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Abstract

Cache memories can contribute to significant performance advantages due to
the gap between CPU and memory speed. They have traditionally been thought
of as contributors to unpredictability because the user can not be sure of ex-
actly how much time will elapse while a memory-operation is performed. In
a real-time system, the cache memory may contribute to a missed deadline by
actually making the system slower, but this is rare. To avoid this problem,
the developers of real-time systems have run the program in the old-fashioned
way; with disabled cache — just to be safe. Turning the cache off, however,
will also make other features like instruction pipelining less beneficial so the
new processors will not give the performance speedup as they were meant to
give.

The first methods to determine the boundaries of the execution time in
computer systems with cache memories were presented in the late eighties —
twenty years after the first cache memories were designed. Today, fifteen years
later, further methods have been developed to determine the execution time
with cache memories. . . that were state-of-the-art fifteen years ago.

This thesis presents a method of generating worst-case execution time sce-
narios and measure the execution time during those. Several important prop-
erties can be measured. These include cache-related pre-emption delay, miss-
ratio levels of software, and instruction cache miss-ratio threshold levels for
increased system performance. Besides the dynamic measurement method, a
statical procedure to determine the maximum instruction cache miss-ratio level
is presented.

Experimental results from this research show that the indirect cache cost of
a pre-emption is very high — more than three times the execution cost of the
context-switch functions themselves. Another result shows that the tested com-
puter system without caching will not cause a missed deadline if the instruction
cache is enabled.
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Preface

It all began that day in 1981 when my father came home with the book “Basic
Basic” by Dag Toijer which he had borrowed from the library. I read the book
several times and started to write programs — with a paper and pen since a
computer was far too expensive to own. Four years later I bought my first
computer — a Commodore 64. I will never forget that day in Hanover, walking
proudly with the box containing my very own computer.

Many books and computers later, in 1998, I had the opportunity to be-
come a Ph.D. student while working as a teacher at Mälardalen University. The
Department of Computer Engineering performed research in real-time systems,
and since my main interest was in computer architecture, I found this combi-
nation of topics to be natural but also very exciting. It has been a challenge to
struggle with unreadable papers, bugs in my own software, and glitching hard-
ware not to mention all the other duties I have as a teacher and being a part of
my own family. Several times I have been close to giving it all up, but today
I’m finally there.

The work presented in this thesis would probably have been impossible
if I had not had such encouraging and stimulating people around me. My su-
pervisors Lennart Lindh, Björn Lisper, Hans Hansson and Jan Gustafsson have
always been available to me and giving me fantastic support, feedback, input
and inspiration to my immature ideas and questions. Per Holmberg’s great
feedback has really improved the contents and structure of this thesis. Thank
you! A very special thanks goes to Mohammed El Shobaki who has always
criticized my work in the most creative way, helped me with problems and
been such a good friend. Even if the spell and grammar check is quite good in
MS Word, this thesis would doubtfully be readable without Roxanne Fitzger-
ald’s thorough proofreading. Other thanks go to Johan Stärner, Leif Enblom,
Peter Nygren, Gustaf Naeser, Jeroen Heimans, Raimo Haukilahti, Xavier Vera,
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Jonas Neander, Mikael Åkerholm, Joakim Adomat, and Mogens Jensen for all
their valuable help and input. Other people in the department who have been
of importance to me are Christer Norström, Gunilla Eken, and Monica Wasell.
They have solved virtually all of the problems that arose when my research
conflicted with all my other work at IDt. Friends such as these don’t grow on
trees and I’m lucky to have them.

The greatest debt I owe is to my family; Linda, Xerxes, Zacharina, and
my parents. They have all been almost fanatically supportive and enthusiastic
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Chapter 1

Introduction

1.1 Cache memories in computer systems

The traditional computer is usually designed with acentral processing unit
(CPU), a primary memory to store program and data, and input/output-devices
(I/O) to communicate with the environment. The silicon based electronic com-
ponents have doubled in capacity every 18 months during the last 30 years.
This improved capacity has been used to creat larger primary memories and
faster CPUs (or actually physically smaller so that the chip is able to run at
higher clock frequencies due to shorter signal paths). The problem with this
trend is that the memory is unable to keep pace with the CPU and feed it with

CPU
Cache

memory

bus

Primary memory

I/O

Figure 1.1: The cache memory in a computer system.
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2 CHAPTER 1. INTRODUCTION

new instructions. One solution for bridging the widening performance gap be-
tween CPU and memory, is to use a small but fastcache memory (Figure 1.1).

Only a fraction of the instructions and data located in the primary memory
can be held in the small memory. This means that if a requested memory block
doesn’t reside in the small memory it must be fetched from the slower large
memory. The more a memory block is reused before it is swapped out, the
higher performance can be achieved.

The difference between abuffer and a cache memory is that a buffer is
controlled by the program(mer) in the same way as a CPU register, and a cache
memory is dependent on a software property calledlocality which can be either
temporal or spatial[Smi82, AHH89].

• Temporal locality (also calledlocality in time) concerns time. If a pro-
gram is accessing an address, the chances are higher that this same ad-
dress will be reused in the near future, as opposed to some arbitrary
address.

• Spatial locality (also calledlocality in space) states that items that are
close to each other in address space tend to be referred to close in time
too.

The bulleted statements builds on the fact that instructions are formed in
sequences and loops, and that data is often allocated as stacks, strings, vectors
and matrices. To take advantage of the greater bandwidth and longer latency
which characterizes primary memory, and keeping the spatial behavior of pro-
grams in mind: it makes sense to load more data at once, than just that which
is requested from the underlying hierarchic memory

This chunk of data is calledcache line or cache block, and is the smallest
piece of data handled by the cache memory. The CPU requests regularly a data
or an instruction, and if it is in the cache it is called ahit. Otherwise it is amiss,
resulting in a primary memory fetch penalty. A high hit-ratio constitutes high
performance. With a low degree of locality of the program or a program that
doesn’t care about cache memory behavior one can expect low performance
and a longer response time. This means that the performance and the contents
of the cache memory are controlled indirectly by the design of the executing
program.

Today’s modern CPUs have integrated instruction and data caches on the
same chip as the CPU core and second and third levels of larger caches bridge
the gap between the first level cache and the primary memory. Besides this
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hierarchy of caches, features such asnon-blocking caches, victim caches, write
buffers andcritical word first makes the system more complex, but yields even
higher performance.

1.2 Real-time

1.2.1 Overview

In the last few decades, the computer has replaced automatic control and tra-
ditional control systems in industrial applications. It has succeeded PLCs and
manual gears due to its flexibility, accuracy, and speed in numerous areas. Ex-
amples of the use of automatic control systems, or real-time systems (RTS) as
they are called nowadays, can be in a nuclear power plant, an air bag in a car,
the power control in a microwave oven, a robot which paints automobiles or in
a telephone switching device. In all these systems time and timing is crucial.
The response time cannot be exceeded or the system will fail.

Controlling a process with a computer (real-time) system is achieved by the
following steps (in order)

1. Observe the process –sample values from a probe

2. Decide what to do – execute instructions to calculate new positions etc.

3. Actuate – control the process by giving a signal to a controlling device
(motor, relay etc.)

This approach raises two new questions; how often must a sample be taken
and how fast must each sample be analyzed by the computer to give a correct
control signal? If the sample isn’t performed often enough, the system will
have a very rough and “jumpy” view of the world. A higher sample rate will
give a smoother view, but also more data to handle. The sampling process
should therefore not be performed more often than necessary. The second issue
regarding the computation (and possibly even physical) delay is perhaps even
more important. It is possible to achieve a fast response time with a small and
simple calculation, but a more sophisticated algorithm with more precision
takes longer to calculate. If the response time is too long the system will not
work as intended and possibly cause errors and injuries. In this case, the system
is controlling the process as it was, and not as it is, in “real time”.

The answer to both questions is that the environment in which the system
interacts must be specified and from this specification, one can get answers
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such as s sample rate of no less than 500Hz or worst-case response times of no
more than 10 milliseconds.

A task must always be finished before adeadline but in many applications it
might also be impermissible to complete the task before a certain point in time.
In a hard RTS all tasks must be completed in this window of time but insoft
RTS a specified percentage may fail to do this. Hard RTS are typically those
which control something that must not fail because failure will cause process
malfunction or damage — for instance a painting robot must stop a movement
in time or the surface will be scratched. Soft RTS are those that can tolerate
misses to some extent and will regulate the process with decreased quality of
the result — for instance a telephone switch station. The specifications of the
system determine if it is a hard or soft real-time system.

1.2.2 Scheduling

The simplest form of a controller of a real-time system, is a single program
running in a computer with no other tasks to perform. More complex sys-
tem controllers are however easier to construct with several tasks (processes,
threads) running simultaneously in a time-sharing environment in which the
system resources are more efficiently utilized. An ordinary operating system
gives every task an equal slice of the time and runs the jobs in a round-robin
order. An operating system that is specialized for real time systems can utilize
performance even more by prioritizing tasks, permitting pre-emption (inter-
rupting low-priority jobs with high-priority jobs before resuming), using more
advanced scheduling algorithms, etc.

Scheduling can be performed at run-time (dynamic) or in advance (static).
Theoretically, only a few applications can be designed to use a static sched-
ule which can utilize system performance up to 100%. It is easy to prove
that a schedule prepared in advance will meet time constraints. Systems that
are event-driven can usually utilize system resources well if they are sched-
uled at run-time; if certain events occur only sporadically a static schedule
must have allocated enough time for each task period where all cyclic tasks
has finished their execution. An example of a static scheduling algorithm is
“rate monotonic”[LL73]’. The principle behind rate monotonic is to assign the
highest priority to the task with the shortest time period and the lowest priority
to the tasks with the longest time period. This scheduling algorithm has been
proven to work for a CPU-utilization of maximum 69% when the number of
tasks is infinite.
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“Earliest deadline” is a dynamic scheduling algorithm which can dynam-
ically change the priority of the tasks during run-time. The key concept is to
assign the highest priority to the task with shortest time until deadline. This
leads to the possibility of higher system utilization than is possible with, for
instance, the rate monotonic algorithm. The main disadvantage of “earliest
deadline” is that if a task misses its deadline, the execution order becomes un-
defined.

1.2.3 Execution time analysis

Real-time systems rely on correct timing. All scheduling needs timing data
and in this instance, “real-time” literally meansreal time. To schedule a task-
set in a way that no task ever will miss deadline, each task must be provided
with the execution time in, for instance, milliseconds. This execution time
can for instance be calculated statically, measured when the computer runs
the execution path that yields the longest execution time or just ”known” in
somé way. In many cases theworst-case execution time is used to be safe
since the execution and the relationship between the tasks may influence on
the execution and thereby the execution time also.

To determine the execution time of a program sequence is seldom as easy
as taking a stopwatch and measuring the time it takes to execute a program
section. The response time of a program depends not only on the critical code
sequence to be executed (whatever that is) but also on computer performance,
workload, condition, state, etc. and therefore an analysis must be performed.

The execution time of a program is dependant upon the following factors
[Gus00]:

The input data — The value of the data may determine the execution path
and the number of iterations in a loop. The timing of the data is also
important; data may come irregularly or in bursts.

The behavior of the program (as defined by the program source code) —
The design of the program (tasks and operating system) can be short,
long, data intensive, interrupt-driven, polling, short or long time-slices,
task layout on multiprocessors . . .

The compiler (the translation from source to machine code) — Execution
time can be substantially affected by loop unrolling, use CPU of reg-
isters instead of main memory etc.
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execution
time0 BCETC BCETA

AVET

WCETA WCETC

over-estimation
different executions

Figure 1.2: Basic execution time measures (from [Gus00])

The hardware — Number of processors, processor type, bus bandwidth, mem-
ory latency, cache memory and instruction pipelines determine how fast
the machine instructions will be executed.

Although all of these factors affect the WCET, the best-case execution time
(BCET) can be equally important (e.g. a too-early inflation of an air bag in a
car can be fatal for the driver). Preferably, execution time analysis is performed
statically, which means that it iscalculated (index C) and overestimated from
actual (index A) execution time since the analysis must take a very pessimistic
approach, such as including non-feasible execution paths and maximal itera-
tions of all loops. Figure 1.2 illustrates the basic execution time measures.

1.3 Cache memories and real-time

Calculating a tight WCETC in a system with cache memories is very tricky
because the contents of the cache memory depend on the program’s former
execution path. On the other hand, the execution path depends (to some extent)
on the cache contents!

A naive approach to calculating WCETC would be to handle all memory
accesses as misses but that would result in a WCETC which would be more
overestimated than a system without a cache (since the miss penalty time is
longer than a simple regular primary memory access). In that case, it would
be better to disable the cache as has been done in safety-critical hard real-time
systems.

