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Abstract

The model- and component-based development approach has emerged as an
attractive option for the development of vehicular distributed real-time embed-
ded systems. Within this context we target challenges related to modeling of
legacy network communication, extraction of end-to-end timing models and
support for end-to-end timing analysis.

We propose a novel approach for modeling legacy network communication
in these systems. By introducing special-purpose components to encapsulate
and abstract the communication protocols, we allow the use of legacy nodes
and legacy protocols in a component- and model-based software engineering
environment. Because an end-to-end timing model should be available to per-
form the end-to-end response-time and delay analyses, we present a method
to extract the timing models from these systems. We also extend the method
to various abstraction levels and parts of the development process for the sys-
tems. During the models extraction, we identify that the existing worst-case
response-time analysis for Controller Area Network (CAN), a widely used
real-time network protocol in the vehicular domain, does not support mixed
messages. These messages are partly periodic and partly sporadic. They are
implemented by some higher-level protocols for CAN used in the industry. We
extend the existing analysis which is now applicable to any higher-level proto-
col for CAN that uses periodic, sporadic and/or mixed transmission.

In order to show the application of our modeling techniques, timing model
extraction method and extended analyses; we provide a proof of concept by
extending the Rubus Component Model, which is used for the development
of software for vehicular embedded real-time systems by several international
companies. We also implement the end-to-end response-time and delay anal-
yses along with the extended analysis for CAN in the existing industrial tool
suite the Rubus-ICE. Moreover, we implement the extended analysis for CAN
in a free tool MPS-CAN analyzer. Further, we conduct automotive-application
case studies to validate our methods and techniques.
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Jimmy Westerlund, Martin Vestin, Henrik Nordin, Peter Wallin and Andreas
Ljungberg. Thanks to Hjördis Lundbäck for making many things easier for me
during my time as an industrial PhD student at Arcticus Systems.

I attended several courses during my PhD studies. I thank the lecturers
and professors including Hans Hansson, Thomas Nolte, Emma Nehrenheim,
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August, 2013.

v



vi

Sara Ab.; Adnan, Danial and Wasif; Eduard, Guillermo and Sara Ab.; Alessio
and Kan; Leo, Nesredin and Predrag; Dag; Mohammad and Rafia; Hamid
and Matthias; Meng and Sara Af.; Nima; Cristina; Moris; Hang and Raluca;
Mobyen and Shahina; Giacomo; Anna and Ning; Andreas G. and Bob; Batu,
Fredrik and Nikola; Abhilash, Andreas J., Kaj and Zhou; Hseyin, Patrick and
Severine; Hongyu and Gaetana; Barbara and Yue; Radu; Antonio, Federico
and Mehrdad; Gabriel, Irfan, Mahnaz and Omar; Ana P., Josip, Juraj and Luka;
Adam; Aida, Amine; Andreas H.; Aneta; Etienne; Farhang; Frank; Jagadish;
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Turja and Mikael Sjödin. In 25th Euromicro Conference on Real-Time
Systems (ECRTS13), WIP, Paris, France, July, 2013.

13. Supporting Early Modeling and End-to-end Timing Analysis of Vehicu-
lar Distributed Real-Time Applications. Saad Mubeen, Mikael Sjödin,
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Turja and Mikael Sjödin. In 16th IEEE Conference on Emerging Tech-
nologies and Factory Automation (ETFA), WIP, Toulouse, France, Sep-
tember, 2011.

25. Analyzable Modeling of Legacy Communication in Component-Based
Distributed Embedded Systems. Saad Mubeen, Jukka Mäki-Turja and
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dalen University, Sweden, January, 2012.





