
Limiting Temperature Gradients on Many-Cores by

Adaptive Reallocation of Real-Time Workloads

Matthias Becker∗, Kristian Sandström†, Moris Behnam∗, Thomas Nolte∗†

∗MRTC / Mälardalen University, Västerås, Sweden

{matthias.becker, moris.behnam, thomas.nolte}@mdh.se
†ABB Corporate Research, Västerås, Sweden

kristian.sandstrom@se.abb.com

Abstract—The advent of many-core processors came with the
increase in computational power needed for future applications.
However new challenges arrived at the same time, especially for
the real-time community. Each core on such a processor is a heat
source and uneven usage can lead to hot spots on the processor,
affecting its lifetime and reliability. For real-time systems, it
is therefore of paramount importance to keep the temperature
differences between the individual cores below critical values, in
order to prevent premature failure of the system. We argue that
this problem can not be solved by traditional approaches, since
the growing number of cores makes them intractable. We rather
argue to split the problem in the spacial domain and control the
temperature on core level. The cores control their temperature
by rearranging the load in a predictable manner during runtime.
To achieve this, a feedback controller is implemented on each
core. We conclude our work with a simulation based evaluation
of the proposed approach comparing its performance against a
previously presented algorithm.

I. INTRODUCTION

The transistor size, used to manufacture modern processors,
is still shrinking like predicted by Moore’s law. The growing
complexity of the deployed applications lead chip designers
to increase the number of computing elements on one die.
This high number of computing elements does not allow a
traditional shared interconnection medium, like a crossbar, due
to increased contention delays. Instead the Network-on-Chip
(NoC) is proposed as new interconnection medium [1]. The
NoC consists of Intellectual Property (IP) cores which are
located on so called tiles. Each tile is connected to the network
via a dedicated router. A router has communication channels to
the neighboring tiles and therefore communication among the
tiles is possible. The individual IP cores can be computational
cores, memory or special purpose cores. In this work we
assume identical IP cores, consisting of one computational core
together with local memory. Adaptevas Epiphany processor [2]
is an example of such a processor.

With increasing popularity of many-core processors in
embedded and real-time systems new challenges arise. The
small manufacturing size of modern processor leads to a high
energy density on the chip and hence to a high temperature.
High temperature on the other hand affects the processor
lifetime and reliability [3], [4]. An increased temperature
of 10 − 15 ◦C can already reduce the expected lifetime by
50% [5]. Since the different computing cores of many-core

The work presented in this paper is supported by the Swedish Knowledge
Foundation via the research project PREMISE.

processors are arranged in a 2d-mesh, the different aging of the
individual components has also to be taken into account. High
temperature speeds the aging process of the cores. Therefore,
an uneven heat distribution on the die can lead to different
aging speeds of the cores.

Embedded systems are often constructed under high re-
source constraints. Heavy cooling equipment is not possible
due to cost or space reasons. Most processors have the pos-
sibility to change the operating frequency and voltage of the
core during runtime, called Dynamic Voltage and Frequency
Scaling (DVFS). The consumed power of a CPU consists of a
static and a dynamic part: P = Pstatic +Pdynamic. The static
part can be approximated by Pstatic = Ileakage · Vcc where
Ileakage is the current caused by leakage in the transistors and
Vcc is the operating voltage. Leakage current is tightly coupled
with the temperature of the core, higher temperature leads to
higher leakage. The dynamic power can be approximated by
Pdynamic = C ·f ·V 2

cc, where C is the capacity switched at each
cycle and f is the operating frequency. As can be seen, chang-
ing the frequency affects the power linearly and changing the
operating voltage affects it quadratically [6]. Therefore DVFS
is a popular and effective mechanism to regulate the consumed
power, and therefore also the temperature, of the system.
However, for real-time systems, changing the frequency during
runtime is not without side effects. The execution time of
the tasks changes with the frequency, introducing jitter and
affecting the predictability of the system which in turn makes
verification more difficult. Latency of the tasks is also affected
by DVFS approaches. This can have a negative impact for
systems used to control a process. Thus, in this paper we
propose a new framework to dynamically reallocate real-time
tasks in order to minimize heat gradients on the processor. The
framework operates in a distributed manner with a feedback
control loop on each core.

The remainder of this paper is structured as follows.
Section II gives an overview of related work. Section III
outlines the hardware and task model we assume for this work
and Section IV discusses the relation between temperatures
on the processor and the consumed power. Section V is the
main part and describes the proposed framework which is then
evaluated in Section VI. The paper concludes with Section VII.

II. RELATED WORK

Thermal aware scheduling is an important problem and
thus much research has been conducted in that area. Most
work applies DVFS, for both single and multicore systems.

Recently Dasari et al. [7] examined commercially available
Components-Off-The-Shelf (COTS) multicore systems with
respect to their applicability for embedded and real-time sys-
tems. Their focus lies on different sources of unpredictability
encountered in such processors. Among other points, thermal
and power management is highlighted as such. They look at
the different strategies applied by hardware vendors and by
software, including a summary of existing work in both power
and thermal management for multicore systems.