There are two categories of block swap-outs [AHH89];
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T1 T2

without pre-emption

T1

T2 preemptsT1

T2

T1 cont.

Cache refill penalty = CRPD

T1

with pre-emption

Figure 1.3: Cache-related pre-emption delay. A pre-empted task can be drained
by cached data and suffer a refill penalty. Note that the penalty does not come
right after resuming the pre-emption — it may come later or in pieces depend-
ing on the program’s design.

• intrinsic (inter-task) behavior depends on the internal design and ex-
ecution path of the task. Two functions or data areas in the task may
compete for the same cache space and increasing the cache size and/or
associativity can reduce the effects.

• extrinsic (intra-task) behavior depends on the environment and the inter-
task behavior of the other tasks. At context-switch (pre-emption) the
cache contents will be more or less displaced by the new running task.
This performance loss is also calledcache-related pre-emption delay
(CRPD) orcache refill penalty. The CRPD, considered anindirect cost,
is illustrated in Figure 1.3. In [BN94] the pre-emption’s impact on WCETC

is defined as:

WCET ′
C = WCETC + 2δ + γ (1.1)

, whereWCET ′
C is the cache affected WCETC , δ is the execution time

for the operating system to make a context-switch (two are needed for
a pre-emption), andγ symbolizes the maximum cache-related cost of a
pre-emption.
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Even if both kinds of swap-outs can be reduced, the real-time aspect re-
mains as long as the hit-ratio is less than 100%. Some methods to show how
the cache performance can be predicted will be presented in the next chapter.



Chapter 2

Related work and motivation

As mentioned in the introduction, cache memories are unpredictable compo-
nents in a real-time environment since the execution time of each instruction
becomes variable. There are several approaches to cope with this problem but
none of them are perfect and all of them have certain drawbacks. This chap-
ter will present a few methods to incorporate cache memories into real-time
systems safely and then motivate an alternative method.

2.1 Related work

This section will give only a brief survey of some of all existing methods to
give the reader a snapshot of the research area. The more interested reader can
refer to [Seb01] in which the state-of-the-art cache memories and real-time are
described.

2.1.1 Avoidance methods

There are several methods of avoiding or reducing the negative cache memory
effects of real time systems. Here are some examples

RT designed processors. The MACS processor approach presented in [CS91]
is to avoid the necessity for caches by using memory banks. The execu-
tion of tasks is performed on a single shared pipeline and all tasks are run
at “task level parallelism” with instructions. Instead of making a context
switch at regular millisecond intervals, each task in succession feeds a

9
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new instruction to the pipeline. In other words: ifN tasks are running
in the system, a new instruction will be executed in a specific task, every
N clock ticks.

Another specially-designed processor (micro controller) with simple pre-
dictable behavior was the RTX2000 by Harris developed in the early
1990’s.

Prefetching Since the real time operating system knows when a context-switch
is to be performed, the cache could be prefetched with the necessary in-
structions and data [Stä98]. Like all prefetching, the tricky part is timing
and the cache memory must also have a non-blocking feature.

Scheduling If a schedule allows pre-emption only at special points in the
program[LLL+98] the CRPD can be more easily determined. If pre-
emption is impermissible, the CRPD will be eliminated and the extrinsic
cache behavior can be determined with an intrinsic behavior analysis
method. Limiting pre-emption leads to slowerresponse time for low
priority tasks.

Cache partitioning By reserving a private part of the cache memory for each
task, extrinsic cache behavior can be eliminated. This can be performed
either in hardware [Kir88, Kir89] or by linking tasks to memory ad-
dresses not interfering with each other in the cache — so calledsoftware
partitioning [Wol93, Mue95]. The major drawback of partitioning is that
each task will have access to only a fraction of the complete cache with
a performance loss as a result. Data coherency must also be maintained
since data structures can be duplicated in more than one partition.

2.1.1.1 Discussion

Avoidance is a safe and mature way of solving the problem with unpredictable
hardware, but has some drawbacks. Reduced performance is maybe the most
obvious, but this can be a reasonable price if no further analysis will be nec-
essary. To put restrictions into a system might also be an educational problem
since developers might have become accustomed to doing “everything they
want” — new thinking can result in new type of errors. Other possible draw-
backs with specially-designed processors, software or other components are
the increased costs of developing and integrating these components into exist-
ing systems, and in some cases, higher system energy consumption.
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Figure 2.1: Overview of the flow to determine the bounds of instruction cache
and pipeline performance.

2.1.2 Static analysis

Static analysis means that the software is examined without being executed.
For instance, there are several approaches that are based oninteger linear pro-
gramming [LM95, OS97], data flow analysis [AMWH94, LML +94], graph
coloring [Raw93], abstract interpretation [AM95, FMWA99], and reducing
[NR95, LS99b, SA97, TD00] among others.

To keep things brief, only two of these methods have been chosen to illus-
trate what static analysis is all about.

2.1.2.1 Example 1

This method was developed at Florida state university and is often referred as
“static cache simulation” [AMWH94]. For an overview of the analysis flow
see Figure 2.1.

By simulating a program in a static cache simulator, each cache block can
be categorized asalways hit, always miss, first miss or first hit. After the cache
simulation thetiming analysis is performed to determine WCETC . The tool in-
teractively asks the user to assign each loop the maximum amount of iterations
that the compiler couldn’t automatically determine. In the next step, the ana-
lyzer constructs atiming analysis tree and the worst-case cache performance
is estimated for each loop in the tree. After this step, the user can request tim-
ing information about parts, functions or loops in the program. This method
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time t0 t1 t2 t3 t4 t5 t6 t7 t8

access event - 4 5 6 7 0 0 1 2
action - m h h m m h m m

cache block 0 0 4 4 4 4 0 0 0 0
1 5 5 5 5 5 5 5 1 1
2 6 6 6 6 6 6 6 6 2
3 3 3 3 3 7 7 7 7 7

useful blocks {5,6} {5,6} {6} {} {} {0} {} {} {}

Figure 2.2: A memory access scenario from which useful cache blocks have
been derived.

has been extended to handle set-associativity, data-caches [WMH+97], wrap-
around-fill [WMH+99], and instruction pipelining [HAM+99]. This method
has been criticized to have a too conservative view of the categorization model
in the simulator[LBJ+95].

2.1.2.2 Example 2

The approach of Chang Gun Leeet al [LHS+96, LHM+97] to determine a tight
CRPD is to identify and use only theuseful cache blocks in the calculation.
This analysis is performed in two steps;

1. Per-task analysis: Each task is statically analyzed to determine the pre-
emption cost at each execution point by estimating the number ofuseful
blocks in the cache. In the example illustrated in figure 2.2 the cache
contains memory blocks number{0, 5, 6, 3} during the time periodt 0.

The technique to determine the amount of useful cache blocks is based
on data flow analysis with the control flow graph (CFG) of a program as
input. One array stores the blocks that are reachable (reaching memory
blocks – RMB) and another storeslive memory blocks (LMB) at each
execution point. The amount of useful blocks at each execution point can
be determined from this material with an iterative method. The worst-
case pre-emption scenario turns up when a task is pre-empted at the point
with the largest amount of useful cache blocks since the refill penalty will
be largest when the task resumes its execution.

2. Pre-emption delay analysis: A linear programming technique is used to
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computeγ1 by sum up the products of the number of task pre-emptions
during a given time period, with the number of useful cache blocks at an
execution point (taken from the pre-emption cost table).

2.1.2.3 Discussion

Both of these approaches and solutions for calculating WCET and CRPD are
probably the best and most accurate today, but they are complicated and need
much expertise and hands-on work. The methods are safe and applicable on
hard real-time systems, but are not always able to model all the newest features
of modern microprocessors such as trace caches, prefetching and read/write
buffers. Data caches are still being handled very pessimistically since no method
to the authors knowledge can handle dynamic memory. All those accesses are
considered as a full penalty with a write-back and a cache line refill (also re-
ferred as “double miss”)[KMH96, LS99a].

2.1.3 Simulation

By feeding extracted execution traces to a simulator it is possible to monitor
internal states and measure execution time. The simulator permits changes of
architecture parameters (cache size, band width etc) to make the analysis more
flexible.

Mogul and Borg measured cache-related pre-emption delay as 10-400 mi-
croseconds by using trace driven simulation[MB91].

2.1.3.1 Discussion

One problem arises if the execution path (i.e. the trace) changes due to the
timing of input data. Since the execution time depends on the execution path
and cache contents, the conclusion is that the simulation must model the system
from which the traces were derived. As will be described in the motivation
(Section 2.2), modeling a system (for simulation) correctly is very difficult.

2.1.4 Real measurement

Real measurement is performed directly on the target system with software
(SW), hardware (HW) or a hybrid combination of these (HW/SW).

1by Leeet al referred asPCi(R
k
i )
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To measure with SW or HW/SW monitoring methods,probes are inserted
in the code. For example, probes can be implemented askernel probes that
are incorporated in the OS-code of task-switches, system functions, interrupt
routines etc.Inline probes are placed directly in the application code andprobe
tasks which log the system state.

Solutions with software involved are able to give a high level of information
but the price paid is that the measurement itself affects both the system (e.g.
cache contents) and the execution path (e.g. execution time). If probes are re-
moved after the measurement, aprobe effect may occur, therefore, all probes
should remain in the program. To make a system observable (and measurable)
you must allocate enough resources and performance to the monitoring equip-
ment even after the test is performed [Tha00].

Measurements with an oscilloscope on a bus will not affect the execution
time, but many details may be hidden since most modern CPUs integrate cache
memories and other components in the same capsule.

2.1.4.1 Example

In [PF99], Petters and Färber describe a measurement approach that begins
with an automatically compiler generated Control Flow Graph (CFG). The
CFG reflects the optimized code and areduced CFG is produced after an anal-
ysis which cleans non-feasible paths and omits non WCET-paths. The reduced
CFG is manually partitioned into measurement blocks to reduce complexity
and hereby decrease the time of the measuring phase. The last step before the
actual measurement is to insert probes into the measurement blocks to provide
an external host with time-stamped identification-tags for post-monitoring.

This method has been implemented with a tightly coupled multi-processor
system on a PCI-bus with MIPS4600 and dual Intel Pentium II/III CPU-high
performance units (HPU). The system also contain a Real-Time Unit2 , Con-
figurable I/O Processor (CIOP) with FPGA and dual ported RAM. The system
goes under the name REAR.

The testing is performed by manipulating the object code to select execu-
tion paths and a measurement is then performed. The next step is to evaluate
the result, make a new manipulation, possibly avoid a code section, and start
new measurements. This is performediteratively and to reduce complexity
and manual work, the measurement is performed from “good”, “safe”, low-
complex points in the code at loops, function calls etc. However, the method
needs much hands-on work and knowledge of how the software is constructed

2A dedicated Intel Pentium II CPU with a local SRAM which runs the operating system



2.2. MOTIVATION 15

to give safe and a fast WCETC . It has also been criticized as being insuffi-
ciently safe for use inhard real-time systems. The attraction of the method is
that very complex systems can be analyzed with a WCETC close to WCETA .

2.1.4.2 Discussion

The best argument for using real measurement is that the execution time is ac-
tual and not over-estimated. The method is applicable on complex “state of the
art” hardware that might be difficult, very time consuming, or even impossible
to model with, for instance, a simulated or static method. The method has,
however, been considered as unsafe in academia and by developers of safety
critical real-time systems. Real measurement seems to be difficult to general-
ize in different kinds of systems, since the published methods (to the best of
the author’s knowledge) need hands-on work and particular knowledge of the
system and its micro-architecture to be performed correctly.

2.2 Motivation

At the beginning of this research I had a couple of questions;

• Are there simpler ways to analyze or measure cache properties than those
already proposed in established research papers? (This question is an-
swered in all the papers if those methods can be considered as “simple”)

• What kind of cache information can be tapped from a high performance
computer system running at several hundreds of megahertz without in-
terference? (answered in papers A and B)

• Can disabled instruction caches cause missed deadlines if they are en-
abled? (answered in paper D)

• How much is the cache-related pre-emption delay in a system in absolute
and relative terms? (answered in paper B)

Much research has been performed to determine the (worst-case) execution
time of a program. The execution time is necessary input for the scheduling
algorithms. One problem is that most analysis methods and simulations models
are simplified and not as complex as modern processors and computer systems,
so that in many cases their usability is limited. Modern computer systems
use complex microprocessors and system developers need real true values to
schedule those systems.
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The objective of this thesis is to show that a measured value is, in almost
all cases, safer than one calculated since calculations need correct models. The
model may be incorrect due to simplifications but also due to flaws and bugs
in the system specifications and manuals [AKP01, Eng01]. Since a measured
value isn’t always reproducible due to the unknown initial system state before
the measurement, the method is only safely usable in statistical analysis, i.e. in
soft real-time systems.



