pdf.

[38] G. Sapienza, I. Crnkovic, and T. Seceleanu. Partitioning Decision
Process for Embedded Hardware and Software Deployment. In In
Proceeding of International Workshop on Industrial Experience in
Embedded Systems Design, COMPSAC 2013. IEEE, Jul 2013.

[39] G. Sapienza, T. Seceleanu, and I. Crnkovic. Modelling for Hardware and
Software Partitioning based on Multiple Properties. In 39th Euromicro
Conference Series on Software Engineering and Advanced Applications.
IEEE Computer Society, Sep 2013.

[40] L. Senn, E. Senn, and C. Samoyeau. Modelling the Power and Energy
Consumption of NIOS II Softcores on FPGA. In Cluster Computing
Workshops (CLUSTER WORKSHOPS), 2012 IEEE International Con-
ference on, pages 179–183, 2012.

[41] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic. A
Component Model for Control-Intensive Distributed Embedded Sys-
tems. In Component-Based Software Engineering, volume 5282 of
Lecture Notes in Computer Science, pages 310–317. Springer Berlin
Heidelberg, 2008.

[42] J.-P. Soininen, T. Huttunen, K. Tiensyrjä, and H. Heusala. Cosimulation
of real-time control systems. In EURO-DAC, pages 170–175. IEEE
Computer Society, 1995.

[43] J. Teich. Hardware/Software Codesign: The Past, the Present, and
Predicting the Future. Proceedings of the IEEE, 100(Centennial-
Issue):1411–1430, 2012.

[44] J. Teich, T. Blickle, and L. Thiele. An evolutionary approach to system-
level synthesis. In Proceedings of the 5th International Workshop on
Hardware/Software Co-Design, CODES ’97, pages 167–, Washington,
DC, USA, 1997. IEEE Computer Society.

[45] F. Vahid and T. Givargis. Embedded system design - a unified
hardware/software introduction. Wiley-VCH, 2002.

[46] U. van Heesch and P. Avgeriou. Mature Architecting - A Survey about
the Reasoning Process of Professional Architects. In WICSA, pages
260–269. IEEE Computer Society, 2011.

[47] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in software engineering: an introduction.
Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[48] H. K. Wright, M. Kim, and D. E. Perry. Validity concerns in software
engineering research. In Proceedings of the FSE/SDP workshop on
Future of software engineering research, FoSER ’10, pages 411–414,
New York, NY, USA, 2010. ACM.

[49] J. Wu and T. Srikanthan. Low-complex dynamic programming al-
gorithm for hardware/software partitioning. Information Processing
Letters, 98(2):41 – 46, 2006.

[50] J. Wu, T. Srikanthan, and T. Lei. Efficient heuristic algorithms for
path-based hardware/software partitioning. Mathematical and Computer
Modelling, 51(78):974 – 984, 2010.

[51] F. Xie and H. Liu. Unified Property Specification for Hard-
ware/Software Co-Verification. In COMPSAC (1), pages 483–490. IEEE
Computer Society, 2007.

[52] M. Zeller and C. Prehofer. A Multi-Layered Control Approach for
Self-Adaptation in Automotive Embedded Systems. Adv. Software
Engineering, 2012, 2012.

[53] M. Zeller and C. Prehofer. Modeling and efficient solving of extra-
functional properties for adaptation in networked embedded real-time
systems. Journal of Systems Architecture, (0):–, 2012.

[54] A. Ziani, B. Hamid, and J. Bruel. A Model-Driven Engineering
Framework for Fault Tolerance in Dependable Embedded Systems
Design. In Software Engineering and Advanced Applications (SEAA),
2012 38th EUROMICRO Conference on, pages 166–169, 2012.

184