Fisher et al. [8] propose a thermal aware global scheduling
scheme for sporadic real-time tasks on a homogeneous multi-
core system. A first step derives the processor speed for each
core, which is then set by DVFS techniques. The derivation of
the processor speeds take the thermal effects from neighboring
cores into account. This is formulated using Fourier’s Law. Yu
et al. [9] take the trade off between execution quality and
temperature into account for their approach. They consider
adaptive applications where the main goal lies on maximizing
the executed cycles in the given deadline before reaching a
threshold temperature where the core is turned off by hardware
protection circuits. This is done by selecting the suitable core
frequency considering the thermal behavior of the core itself
and its neighboring cores. Wang et al. [10] also apply DVFS
for their temperature constrained power control. They use a
controller based on optimal control theory with the total power
consumption of the processor as controlled variable and the
DVFS levels on each core as manipulated variables. This way
they consider both, power consumption and temperature in
their control loop but the possible change in core frequency
at each invocation makes it intractable for real-time workload
where it has to be assured that the real-time constraints are
met.

The algorithm proposed by Yun et al. [11] belongs to the
class of algorithms which predicting future temperature values
of cores and act based on that information. They apply machine
learning algorithms to predict the thermal dynamics of each
core of a multicore platform. Each application has a thermal
profile which is then used to predict if a core will overheat
before the next protocol invocation. If a possible overheating
is detected adequate techniques like DVFS or clock gating are
performed. An alternative technique for thermal management
on processors with multiple cores is task migration. Tempera-
ture is controlled by keeping the workload of the system in a
balanced state, allowing no core to overheat.

The DTM technique proposed by Liu et al. [12] is a hybrid
between the algorithms applying DVFS techniques and the
ones using task migration in order to cool the cores down. They
predict the core temperature by using the local history and the
effects of neighboring cores. In a emergency situation tasks
are migrated to an other core. They take the temperature of
the candidate cores and their changing rate into account but do
not consider the time it takes to migrate the task. Additionally
they use DVFS techniques if no appropriate core can be found.
An other approach combining the DVFS and task migration
techniques is presented in [13]. Subject of their work is to
minimize the makespan of all tasks while meeting the thermal
constraints of the processor. They show that the proposed
approach is roughly linear with the number of computing
elements on the die. Yeo et al. [14] use task migration to
prevent overheating of cores. They use two thermal models,

one for the application and one for the cores to predict their
future temperature. The Linux standard scheduler is extended
to incorporate this new information. If the predicted temper-
ature for the next protocol invocation exceeds a migration
threshold tasks are migrated to other cores. The core with
the lowest future temperature is selected for task migration
among all cores in the system. Their approach is similar to
our previous work [15] where a hysteresis controller is used to
initiate task migration. Additionally we turn overheating cores
off in order to allow them to cool down until they reach a lower
threshold where the hysteresis controller activates them again.
In contrast to Yeo et al. we consider real-time characteristics
of the scheduled tasks.

Most related work applies a central controller to prevent
the system from overheating. Multiple Input Multiple Output
(MIMO) controller are applied, with one input and output for
each core. With the increasing number of computing elements
on the many-core platform, this becomes intractable [16].
The core, hosting the controller, needs to collect temperature
information of each core in periodic intervals, leading to a high
network usage around that core and possibly to contention on
the network. Therefore, it is proposed to split the problem
in the spacial domain and apply a controller on each core
[16], [15]. This distributed approach can scale with the number
of cores since each core acts independently. The approach
presented in [16] is similar to our approach. Tasks are migrated
between direct neighbor cores in order to manage the temper-
ature. Migration can be initiated trough different scenarios.
Each core has a temperature sensor and also predicts future
temperature. If one of those values exceeds a threshold value
migration is initiated.

III. ASSUMPTIONS FOR THIS WORK

In this section we outline the different assumptions we
make for the hardware as well as for the software.

A. Hardware

As mentioned in the introduction, we assume a many-core
processor comprised of m identical cores connected by a 2-
dimensional mesh-bases NoC. Each core is located on a tile,
together with private memory. During idle times, each core
can transition into a low power state within a negligible time.
And we further assume that each core is equipped with a
temperature sensor. The NoC applies the wormhole switching
technique [17]. Wormhole switching has several advantages
compared to transaction based switching. A message is divided
into equally sized parts, so called flits. A header and a tail
flit are used to convey routing information. As the header
flit travels through the network all other flits follow in a
pipelined manner. Proceeding like this requires only enough
buffer to accommodate one of those flits on each router at
a time which is of advantage compared to transaction based
techniques where the whole message is saved on each router.
As the header flit travels through the network it locks each
channel in order to allow the other flits to follow its route.
The tail flit on the other hand frees the channel again.