Chapter 3

Results and contributions

This chapter will briefly present the results of the research performed. Refer-
ences for more detailed descriptions in the papers, conclude each section.

3.1 The measurement method

The method of measuring cache activities relies on a built-in processorperfor-
mance monitor and a high-resolutiontimer. Today, the performance monitor is
commonly built into the processor core as a tool which the programmer uses
to optimize the program for the processor. Dedicated registers count specified
events such as cache misses or instructions executed and this data can be used
for profiling the running code. The timer is used to timestamp all events for
post analysis. (Section 5.3, 6.3)

3.1.1 Generation of workbench code

The goal of this method is to measure the time of worst-case cache-related
pre-emption scenarios. A common method to test a computer performance
is to use standardized benchmarks to make systems comparable. However,
no benchmark (e.g. “Rhealstone” [Kar90] or EEMBC) evaluates worst-case
scenarios. Since the cache-related pre-emption delay is dependent on cache
and code size, each test bench is unique for a system, and easiest to generate
automatically with synthetic code.

17
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3.1.1.1 Code with a specific size

It is easy to generate code of an exact specific size by inlining assembly in-
structions into a task, each instruction being a four-byte word. In this case
the code only containedr1=r1+0. Load and store instructions were not used
since only instruction caching was studied. Instruction pipelining is sensitive
to instruction dependencies and the instruction mix, but since the impact of
pipeline effects on execution time only is a fraction of cache issues, they have
been ignored. (Section 6.3.4.1)

3.1.1.2 Code with a fix cache memory miss-ratio

To verify that the measured cache miss-ratio was correct, code with a known
cache miss-ratio had to be generated. One way of achieving this, is to insert
jump instructions in each cache block which will interrupt the spatial locality.
A high miss-ratio can be achieved only by executing a fraction of the instruc-
tions in the block. If the task is larger than the cache memory, all blocks must
be fetched from the primary memory and will prevent the utilization of tempo-
ral locality. The code only containsr1=r1+0 and “branches (always) to the
beginning of the next cache block” with the same argument as the size-specific
task generation. (Section 6.3.3, 8.2)

3.1.2 Experimental measured results

The complex target system “SARA”[LKF99] has been used to obtain experi-
mental results and to test the measurement method. The next paragraph will
describe an overview of the system’s features and special hardware compo-
nents. Note that all the hardware features are not necessary for the generalized
measurement method — they only make the method easier to use with some
support.

SARA is based on themicroprocessor MPC750 from Motorola that is equipped
with a split instruction and data cache at the first level, and a unified cache
memory at the second level. The MPC750 also has an on-chip performance
monitor that can monitor 48 different kind of events in four performance mon-
itor counters[Mot97, Mot99]. TheReal Time Unit (RTU)[FSLA95] is a high-
performance and performance-predictable hardware-implementation of an op-
erating system kernel that handles scheduling and other real-time operating
system services. A special device designatedMultipurpose Application Mon-
itor (MAMon) [ES01, ES02], can tap the RTU non-intrusively on information
regarding for instance context-switching, inter-process communication, task
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synchronization etc. The application may also write directly to special reg-
isters designatedsoftware probes. All the data collected in MAMon is sent
through a parallel port to an external host for post-analysis.

Execution time, cache miss-ratio, context-switch time, threshold miss-ratio
for an enabled/disabled instruction cache and maximum cache-related pre-
emption delay (CRPD) have been measured and determined with a high degree
of accuracy. (Paper B)

3.2 Determining the worst-case cache miss-ratio

The approach to finding the execution path with the highest cache miss-ratio, is
to identify branches and target addresses in cache blocks to determine the miss-
ratio of the spatial locality. In essence, it is the reverse process of generating
code with a fixed cache miss-ratio, although an arbitrary code is much more
complex than a synthetic workload with loops and conditions that must also be
analyzed. The cache analysis must therefore be combined with an execution
path analysis to calculate a miss-ratio level.

The execution path that yields the highest cache miss-ratio need not be the
one with the longest execution time, but this path is the most energy consuming
for the memory components. (Paper C)

3.3 Summary of papers

Four published papers have been included with this thesis, which explain the
work performed in more detail than this chapter.

3.3.1 Paper A

This paper suggests two different methods of measuring the cache-related pre-
emption delay. The first method is a complete hardware solution using JTAG to
tap information from the CPU’s performance monitor. The second method is a
HW/SW hybrid method which stores no data on the target system, but sends it
continuously to a database host through a parallel cable. This is preferable to
the JTAG method, which requires the CPU to run at half speed, and has higher
implementation costs.

The paper was presented at the IEE/IEEE Workshop on Real-Time Embed-
ded Systems (RTES) in London, December 2001
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3.3.2 Paper B

The hybrid method presented in Paper A is described in more detail in this pa-
per and with the results of measuring the direct and indirect costs of a context-
switch.

The paper is a MRTC technical report (02/58).

3.3.3 Paper C

An important property of a program is its potential hit-ratio which depends on
the different execution paths. These execution paths depend on input-values,
the internal state and timing. An execution path with a very high miss-ratio
need not be that with the longest execution time. The path with the worst-case
cache miss-ratio (WCCMR) will however require more energy to execute than
an execution path with a lower miss-ratio. This paper suggests a static method
of finding the execution path which yields the WCCMR and it also estimates
the miss-ratio level of this path. It can be used for example to calculate power
consumption but can also be used as an input for the compiler to optimize
the code. The analysis is performed at machine code level so that no manual
annotations are necessary and the result is safe since it is over-estimated.

The paper was presented at the Workshop on Embedded System Code-
sign (ESCODES) in San José, CA, USA, September 2002. The paper was
co-written with Jan Gustafsson.

3.3.4 Paper D

A cache memory makes the instruction execution time variable and due to the
penalty which a miss in the cache can yield, its performance can be expected
to be lower than that of a system without a cache. If such a code is used in
a real-time system, the cache can cause a missed deadline and it is therefore
common to disable the cache in hard safety-critical real-time systems. This
paper proposes a method of determining the cache miss-ratio threshold level at
which a cache memory increase the execution time.

Experimental results on a CPX2000 system showed that the threshold level
was so high that it was impossible to reach. One reason for this result is that the
use of burst-mode to replace missing cache-lines, has reduced the miss-penalty.

The paper is submitted to Design, Automation and Test in Europe confer-
ence (DATE 03), München, Germany
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3.4 Other publications

• Filip Sebek. “The state of the art in Cache Memories and Real-Time Sys-
tems”. MRTC Technical report 01/37, Mälardalen Real-Time Research
Centre, Västerås, Sweden, September 2001
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Chapter 4

Conclusions

4.1 Summary

A summary of the essential conclusions from this thesis:

• Synthetic workbenches have been successfully used to force a CPX2000
computer system into a worst-case execution time scenario during pre-
emption. The software needed to perform the measurement can be used
to swap out parts of the pre-empted task code in the cache and by this
eliminate intrusion and probe effects.

– The indirect cache cost of a pre-emption is very high. It has been
measured to be more than three times the execution cost of the
context-switch functions themselves.

• The CPX2000 computer system without caching will never cause a missed
deadline if the instruction caching is enabled. The is because the cache
lines are filled in burst mode, which reduces miss-penalty.

• In the same way the worst-case execution time path must be determined
to avoid missed deadlines, execution paths with the worst-case cache
miss-ratio must be identified to quantify the maximum energy usage.
This has been achieved with a fully automated statical method.

23
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4.2 Future work

Most of the questions in section 2.2 have been answered satisfactorily, but
there are still aspects and features which deserve further study. The results and
conclusions have also raised further questions so suggestions to future work
have its place;

• The measurement methodology and the generation of synthetic work-
benches could be developed for data caches also. Data caches are how-
ever more complex to handle than instructions since they also write back
data to the primary memory.

• The calculation of worst-case cache miss-ratio can also be extended to
handle temporal locality to determine the boundaries of the cache miss-
ratio tighter to the actual.



Paper A

Filip Sebek

Measuring Cache-Related Pre-emption Delay
on a Multiprocessor Real-Time System

Presented at the IEE/IEEE Workshop on Real-Time Embedded Systems (RTES)

London, December 2001

25





Chapter 5

Measuring cache-related
pre-emption delay on a
multiprocessor real-time
system

Abstract

Cache memories in real-time systems can increase performance, but at the cost
of unpredictable behavior which gives loose bounds on the worst case execu-
tion time analysis. Task pre-emption causes a swap of cache contents with an
initial performance dip that is considered as a delay. This delay is necessary in
execution time analysis and must be added to each task-switch to determine if
the task sets are schedulable.

Cache performance and costs have traditionally been estimated through
trace-driven simulations, but since representative traces and a true simulation
models are hard to accomplish, a “physical” measurement of the system might
be the only way to determine its status.

This paper suggests two methods to measure the cache-related pre-emption
delay on a Power PC750 multiprocessor system by using the processors’ built-
in performance monitor. One method is completely hardware-based and the
other has a minimal software support. Both methods pass information to an

27
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external monitor system that stores data with timestamps in a database for fur-
ther analysis.

5.1 Introduction and motivation

Cache memories are common in computer today’s systems to bridge the re-
sponse time from primary memory which boosts up performance. Since the
small cache is too small to hold all data and instructions, blocks are swapped
in and out depending on what section of code in the program is handled at any
moment. The swapping results to in a variable memory access time, which
makes execution time analysis in real-time systems very tricky to analyze.

There are two categories of cache block swap-outs [AHH89];

• Intrinsic (inter-task) behavior depends on the internal design and execu-
tion path of the task. Two functions or data areas in the task may compete
for the same cache space with cache misses and a resulting performance
loss. Increasing the cache memory size or associativity can reduce these
effects.

• Extrinsic (intra-task) behavior depends on the environment and the oth-
ers tasks’ inter-task behavior. At context-switch the cache contents will
be more or less displaced by the new running task. This performance loss
is also calledcache-related pre-emption delay (CRPD). To eliminate the
CRPD and extrinsic cache effects, Kirk suggests partitioning the cache
into segments and assign task their own segment of the cache [Kir89].
This can also be accomplished in software by locating code and data so
they won’t map and compete for the same areas in the cache [Wol93].

Both these problems must be solved or correctly analyzed to be able to give
an accurate and tightWorst Case Execution Time (WCET). The WCET is the
base for all scheduling of a task-set — without it one cannot determine if the
task-set is schedulable or not in a real-time system.

Basumallick and Nilsen identify the CRPD in the Real-Time environment
in [BN94] with the formulaC ′ = C + 2δ + γ, whereC ′ is the new WCET,
C stands for the unmodified WCET,δ is the execution time for the operating
system to make a context-switch (two are needed for a pre-emption) andγ
symbolize the maximum cache-related cost by a pre-emption.

Even though recent research and many different analysis methods have
been able to bound WCET tighter with many different solutions, they are still
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not applicable to industrial systems due to their limitations [TD00, LMW99,
HAM+99, TFW00]. A safe approach would assume that the complete cache
must be reloaded on a context-switch, but since this shouldn’t be possible in,
for instance, a system with small but many tasks, the schedule would lead to
an underutilization of CPU resources. Today’s industrial developers are in a
great need of real values to implement new software based products on high-
performance processors.

To the best of our knowledge the only work that has been presented to
measure the CRPD is Mogul and Borg’s trace driven simulation of a UNIX-
system [MB91]. Mogul and Borg measured the delay (γ) to 200 − 400µs of
a task, however the traces were not taken from a real-time system and all the
time-slices were of equal size. The cache memories of today are larger and
more complex than those which were used in these simulations.

Performance estimation on cache memories has traditionally been made
with trace-driven simulation. The simulations are mainly of single programs
or tasks and with absence of operating system, pipelining, complex cache struc-
tures, prefetching features etc. This paper presents methods for measuring the
CRPD on a real running multi-processor system.

5.2 The multi-processor system

SARA — Scaleable Architecture for Real-Time Applications — is a research
project with a Motorola Compact PCI backplane bus with Power PC750-processor
boards [LKF99]. See figure 5.1.

A specialmaster card is equipped with a Real Time Unit (RTU)[FSLA95]
that controls the execution of the tasks on all processor cards. The RTU is a
high performance and performance predictable hardware implementation of an
operating system that handles scheduling and other real-time operating system
services. No other software is needed. The other processor cards are used as
slaves to increase application performance. All communication between tasks
(inter and intra-processor) is performed through avirtual bus which simplifies
application development[NL00]. A special device calledMultipurpose Appli-
cation Monitor (MAMon) [ES01] is connected to the RTU.