Contents

I Thesis 1

1 Introduction 3
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem Statement and Research Challenges . . . . . . . . . . 7

2 Technical Contributions 11
2.1 Contribution 1: Modeling of Legacy Network Communication 12
2.2 Contribution 2: Extraction of End-to-end Timing Models . . . 12
2.3 Contribution 3: Extension of the Worst-case Response-time Anal-

ysis for Controller Area Network . . . . . . . . . . . . . . . 14
2.4 Contribution 4: Proof-of-concept Implementation . . . . . . . 15
2.5 Contribution 5: Extraction of End-to-end Timing Models at a

Higher Abstraction Level . . . . . . . . . . . . . . . . . . . . 16
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Impact of Contributions . . . . . . . . . . . . . . . . . . . . . 19

3 Conclusions 21
3.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . 21
3.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Bibliography 25

II Included Papers 31

4 Paper A:
Communications-Oriented Development of Component- Based Ve-

xv



xvi Contents

hicular Distributed Real-Time Embedded Systems 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Background and Related Work . . . . . . . . . . . . . . . . . 37
4.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Modeling of Legacy Network Communication . . . . . . . . . 50
4.5 Extraction of End-to-end Timing Models . . . . . . . . . . . . 57
4.6 Automotive-application Case Study . . . . . . . . . . . . . . 63
4.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 68
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Paper B:
Integrating Mixed Transmission and Practical Limitations with the
Worst-Case Response-Time Analysis for Controller Area Network 75
5.1 Extended Version . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Mixed Transmission Patterns Implemented by Higher-level Pro-

tocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Extended Worst-case RTA for CAN without

Buffer Limitations . . . . . . . . . . . . . . . . . . . . . . . . 88
5.6 Integrating the Effect of Abortable Transmit

Buffers with the Extended Worst-case RTA for CAN . . . . . 102
5.7 Integrating the Effect of Non-abortable Transmit Buffers with

the Extended Worst-case RTA for CAN . . . . . . . . . . . . 112
5.8 Comparative Evaluation . . . . . . . . . . . . . . . . . . . . . 117
5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Paper C:
Extending Worst-Case Response-Time Analysis for Mixed Messages
in Controller Area Network with Priority and FIFO Queues 135
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.2 Mixed Transmission Patterns Supported by the Higher-level

Protocols for CAN . . . . . . . . . . . . . . . . . . . . . . . 140
6.3 Common Queueing Policies Used in the CAN Controllers . . . 144
6.4 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.5 Extended Analysis . . . . . . . . . . . . . . . . . . . . . . . 148
6.6 Case Study and Evaluation . . . . . . . . . . . . . . . . . . . 164
6.7 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . 168



Contents xvii

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7 Paper D:
Extending offset-based response-time analysis for mixed messages
in Controller Area Network 175
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.2 Mixed Transmission Patterns Supported by

Higher-level Protocols . . . . . . . . . . . . . . . . . . . . . 180
7.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.4 Worst-case Response-time Analysis . . . . . . . . . . . . . . 185
7.5 Automotive-application Case Study . . . . . . . . . . . . . . 196
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8 Paper E:
MPS-CAN Analyzer: Integrated Implementation of Response-Time
Analyses for Controller Area Network 203
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.2 Mixed Transmission Supported by Higher-level Protocols . . . 206
8.3 Queueing Policies and Buffer Limitations in the CAN Controllers210
8.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.5 Implemented Analyses, Layout and Usage of the Tool . . . . . 219
8.6 Case study and Evaluation . . . . . . . . . . . . . . . . . . . 225
8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

9 Paper F:
Support for end-to-end response-time and delay analysis in the in-
dustrial tool suite: Issues, experiences and a case study 237
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
9.2 Background and Related Work . . . . . . . . . . . . . . . . . 241
9.3 End-to-end Timing Requirements and Implemented Analysis

in Rubus-ICE . . . . . . . . . . . . . . . . . . . . . . . . . . 247
9.4 Encountered Problems, Proposed Solutions

and Gained Experiences . . . . . . . . . . . . . . . . . . . . 255
9.5 Testing and Evaluation . . . . . . . . . . . . . . . . . . . . . 274
9.6 Automotive Application Case Study . . . . . . . . . . . . . . 276
9.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 290
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295



xviii Contents

10 Paper G:
Component-Based Vehicular Distributed Embedded Systems: End-
to-end Timing Models Extraction at Various Abstraction Levels 301
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
10.2 Background and Related Works . . . . . . . . . . . . . . . . 306
10.3 Interpretation of TADL2 Timing Constraints in RCM . . . . . 310
10.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
10.5 Summary and Future Work . . . . . . . . . . . . . . . . . . . 338
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341