Since routing of messages is an important step for efficient
usage of the network, several routing algorithms are proposed
[18]. Such algorithms can be deterministic or adaptive. For this

work we assume XY routing, which can be applied by most
current hardware [2], [19], [20]. In XY routing, a message first
travels along the X axis until the destination X coordinate is
reached. Then it turns and travels along the Y axis until the
final destination is reached. The nature of this deterministic
routing algorithm makes it deadlock and livelock free and
therefore suitable for real-time systems.

B. Task model

In this work, we consider independent periodic real-time
tasks. Each tasks τ can be described by the tuple {Ci, Ti, Pi},
where Ci is the tasks Worst Case Execution Time (WCET), Ti

is the time between two consecutive instantiations of the task,
called period, and Pi is the priority of the task. Deadlines are
equal to the task period Ti. The instance of a task is called
job and the arrival time is called α. Thus we can say that the
hth job of task τi has to be scheduled for Ci time units in the
interval [αi,h, αi,h + Ti).

Without loss of generality, priorities are assigned to each
task based on the rate monotonic priority assignment [21].
Each task is able to execute on every core of the platform.
The set of all tasks is described by Γ = {τi|i ∈ n}, where n
is the number of tasks in the system. The utilization Ui of a
task τi is described by Ci/Ti.

C. Scheduling

Task scheduling on many-core processors can be done in
different ways. The partitioned scheduling algorithms assign
tasks to cores. Those tasks then stay there during execution and
well known single core scheduling algorithms can be used on
core level. Global scheduling approaches manage all threads
in a global run queue and jobs are assigned to processors
during runtime. This can lead to the execution of consecutive
jobs of the same tasks on different cores. A combination of
both approaches assigns tasks to cores, but migration of tasks
is allowed in a predefined manner during runtime. A recent
survey by Davis and Burns [22] gives an overview of the
current state of the art.

Our approach can be counted as combination of partitioned
and global scheduling. Tasks are scheduled on each core by
a fixed priority scheduling algorithm [21]. Task migration is
allowed, but only as part of our approach to bound the peak
temperature on the die.

In this work we denote the set of tasks assigned to a core
j by Sj , where Γ =

⋃Si and i ∈ n. The NP−hard problem
of mapping tasks to cores leads to the exploration of heuristics
and meta-heuristics [23]. In this work we apply the First Fit
Decreasing Utilization (FFDU) heuristic to produce the initial
mapping. FFDU starts by sorting all tasks τi ∈ Γ according to
their utilization Ui in decreasing order. This way, big tasks are
allocated on an empty system. Allocation is done by assigning
tasks one by one to a core, until this core is not schedulable
any more. If schedulability is not given, the algorithm assigns
the following tasks to the next core.

IV. TEMPERATURE AND POWER

This section describes the important aspects and relations
of the temperature on the processor. Since temperature is
tightly coupled with energy consumption and thus with the

consumed power of the cores we also discuss the power model.
We use both for the simulation based evaluation of this work
in Section VI.

A. Temperature

As already mentioned, we assume a many-core processor
with tiles arranged on a two dimensional grid. Since we target
embedded-systems, we assume a passive heat sink covering all
cores. A heat sink is an element used to remove thermal energy
from the active elements and thus cool them down. To get more
accurate simulation results, the heat sink is conceptually split
into equally sized elements which cover the respective tiles.

There are several ways to model the relations between the
different elements on the processor. It is possible to build the
equivalent thermal network of the hardware [24]. This method
describes the system by thermal resistance and capacitance
analogue to electrical circuits. An other way of describing
the thermal behavior is to apply Fourier’s Law. The basic one
dimensional form is given by the equation: ~q = −k∇T and
states, that the change in heat transfer ~q is proportional to
the thermal conductivity of the material k and the negative
temperature gradient ∇T [25].

Like in [8] and [26], we use Fourier’s Law to describe
the thermal dependencies in the system. In the remainder the
model and notation is described as in Fischer et al. [8].

The temperature on the core j at time t is represented by
Θj(t) and the temperature on the heat sink h connected to that
core is represented by Θh(t). A constant ambient temperature
of Θa is assumed throughout the lifetime of the system. The
individual cores are consuming power during their execution
which in turn leads to the change in temperature we want
to describe. The power consumed by core j at time t is
represented by Ψj(t).

We group the elements into the set of all cores M =
{1, 2, . . . ,m} and the set of all heat sinks H = {1, 2, . . . ,m}.
To describe the effect that the elements have on each other
we define the respective thermal conductivity. The thermal
conductivity between cores is defined as Gi,j where i ∈ M
and j ∈ M. We further assume that Gi,j = Gj,i. The thermal
conductivity between a core i and a connected heat sink l
is described as Hi,l and the thermal conductivity between
heat sink h and g is described with Rh,g . Analogue to
the conductance between cores we have Hi,l = Hl,i and
Rh,g = Rg,h. The thermal conductance of the heat sink to
the environment is given by G†.