Today, MAMon and the RTU co-exist in the same FPGA, and besides in-
creased performance it is a very practical and cost-effective way to eliminate
problems with PCB-layout and other hardware manufacturing issues.
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Figure 5.1: CPU-card. The RT-Unit is only on master cards.

5.3 The measurement

The Motorola PowerPC 750-processor (MPC750) is equipped with a perfor-
mance monitor [Mot97, Mot99] with four dedicated registers which count pre-
defined events such as cache misses, miss predicted branches, number of fetched
instructions, and other occurrences. The monitor function is meant to be used
to tune performance on software applications and to help system developers to
debug their systems.

It is not possible to measure the CRPD time directly since the MPC750
performance monitor is not that advanced. The performance monitor at the
processor is set to count cache misses and instruction fetches, which is the
information needed to calculate instruction miss ratio. To calculate the data
miss ratio, the data misses, and the number of loads and stores must be counted.
By continuously measuring the miss ratio, the CRPD can be calculated and
presented.

One problem is to distinguish the extrinsic misses from the intrinsic, which
is impossible to do exactly, with the suggested measuring model since the per-
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formance monitor is unable to categorize the types of the misses. Our approach
is to determine theaverage miss-ratio-level of the task and subtract it from
the miss-ratio after the context-switch. Figure 5.2 illustrates a scenario with a
context-switch from a task with 22 percent average miss-ratio to another task
with 12 percent.
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Figure 5.2: Miss-ratio during a context-switch.

5.3.1 With software support

A small, simple, cyclic task — ”MonPoll” — polls the MPC750’s performance
monitor registers and passes them to MAMon where they get time-stamped. An
alternative solution is to store the data in the task’s local memory, but the writ-
ing to memory would compete with the application’s need for cache memory
with a serious swap of cache data as a result. A third possibility is to stream the
data through an Ethernet card as UDP-messages to a remote host on the net-
work, but these actions lead to substantially longer execution time and a swap
of contents in the instruction cache.

MAMon is non-intrusive and provides the needed service with a minimum
of software code. Only one simple C-code assignment is all that is needed to
store a value in a MAMon register. MAMon sends (through a parallel port)
timestamps, register values and other predefined task information to a database
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Figure 5.3: SARA system. Dashed boxes are software implementations.

on an external host where it is stored for further analysis and graphical presen-
tation. See figure 5.3.

Even the smallest possible MonPoll-task will, however, interfere with and
pollute the cache result by its own presence in the executing environment. It
will also use system resources and decrease performance by increasing the
execution load. The cache content could remain unaffected by locking the
cache memories during the polling, but that would on the other hand have an
influence on the execution time.

Leaving the polling task “as is” in the running system can ”solve” the prob-
lem. To make a system safe and act as it did during the test phase of its devel-
opment, probes must never be removed [Tha00]. The cost of having an observ-
able system is to dedicate some percentage of the capacity to software probes.
The less frequently that probing is performed, the less interference there is, but
with a loss of valuable data. If the performance loss is unacceptable in a run-
ning system, the ”MonPoll”-task must be removed. Furthermore, to get a more
correct performance value, measurements at different sample frequencies must
be performed. By extrapolating these values, more accurate performance esti-
mations will be at hand. This method is applicable on soft real-time systems
due to its more or less polluting nature.
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5.3.2 Completely in hardware

The register values from the performance monitor can be read through special
pins on the processor called JTAG-pins (defined by IEEE 1149). To interpret
those signals on an oscilloscope by “hand” is a not a trivial task due to the large
amount of information presented in a simple wave-diagram. To cope with this
translation and interpretation problem, a special hardware device communi-
cates with the performance monitor through JTAG and “downloads” the re-
quested data. This device could then pass the information further on to MA-
Mon through either dedicated peer-to-peer links or a special bus with MAMon
and those devices attached to it. The device acts exactly as the “MonPoll” task
described in the previous section but in this case it is implemented in hardware.
This method might be suitable for hard real-time applications since it doesn’t
interfere with the caches or the execution time.

Many hardware constructions cannot run at full speed when JTAG is used,
which is true for some CPUs in the Motorola PPC-family. The advantage of
this approach is its non-polluting and non-interfering measuring, but the draw-
backs are, as mentioned, higher hardware costs and an underutilization of CPU
performance.

5.4 A synthetic workbench

No good standard benchmark are available today to measure cache memory ef-
fects in real-time systems. Non-real-time benchmarks such as SPEC or Dhry-
stone are just single programs without (interfering) tasks. Rhealstone[Kar90],
on the other hand, simply tests real-time operating system issues such as task-
switches, deadlock handling and task communication. The test applications are
too small to test cache memory issues and were not meant to do so either.

The test will therefore be performed on synthetically generated task-sets
where the amount of tasks and the data and instruction size of all the tasks
will be generated by a special program. Task interaction, priorities, and cycle
time can also be set. By altering the mentioned parameters and measuring the
hit ratio over time, a pretty good view of the CRPD will be available. This
method has been used successfully in, for example, Busquets-Mataixet al’s
work[BMWS+96].
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5.5 Conclusions and Future work

Performance estimation on cache memories has traditionally been made with
trace-driven simulation with only pieces of a complete trace and simplified
simulators. To be able to make a correct and tight worst-case execution time
analysis all types of delays and interference in the execution must be identified.
One such property is the Cache-Related Pre-emption Delay (CRPD), which is
a product of extrinsic cache behavior.

This paper suggests two methods to measure hit-ratio by using the pro-
cessors built-in performance monitor. Either a software task or a hardware
device can poll the data from the performance monitor. The software solution
is performed with a minimum of code to reduce a probe effect. The polled
information is then passed to a system monitor that collects and stores context-
switch information and other predefined events in a database. Since all events
are time-stamped, the miss-ratio can be continuously monitored and the CRPD
can be calculated. The methods will give applicable values to execution time
analysis since they measure real time on a real running system. A complete
hardware solution might be better since it could be intrusive free, but the data
can only be available when the processor is running at half speed if JTAG is
used.

Standard benchmarks don’t cause pre-emption and that is why CRPD can-
not be measured at those. Generated task-sets with synthetic tasks of differ-
ent numbers, sizes, relations, cycle time etc. will generate pre-emptions to be
measured and will also give a figure which shows how exact the suggested
measurement method is.

Due to heavy performance loss and costly redesign of PCB-layout, the
hardware device solution is excluded and only the software solution is moti-
vated to implement in the future work.
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Chapter 6

The real cost of task
pre-emptions — measuring
real-time-related cache
performance with a HW/SW
hybrid technique

Abstract

Cache structures and other modern hardware is so complex today, that simu-
lation on the instruction level is very complicated and time-consuming. Real
measurement is much faster, but with the disadvantage of being less observable
and, in most cases, impossible to make non-intrusive.

To predict shedulability for a system that incorporates an unpredictable de-
vice, such as the cache, requires knowning data such as the task execution time,
task-switch time, and pre-emption delay to statically predict their schedulabil-
ity. This paper proposes a hybrid HW/SW method to measure cache perfor-
mance with minimum intrusion. It also presents some experiences with a real
system and the experimental results of setting up scenarios to measure cache
performance on a high performance microprocessor system based on MPC750
CPUs.
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The experimental results show that the cache-related pre-emption delay for
instructions can be up to 69% of the pre-emption cost for a MPC750 system.

6.1 Introduction

6.1.1 Real-time and cache memories

Cache memories are used in today’s computer systems to boost up performance
by bridging the gap between response time of primary memory and CPU.
Since the small cache is too small to hold all data and instructions, blocks are
swapped in and out depending on what section of code in the program is han-
dled at the moment. The swapping results in a variable memory access time,
which makes the computation of the worst-case execution time (WCET) very
tricky. The execution time depends of the cache contents and the cache con-
tents depends on the execution path that depends on, among other properties,
the execution time.

System developers are today in a great need of real values to implement new
software based products on high-performance processors. These values must
be safe but also simple and fast to get. A correctly performed real measurement
on a real system might give them what they need — especially when the offered
method is easy to understand.

6.1.2 Monitor and measurement methods

Several methods are feasible to measure or monitor cache performance in com-
puter systems. The major issue is to make the measurement non-intrusive so
the measured environment is unaffected. A second issue is to set up correct
and representative scenarios to be measured. If for instance the worst-case ex-
ecution time (WCET) is to be measured, one must set up an execution path that
leads to the WCET.

Execution time and other performance issues can either be statically ana-
lyzed [HAM+99, TD00, FMWA99, LHM+97] or simulated[MB91, SL88], or
measured directly on the target system[LHM+97, PF99].

The advantage of static methods is that they are safe if the system model and
analysis method are correct and compatible with each other. The hard part is to
add complex structures into the model like pipelining, cache memories, DMA
and other hardware that affects the execution time. To model a real processor
is very difficult to accomplish[AKP01, Eng01] and to simulate execution on
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a modeled complex system may take over 1000 times longer than the actual
execution.

Real measurement is on the other hand much faster to perform, but requires
special hardware to tap information from the system. Changing hardware pa-
rameters like cache size or bus bandwidth is often practically not possible. The
major advantage is that a complex hardware is correctly “modeled” as is.

Monitoring methods can be categorized as

• Trace driven simulation. By feeding extracted execution traces to a
simulator it is possible to monitor internal states and measure execution
time. It is also common that architecture parameters (cache size, band
width etc) can be altered to give a better flexibility in the analysis. One
problem arises if the execution path (i.e. the trace) will change due to
timing of input data. Since the execution time depends on the execution
path and cache contents, the conclusion is that the simulation must model
the system from where the traces were derived.

• Hardware monitoring. By attaching for instance a logic analyzer on the
bus or taping information from the processor’s JTAG pins one could trace
where the execution occurs. One problem is that JTAG has a limitation
in bandwidth so for instance a processor must run at half speed. Another
problem is that only addresses on the address bus doesn’t say much about
what really is going on in the processor since the information is at a very
low level and internal signals to registers and caches are hidden.

• Software monitoring. A program or pieces of code writes internal states
or time values to memory, disc or screen. The information can be at a
very high abstraction level, but the cost is a high utilization of CPU,
memory, cache alteration, bus bandwidth etc. All these resources must
be allocated and remain in the program after the measurement to elimi-
nate probe effects.

• Hybrid HW/SW monitoring . With minimal code and hardware moni-
toring it is possible to get information at a high level with small resource
utilization.

To measure with the SW or SW/HW monitoring methods,probes are in-
serted in the code. The methods proposed in this paper use three kinds of
probes:Kernel probes that are incorporated in the OS-code of task-switches,
system functions, interrupt routines etc.Inline probes are placed directly in the
application code andprobe tasks that log the system state.
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6.1.3 Cache properties to measure

In a real-time perspective some properties are more interesting and useable to
measure than others.

• Task-switch time. It is very common in schedulability analysis to just
take the WCET for the tasks as parameters and assume that the context-
switch time is zero. In the real world a time will elapse during the context
switch since the OS has to execute some code to make the context-switch
possible. The knowledge of this time is important in systems with a high
frequency of context-switches.

• Pre-emption delay including cache-related effects.The cache will be
filled with instructions and data that belong to the executing task. Misses
that occur at this point are calledintrinsic. When a new task starts to
execute, the cache will swap out the previous task with the current local-
ity — these kinds of misses are calledextrinsic[AHH89]. One special
kind of extrinsic miss occurs during pre-emption when a high prioritized
task can interrupt low prioritized to gain faster response time. The pre-
emption will swap out the cache contents of the executing task and cause
a cache refill-penalty for the low prioritized task when it resumes its ex-
ecution. The cost to pre-empt another task isC ′ = C +2δ+γ, whereC ′

is the new WCET,C stands for the unmodified WCET,δ is the execution
time for the operating system to make a context-switch (two are needed
for a pre-emption) andγ symbolizes the maximum cache-related cost by
a pre-emption[BN94]. Thiscache-related pre-emption delay (CRPD) or
cache refill penalty that can be considered as anindirect cost is illustrated
in figure 6.1 and 6.8.

The CRPD can be eliminated or reduced by partitioning the cache so
each task has a private part of it, but to the price of decreased over-all
performance[Kir89, Wol93, Mue95].

• Continuously measuring cache performance. By continously moni-
toring the cache-miss ratio, maximum and average miss-ratio during a
time-slice can be determined. If the time-slice is smaller than the op-
erating system’s time granularity, the average miss-ratio can be used
to calculate WCET and if used in soft real-time systems the maximum
miss-ratio can be used. The method is however only applicable for hard
real-time systems when the worst-case execution time scenario is exe-
cuted.
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T1 T2

without pre-emption

T1

T2 preemptsT1

T2

T1 cont.