I

Thesis

1





Chapter 1

Introduction

In this thesis we introduce a new approach for modeling legacy network com-
munication in component-based vehicular distributed real-time embedded sys-
tems1. By introducing special-purpose software components to encapsulate
and abstract the communication protocols in the systems, we allow the use of
legacy nodes and legacy protocols in a component- and model-based software
engineering environment. The proposed approach is aimed to support the state-
of-the-practice development of the systems. End-to-end timing analysis can be
used to validate timing requirements (without exhaustive testing ) specified on
the systems. In order to perform the end-to-end timing analysis, an end-to-end
(or holistic) timing model should be extracted from the system. We present a
method to automatically extract such models from the composition of compo-
nents. We also take a step towards broadening the scope and usability of our
approach by extracting the timing models from the systems at a higher abstrac-
tion level. Moreover, we validate our methods and techniques by conducting
industrial case studies.

1.1 Background
1.1.1 Embedded System and Embedded Software
An embedded system is a microprocessor-based system that is designed to per-
form a dedicated functionality by means of hardware and software [1]. Often,

1Throughout this thesis, we use the terms system or application to refer to a software component
based, distributed, real-time, embedded system or application
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4 Chapter 1. Introduction

embedded systems interact with their environment through sensors and actua-
tors. They mostly remain hidden in their applications because they are embed-
ded inside larger systems which they control or which they are part of. They
are found in almost all electronic items ranging from simple consumer products
such as microwave oven and coffee machine to highly sophisticated systems
such as industrial process controllers, smart phones and modern premium cars.
Their applications span over many domains such as automotive, aerospace,
consumer electronics, biomedical, military, business, industrial control, and
many more.

It is estimated that about 10 billion processors are manufactured every year.
Out of which, approximately 99% are embedded processors while only 1%
find their way to the general-purpose computers such as PCs and laptops [1, 2].
Not only the number of embedded processors has increased in the past few
years, but also the software which runs on them. The embedded software has
drastically increased in size and complexity. In the automotive domain, for
example, a modern premium car contains nearly 100 million lines of code that
run on about 70 to 100 embedded processors [3]. Another example of the
complexity and large size of embedded software can be seen in the software
for radio and navigation system in a modern premium car such as Mercedes
Benz S-class that alone contains 20 million lines of code [3]. Because of this
trend of continuously increasing size and complexity of embedded software,
the development of embedded systems has become very complex.

1.1.2 Real-time Embedded System
Often, an embedded system needs to interact with its environment in a timely
manner, i.e., the embedded system is a real-time system. For such a system, the
desired and correct output is one which is logically correct as well as delivered
within a specified time (e.g., a deadline). One way to classify a real-time sys-
tem is as being either soft or hard. In a soft real-time system, infrequent dead-
line misses can be tolerated. For example, electronic window control system in
a car can be a soft real-time system. On the other hand, missing a deadline in a
hard real-time system can result in system failure. In a hard real-time system,
a logically correct but late response is considered as bad as logically incorrect
response. The electronic engine control system in a car is an example of a hard
real-time system. Many hard real-time systems are also safety critical which
means that the system failure can result in catastrophic consequences such as
endangering human life or the environment. For example, airbag control sys-
tem in a car is a safety-critical hard real-time system.
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1.1.3 Model- and Component-based Development
In order to, for example, capture system requirements early during the devel-
opment; handle the complexity of embedded software; lower the development
cost; enable faster turn-around times in early design phases; allow reusability;
provide possibilities to automatically perform timing analysis, derive test cases
and generate code; and support modeling at higher levels of abstraction, the
research community proposed model- and component-based development of
embedded systems by employing the principles of Model-Based software En-
gineering (MBE) and Component-Based Software Engineering (CBSE) [4, 5].
MBE provides the means to use models throughout the process of system de-
velopment. It uses models to describe functions and other design artifacts.
Whereas, CBSE facilitates the development of large software systems by inte-
gration of software components. It raises the level of abstraction for software
development and aims to reuse software components and their architectures.
An abstraction level provides a complete definition of the system for a given
purpose during the development process. There is a great interest for bringing
these development techniques in the embedded systems industry [5, 6].

