
Principles for Value Annotation Languages
Björn Lisper

School of Innovation, Design and Engineering, Mälardalen University
Box 883, S-721 23 Västerås, Sweden.
bjorn.lisper@mdh.se

Abstract
Tools for code-level program analysis need formats to express various properties, like relevant
properties of the environment where the analysed code will execute, and the analysis results.
Different WCET analysis tools typically use tool-specific annotation languages for this purpose.
These languages are often geared towards expressing properties that the particular tool can handle
rather than being general, and mostly their semantics is only specified informally. This makes
it harder for tools to communicate, as well as for users to provide relevant information to them.
Here, we propose a small but general assertion language for value constraints including IPET
flow facts, which is an important class of annotations for WCET analysis tools. We show how to
express interesting properties in this language, we propose some syntactic conveniences, and we
give the language a formal semantics. The language could be used directly as a tool-independent
annotation language, or as a meta-language to give exact semantics to existing value annotation
and flow fact formats.

1998 ACM Subject Classification C.3 Special-Purpose and Application-Based Systems

Keywords and phrases Real-Time System, WCET analysis, Flow Fact, Assertion

Digital Object Identifier 10.4230/OASIcs.WCET.2014.1

1 Introduction

WCET analysis tools provide means to estimate the WCET of code with increased confidence,
safety and automation compared with a manual analysis. Alas, full automation is hard to
attain due to a number of reasons. Some are fundamental, such as the undecidability of
the WCET analysis problem, others are of more practical nature like the need to provide
relevant information not present in the code, or give directives to fine-tune the analysis. Thus,
WCET analysis tools have annotation languages to provide various kinds of information to
the analysis. Examples are:

annotations providing information about the environment, like hardware configuration,
entry points of tasks, etc.,
annotations directing the analysis (like selection of abstract domain, context-sensitivity,
choice of internal representations, kinds of generated flow facts),
directives how to present the analysis results,
value annotations constraining the possible values of program variables in different
program points, and
flow facts constraining the possible program flows.

Unfortunately, the means to provide these kinds of information are not systematically
developed. WCET analysis tools tend to have their own annotation languages, which may
be apt to provide information for the respective tool but are not portable across tools. As
for manually provided information, many of these tool-specific formats do not provide a
particularly user-friendly syntax. The semantics is not always entirely clear either, due to
the absence of formal definitions.

© Björn Lisper;
licensed under Creative Commons License CC-BY

14th International Workshop on Worst-Case Execution Time Analysis (WCET 2014).
Editor: Heiko Falk; pp. 42–51

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2014.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Björn Lisper 43

Code−level

Constraints

Code

generator

Code

analysis

tool

Optimizing

compiler

WCET

analysis

tool

Other tools for

analysis &

verification

Model User

code

Figure 1 An ecosystem of embedded systems tools.

Furthermore, WCET analysis tools do not exist in isolation. Today one can speak of
an “ecosystem” of code-level tools, as depicted in Fig. 1, including code generators for
model-based development, general-purpose static code analysis tools, optimising compilers,
and tools for formal verification. It is obvious that general formats for code-level constraints
would be helpful for the integration of code-level tool chains.

The contribution of this paper is a step in this direction. We define a simple but general
core language for value constraints from first principles. Such constraints provide information
about reachable states, much like assertions in Floyd-Hoare logic [7, 8]. We take measures
to make the constraint language as independent of the “host language” as possible, making
it portable over a wide range of code formats. We make some suggestions for user-friendly
syntax. The language can express numerical constraints on values of program variables,
which is sufficient to express the value annotations and flow facts supported by current
WCET tool annotation languages, but it can easily be extended to express constraints on
other data types. We give the language a formal semantics, making minimal assumptions
on the semantics of the host language. We also prove a theorem about compositionality of
assertions.

2 Some Existing Annotation Languages

We now review the annotation languages for some existing WCET analysis tools.
FFX [3] is intended to be a portable WCET annotation language for flow facts. It is

supported by TuBound [12], oRange [4], Otawa [1], and CalcWCET167 [10]. FFX represents
the analyzed code as a structured XML document, where annotations appear as attributes
in tags representing program constructs such as loops. FFX can specify upper loop bounds,
and also whether or not they are exact. It is unclear whether it can represent more general
linear flow facts, which describe relations between execution counters for different parts of
the code. It can represent contexts: however, these seem not to be calling contexts but rather
information about the environment such as the target hardware.