Cache refill penalty = CRPD

T1

with pre-emption

Figure 6.1: Cache-related pre-emption delay. A pre-empted task can be drained
by cached data and suffer a refill penalty. Note that the penalty does not come
right after resuming the pre-emption — it may come later or in pieces depend-
ing on the program’s design.

This paper is organized as follows: The next section describes the target
system where all measurements were performed. Section 3 presents the work-
benches in detail and experimental results, and the paper ends in Section 4 with
conclusions.

6.2 The system

The complex target system “SARA”[LKF99] has been used for experimental
results and testing the measuring method. This section will describe features
and special hardware components in the system. Please observe that all the
features in the hardware is not necessary for the generalized measuring method
— it just makes the method easier to perform.

SARA — Scaleable Architecture for Real-Time Applications — is a re-
search project with a Motorola CPX2000 Compact PCI backplane bus with at
most eight Motorola Power PC750-processor (MPC750) boards [LKF99]. See
figure 6.2 but also figure 6.4 for a complete system overview. The processor
boards are equipped with a MPC750 running at 367MHz and is connected to a
66MHz bus as well as the the 64MB DRAM main memory.
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Figure 6.2: CPU-card. The RT-Unit is only on master cards.

6.2.1 MPC750

The microprocessor MPC750 is equipped with a splitted instruction and data
cache at the first level, and a unified cache memory at the second level. The
first level caches are 32kB each and organized in 8-way set-association with a
pseudo LRU replacement policy. Each cache block can hold eight 32-bit words.
The second level cache is in the target system 1024kB, 2-way set-associative
and the block size is in this case 128 byte that is divided into sub-blocks. The
caches are non-blocking and can be locked by users during execution. Four
areas in the memory that is to be cached are defined in Block Address Trans-
lation (BAT) registers. All four areas can set its own WIMG-properties, that
is Write-through/Write-back policy, cachingInhibited, enforcedMemory co-
herency andGuarded bits.

The MPC750 is equipped with an on-chip performance monitor that can
monitor 48 different kind of events, but there are only 4 performance monitor
counters (PMCs) available. Only 5 of the 48 events can be associated with any
PMC and the rest are associated to a dedicated PMC. [Mot97, Mot99]
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6.2.2 Real-Time Unit

A specialmaster card is equipped with a Real Time Unit (RTU)[FSLA95]
that controls the execution of the tasks on all processor cards. The RTU is
a high performance and performance predictable hardware implementation of
an operating system kernel that handles scheduling and other real-time op-
erating system services. The other processor cards are used asslaves to in-
crease application performance. All communication between tasks (inter and
intra-processor) is performed through avirtual bus which simplifies application
development[NL00].

6.2.3 MAMon — an application monitor

A special device calledMultipurpose Application Monitor (MAMon) [ES01,
ES02], can tap for instance the RTU non-intrusively on information regard-
ing context-switching, inter process communication, task synchronization etc.
There is also a possibility to write to special registers calledsoftware probes
directly from the application. Writing to a software probe is much faster than
reading a register since the processor just writes to the PCI-bridge through the
66MHz 60x-bus. The bridge will then eventually write to the RTU when the
33MHz local bus is clear.

All the collected data is sent through a parallell port to an external host for
post analysis.

Today, MAMon and the RTU co-exist in the same FPGA, and besides in-
creased performance this is a very practical and cost effective way to eliminate
problems with PCB-layout and other hardware manufacturing issues.

To integrate MAMon into another system than SARA that doesn’t use a
hardware implemented OS can easily be performed by just adding a card with
MAMon hardware, which is accessed by memory mapped addressing. In this
case only software probes can be used.

6.3 Experimental setup and results

All experiments were performed at instructions only with synthetic workloads
on the SARA system. Each of the three measurement cases are presented in
their subsection. The first case describes how to measure cache miss-ratio
continuously with minimal intrusion. The second case describes how to mea-
sure context-switch/pre-emption time and the third case sets up a scenario to
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maximize cache effects so the cache-related pre-emption delay (CRPD) can
be measured and included into the pre-emption time. The subsections also
presents the measured results and concludes with a discussion.

6.3.1 Synthetic workloads

No good standard benchmark suits are available today to measure cache mem-
ory effects in real-time systems. Non-real-time benchmarks such as SPEC or
Dhrystone are just single programs without (interfering) tasks. Rhealstone[ Kar90]
on the other hand just tests real-time operating system issues such as task-
switches, deadlock handling and task communication. The test applications
are too small to test cache memory issues and were not meant to do so either.

The tests were therefore performed on synthetically generated task-sets
where the amount of tasks and the data and instruction size of all the tasks
were generated. Priorities, miss-ratio, cache locking and cycle time can also
be set. The generated code is very simple since it’s only purpose is to swap
out cache contents. The basic structure of a task is one simple big loop that
contains a large sequence of “r1=r1+0” without jumps and ends with a delay
to let lower prioritized tasks to run.

Using synthetic task-sets has successfully been used in for instance Busquets-
Mataix et al’s work[BMWS+96]. More about the synthetic workload and its
different properties will be presented in the three cases.

6.3.2 Continuous measurement

6.3.2.1 Implement the probe as a task

Implementation A small, simple, cyclic probe task — ”MonPoll” — polls
the MPC750’s performance monitor registers and passes the values to MA-
Mon where they get time stamped. Figure 6.4 illustrates the complete system
with hardware and software. This small task (written in C) is as simple as in
Figure 6.3.

The task should have the highest priority to be able to measure during all
tasks’ execution.

Performance requirement The OS1 granularity to start tasks is 2 millisec-
onds, which means that the highest sample rate is 500Hz. The task requires

1“OS” and “RTU” will in this case referred as the same thing.
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void monitor_poller( void ){

RTU_IO rtu_io;

while(1) {
asm(" mfspr 0, 938 ": "=r" (MAMON_SWPROBE_2));
asm(" mfspr 0, 941 ": "=r" (MAMON_SWPROBE_3));
rtu_io.delay(2);

}
}

Figure 6.3: A small task that polls performance monitor counters and writes
the results to MAMon

671 assembly instructions to execute which includes two context-switches in
the operating system (major part) and the small code itself.

Best-case is when no cache misses are present. The execution time for
the MonPoll task is then 43.1µs , which means that it consumes about 2% of
the execution time. It also means that if a task is interrupted by the MonPoll
task and no cache misses will occur, the execution time of the running task will
be extended with 43.1µs .

Worst-case will occur if the MonPoll task is not in the cache and will
pre-empt a loop for which content maps the same cache lines as the MonPoll
task. This will generate a small burst of initial misses for the MonPoll task plus
some new misses when the pre-empted task resumes its execution to replace the
MonPoll task in the cache (=CRPD).

Specifically this means an extension of the execution time by 21.9µs to
65 µs . 99 cache lines have been swapped out and the refill time for those
is also 21.9µs if all cache blocks were useful in the pre-empted task. The
performance cost will therefore be more than doubled from 43.1 to 86.9µs , or
if the sampling is performed at maximum rate0.0869

2 ≈ 4% of CPU resources.

Analysis and Discussion A solution to reduce the performance cost of
the measurement method is to keep the MonPoll task in the cache, which can
be achieved by (software) partitioning. The cost is high because it allocates a
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Figure 6.4: SARA system. Dashed boxes are software implementations.

task with all the inherited costs of context switches etc. Only a few registers
will be used and therefore it is very expensive to store all those only to make a
simple poll. The granularity of the observation by only being able to poll each
second millisecond might be very poor in many situations. The MPC750 will
execute almost one million instructions during this period.

6.3.2.2 Implement the probe as an interrupt routine

Instead of putting the small piece of code into a task, the same code can be
called as an exception routine. There are several pros and cons to do so:

• Saving registers before running own code must be performed by “user”
instead of the operating system

• It is performed by the processor itself, no operating system support is
needed which also means faster execution and less intrusion

• Finer granularity is possible since the interrupts are independent of the
operating system’s time base

Exception on timer value The MPC-family is equipped with a 32-bit decrement-
register (DR) that is decreased by a step each fourth external bus-cycle which



PAPER B 47

in this specific case is 66,7/4 MHz = 16.7 MHz or T=60ns. When DR is equal
to zero an exception occurs and the program counter is set to 0x0900. If this
feature is unused this address must containrfi (return from interrupt) to pro-
ceed with the execution. DR can be set to any arbitrary number by user code
and by this be used as an external clock. The CPU runs at 233MHz which
means that a resolution of 14 clock cycles or at maximum 28 instructions is
possible to achieve.

MAMon is able to handle about 3500 cache events per second. Sending
performance monitor data at this pace is a severe limitation; during this pe-
riod 150 000 instructions may have been executed. A workaround is to write
to MAMon only when an amount of changes (for instance cache misses) has
reached a limit. Since MAMon can store short bursts of data in a FIFO queue,
a practical sample rate of up to 1MHz is possible but then the load at the system
will be 12%2

Exception on PMC threshold value The MPC750 has a special exception
routine for the performance monitor. When a PMC reaches the threshold value
an exception call to 0x0f00 is performed. In this case the workaround in the
previous timer value solution can be avoided with a performance increase and
less intrusion as a result.

6.3.3 Workbench

The generation of code with a fixed miss-ratio has been accomplished in two
ways. Either spatial locality is exploited by only executing a fix fraction of the
instructions in a cache line or a fraction of reuseable code is used to exploit
temporal locality. A third possibility is to combine both these methods.

• If the first instruction in all cache lines is an unconditional jump to the
start of the next cache line only the first word in each block will be
accessed and by this never exploit spatial locality. If the code mass is
much larger than the cache memory the reuse of code will not take place
and decrease miss-ratio. By this we have generated a code with 100%
cache misses. To generate code with 50% misses the jump is moved from
the first to the second word in the cache block, and to generate code with
33% the jump is moved to the third word and so on. 66% misses can

2The 12% load is best case when no cache misses occur. This value shouldn’t be compared
with the MonPoll 4% utlization since that only runs at 500 Hz.
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miss ratio =




0%, ts ≤ cs ∧ time →∞;
ts−cs

cs · set associativity , cs < ts < cs + cs
set associativity ;

100%, ts ≥ cs + cs
set associativity ;

Figure 6.5: The cache miss-ratio depends in the generated code on task size,
cache size and set-associativity. Each cache block begins with an unconditional
jump to the next cache block to prevent utilization of spatial locality. (ts = task
size,cs = cache size)

be generated by altering the jump from the first and second word in the
cache block in the complete program.

• Code within a loop that fits into the cache will gain a lower miss-ratio
each iteration since it reuses the cache lines (temporal locaility). If the
code is a bit larger than the cache size some code will be swapped out
and the amount ofuseable cache lines in the cache will decrease. With
code that has 100% spatial misses the cache miss-ratio is formulated in
Figure 6.5.

Example: A 38kB task with 100% spatial misses will in a 32kB 2-way set-
associative cache memory obtain an average miss-ratio of38−32

32 · 2 = 37.5%
A more correct description of “task size” is “the task’s cache-non-interfering

active or useful cache lines” but in this synthetic generated workload it is the
same.

6.3.3.1 Results

To prove that the measurement methods work (both probe task and interrupt
driven kernel probes) a task-set with tasks with different average cache miss-
ratios was set up, executed and measured. The theoretical values were com-
pared with the measured and the difference was less than 1% with the interrupt-
driven measurement method. The fluctuation depends for instance on DRAM
refreshment and odd bus-cycle access.

Figure 6.6 illustrates four tasks with different miss-ratios executing. The
tasks’ miss-ratio was controlled by the individual task size.
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Figure 6.6: Continous miss-ratio measurement with an interrupt driven kernel
probe. T2 starts to execute (miss ratio: 3.27%) and yields to the idle taskT1

(0%). ThenT3 (4.25%) executes and yields forT4 (6.20%). At the end of this
sampleT2 pre-emptsT3. Observe the inital miss-ratio peaks at the context-
switches.

6.3.3.2 Discussion and conclusion

This kind of monitoring is maybe more of performance than of hard real-time
interest. The monitoring has too low resolution to give any information about
for instance CRPD. It can however be used forsoft real-time systems to get
a view of theaverage miss ratio of the tasks to be used for static WCET-
calculation.

A periodic interrupt routine with inline probes has shown much better per-
formance than a probe task. The granularity can increase from 500 Hz to
1 MHz in short3 bursts. CPU utilization with a probe task running at 500Hz
drops from 4% to an immeasurable level if the same measurement is performed
with the interrupt routine implementation running at the same frequency. When

3“Short” in this case are 256 events since that is the size of the internal FIFO-queue in MAMon.
Availbale hardware sets the limit of the queue size.
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measured at 1 MHz with the interrupt driven method the CPU used 12% of its
computation resources to the measuring activity.