We visualize these relations in Fig. 1, where we have the
top view on the silicon layer (Fig. 1(a)) and the side view, cut
through cores 3,4 and 5 (Fig. 1(b)). For better understanding
we omitted the relations between most other elements, only the
thermal conductivity Ψ† is shown on one heat sink to illustrate
the connection to the ambient air.

Now we can formulate equations to describe the thermal
process on the core (1) and on the heat sink (2).

Cj

dΘj(t)

dt
= Ψj(t)−

∑

h∈H

Hj,h(Θj(t)−Θh(t))−
∑

l∈M

Gj,l(Θj(t)−Θl(t)) (1)

Θ0 Θ1 Θ2

Θ5Θ4Θ3

Θ6 Θ7 Θ8

G3,4 G3,4

G1,4

G7,4 G8,4

G2,4

G6,4

G0,4

(a) Top view

Θ5Θ4Θ3

G4,5

Θa

Θ3 Θ4 Θ5

G3,4

H4,5H4,3 H4,4

G†

(b) Side view

Fig. 1. Temperature relations on the many-core at the example of core 4

Ch

dΘh(t)

dt
= −G†(Θh(t)−Θa)

−
∑

j∈M

Hj,h(Θh(t)−Θj(t))

−
∑

g∈H

Rg,h(Θh(t)−Θg(t)) (2)

where
dΘj(t)

dt is the derivative of the temperature on core j and
dΘh(t)

dt is the derivative of the temperature of the heat sink h.
Cj and Ch are the thermal capacitance of core j and heat sink
h respectively.

In a simplified way, we can say that the change in temper-
ature is affected by the energy put into the system, minus the
energy emitted to the neighboring cores and to the connected
heat sink. A similar description holds for the heat sink, where
the temperature is affected by the heat transfer between the
connected cores, heat sinks and additionally by the ambient
air.

B. Power

As mentioned before, we consider two power states of
the processor, active and idle. Therefore we can define the
two power levels. With shrinking transistor size the leakage
current grows and we can not neglect it anymore [27], thus we
formulate the two levels based on static and dynamic power:

Ψi =

{

Ψactive ·
∑

∀j∈Si
Uj +Ψstatic if active

Ψstatic if idle
(3)

We account for the different utilization on the cores by
multiplying Ψactive with the utilization of the cores. This
simplification neglects the different power characteristics of
the applications but it is sufficient for this work.

V. METHODOLOGY

In this section we propose a framework to bound the peak
temperature of individual cores on a mesh based many-core
processor, which in turn leads to reduced temperature gradients
on the die. The substantially higher number of cores accom-
modated on a many-core processor make the mostly global
control approaches used for multi-core processors intractable,
the periodic collection of sensor values at a central node in
the system leads to a communication hot spot and possibly

+
-

w

Controller

Temperature

Sensor

CPU
e

yM

u

z

y

Software Hardware

Fig. 2. Control loop for the thermal management

to contention in the network. For large many-core platforms,
the framework would also need to take the communication
delays into account in order to control the system like expected.
The popular Multi Input Multi Output (MIMO) controller
rise in complexity with an increasing number of input output
pairs. Because of the mentioned challenges we argue to tackle
the problem by splitting it in the spacial domain. Therefore
we propose a distributed approach. Each tile is controlled
independently, limiting the complexity of the controller on
each core.

Fig. 2 illustrates the control loop on one core. The division
into hardware components and software components is shown.
The manipulated control input u is used to set the processor
utilization needed to reach the desired set point w. This is
done by measuring the control output y and converting it
into temperature yM . The error value e is then computed by
subtracting yM from w and used as input variable for the
controller. Since we have to consider the temperature effect
of surrounding cores we model this effect as disturbance z.

We control the utilization of the core in order to regulate
the temperature. Thus we have several steps to perform:

1) Compute the needed change in utilization u.
2) Select a subset Uj ∈ Sj with a total utilization ≥ u.
3) Find a suitable destination core for each τi ∈ Uj .
4) Migrate each τi ∈ Uj without missing the deadline.

These control actions are invoked periodically. The invoca-
tion interval is based on the desired trade off between accuracy
and overhead. We further discuss each point in more detail.

A. Feedback control

PID controller are used in over 95% of all process control
loops today, with most of them being PI controllers [28]. A PID
controller is built of three different parts, proportional, integral
and derivative. In this work we only use the proportional part.
The missing differential part makes the system act slower. A
slower system might be undesirable for most scenarios how-
ever, in our case, where a change in the control variable leads
to task migration, a slower controller might be of advantage,
leading to less migrations. We chose to spare the integral
part as well, since it is used to remove the constant control
error of the P-controller which in our case is neglectable. The
parameter Kp is used to adjust the behavior of the controller.
The following equation describes the controller in the time
domain:

u(t) = Kp · e(t) (4)

The goal of most control loops is to keep a certain reference

value by manipulating the system input. In our case those vari-
ables are temperature and utilization. However our objective
is to bound the maximum core temperature, thus we do not
need to reach this value and all values below are acceptable
as well.