The annotation language of aiT [5], called AIS [6], can describe various kinds of flow facts,
such as (upper) loop bounds, infeasible paths, and general linear flow constraints on IPET
execution counters. Loop bounds can be complex expressions, and may for instance refer
to execution counters of outer loops. Some context-sensitivity is provided by the ability to
tie flow facts to certain call sites for functions. AIS can represent flow facts both for source

WCET 2014

44 Principles for Value Annotation Languages

code (C) and for executables: locations for execution counters are formed from file name and
position in the file for source code, and are provided as numerical addresses for executables.

The WCET analysis tool SWEET [18] provides a rich set of different annotations. It
can read value constraints in a certain format, constraining the values of program variables
in certain program points to intervals. A common use is to specify value constraints on
inputs. SWEET can also compute value constraints and export them using the same format.
Furthermore SWEET provides a rich set of flow facts, including general linear constraints on
execution counters. Execution counters can be local to certain execution contexts (typically
loop or function bodies), and are then reset at each entry of the context. Flow facts
involving such counters can be constrained to certain ranges of loop iterations. Flow facts
involving global execution counters are also allowed. Flow facts can be constrained to be valid
only for certain calling contexts, which are specified by explicit call strings: this provides
context-sensitivity.

Bound-T [9] can use a number of different assertions. It can take value range constraints
for program variables, bounds on the number of loop iterations, and function calls, “path not
taken”-constraints, and different bounds on stack usage. Variables can also be asserted not to
have their values changed in certain parts of the program. Assertions can be tied to program
parts in an interesting way, identifying, e.g., loops by properties like that they use a certain
variable, call a certain function, or whether a loop is the inner or outer loop in a loop nest.
Assertions can be restricted to certain calling contexts and can thus be context-sensitive.
Bounds on the number of executions can also be placed directly on instructions, using
addresses or offsets.

These languages have some features in common. They can all express flow facts, of
different generality. The flow facts may concern global IPET execution counters as well
as local execution counters, for certain execution contexts. Some of them can also express
certain kinds of value constraints. They provide varying levels of context-sensitivity. Our
proposed core language aims to cover these aspects in a unified way.

3 A Wish List for a Language for Code-level State Constraints

Based on experience of WCET annotation languages as well as general language design, the
following wish list on a value constraint language can be formulated:

it should work over a wide range of code-level tools (not necessarily only for WCET
analysis),
it should work over a wide range of host languages, on different levels
it should be general yet simple, extensible, and have few but powerful constructs,
it should have a succinct, intuitive syntax for humans, as well as an easily machine-readable
form (XML) for tools,
it should be able to express general restrictions on flow facts, including the ability to
express constraints in existing annotation languages by translation,
it should be able to express different kinds of context sensitivity, and
it should have a clear and simple formal semantics.

This wish list has guided the design of our core language.

4 A Starting Point: The Assertion Language of Floyd-Hoare Logic

A general, existing assertion language for constraints on program variable values is the one
used in Floyd-Hoare logic [7, 8]. A good description is found in [19]. It has the following

Björn Lisper 45

elements:
program variables, which depend on program state,
auxiliary variables, which are independent of state, and
some sublanguage to define predicates over variables (typically consisting of boolean and
arithmetic expressions, including quantifiers (∀, ∃) over auxiliary variables, but whose
elements may vary depending on what kind of assertions are to be expressed

An example of a statement in Floyd-Hoare logic is

{X = i}X := X + 1{X = i+ 1}

This assertion is a triple of a pre-condition, a program, and a post-condition. X is a program
variable and i an auxiliary variable. The statement expresses a relation that holds between
preceding and succeeding states: for any value of i, if the value of X equals i in a state
preceding the program, then it will equal i+ 1 in the state that results after having executed
the program.

Floyd-Hoare logic was originally defined for a simple, structured imperative language,
and it comes with a set of inference rules, based on the syntax of the language, by which
assertions can be proved deductively from sub-assertions of sub-programs. However the
assertions can also be given a direct semantics in terms of state transitions, which is of
interest here. See [19].