6.3.4 Measuring context-switch time

A pre-emption consists of two context-switches:

1. Interrupting the executing task.

(a) OS decides to make a context switch

(b) registers of the pre-empted task are saved

(c) registers of the pre-empting task are loaded

2. Resuming to the interrupted task.

(a) the high prioritized task yields to low prioritized tasks

(b) OS decides what lower task should run

(c) registers of the high prioritized task are saved

(d) registers of the lower prioritized task are loaded

Since the RTU on the target system does very much of the OS work during the
interrupt and more software code is to be executed during the resuming, it is
expected that the resuming in this case should take longer time.

6.3.4.1 Workbench and results

This type of measuring is quite straightforward since four kernel probes into
the OS can perform it. The probes are placed at the first and last lines of the
two context-switch routines. The best case scenario is when the routines are in
the cache and the worst-case is when all the code has to be loaded from main
memory and swaps out some cache lines that would have been useful for the
task (=CRPD).

Best case scenario is created with an empty task “pre-empting” the idle
task. The worst-case scenario is measured on a task-set with two tasks that
both are larger than the cache memory so the OS-code will be swapped out for
sure. The results are presented in Table 6.1
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Sitaution Number of Interrupt Resume Pre-emption cost
cache misses (µs ) (µs ) (incl. CRPD) (µs )

Best-case 0 18.5 24.6 43.1+0.0=43.1
Worst-case 44+55 28.4 36.6 65.0+21.9=86.9
No cache - 52.5 66.1 118.6

Table 6.1: The table shows the time it takes to perform a context-switch. The
cache-related costs are inherited only from the context-switch code.

6.3.4.2 Discussion and conclusion

Even if the context-switch time relies on many parameters such as CPU, system
platform, operating system, and in this case it is more true than for others since
parts of the OS kernel is implemented in hardware, the proposed measurement
method is still useable for almost any computer system. The measured time
can directly be used in scheduling algorithms and analysis.

6.3.5 Measuring CRPD

6.3.5.1 Workbench

The CRPD grows linearly with the pre-empted task’s size4 and reaches its max-
imum value when the task size is equal to the cache size assuming that the
pre-empting task has replaced the suspended task completely.

One should notify that the CRPD will decrease after its maximum point
since the number of useful blocks will decrease with the task’s size. If the
active context of the program is twice as large as the cache size it will never
reuse any cache lines. In this case there will be no CRPD what so ever.

On set-associative caches with LRU or FIFO replacement algorithm the
CRPD also will depend on the set-associativity; a fully associative cache mem-
ory will with a task that is one word larger than the cache always replace the
cache line that is about to be accessed and by this never have useful cache-
lines in the cache — poor performance but no CRPD. The relationship be-
tween CRPD, task size and set-associativity is illustrated in Figure 6.7 and the
reasoning is similar to generation of a task with fix miss-ratio (section 6.3.3).

4As mentioned before; a more correct description of “task size” in this context is “the task’s
cache-non-interferingactive or useful cache lines”.
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Figure 6.7: The theoretical maximum CRPD of a task is depending on the
tasks’ size and the cache memory’s set-associativity.

Figure 6.8 illustrates the scenario where the high prioritized taskT2 pre-
emptsT1 and by this get CRPD=((f-e)+(d-c))-(b-a).

To measure themaximum CRPD that is possible to suffer in a system, the
previous scenario can however be simplified by pre-empting a task (T 1) by an-
other task (T2) for which both sizes are exactly equal to the cache memory. (T 1)
is an endless loop that writes to a timestamped software probe each iteration
to make it possible to calculate the execution time. If there are no other inter-
fering components (other interrupts, instruction pipeline refill etc.) the CRPD
is at hand. Interfering components can be detected by measuring the CRPD
with different sizes of (T1) since it in the absence of other pre-emption delay
components should grow linearly with a start in the origo, and reach the top at
the cache memory size.
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Figure 6.8: During the scenarioT2 pre-emptsT1 and interferes in the cache
partly or completely. The CRPD effect will be maximized if all cachelines are
useable forT1 and swapped out byT2. CRPD = ((f-e) + (d-c)) - (b-a)
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Figure 6.9: A scenario to get the maxmimum CRPD in a system:T2 pre-empts
T1 and interferes in the cache partly or completely.T1 is running in an endless
loop and timestamps each iteration (marked as ’*’) in the figure.
CRPD = ((e-d) + (c-b)) - (b-a)

6.3.5.2 Results

Several task-sets as in scenario in Figure 6.9 with different sizes ofT1 and the
result is shown in Figure 6.10. The maximum CRPD was measured to 195.5µs
and the sloping line after 100% task size intersects the x-axis at 113.6% which
is less than 1% overestimation from the theoretical 112.5% (see Figure 6.7).
The measurement was also performed on a 233MHz MPC750 and since the
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main memory and busses are the same as on the 367MHz-system the CRPD
was the same — a fact that verifies the method’s correctness.
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Figure 6.10: Measuring the instruction CRPD on a CPX2000 system with a
MPC750 processor that is equipped with a 32kB 8-way set associative L1 in-
struction cache.

When the 1024kB second level cache was enabled the CRPD was decreased
to 31.8µs . This is however not themaximum CRPD of the system since the
L2 was only partly used. In this case the L2 could host all tasks and OS-code
and no accesses to main memory was necessary.

6.3.5.3 Discussion and conclusion

The CRPD is at most 195.5µs on the considered SARA-system. The executing
OS-code to pre-empt a task was measured to 86,9µs 5, which means that the
total pre-emption delay is 282.4µs . In relative terms the major part of the
context-switch cost, or195.5

282.4 = 69%, is cache-related.
It is quite interesting that the CRPD is almost the same compared to Mogul

and Borg’s measurements a decade ago[MB91], which were 10-400µs . Dur-

5See worst-case scenario in Section 6.3.2.1
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ing this time the processors have become magnitudes times faster and this
means that the CRPD has grown in relative terms.

The method to get the CRPD is practicable to get a safe value that is di-
rectly useable in a scheduling algorithm. Even if the value is overestimated,
the method will never fail or have any limitations that are very common in
static methods.

6.4 Conclusions

Real-time systems are often implemented as scheduled tasks with timing con-
straints that must be satisfied for correct function. Even if very much research
has been done in schedulability analysis, it is common to do assumptions to
simplify the analysis — for instance that the cost of task pre-emption can be
approximated to zero. In reality pre-emption cost, since execution of code
takes time, and the indirect refill penalties with cache memories in the sys-
tem can cost much more. Since the pace of instruction execution accelerates
much faster than main memory access time, the penalty has increased and will
increase even more in relative terms.

This paper presents a hybrid HW/SW technique that makes it possible to
measure and timestamp cache events with minimal intrusion. The method has
been implemented on a high-end multiprocessor system with Motorola Power
PC750 CPUs controlled by a centralized real-time unit (RTU) with operating
system features implemented in hardware. A hardware implemented monitor
co-resides with the RTU on the same chip which makes it possible to tap infor-
mation non-intrusively.

We have proposed how to continuously measure cache miss-ratio with a
probe task and interrupt driven kernel probe. The interrupt driven kernel probe
outcompetes the task probe in less CPU utilization and finer time granularity.

Methods has in this paper been proposed how to set up workbenches and
measure the pre-emption delay including cache-related for instructions. Ex-
perimental results showed that a pre-emption could vary from 43 to 282µs if
the cache-related pre-emption delay (CRPD) is counted in. The CRPD itself
will in this case stand for 69% of the time of the pre-emption execution and its
indirect cause.
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Chapter 7

Determining the Worst-Case
Instruction Cache Miss-Ratio

Abstract

A program with a high cache miss-ratio will lead to longer execution time and
a higher power consumption. By knowing the cache miss-ratio, performance
can be estimated in advance and can be used as input for compilers and system
developers.

This paper presents a method to bound the worst-case instruction cache
miss-ratio of a program. The method is static, needs no manual annotations in
the code and is safe in the meaning that no under-estimation is possible.

7.1 Motivation

The cache miss-ratio is an important property of a program. The worst-case
cache miss-ratio (WCCMR) is useful for instance in the following areas:

• Power-aware systems. The energy consumption grows with higher cache
miss-ratio since cache misses leading to more bus and main memory
activity [DNVG01].

• Multiprocessor systems on a shared bus. A high cache miss-ratio will
congest the bus with a performance loss in the average case.
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• Real-time systems. Cache memories are in many cases avoided in real-
time systems due to their highly complex behavior. Even if most ap-
plications have less than 10% miss-ratio in the instruction cache, there
is still a chance that an application can miss more during a certain sec-
tion of a program. If these bursts of misses occur during a critical phase
of the execution, the program might miss its deadline with possibly a
malfunction as a result.

One should observe that the execution path with the highest miss-ratio must
not be equal to the one with the longest execution path in time or number of
instructions executed. A simple example is a polling task that in the average
case only makes conditional jumps over a very complicated algorithm that is
executed only once a fortnight.

7.2 Related and adjacent work

Much research has been performed to calculate the worst-case execution time
(WCET) that is an important property of a task or process in a real-time system
where the timing constraints must not be exceeded to have a correct function.
Adding caches to a real-time system is a non-trivial task since the execution
time will become variable depending if the executing instruction or accessed
data is in the cache or not. Some methods have nevertheless successfully been
able to make system with caches analyzable [LMW95, AMWH94, LML+94,
LS99b, OS97, SA97], but they all aim at WCET-analysis. To the best of our
knowledge no one has tried to bound WCCMR, even if many of the WCET-
analysis algorithms with some modifications would be able to perform such
analysis.

The major difference between the adjacent work and our proposition is the
simplicity of our approach.

7.3 The concept and approach

When the CPU fetches a new instruction or data, and it is not in the cache
memory, amiss occurs and reload from the main memory must be performed.
To reduce the penalty, not only the missing instruction is fetched but a complete
line1 of instructions is transferred since the main memory can burst consecutive

1A cacheline is sometimes also calledblock, but since the term might be mixed up with for
instancebasic block, this paper will use the term ”line”.
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memory locations to the cache. This line might be 2, 4, 8 or 16 words large.
The spatial locality is exploited which refers to the fact that nearby memory
locations are more likely to be accessed than more distant locations.

If, for instance, the line size is 4 words and the program is one sequence of
consecutive instructions without branches (”a single basic block”), a miss will
occur every 4:th instruction. This situation leads to a miss-ratio of1

4 = 25%
and if the line size is 8 words, the miss-ratio will be1

8 = 12.5%
If only a part of the instructions in the line will be executed and a jump

to another cache line occurs, this line will have a higher miss-ratio. If, for
instance, the second instruction in a 8-word-line is a branch, this particular
cache line will have a miss-ratio of12 = 50%. The worst-case scenario is
when the first instruction of a cache line is a jump; in this case the miss-ratio
is 100%. To suffer from100% cache misses of a complete program means
that it only performs jumps to uncached lines and such program will never be
implemented since it cannot do anything useful. The myth of the always cache
missing program in a real-time system should hereby be unveiled[ Seb02b].

The bottom line of this argumentation is that many jumps and early jumps
in a cache line leads to a higher miss-ratio. By analyzing the jumps in a code,
the cache miss-ratio can be estimated.

7.3.1 Limitations

The proposed method will not exploit temporal locality and will therefore as-
sume that all new cache line accesses are misses and will only take advantage
of the spatial locality. The estimation of the miss-ratio will never be lower than

1
linesize .

Set-associativity, non-blocking caches, data caches and prefetching are not
handled. The analyzed code must always terminate so endless loops are not
permitted. A non-terminating process (common in real-time systems) can how-
ever be analyzed by removing the “big loop”.

7.4 The algorithm

This section presents the algorithm to calculate the worst-case cache miss ratio
in detail.
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7.4.1 Overview

1. Construct a Control Flow Graph (CFG) of the program at machine code
level.

2. Identify all conditional and unconditional branches and determine their
position in the cache line.

3. Identify all jump target addresses and determine their position in the
cache line.

4. Calculate all instructions’ “local miss-ratio”.

5. Determine the maximum and minimum number of iterations in loops
(performed at intermediate code level).

6. Construct a binary tree of possible execution paths that might lead to a
worst-case cache miss-ratio.

7. Traverse the tree and find the execution path with the highest cache miss-
ratio.

7.4.2 A Control Flow Graph

A control flow graph (CFG) [ASU86] describes the possible execution paths
through a program. The nodes in a CFG representbasic blocks 2, and the edges
represent the flow of control.