If we look at the control variable u (see Fig. 3), we can split
the possible values in two regions. A negative region, where the
controller needs to decrease the load and thus needs to migrate
tasks, and a positive region where we can receive additional
load without overheating. We call those regions overload and
budget respectively.

budgetuoverload

+−

Fig. 3. Regions of the control variable u

B. Selecting tasks for migration

If the control variable u is computed and the value is
located in the overload region, we have to reduce load on the
core. This is done by migration. In order to migrate tasks we
first need to decide which tasks we are going to migrate, which
is described in this section. The problem at hand is equivalent
to the knapsack problem. We have to find a subset of tasks
Uk ∈ Sk with total utilization close to u at a preferably low
number of tasks in Uk. Since the knapsack problem is known
to be NP − hard, heuristics are applied.

We apply a FFDU inspired heuristic (see Algorithm 1) to
find Uk. First, all tasks are sorted by their utilization. Then
we add the largest tasks to Uk, one at a time, as long as the
utilization of Uk does not exceed u. We continue trying to add
smaller task to Uk even after we encountered a task that could
not be added. This is done because we want to reach u as close
as possible.

Algorithm 1 Selecting Uk

1: Uk = ∅
2: T = sortdec(Sk, U)
3: while size(Uk) ≤ u ∧ T 6= ∅ do
4: τt = T \ max{Up|∀τp ∈ T }
5: if u− size(Uk) ≥ size(τt)) then
6: Uk = Uk

⋃

τt
7: end if
8: end while

C. Task migration

Deciding if a real-time task τi can migrate from a core k to
a core j at the current time t without missing its deadline is an
important criteria. We apply the basic network latency for 2d-
mesh based wormhole networks as described by Shi and Burns
[29]. We do not consider lower and higher priority interference,
since we need to apply the computation during runtime, we do
not consider communication between tasks and since we can
expect infrequent migrations as result of our approach.

The transmission latency Pk,j,i is the time it takes to
migrate a task τi of size Li from core k to core j. This is
described in Eq. (5). The first part of the equation computes

αi,h αi,h + Tit

τi

NoCcore k core j

Ci Pk,j,i Ci

Fig. 4. Execution and migration times of a task τi

the time it takes for the first flit to reach core j, which is
dependent on the manhattan distance HMD(k, j) between the
two cores and the constant switching delay encountered on
each router S together with the constant delay for each hop
based on flit size f and network bandwidth b. This value is
then augmented by the time it takes for all consecutive flits to
follow.

Pk,j,i = HMD(k, j) · (S +
f

b
) +

⌈

Li

f

⌉

· f
b

(5)

We assume that the core flushes all task related data at the
beginning of the migration process from local into off-chip
memory. Since off-chip memory transactions are handled by
a different NoC [2] we do not need to consider this for the
calculation of Pk,j,i. Therefore, the message size Li is reduced
to the reference of the location of τi in the off-chip memory.

Fig. 4 depicts two consecutive jobs of a task τi at times
αi,h and αi,h + Ti. At time t the task is migrated between
core k and core j, which takes Pk,j,i time units as described
above. We allow task migration only between two instances of
the task. Therefore the task execution has to be finished and
task migration has to be completed before the next instance of
τi at time αi+1.

Based on that, we can now define an inequality (6) which
needs to be fulfilled in order to not affect the execution of the
next instance of τi.

t ≤ αi,h + Ti − Pk,j,i (6)

D. Selecting destination cores

We need to take different characteristics of the system
into account when deciding for the destination core of a task
τk. Since we can not neglect locality, if working with many-
core processors, we need to consider the migration time. In
prior work [15] we showed evidence that a neighborhood
probing approach can perform as good as a global broadcast
approach in order to find suitable cores for task migration
in a framework to control peak temperature of cores, while
drastically reducing the number of sent messages. Thus we
pursue the neighborhood probing approach in this work.

Analogue to the control approach we handle the selection
of destination cores in a distributed manner. We first describe
the communication between two cores and then the algorithm
to select those cores.

1) Communication between two cores: As depicted in
Fig. 5, the overheated core k sends a request to a core j.

If core j accepts τi, it reserves the required amount of
utilization for the task. This is needed in case another core
sends a request before the actual migration takes place. Finally,
if the response was positive, core k migrates the task as
described before.

core k core j

t t

request(Ui)

response(ok)

migrate(τi)

Fig. 5. Protocol to select destination core

2) Neighborhood probing algorithm: Here we describe the
algorithm we use to select the possible destination cores for a
task τi.

Several things need to be considered. The distance between
the two cores affects the migration time which in turn affects
the successfulness of a migration. A decision should also take
the schedulability of the new task set on core k into account as
well as the affects on the cores temperature, avoiding imminent
overheating.

We can divide the necessary actions into parts executed
on the sender and parts executed on the receiver side (see
Algorithm 2 and 3 respectively.)