5 A Core Language for Value Constraints

Floyd-Hoare logic is defined over a high-level language where the control flow is decided
entirely by the syntax. We want our core language for assertions to work over a wide
variety of code formats, including low-level formats with unstructured control flow. Therefore
we abstract away from the syntax of the host language, and we will make only minimal
assumptions on its semantics. The abstract syntax for our assertion language is given by the
following:

a ::= n | i |X | a1 aop a2

p ::= true | false | p1 ∧ p2 | p1 ∨ p2 | ¬p | a1 rop a2 | ∀i.p | ∃i.p | PC = L

c ::= p1 → p2

Here a stands for arithmetic expressions, and p predicates. n stands for numerical constants,
i auxiliary variables, X program variables, aop arithmetic operators (+, −, . . .), and rop
relational operator (<, =, . . .). L stands for labels, see below. We will freely use operators
that can be derived from the core language, like implication (=⇒).

This part defines a predicate language over arithmetic expressions that is completely
standard (except for the “PC = L” part, which will be explained below). Like in Floyd-Hoare
logic the difference between program variables and auxiliary variables is that the value
of a program variable depends on the state, whereas the values of auxiliary variables are
independent of the state. We allow quantification over auxiliary variables, but not over
program variables.

The statements of form p1 → p2 are the assertions in our core language, and they
correspond to the triples in Floyd-Hoare logic (with p1 as pre- and p2 as post-condition).
The meaning of p1 → p2 is “all states that are reachable from a state satisfying p1 must
satisfy p2”. We will provide an exact definition in Section 6.

We make the following assumptions on the host language and its semantics. It has
program variables that can hold values, and there are labels that identify program points. At

WCET 2014

46 Principles for Value Annotation Languages

this point we assume nothing more about labels than that they can be compared for equality.
The language has states: in each state σ, a program variable X holds a numerical value
σ(X). Furthermore there is a distinguished variable PC such that σ(PC) is a label: thus,
the state also contains the current position in the code. The semantics of a program in the
host language is given by a set of state transitions σ → σ′.

Our assertion language is defined over conditions on numerical expressions, but is easily
extended to conditions over other data types. It should also be straightforward to give the
language both a user-friendly syntax as well as a conveniently machine-readable XML format.
We propose some syntactic conveniences in Section 5.2.

The language so far can express sensitivity to contexts that are conditions on the state
(trough implication), but it does not have any means to express call-string contexts. We
show how this can be added in Section 7.

Let us now see some examples of assertions. To make the examples more concrete we
assume labels “entry”, “exit” representing the entry and exit point of the host program,
respectively:

(PC = entry)→ (PC = L =⇒ X < 17): for all states reachable from the start of the
program, if at label L then X < 17;
(PC = entry)→ (PC = L ∧ 3 ≤ I ≤ 7 =⇒ X < 17): for all states reachable from the
start of the program, if at label L, with the value of I between 3 and 7, then X < 17;
(PC = entry ∧ 1 ≤ X ≤ 10) → (PC = exit =⇒ Y ≤ 100): if the program is started
with 1 ≤ X ≤ 10 then, at exit, Y ≤ 100;
(PC = L ∧X = i)→ (PC = L′ =⇒ X = 2 · i): for any value of i, if the program passes
L with X = i then afterwards, whenever at L′, X = 2 · i;
true→ X < 32767: a global invariant, in all states holds that X < 32767.

Notice how restrictions on inputs, like confining an input value to a certain range, can be
expressed as arithmetic contraints in the condition defining the initial states. Also note how
contexts that are restrictions to certain states can be expressed simply as antecedents in
implications. Such restrictions can for instance be presence at a certain program point, or
that the value of a loop counter is in a certain interval.

5.1 Labels

Labels can be basically anything that identifies program points. For high-level languages like
C, labels can be explicit C labels defined in the source code, or they can be formed from file
name, line number, and position on the line as in AIS. Another possibility is to use paths
through the parse tree of the program as labels. For low-level code a label can be a pair
(e, n) where e is a symbolic entry point and n is a numerical offset, or even a fully numerical
address for a linked executable.

Our basic core language only assumes that labels can be compared for equality. Certain
kinds of labels, like for instance numerical addresses, can allow a richer set of conditions to
specify sets of labels.