7.4.3 The “local miss-ratio”

Each instruction is associated to a miss-ratio that is equal to the inversion of
the distance between the incoming and the outgoing arrow relatively to the
instruction. We will in this paper call this miss-ratio of each instruction for the
“local miss-ratio”. See the examples in Figure 7.1. The (a) figure illustrates a
cache line without any branches and target addresses. The (b) example with a
conditional jump in the second word of the cache line assess the first two words
as1

2 since worst-case is the use of only two out of four words in that cache line.
If no jump is performed all instructions should have the local miss-ratio1

4 , but
since both scenarios are possible, only the worst-case miss-ratio is assigned to

2A basic block is a linear sequence of instructions without halt or possibility of branching
except at the end
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↓
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↓
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↓
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1/4
1/4
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↓

(b)

↓


1/4
1/4
1/2
1/2

←

↓
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↓


1/4
1/3
1/3
1/3

←

→
↓

(d)

↓


1/4
1/4
1/2
1/1

←
←

↓

(e)

↓


1/2
1/2
1/4
1/1

→

←
↓

(f)

Figure 7.1: Some examples of“local cache miss-ratio” on 4-word cache lines.
Conditional and unconditional jumps are symbolized as (→) and jump targets
as (←).

a word. In (c) the third word is a target address and since there is a possibility
that only two words are being used in this cache line, the two last words are
assigned12 as local miss-ratio.

A way to bound the WCCMR tighter is to distinguish short forward and
backward jumps within a cache line. If for instance Figure 7.1(f) would be
such a case the miss-ratios would be{ 1

3 , 1
3 , 1

4 , 1
3} and for a short backward

loop, as in 7.1(d), all words in the line would be assessed1
4 .

7.4.4 Loops

If the loop has a higher miss-ratio than the rest of the program it is important to
know how large this part of the execution is relative to the rest of the program.
By using themaximum possible number of iterations in the loop will render
a safe estimation if the miss-ratio in the loop is higher than in the rest of the
program. If the miss-ratio in the loop is lower than in the rest of the program,
the minimum possible number of iterations must be used. It is non-trivial to
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determine which of those that should be used until the complete program is
analyzed, and that is why to the best of our knowledge no major pruning or
substitution method is possible.

It is therefore necessary to know the number of iterations for the loops
in the analyzed program. To determine the number of iterations is trivial for
afor-loop with a simple counter, assuming the the counter is not changed in
the loop body. For loops with more general termination conditions, the number
of iterations is not that obvious.

A common method to handle such cases is to add manual annotations to
the code (see for example[PK89]). There are however automated methods that
can determine the maximum number of iterations without manual annotations
(see for example [EG97, Gus00]). Such methods could be used prior to our
analysis.

7.4.5 The possible-execution-paths tree

All basic blocks in the CFG associate to a tuple〈mr ,weight ,min,max 〉where
mr is miss-ratio, weight the number of instructions in the basic block,min
the minimum number of execution times andmax, the maximum number of
execution times of the basic block. Non-iterating sequences of code will have
min andmax assigned to ’1’.

A binary tree of possible execution scenarios is generated. An if-statement
generates two possible branches and loops generate also two branches: the
minimum-iteration-path and the maximum-iteration-path.

Some optimizations can be performed to reduce the size of the tree.

• A loop with a fixed number of iterations can be simplified to a basic
block following the previous basic block. Such a loop (for instance a
for-statement) is identified when the minimum number of iterations of
a basic block is equal to the maximum.

• If two paths have identical tuple-descriptions, those can be reduced to
one path and the branch in the tree can be omitted.

• If it can be proved that the rest of the program (at a certain stage) will not
be able to reach a higher WCCMR than another path, the search in that
branch can be aborted and the execution path may be omitted in the tree.
Such a proof is possible to make if the number of executable instructions
are so few that the already calculated part of the program will outweigh
the rest even if the remaining program will have a miss-ratio of 100%.
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This information can be available through a generation of an execution
path tree that is built reversal from the end and built upon the number of
instructions executed in each basic block. This “weight tree” must not be
complete, but the closer it is reaching the start of the program the more
optimizations can be performed at the possible-execution-path-tree. The
“weight tree” can easily be optimized since only the heaviest node of
all duplicated nodes are necessary — all other nodes and paths to light
weight nodes can be omitted.

These optimizations can be performed directly after the loop analysis, before
the tree generation, to simplify the tree generation process.

7.4.6 The overall miss-ratio

The last step is to compute the WCCMR in all possible execution paths to find
its maximum value. Every node is only once traversed but observe that the
complete path must be traversed to calculate a correct value of WCCMR.

7.4.7 Algorithm performance

The performance consuming parts of the algorithm are focused on two parts.
The first is the construction of the CFG and assign all assembly instructions
with a local miss-ratio, which can be performed with the efficiency of O(n)
where n is the number of assembly instructions in the program.

The second part is the traversing of the CFG to build and analyze the tree,
which is built with combinations of basic blocks in all execution paths. Since
each node in the CFG can occur multiple times in the tree, there is a possibility
of an exponential growth of the tree O(2n), which seems to be the algorithms
bottleneck. Even a small program but with a complex structure of loops and
branches can take very long time to analyze. The situation is however not as
bad as it might first appear since only a fraction of all execution paths are ana-
lyzed; In loops only the minimum and maximum number of iterations are con-
sidered, not the complete interval, and several branch situations can be omitted
by optimization.

7.5 Example

The code in Figure 7.2 is transformed to the CFG in Figure 7.3.
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A straight-line edge in the figure represents a basic block and a curved edge
represents a conditional or unconditional jump in the code. Thedo-while
loop is analyzed to iterate anything between 4-15 times and thewhile loop
will iterate 1 or 2 times.

...

...
if(a>b) {

...

...
do{
...

}while(c>d);
}
else {

...

...
while(e<3){ .
...

}
}
...

Figure 7.2: A code written in C that will be analyzed as an illustration of the
method.

In this example we have chosen the cache line to be 8 words as in for in-
stance in Motorola PowerPC 750. A CFG is constructed and from this each
instruction is assigned a local cache miss-ratio (Figure 7.3). The program is
analyzed to determine each loop’s maximum and minimum number of itera-
tions.

The binary tree in Figure 7.4 describes all possible execution paths to termi-
nate the program. Theif-else-statement leads to two branches (true/false)
and the loops will also generate two branches each (maximum and minimum
number of iterations). Each edge in the tree symbolizes a basic block and it’s
associated cache miss-ratio weight.

Table 7.1 shows the calculated cache miss-ratio for the different execution
paths. The execution time calculation should just give a hint about what is
going on; we let each miss gives ten “time units” penalty.
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- 1/8
- 1/8

- 1/4
- 1/3
- 1/3
bgt 1/3
- 1/7
- 1/7
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ba 1/1
- 1/7
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- 1/7
- 1/7
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- 1/7
- 1/7

〈14%, 7, 1, 1〉

〈13%, 12, 1, 1〉

〈25%, 4, 4, 15〉
〈20%, 1, 1, 1〉

〈14%, 8, 1, 1〉

〈33%, 3, 2, 3〉

〈31%, 6, 1, 2〉

〈14%, 7, 1, 1〉

C1

C2

C3

C4
C5
C6

C7

C8

C9
C10

C11

Figure 7.3: The core of the proposed method. The column to the very left
is theassembly language of the C-code in Figure 7.2. The next column de-
scribes each assembly instructions“local miss-ratio” that is derived from the
control flow graph (CFG) in the middle. The last column to the right describes
eachbasic block’s miss-ratio and its potential share weight of the complete
program.
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c1

c2

c7 c3

c8x c8n c4x c4n

c9x c9n c9x c9n c5 c5

c11 c11 c11 c11 c11 c11

(a) (b) (c) (d) (e) (f)

Figure 7.4: The binary search tree to find the WCCMR. The node labels corre-
sponds to the node labels in Figure 7.3. The suffix ’n’ and ’x’ in some nodes
indicates the path of the minimum and maximum number of iterations in a
loop.

As shown in Table 7.1, execution path (e) will yield the highest cache miss-
ratio. One can notify that path (c) has a shorter execution time than (f), but a
higher miss-ratio, and the conclusion from this is that only a combination of
many instructions and a high miss-ratio will render a long execution time. An
other view is that the worst-case execution time path must not be the same as
the worst-case cache miss-ratio path. Observe that the path (e) doesn’t contain
the basic blocks with the worst miss-ratio, and the reason is that those blocks
weighted little because of the complete programs execution behavior.

7.6 Future work

A reduction method of the tree to keep it manageable and reduce the analysis
time will be developed. It might however not be possible without approxima-
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Path Miss-ratio
Number Exec.
of instr. time

(a) (14 · 7 + 14 · 8 + 33 · 3 · 3 + 31 · 6 · 2 + 14 · 7)/43 = 20.6% 43 132
(b) (14 · 7 + 14 · 8 + 33 · 3 · 3 + 31 · 6 · 1 + 14 · 7)/37 = 18.9% 37 107
(c) (14 · 7 + 14 · 8 + 33 · 3 · 2 + 31 · 6 · 2 + 14 · 7)/40 = 19.7% 40 119
(d) (14 · 7 + 14 · 8 + 33 · 3 · 2 + 31 · 6 · 1 + 14 · 7)/34 = 17.6% 34 94
(e) (14 · 7 + 13 · 12 + 25 · 4 · 15 + 20 · 1 + 14 · 7)/87 = 21.5% 87 275
(f) (14 · 7 + 13 · 12 + 25 · 4 · 4 + 20 · 1 + 14 · 7)/43 = 18.0% 43 121

Table 7.1: Calculated WCCMR for each of the execution paths of the binary
tree in Figure 7.4.

tions with a looser bound of WCCMR as a result.
The method will also be developed to handle temporal locality. This can be

achieved by including a static cache simulator as for instance in [AMWH94].
With this extension a tighter bound of the WCCMR can be accomplished, but
to the price of a more performance intensive analysis.

7.7 Conclusion

The cache miss-ratio is an important property of a program that controls perfor-
mance, execution time and power consumption among many other properties.

This paper proposes a simple analysis technique to find a worst-case cache
miss-ratio execution path in a program. The cache miss-ratio can for instance
directly be used to estimate the highest possible power consumption of a pro-
gram, but also be used as an input for a compiler optimizition. The method
is based on the fact that spatial locality is exploited when several instructions
in a cache line are executed consecutively. The more instructions that exe-
cutes without a jump, the lower cache miss-ratio. All instructions can hereby
be assigned a ”local miss-ratio” that can be used to compute over-all cache
miss-ratio for different execution paths. To cope with the problem that parts
of the program may be more used than others in for instance loops, a method
based on abstract interpretation computes the minimum and maximum num-
ber of iterations. The method needs no manual annotations and can be fully
automated.

This paper also demonstrates with an example that the worst-case execution
time path must not be the same as the worst-case cache miss-ratio path.

The major drawback of the proposed method at this stage is the exponential
growth of the search tree that demands high performance to solve complex pro-
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gram structures in a reasonable time. The method as presented is suitable for
programs that is partitioned into many, small processes3. Indirect pre-emption
effects must not be concerned since temporal locality is not included in the
method and will by this not suffer from cache-related pre-emption delay and
hereby still yield safe values.

3also referred astasks in real-time systems
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Chapter 8

When does a disabled
instruction cache
out-perform an enabled?

Abstract

This paper presents a method to determine at what cache miss-ratio level a dis-
abled cache memory gives better system performance than an enabled. The
approach is to measure the execution time on synthetic workbench programs
with fixed cache miss-ratio levels. A direct measurement instead of a simula-
tion or static analysis is simpler and faster to perform since computer systems
often are very complex with advanced CPUs, busses and several layers of cache
memories.

Experimental measurement results performed on an MPC750-based com-
puter system showed that this level is so high (84%) that is almost impossible
to reach for instruction caching. This indicates that cache memories can be
enabled in virtually any real-time system without breaking timing constraints
and hazarding the functionality.
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8.1 Introduction and motivation

8.1.1 Caches and real-time

Cache memories are today common in computer systems to bridge the response
time from primary memory to boost up performance. As a consequence it
also reduces bus traffic and may also reduce power consumption in the system.
Since the small cache is too small to hold all data and instructions, blocks are
swapped in and out depending on what section of code in the program that is
handled at the moment.

In real-time systems time constraints must be satisfied to guarantee correct
function. Since cache memories will make instruction and data fetch time vari-
able, execution time will be very complicated to calculate. The miss penalty is
much higher than a single primary memory access, so there is a possibility that
the execution time may even be longer for parts or even the complete program
compared to a system without caches1. Due to the cache memories highly
complex behavior, they are very often disabled in hard real-time systems to
make them safe. This very pessimistic real-time approach of the always cache
missing program will in this paper be unveiled.