The overheated core starts to send requests to cores based
on their distance HMD(k, j), starting with the closest cores.
This neighborhood based search approach is done to minimize
the communication overhead on the network.

Algorithm 2 Neighborhood probing, sender side

1: C = sortacc(cores,HMD)
2: c = min(C, HMH)
3: τr = min(Uk)
4: while Uk 6= ∅ ∧ C 6= ∅ do
5: response = request(c, τk)
6: if response = true then
7: Uk = Uk \ τr
8: migrate(τk, c)
9: τr = min(Uk)

10: else
11: C = C \ c
12: c = min(C, HMH)
13: end if
14: end while

After reception of the request, core j has to decide if Sk

stays schedulable after τi is added. Since this check is done at
runtime, we exploit the utilization threshold for rate monotonic
priority assignment, similar as it is done by Jeon et al. in [30].
To increase readability of Eq. (7), we write n = |Sj |.

Ui +
∑

∀τz∈Sj

Uz ≤ (n+ 1)(
n+1
√
2− 1) (7)

Additionally, to guarantee the schedulability we want to pre-
vent the core from overheating as effect of the load rear-
rangement. Thus we take the load budget, provided by the
controller, into account. A positive value of the control variable
u states that the core can increase its load in order to reach the

temperature set by the reference variable. We use this value as
budget, which can be received without imminent overheating.

Algorithm 3 Neighborhood probing, receiver side

1: τk = receiveRequest()
2: if u > Uk ∧ checkSchedulability(Sj , τk) then
3: response(true)
4: reserve(Uk)
5: else
6: response(false)
7: end if

VI. EVALUATION

This section evaluates the proposed approach. We compare
our result with two static mapping solutions and our previous
work [15], where we used a simple hysteresis controller to
bound the peak temperature. Instead of decreasing the load
we moved all load and turned the respective cores off for
cooling purposes. New destination cores for the tasks are found
based on two proposed communication protocols. One global
broadcast based protocol and one protocol which searches
for new destination cores in a serial way based on the core
distance, leading to less communication overhead.

A. Simulation setup

To evaluate our approach we use simulation. We generated
random task sets, with each task having a uniformly distributed
utilization between (0, 0.7] and a uniformly distributed period
between [20, 100]ms. As described before, the initial task set
is mapped to the cores by FFDU. This is done to activate a
small number of cores at startup and then rearrange the load
during runtime based on the temperature development on the
processor.

We then changed the global utilization in steps of 5%
throughout the measurements, with 100 schedulable task sets
for each data point. In order to stay below the schedulability
threshold for rate monotonic we cover the range from 5%
to 60% utilization in our experiments. We set the maximal
temperature for a core to 72 ◦C. If this temperature is reached
then the core is throttled by hardware circuits in order to
protect it.

We simulate the temperature and energy consumption
based on the theory explained in Section IV. The desired
temperature value w is set to 60 ◦C and the ambient temper-
ature Θa is assumed to be constant at 25 ◦C. Our approach
is then evaluated against our previous approach [15] which
is based on a hysteresis controller. The parameter of the
hysteresis controller where chosen as follows: κlow = 55 ◦C
and κhigh = 65 ◦C. All control algorithms where periodically
invoked with a period of 20ms. We did no comparison against
other work because of different assumptions either in the
workload model or in the objective of the approach.

B. Controller parametrization

Since we have one parameter, Kp, that we need to set for
the P-controller we need to define it. There are several possible
ways to determine this value [28]. For our experiments, we
choose to record the temperature step response of one core at
a load step of 100%.

T
em

p
er

at
u
re

g
ra

d
ie

n
t

in
◦
C

Utilization in %

PC FF

HC G FF

HC L FF

NC FF

NC WF

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40 45 50 55 60

Fig. 6. Maximal temperature gradient on the die, for the P-controller
approach (PC FF) presented in this paper, hysteresis controller with local
(HC L FF) and global (HC G FF) migration approach, and two data sets
without controller. One with First Fit (NC FF) and one with Worst Fit
(NC WF) mapping of the task set.

T
em

p
er

at
u
re

in
◦
C

Utilization in %

PC FF

HC L FF

HC G FF

NC FF

NC WF

55

60

65

70

75

80

85

90

95

5 10 15 20 25 30 35 40 45 50 55 60

Fig. 7. Peak temperature on the die, for the P-controller approach (PC FF)
presented in this paper, hysteresis controller with local (HC L FF) and global
(HC G FF) migration approach and measurements without controller and
First Fit mapping of the tasks set (NC FF). Additionally the control variable
w is shown at 60 ◦C

The plant was identified as a 1st-order element [28],
therefore we can obtain the parameters to describe the plant
from the graph, which lead to the values K = 22.75 ◦C and
T = 337ms. The controller parameter Kp was set to 22.

C. Performance analysis

In this section we evaluate the main functionality, namely
reducing the maximum temperature gradient on the die and
limiting peak temperature.