Different kinds of labels can be fragile to different extent, in that they may be destroyed
by recompilation or editing of the source code. Examples of fragile labels are numerical
addresses in executables, and line numbers in source code. Assertions that use such labels
may have to be restored frequently. While interesting, the construction of non-fragile labels
is outside the scope of this paper.

Björn Lisper 47

5.2 Syntactic Sugar

The notation developed so far can be simplified for some common cases. For instance, it
can be expected that restrictions to certain program points are frequent. Thus, using the
notation “@L” for “PC = L” may help. It also seems like a common case to consider all the
states that are reachable from the entry point of the program: thus on the top level, where
an assertion is expected, one may allow to write p as a shorthand for @entry → p. Some of
our examples above can then be written:

@L =⇒ X < 17 (understood, for all states reachable from the entry point)
@L ∧ 3 ≤ I ≤ 7 =⇒ X < 17 (similarly)
(@entry ∧ 1 ≤ X ≤ 10)→ (@exit =⇒ Y ≤ 100)
(@L ∧X = i)→ (@L′ =⇒ X = 2 · i):

5.3 IPET Execution Counters and Flow Facts

IPET execution counters are "virtual" program variables that keep track of how many times
a program part has been executed. Flow facts are expressed as arithmetic value constraints
on these counters. The counters are typically defined relative to some execution context,
with some entry and exit points, such that they are reset each time the execution context is
entered and incremented by one each time the program part in question is executed. Global
execution counters are defined relative to the whole program, with the entry label as entry
point and exit as the exit point. For the final IPET calculation of the WCET estimate it is
the possible values of the counters at exit that are of interest.

To express IPET execution counters we introduce the unary operator “#” on labels: if
L is a label, then #L is the IPET counter associated with the program point of that label.
We leave open how to associate IPET counters with different execution contexts, and how
to exactly specify their semantics: for now we assume that they are global, and that their
semantics is given by the informal description above.

We can now express flow facts in our assertion language, as value contraints on the IPET
counters. Here are some examples:

@exit =⇒ #L < 100: a simple capacity constraint;
@exit =⇒ #L = 99: an exact capacity constraint;
@exit =⇒ #L1 + #L2 ≤ 1: a mutual exclusivity constraint;
(@entry ∧ 1 ≤ X ≤ 10) → (@exit =⇒ #L ≤ 100): a capacity constraint under the
condition that the value of X lies in the range [1 . . . 10] at entry;
(@entry ∧ X = n) → (@exit =⇒ #L ≤ 2 · n + 1): a parametric capacity constraint
relating the number of executions of L to the value of X at entry;
@exit_local ∧ 3 ≤ #L ≤ 7 =⇒ #Llocal < 17: for each of the iterations 3 to 7 of an outer
execution context with label L, Llocal is executed less than 17 times.

In the last example #Llocal is supposed to be a local execution counter, which is reset each
time its local execution context is entered.

As the values of IPET counters at exit from their execution contexts are of primary interest,
a possible syntactic simplification is to allow the “@exit =⇒ ” part to be implicit and add it
automatically when parsing a constraint that contains an IPET counter. So. for instance, the
second constraint above could then simply be written #L = 99, which then is to be interpreted
as @exit =⇒ #L = 99, which in turn stands for @entry → (@exit =⇒ #L = 99).

WCET 2014

48 Principles for Value Annotation Languages

5.4 Time
The state could also contain time. This gives the ability to express fine-grained real-time
constraints on certain pieces of code. For instance L and L′ may be program points in a
loop, with loop counter variable I, such that we want to specify that within each iteration
L′ should never be executed more than 7 time units later than L. If time is represented by
the program variable T , then this constraint can be expressed as

(@L ∧ t = T ∧ i = I)→ (@L′ ∧ i = I =⇒ T − t ≤ 7)

This example makes heavy use of auxiliary variables to refer to the value of a program
variable in a pre-condition from the post-condition. This is quite common. A possible
syntactic convenience is to make the equalities in the pre-condition implicit, and refer to the
“old” value of program variable X as X.old in the post-condition. With this notation, our
example becomes

@L→ (@L′ ∧ I = I.old =⇒ T − T.old ≤ 7)