8.1.2 Caches and locality

To understand the proposed method it is essential to understand how modern
CPUs and cache memories work in a computer system.

One fundament of cache memories islocality that either can be temporal or
spatial.

• Temporal locality (also calledlocality in time) concerns time. If a pro-
gram is accessing an address the chance is higher that the same address
is used in the near future, compared to an arbitrary other address.

• Spatial locality (also calledlocality in space) states that items that are
close to each other in address space tend to be referred to close in time
too.

The statements above builds on the fact that instructions are formed in se-
quences and loops, and that data is often allocated as stacks, strings, vectors
and matrices. With the spatial behavior of programs in mind, much sense
would be to load more data from the underlying hierarchic memory at once

1In this paper absence of cache memories and to disable a cache will be considered as the same
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to take advantage of greater bandwidth and reduce the penalty of long latency
that characterizes primary memory. This chunk of data is calledcache block 2

and is the smallest piece of data a cache handles.
If the requested data isn’t in the cache, it is called amiss and a cache block

must be fetched from the primary memory. Since miss-time can be multiple
times longer than hit-time and miss-ratio is commonly very low, a miss is con-
sidered as apenalty.

Since cache memories are so common today, primary memory has been
developed to send a burst of data to fill up the complete block when a primary
memory access is requested. The burst contains a sequence of consecutive data
in the memory and the main advantage of burst mode is that the overhead3 of a
memory access can be decreased.

8.1.3 An overview of the method

The procedure to determine the threshold level of the miss-ratio is roughly as
follows:

1. Generate several tasks with different fixed cache miss-ratio.

2. Run tasks with enabled instruction cache and measure the execution time
for each task.

3. Run a task with disabled cache and measure the execution time.

4. Calculate execution time for a single instruction (execution time
#instructions )

5. Interpolate and compare

8.2 Generation of code with a fix cache miss-ratio

The generation of code with a fix miss-ratio has been accomplished in two
ways. Either spatial locality is exploited by only executing a fix fraction of the
instructions in a cache block or a fraction of reusable code is used to exploit
temporal locality. A third possibility is to combine both these methods.

a) If the first instruction in all cache blocks is an unconditional jump to
the start of the next cache block only the first word in each block will be

2A cacheblock is sometimes also calledline
3The overhead is in this case RAM search, bus arbitration and handshaking protocols.



76 PAPER D




L0 : jump L1 (m)
not used
not used
not used


L1 : jump L2 (m)

not used
not used
not used

(i)




L0 : nop (m)
jump L1 (h)
not used
not used


L1 : nop (m)

jump L2 (h)
not used
not used

(ii)




L0 : nop (m)
nop (h)
jump L1 (h)
not used


L1 : nop (m)

nop (h)
jump L2 (h)
not used

(iii)




L0 : jump L1 (m)
not used
not used
not used


L1 : nop (m)

jump L2 (h)
not used
not used

(iv)

Figure 8.1: Examples of a fix miss-ratio. Each bracket around the code sym-
bolizes a cache block. The misses(m) and hits(h) elucidate each words cache
status.(i) yields 100% misses, (ii) 50%, (iii) 33% and (iv) 66%

accessed and by this never exploit spatial locality. If the active code mass
is much larger than the cache memory, the temporal reuse of code will
not take place and decrease the miss-ratio. By this we have generated
a code with 100% (spatial) cache misses. To generate code with 50%
misses the jump is moved from the first to the second word in the cache
block, and to generate code with 33% the jump is moved to the third
word and so on. 66% misses can be generated by altering the jump from
the first and second word in the cache block in the complete program.
All these examples are illustrated in Figure 8.1. The information needed
to construct this code is the cache size and the block size.

b) Code within a loop that fits into the cache will gain a lower miss-ratio
each iteration since it reuses the cache blocks (temporal locality). If
the code is a bit larger than the cache size some code will be swapped
out and the amount ofuseable cache blocks in the cache will decrease.
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miss ratio =




0%, ts ≤ cs ∧ time →∞;
ts−cs

cs · sa, cs < ts < cs · sa;
100%, ts ≥ ts−cs

cs · sa;

Figure 8.2: The cache miss-ratio of a task that is larger than the cache memory
itself depends of the task size and the cache memory’s associativity.(cs = cache
size,ts = task size, andsa = set associativity

With code that has 100% spatial misses the cache miss-ratio will be as
described in the formula in Figure 2.

Example: A 38kB task with 100% spatial misses will in a 32kB 2-way
set-associative cache memory obtain an average miss-ratio of38−32

32 ·2 =
37.5%

A more correct description of “task size” is “the task’s cache-non-interfering
active or useful cache blocks” but in this synthetic generated workload these
terms turn to be equivalent since all blocks in the task are active. Besides
cache and block size also knowledge about associativity is needed. Observe
that the second method is useable on LRU and FIFO exchange algorithms only
— never random.

8.3 Experimental results

8.3.1 The target system

Observe that none of the following described special hardware is necessary
since the only property that is measured is execution time. The only thing one
really need is some software where the number of executed instructions and
the cache miss-ratio is known, and a stopwatch. The advantage with the used
system is however that the number of executed instructions and the cache miss-
ratio can be measured (instead of estimated). The system will in this paper only
be described briefly with focus on some highlights of important issues in this
very context, and for those who are interested in details are directed to read
[Seb02a].
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8.3.1.1 SARA overview

SARA — Scaleable Architecture for Real-Time Applications — is a research
project with a Motorola CPX2000 Compact PCI backplane bus with at most
eight Motorola Power PC750-processor (MPC750) boards [LKF99]. The pro-
cessor boards are equipped with a MPC750 running at 367MHz that is con-
nected to a 66MHz bus as well as the 64MB DRAM main memory (Figure 8.3).

8.3.1.2 MPC750

The microprocessor MPC750 has a split instruction and data cache at the first
level, and a unified cache memory at the second level. The first level caches are
32kB each and organized in 8-way set-association with a pseudo LRU replace-
ment policy. Each cache block can hold eight 32-bit words. The second level
cache is in the target system 1024kB, 2-way set-associative and the block size
is in this case 128 byte that is divided into sub-blocks. The second level cache
and the data cache are disabled in the described experiment to not pollute the
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results.

The MPC750’s is equipped with an on-chip performance monitor that can
monitor 48 different kinds of events, but there are only 4 performance monitor
counters (PMCs) available. Only 5 of the 48 events can be associated with any
PMC and the rest are associated to a dedicated PMC [Mot97, Mot99].

8.3.1.3 Real-Time Unit

A specialmaster card is equipped with a Real Time Unit (RTU)[FSLA95]
that controls the execution of the tasks on all processor cards. The RTU is
a high performance and performance predictable hardware implementation of
an operating system kernel that handles scheduling and other real-time operat-
ing system services. The other processor cards are used asslaves to increase
application performance.

8.3.1.4 MAMon — an application monitor

A special device calledMultipurpose Application Monitor (MAMon) [ES01,
ES02], can tap for instance the RTU non-intrusively on information regard-
ing context-switching, inter process communication, task synchronization etc.
There is also a possibility to write to special registers calledsoftware probes
directly from the application.

After the data is collected and time stamped with a high resolution clock,
it is continuously sent through a parallel port to an external database host for
post analysis.

Today MAMon and the RTU co-exists in the same FPGA, and besides in-
creased performance this is a very practical and cost effective way to eliminate
problems with PCB-layout and other hardware manufacturing issues.

8.3.2 Workbench

Finding the threshold value where a system with a disabled cache memory
out-performs an enabled mustn’t be done with trial-and-error.

The average execution time of each instruction is easily calculated by divide
the time it takes to execute a task by the number of executed instructions. It
is this quota that is to be compared. Since the instruction’s execution time
grows linearly with increased miss-ratio, the average execution time can be
interpolated between two measurements.
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Theoretically only three measurements are necessary to perform to get a
threshold miss-ratio; two with enabled cache and one with disabled, but since
all measurement includes some divergence, it is safer to measure at more miss-
ratio levels.

A ”dummy” MAMon software probe has been inserted in each workbench
task. The contents of the probe is of no interest here, but since all probe events
are time stamped it is used to measure the time it takes to execute all instruc-
tions in the task.

8.3.3 Results

Five tasks with different fixed miss-ratios were generated by using large tasks
with chosen jump-instructions in the cache block as the type (a) described in
section 8.2. The miss-ratio and the numbers of executed instructions were
measured through the MAMon tool to verify the correctness of the generated
code. Then a task was executed but with disabled caches to have something to
compare with. The instructions’ average execution time were calculated and
plotted into a graph. All results are presented in Figure 8.4.

8.3.4 Discussion

A program without jumps backwards will never take advantage of temporal
locality and one can then assume that the miss-ratio would be quite high since
the key concept of caching isn’t applied. One shouldn’t at this stage come to the
conclusion that this will yield a miss-ratio of 100% since caches use blocks that
are filled up in bursts and will by this exploit spatial locality. Best case is when
all the words in the cache block is used with a miss-ratio of 1

cache block size . To
get 100% misses only one word in the cache block must be used which can be
achieved by either jump from the first word in the block to another cache block
or jump to the last word in the block. To achieve a miss-ratio of 50% in a system
with 8-word cache blocks the code must contain something between 12,5%–
50% jump-instructions. A program where every second word is a jump doesn’t
do anything more than jumping (since the other half examines the conditions
and there is no space left for “real” computation) and such programs don’t
exist.

Cache blocks with 8 words or more, 32-bit data-buses and primary memory
that fills cache blocks in bursts mode are not science fiction but reality today.
With these facts, instruction caches shouldn’t be able to cause missed deadlines
in real-time systems. By determining the worst-case miss-ratio of a program
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Figure 8.4: The measured performance when the experimental system runs
with disabled and enabled instruction caches. An application with an instruc-
tion cache miss-ratio that exceeds 84%, should execute with disabled caches.

[SG02], one can be really safe and even utilize the extra performance the cache
memory gives.

8.4 Related work

To the best of our knowledge nobody has presented a simple method to find
miss-ratio threshold values. There is however very much work done close and
related to the presented, especially in the computer architecture and real-time
system field, that could be used instead if they were modified. For computer
architecture researchers the results of this paper may be less interesting, but for
many in the real-time community it is news that can show what areas that are
pure academic and not that interesting for applied or industrial research.
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In the real-time area two kind of execution time analysis that includes
caches are performed; theextrinsic cache behavior that analyze how tasks,
threads and processes interfere each others cache context and by this cause
extra misses and swaps during pre-emption (calledcache-related pre-emption
delay — CRPD or cache refill penalty)[AHH89]. The other type analyze the
intrinsic cache behavior and is more close to the suggested method since it han-
dles the task’s or program’s internal interference (collision and capacity cache
block swaps). After that analysis, the CRPD is then added to the execution time
if the system is pre-emptive[BN94] or eliminated with cache partitioning to the
price of decreased over-all performance[Kir89, Wol93, Mue95]. Both types of
analysis can either be performed statically before execution[HAM+99, TD00,
FMWA99, LHM+97] or simulated[MB91, SL88], or measured directly on the
target system[LHM+97, PF99].

As motivated, an accurate model of the analyzed system to statically an-
alyze or simulate on may be hard to accomplish[AKP01, Eng01]. The real
measurement alternative may in many cases be faster and more accurate even
if the observability decreases. It is also easier to perform since the analysist
mustn’t be an expert on computer architecture, which is the case if a model or
simulator must be constructed from scratch.

8.5 Conclusion

In hard real-time systems it is common to disable the cache since the execution
time of each instruction is variable which makes the software complicated to
analyze. There is an unacceptable possibility that a high cache miss penalty
combined with a high miss-ratio might cause a missed deadline and may then
jeopardize the safety of the controlled process. A system with disabled caches
will however only use a fraction of the available CPU performance, which is a
waste of resources.

One way to guarantee that the system functions properly is to use any of the
WCET4-tools that includes cache memories. The proposed method is however
in many cases much faster and easier to use if the system is very complex and
no model is available. The method determines the threshold value of cache
miss-ratio where a system with disabled cache outperforms an enabled cache.
The paper describes how to generate tasks with a fixed miss-ratio and how to
use them in the measurement process.

4Worst Case Execution Time
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Experimental results showed that the threshold miss-ratio was as high as
84% on a modern high-performance computer system.

It is common for modern CPUs to fill a cache block in burst mode from
the primary memory. That is why the miss-penalty is relatively low and this
is also one reason why a relatively high cache miss-ratio must be achieved to
out-perform a system without a cache memory. Such high cache miss-ratio is
almost impossible to reach with regular software that runs on a system with
primary memories that supports burst mode. To claim that an instruction cache
memory may cause a missed deadline in a modern computer real-time system
is nothing but an academic myth.
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