1.1.4 Distributed Real-time Embedded System
Most of the vehicular functions are developed as distributed real-time embed-
ded systems. In these systems, the functionality is distributed over many nodes.
Whereas, the nodes can be connected to five or more types of networks [7].
The software development of these systems is much more complex compared
to uniprocessor embedded real-time systems due to various reasons including
the distribution of functionality and real-time requirements on network com-
munications. The example of a modern premium car, that we discussed above,
provides a good example of an application of distributed real-time embedded
systems. The size of embedded software in a modern premium car may reach
up to 1 GB which may be realized by more than 2000 software functions, e.g.,
adaptive cruise control, intelligent parking assistance, brake-by-wire, steer-by-
wire and anti-lock braking. These functions may be allocated to about 70 to
100 Electronic Control Units (ECUs) that may be connected by more than five
different types of buses (or networks) [8]. Similarly, the software in a truck can
consist of as many as 2000 software functions that may be distributed over 45
ECUs [9].

When MBE and CBSE are used for the development of these systems, mod-
eling of communication infrastructure arises as a challenge. In the industry, the
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systems are built often using legacy (sub) systems. Legacy systems are previ-
ously developed systems and use predefined rules for communication. Fur-
thermore, the systems are often expected to use legacy network protocols for
real-time communication. A component technology for the development of the
systems should abstract application software from the communication infras-
tructure. Nevertheless, it should support the modeling and analysis of legacy
communications and legacy systems. It should also support accurate timing
analysis of distributed functions.

1.1.5 Response-time and Delay Analysis
The safety-critical nature of many distributed real-time embedded systems re-
quires evidence that the actions by the system will be provided in a timely
manner, i.e., each action will be taken at a time that is appropriate to the envi-
ronment of the system. Therefore, it is important to make accurate predictions
of the timing behavior of such systems. In order to provide evidence that each
action in the system will meet its deadline, a priori analysis techniques such as
schedulability analysis [10, 11, 12] have been developed by the research com-
munity. Response-Time Analysis (RTA) [10, 11, 12, 13] is a powerful, mature,
and well established schedulability analysis technique. It is a method to cal-
culate upper bounds on the response times of tasks or messages in a real-time
system or a network respectively. The holistic or end-to-end response-time and
delay analyses [14, 15] are schedulability analysis techniques which calculate
upper bounds on the response times and delays of event chains that are dis-
tributed over more than one node in the system. The end-to-end timing model
of the system should be available to perform the analysis. Ideally, a compo-
nent technology for the development of the systems should support automatic
extraction of such timing model.

1.1.6 Controller Area Network (CAN)
There are a number of real-time network protocols used in these systems.
Among them, Controller Area Network (CAN) [16] is one of the widely used,
especially in the automotive domain. In 2003, the International Organization
for Standardization (ISO) standardized CAN in ISO 11898-1 [17]. Accord-
ing to CAN in Automation (CiA) [18], more than two billion CAN controllers
have been sold until today. Out of this huge number, approximately 80% CAN
controllers have been used in the automotive domain. For example, there can
be as many as 20 CAN networks used in heavy vehicle architectures such as a
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modern truck, while the number of CAN messages transmitted over these net-
works can be over 6000 [9]. These facts and figures indicate the popularity of
CAN in the automotive domain. It is also used in other domains such as indus-
trial control, medical equipments, maritime electronics, production machinery,
and many others [19]. It is a multi-master, event-triggered, serial communica-
tion bus protocol supporting bus speeds of up to 1 Mbit/s. CAN with Flexible
Data-rate (CAN FD) [20] is a new protocol based on CAN that can achieve bus
speed of more than 1 Mbit/s. In this thesis, we focus only on CAN and some
of its higher-level protocols which are developed for various industrial appli-
cations. These include CAN Application Layer (CAL) [21], CANopen [22],
Hägglunds Controller Area Network (HCAN) [23], AUTOSAR communica-
tions [24], CAN for Military Land Systems domain (MilCAN) [25].