6 Formal Semantics

We now give a formal semantics to our core assertion language defined in Section 5. As
is standard in programming language theory, we use semantic functions. These take three
arguments: a syntactic form, an interpretation I that maps auxiliary variables to values, and
a program state σ mapping program variables to values. The definitions of the semantic
function A[[]], for arithmetic expressions, and B[[]], for boolean expressions (predicates),
are completely standard and are given below for completeness (cf. [19]):

A[[n]] I σ = n A[[i]] I σ = I(i) A[[X]] I σ = σ(X)
A[[a1 aop a2]] I σ = A[[a1]] I σ aop A[[a2]] I σ

B[[true]] I σ = true B[[false]] I σ = false B[[p1 ∧ p2]] I σ = B[[p1]] I σ ∧ B[[p2]] I σ
B[[p1 ∨ p2]] I σ = B[[p1]] I σ ∨ B[[p2]] I σ B[[¬p]] I σ = ¬B[[p]] I σ

B[[a1 rop a2]] I σ = A[[a1]] I σ rop A[[a2]] I σ B[[∀i.p]] I σ = ∀n.(B[[p]] I[n/i]σ)
B[[∃i.p]] I σ = ∃n.(B[[p]] I[n/i]σ) B[[PC = L]] I σ = σ(PC) = L

Here, I[n/i] stands for the interpretation that maps i to n but otherwise behaves like I.
We now give the semantic function C[[]] for assertions p1 → p2. The definition uses the

relation →∗ on states, defined by σ →∗ σ′ if and only if σ′ is reached from σ through zero or
more state transitions (reflexive-transitive closure of the transition relation →):

C[[p1 → p2]] = ∀I, σ, σ′.[(B[[p1]] I σ ∧ σ →∗ σ′) =⇒ B[[p2]] I σ′] (1)

Thus p1 → p2 if, for each state σ where p1 holds, and for each state σ′ that is reachable from
σ, p2 holds for σ′.

I Theorem 1 (Compositionality). p1 → p2 ∧ p2 → p3 =⇒ p1 → p3.

Proof. Assume that p1 → p2 and p2 → p3. σ →∗ σ for all states σ. Thus, since p1 → p2,
p2 holds for all states where p1 holds. Since p2 → p3 it follows that p3 holds for each state
reachable from a state where p1 and thus also p2 holds, thus it must hold that p1 → p3. J

Theorem 1 implies that assertions for a program can be composed out of assertions on its
parts, much like the inference rules for Floyd-Hoare logic.

Björn Lisper 49

7 Context Sensitivity

Value annotations and flow facts can be made more precise if context-sensitive. The contexts
we have seen so far are sets of states defined by p′ in an assertion p→ (p′ =⇒ p′′), which
loosens the requirement on p′′ to hold merely for the reachable states where p′ holds. However,
another very important class of contexts are calling contexts. These can be used to express
that a value annotation is to hold only when a function is called in a certain way, perhaps
through a specific chain of other function calls. The well-known concept of call-strings [14]
can be used to define such contexts.

In our setting a call-string is a sequence of special labels that identify particular program
points like call sites for functions, or entry points to loops. Let L be the set of labels under
consideration, and let C ⊆ L be the set of labels that are considered to be call sites. A
sequence s ∈ C is then a call-string. Let S be an expression that defines a set of call-strings
C(S) ⊆ C. The notation

p→ p′ through S

is a suggested extension of the core language in Section 5 to denote an assertion where p′ is to
hold for those states, reachable from some state where p holds, through a sequence of states
such that the sequence of traversed call sites belongs to C(S). We will not be specific about
the exact format of S: it could, for instance, be some kind of regular expression defining a
set of call-strings.

For completeness we now give a formal semantics to this kind of assertion. In order to do
this we need to develop some notation for different sequences. Given the transition relation
“→” on states, which describes the semantics of the host program, we define:

Paths(σ, σ′) = {σ1 · · ·σn | σ1 = σ, σi → σi+1, i = 1, . . . , n− 1, σn = σ′ }
PC (σ1 · · ·σn) = σ1(PC) · · ·σn(PC)

Labels(σ, σ′) = {PC (σ1 · · ·σn) | σ1 · · ·σn ∈ Paths(σ, σ′) }

Paths(σ, σ′) is the set of sequences of states leading from σ to σ′. PC (σ1 · · ·σn) is the
sequence of labels generated by the sequence of states σ1 · · ·σn. Labels(σ, σ′) is the set of
sequences of labels generated by the possible state transitions leading from σ to σ′. Finally
we introduce the well-known projection operator “�” on strings s and sub-alphabets A: s � A
is the substring of s obtained from its characters in A appearing in the same order as in s.
For instance, if A = {a, b, c} then adecbbe � A = acbb. We extend � to sets of strings S, viz.