Fig. 6 shows the maximal temperature gradient on the die
for task sets with different utilization. This was obtained by
subtracting the minimal temperature from the maximal core
temperature. We compare the new approach with the previ-
ous hysteresis controller approach. Additionally, we compare
the data against systems without any additional controller,
once with FFDU mapping and once with worst fit (WF)
task mapping, which is known to perform best for an even
temperature distribution [32]. FFDU locates the tasks on as few
cores as possible and thus adds to possible large temperature
gradients. WF on the other hand spreads the tasks onto as
many cores as possible leading to an even distribution and
thus to low temperature gradients. The figure shows that the

N
u
m

b
er

o
f

m
es

sa
g
es

Utilization in %

PC FF

HC L FF

HC G FF

0

10

20

30

40

50

60

70

5 10 15 20 25 30 35 40 45 50 55 60

Fig. 8. Message overhead introduced by the proposed approach (PC FF)
and the previously proposed hysteresis controller based approaches with local
(HC L FF) and global (HC G FF) task migration.

O
v
er

h
ea

te
d

co
re

s
in

%

Utilization in %

PC FF (4 × 4)

PC FF (8 × 8)

PC FF (12 × 12)

PC FF (16 × 16)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25 30 35 40 45 50 55 60

Fig. 9. Comparing the percentage of overheated cores for the proposed
approach with platforms of different size, 4× 4, 8× 8, 12× 12 and 16× 16.

proposed approach performs close to the WF performance
with lower temperature gradients than the hysteresis controller
based approaches. All controller based approaches perform
significantly better than the FFDU static mapping, even though
this was chosen as the initial mapping for those experiments.

Fig. 7 shows the maximal core temperature during the
experiments. Additionally to the measured curves, we show
the desired maximal temperature w at 60 ◦C. The proposed
approach performs as good as the WF mapping despite the
initial FFDU task placement. We can see that at our approach
performs slightly better than WF at a utilization level of 60%.

D. Message overhead

Communication bandwidth on the NoC is a valuable re-
source of the many-core and therefore we need to look at the
overheads introduced by our approach. Since the worst case
message overhead is by design equal to an global broadcasting
approach we use the average message overhead and not the
worst case. The new approach uses in average less messages
compared to the hysteresis controller based approaches, see
Fig. 8. The new approach even uses less messages, before the
saturation point at 30%.

E. Scalability

The number of cores on one die increases exponentially.
Scalability of the proposed framework is therefore of special

importance. For these experiments, we compare the perfor-
mance of the approach presented in this paper on different grid
sizes. Namely on a 4×4, 8×8, 12×12 and 16×16 grid, with
16, 64, 144 and 256 cores respectively. Our experiments show
the ratio of overheated cores, since this is a good indicator of
the system state. It is shown that the ratio of overheated cores
is unrelated to the grid size and therefore to the number of
cores (see Fig. 9).

VII. CONCLUSION

In this work we proposed a framework to increase the relia-
bility of many-core processors with hard real-time workload by
controlling the core temperature. This is done at core level, in
order to reduce the overhead introduced by global approaches
to keep the system state. Temperature is controlled by changing
core utilization, which requires run time task migration in order
to meet all deadlines. To do this, we proposed a localized
migration scheme, reducing the number of average messages
required compared to global approaches.

Our simulation based evaluation showed a lower mes-
sage overhead compared to the hysteresis controller based
approach. The maximal temperature gradient is close to the
measurements obtained by an even load distribution through
WF mapping and significantly lower than the gradients caused
by the hysteresis controller based approaches. The static map-
ping obtained by WF performs good for constant workload.
However, for most systems, workload is not constant. The
experiments showed that our approach obtains close results
to the WF mapping even though the initial mapping was
FFDU based which is worst if the goal is to obtain an even
temperature distribution.

In our future work we want to investigate techniques to
predict the core temperature for processors without temper-
ature sensors on each core. This is done by looking into
ways of estimating the current per core temperature based
on given sensor values as most COTS many-core processors
do not provide reliable temperature sensors on each core.
We also want to investigate the performance of our approach
with different realistic workload types under consideration of
dependencies between tasks.

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on chips: a new soc paradigm,”
IEEE Computer, vol. 35, no. 1, pp. 70–78, 2002.

[2] Epiphany Architecture Reference, Adapteva Inc., Adapteva Inc. 1666
Massachusetts Ave, Suite 14 Lexington, MA 02420 USA, 2012.

[3] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for
lifetime reliability-aware microprocessors,” in 31st ISCA, pp. 276–
288, 2004.

[4] F. J. Mesa-Martinez, E. K. Ardestani, and J. Renau, “Characterizing
processor thermal behavior,” SIGPLAN Not., vol. 45, no. 3, pp. 193–
204, Mar. 2010.

[5] R. Viswanath, V. Wakharkar, A. Watwe, V. Lebonheur, M. Group, and
Intel Corporation, “Thermal performance challenges from silicon to
systems,” 2000.