S � A = { s � A | s ∈ S }

We can now extend (1) to call-string-sensitive assertions as defined above:

C[[p1 → p2 through S]] = ∀I, σ, σ′.[(B[[p1]] I σ∧(Labels(σ, σ′) � C)∩C(S) 6= ∅) =⇒ B[[p2]] I σ′]

Thus the assertion p1 → p2 through S holds if, for all sequences of labels from a state σ
where p1 holds to another state σ′, such that the projection of the sequence onto the set of
call sites is a call-string defined by S, p2 holds for σ′. Compared with (1), where p2 is to
hold for all states reachable from a state satisfying p1, p2 now only has to hold for states
reachable through a call-string given by S.

Theorem 1 can be extended to the context-sensitive case. Define S · S′ by C(S · S′) =
{ s · s′ | s ∈ C(S), s′ ∈ C(S′) }, where “·” is concatenation of sequences: we then have the
following result (proof straightforward, but omitted due to lack of space):

I Theorem 2. p1 → p2 through S ∧ p2 → p3 through S′ =⇒ p1 → p3 through S · S′.

WCET 2014

50 Principles for Value Annotation Languages

8 Related Work

We have already reviewed the annotation languages of some WCET analysis tools in Section 2.
There are a number of others: a comprehensive review and classification of such languages is
found in [11]. Most of them express flow facts as linear arithmetic constraints on execution
counters, as here, varying from simple looop bounds to general linear constraints. A notable
exception is the Information Description Language [15], which can specify sets of feasible
paths by regular expressions. This makes it possible to specify the exact order of execution
of different program parts, whereas constraints in IPET execution counters only constrain
the number of times they can execute and not the exact order.

Assertions using pre- and post-conditions have been used for a long time in formal software
development: a classical example is the Vienna Development Method [2]. Such assertions can
also be seen as contracts: the pre-condition is then the assumption on the environment, and
the post-condition is what the program guarantees if the assumption is fulfilled. Contracts
are essential for reasoning about component-based software. The language Eiffel provides
means to express contracts [13].

On model level, the language OCL is used to specify properties of UML models. A formal
semantics is given in [16]. The specification language Z uses Zermelo’s set theory to express
properties of models and programs in a pre/post-condition style [17].

9 Conclusions and Further Research

We have presented a simple core language for expressing assertions in pre/post-condition
style, making minimal assumptions on the host language. This language can express value
constraints, and it can be extended with IPET execution counters yielding the capability to
express flow facts. Parametric flow facts and value constraints can be expressed using the
auxiliary variables of the assertion language. We also proposed a way to include constraints
with call strings, making is possible to express context-sensitive assertions. Special care
was taken to develop the formal semantics of the language, and we proved a theorem about
compositionality of assertions. This theorem is of practical interest since it allows assertions
for a program to be composed from assertions on its parts.

We strongly believe that there is a need for a simple and general code-level assertion
language that is designed from first principles, and has a clear semantics. In the best of worlds,
a standardised such language could be used to exchange code-level information between a
variety of tools including WCET analysis tools. In any case it can help understanding the
underlying principles of annotation languages, and be used to give them a precise semantics.

Acknowledgment

This work was partially supported by COST Action IC1202: Timing Analysis On Code-Level
(TACLe), and by the Swedish Research Council project Contesse (2010-4276).

References

1 Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. OTAWA: An
open toolbox for adaptive WCET analysis. In Proc. IFIP Workshop on Software Technolo-
gies for Future Embedded and Ubiquitous Systems (SEUS), pages 35–46. Springer, October
2010.

Björn Lisper 51

2 Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: the Meta-
Language, number 61 in Lecture Notes in Computer Science. Springer-Verlag, 1978.

3 Armelle Bonenfant, Hugues Cassé, Marianne de Michiel, Jens Knoop, Laura Kovács, and
Jakob Zwirchmayr. FFX: A portable WCET annotation language. In Proc. 20th Inter-
national Conference on Real-Time and Network Systems (RTNS’12), pages 91–100, New
York, NY, USA, 2012. ACM.

4 Marianne de Michiel, Armelle Bonenfant, Hugues Cassé, and Pascal Sainrat. Static loop
bound analysis of C programs based on flow analysis and abstract interpretation. In
Proc. IEEE Int. Conf. on Embedded and Real-Time Computing Systems and Applications
(RTCSA’08), pages 161–168, Kaohsiung, Taiwan, August 2008. IEEE Computer Society.

5 Christian Ferdinand, Reinhold Heckmann, and Bärbel Franzen. Static memory and timing
analysis of embedded systems code. In Proc. 3rd European Symposium on Verification
and Validation of Software Systems (VVSS’07), number 07-04 in TUE Computer Science
Reports, pages 153–163, Eindhoven, The Netherlands, March 2007.

6 Christian Ferdinand, Reinhold Heckmann, and Henrik Theiling. Convenient user annota-
tions for a WCET tool. In Jan Gustafsson, editor, Proc. 3rd International Workshop on
Worst-Case Execution Time Analysis (WCET’2003), Porto, July 2003.

7 R. W. Floyd. Assigning meaning to programs. In J. T. Schwartz, editor, Proc. Symp.
Applied Mathematics, vol. 19: Mathematical Aspects of Computer Science, pages 19–32,
Providence, R.I., 1967. American Mathematical Society.

8 C. A. R. Hoare. An axiomatic basis for computer programming. Comm. ACM, 12(10):576–
580, 583, October 1969.

9 Niklas Holsti and Sami Saarinen. Status of the Bound-T WCET tool. In Proc. 2nd Inter-
national Workshop on Worst-Case Execution Time Analysis (WCET’2002), 2002.

10 Raimund Kirner. The WCET analysis tool CalcWcet167. In Tiziana Margaria and
Bernhard Steffen, editors, Proc. 5th International Symposium on Leveraging Applications
of Formal Methods (ISOLA’12), Lecture Notes in Computer Science, Heraclion, Crete, Oc-
tober 2012. Springer-Verlag.

11 Raimund Kirner, Jens Knoop, Adrian Prantl, Markus Schordan, and Albrecht Kadlec. Bey-
ond loop bounds: comparing annotation languages for worst-case execution time analysis.
Software & Systems Modeling, 10(3):411–437, 2011.

12 Jens Knoop, Laura Kováćs, and Jakob Zwirchmayr. r-TuBound: Loop bounds for WCET
analysis. In Nikolaj Bjørner and Andrei Voronkov, editors, Proc. Logic for Programming,
Artificial Intelligence, and Reasoning, volume 7180 of Lecture Notes in Computer Science,
pages 435–444. Springer, 2012.

13 Bertrand Meyer. Applying “design by contract”. Computer, 25(10):40–51, October 1992.
14 Flemming Nielson, Hanne Ries Nielson, and Chris Hankin. Principles of Program Analysis,

2nd edition. Springer, 2005.
15 Chang Yun Park. Predicting Program Execution Times by Analyzing Static and Dynamic

Program Paths. Real-Time Systems, 5(1):31–62, March 1993.
16 Mark Richters and Martin Gogolla. On formalizing the UML object constraint language

OCL. In Tok-Wang Ling, Sudha Ram, and Mong Lee, editors, Proc. 17th Int. Conf. Concep-
tual Modeling (ER’98), volume 1507 of Lecture Notes in Computer Science, pages 449–464.
Springer-Verlag, 1998.

17 J Michael Spivey. Understanding Z: a specification language and its formal semantics.
Number 3. Cambridge University Press, 1988.

18 SWEET home page, 2011. www.mrtc.mdh.se/projects/wcet/sweet/.
19 Glynn Winskel. The Formal Semantics of Programming Languages – An Introduction. MIT

Press, 1993.

WCET 2014

	Introduction
	Some Existing Annotation Languages
	A Wish List for a Language for Code-level State Constraints
	A Starting Point: The Assertion Language of Floyd-Hoare Logic
	A Core Language for Value Constraints
	Labels
	Syntactic Sugar
	IPET Execution Counters and Flow Facts
	Time

	Formal Semantics
	Context Sensitivity
	Related Work
	Conclusions and Further Research