[6] E. Grochowski, R. Ronen, J. Shen, and P. Wang, “Best of both
latency and throughput,” in Computer Design: VLSI in Computers

and Processors, 2004. ICCD 2004. Proceedings. IEEE International

Conference on, pp. 236–243, 2004.

[7] D. Dasari, B. Akesson, V. Nelis, M. Awan, and S. Petters, “Identifying
the sources of unpredictability in cots-based multicore systems,” in 8th

SIES, pp. 39–48, 2013.

[8] N. Fisher, J.-J. Chen, S. Wang, and L. Thiele, “Thermal-aware global
real-time scheduling on multicore systems,” in 15th RTAS, pp. 131–140,
2009.

[9] H. Yu, R. Syed, and Y. Ha, “Thermal-aware frequency scaling for
adaptive workloads on heterogeneous mpsocs,” in DATE ’14, 2014.

[10] Y. Wang, K. Ma, and X. Wang, “Temperature-constrained power
control for chip multiprocessors with online model estimation,” in 36th

ISCA, pp. 314–324, 2009.

[11] B. Yun, K. Shin, and S. Wang, “Predicting thermal behavior for
temperature management in time-critical multicore systems,” in 19th

RTAS, pp. 185–194, 2013.

[12] G. Liu, M. Fan, and G. Quan, “Neighbor-aware dynamic thermal
management for multi-core platform,” in DATE ’12, pp. 187–192,
2012.

[13] V. Hanumaiah, A. Vrudhula, and K. Chatha, “Performance Optimal
Online DVFS and Task Migration Techniques for Thermally
Constrained Multi-Core Processors” in IEEE Transactions Computer-

Aided Design of Integrated Circuits and Systems, vol. 30, pp.
1677–1690, 2011.

[14] I. Yeo, C. C. Liu, and E. J. Kim, “Predictive dynamic thermal
management for multicore systems,” in 45 DAC, pp. 734–739, 2008.

[15] M. Becker, K. Sandström, M. Behnam, and T. Nolte, “Dynamic power
management for thermal control of many-core real-time systems,” in
6th APRES, 2014.

[16] Y. Ge, P. Malani, and Q. Qiu, “Distributed task migration for thermal
management in many-core systems,” in 47th DAC, pp. 579–584, 2010.

[17] L. Ni and P. McKinley, “A survey of wormhole routing techniques in
direct networks,” IEEE Computer, vol. 26, no. 2, pp. 62–76, 1993.

[18] Y. Xu, J. Zhou, and S. Liu, “Research and analysis of routing
algorithms for noc,” in 3rd ICCRD, vol. 2, March 2011, pp. 98–102,
2011.

[19] Intel. Single chip cloud computer.
http://www.intel.com/content/www/us/en/research/intel-labs-single-
chip-cloud-computer.html, Retrieved April 15, 2014.

[20] Tilera. Tile64 processor.
http://www.tilera.com/products/processors, Retrieved April 15, 2014.

[21] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, 1973.

[22] R. I. Davis and A. Burns, “A survey of hard real-time scheduling
for multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, pp.
35:1–35:44, Oct. 2011.

[23] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
multi/many-core systems: survey of current and emerging trends,” in
50th DAC, pp. 1:1–1:10, 2013.

[24] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. Stan, “Hotspot: a compact thermal modeling methodology for
early-stage vlsi design,” 14th VLSI, vol. 14, no. 5, pp. 501–513, 2006.

[25] F. P. Incropera, A. S. Lavine, and D. P. DeWitt, Fundamentals of heat

and mass transfer. John Wiley & Sons, 2011.

[26] T. Chantem, R. Dick, and X. Hu, “Temperature-aware scheduling and
assignment for hard real-time applications on mpsocs,” in DATE ’08,
pp. 288–293, 2008.

[27] N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin,
M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets
static power,” IEEE Computer, vol. 36, no. 12, pp. 68–75, 2003.

[28] K. J. Åström and R. M. Murray, Feedback Systems: An Introduction for

Scientists and Engineers. Princeton, NJ, USA: Princeton University
Press, 2008.

[29] Z. Shi and A. Burns, “Real-time communication analysis for on-chip
networks with wormhole switching,” in 2nd NOCS, pp. 161–170, 2008.

[30] H. Jeon, W. H. Lee, and S. W. Chung, “Load unbalancing strategy for
multicore embedded processors,” IEEE Transactions on Computers,
vol. 59, no. 10, pp. 1434–1440, 2010.

[31] W. Huang, K. Skadron, S. Gurumurthi, R. Ribando, and M. Stan,
“Exploring the thermal impact on manycore processor performance,”
in 26th SEMI-THERM, pp. 191–197, 2010.

[32] H. Aydin and Qi Yang, “Energy-Aware Partitioning for Multiprocessor
Real-Time Systems,” in IPDPS ’03, 2003.