1.2 Problem Statement and Research Challenges
The model- and component-based development of software architecture for
real-time embedded systems in modern vehicles has had a surge in the last few
years. The majority of existing model- and component-based development ap-
proaches allow for structural and functional modeling. They do not support
execution modeling. The structural modeling is concerned with the structure
definition of requirements and higher-level architectural objects. The func-
tional modeling refers to the structured way of representing software functions
for the system to be modeled. Whereas, the execution modeling is concerned
with the modeling of run-time properties and requirements (e.g., end-to-end
deadlines, jitter, etc.) of software functions. The modeling of systems should
extend down to the execution level to allow precise control of resource utiliza-
tion and that timing requirements are not violated. However, providing such
a modeling support for distributed real-time embedded systems is very chal-
lenging because the functionality in these systems can be realized with more
than one execution model, e.g., separate execution models for the nodes and
networks. Today, one of the main challenges during the development of the
systems in the industry is to model and express timing-related information and
perform timing analysis [26, 27, 28].

One way to deal with these challenges is to use a component technology
that allows model- and component-based development of the systems with the
support for modeling, analyzing, predicting and modifying the execution be-
havior. Such a component technology should complement structural and func-
tional modeling with the modeling of execution requirements at an abstraction
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level close to the functional specification while abstracting the implementation
details. The component technology should support the expression of timing
related information and facilitate the identification of timing errors during the
development by rendering the modeled application for end-to-end timing anal-
ysis with ease and unambiguity.

However, building such a component technology raises many challenges.
One of the main reasons behind these challenges is that the development pro-
cess for these systems in academia and industry may be very different from
each other. In academia, the development process often starts with discussions
about models and functions [4, 5, 29, 30, 31, 32]. The models are assumed to
be platform independent. Further, it is assumed that the models and functions
will be deployed on specific platforms at a later stage. However, this way of
development for the systems is often not practiced in the industry, especially
in the vehicular domain. In the industry, most often, bottom-up development
approach is used as a lot of information, artifacts and solutions are reused from
other projects. The infrastructure and platform (e.g., machine, types of ECUs
and buses) for the system to be developed is already known. The traditional
process for the development of these systems in the industry starts with de-
signing the bus (or network) communication. In the early stage of industrial
development process, usually the focus is on finding the answers to the follow-
ing questions. How many busses will there be in the system? Which nodes
will be connected to which bus? How many messages will there be in the
system? Which messages will be sent by each node? After finding answers
to these questions, the focus is shifted towards the development of functions.
Thus, communications-oriented development process is used for the systems
and constitutes the state of the practice. By communications, we mean the
technology or infrastructure employed in doing communication. This type of
development process for the systems is the main focus of this thesis.

Within this context, we target the challenges concerned with the modeling
of real-time network communication and support for end-to-end timing analy-
sis. One such challenge is to support the modeling of legacy network commu-
nication and allow the use of legacy nodes in the systems. In order to ensure
that the system will behave in a timely manner during its execution, we need to
analyze tasks, messages and event chains in distributed transactions and predict
the end-to-end delays. The component technology for the industrial develop-
ment of the systems should support state-of-the-art real-time analyses such as
end-to-end response-time and delay analyses. In order to perform the analysis,
the end-to-end timing model of the system should be available. The extrac-
tion of the end-to-end timing model from the systems is also a challenge that
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we target. The end-to-end timing analysis should be able to analyze end-to-end
times in the systems that use realistic CAN controllers and communication pro-
tocols. The existing response-time analysis techniques do not support mixed
transmission patterns that are implemented by some higher-level protocols for
CAN used in the automotive industry. Extension of the existing analyses to
support these protocols is another challenge that we deal with in this thesis.

While the introduction of models into the development of the systems in-
creases efficiency in some parts of the engineering process, the models are
also cause of novel concerns. In particular, mismatch between structural and
semantic assumptions in modeling languages used at various abstraction lev-
els and in different phases during the development of the systems cause large
problems when design artifacts are transformed between modeling languages.

In the industry, productivity is hampered by incompatible tools and file-
formats, in conjunction with the need for non-trivial, manual and tedious trans-
lations between different model-formats. Moreover, these translations are done
in ad hoc fashion making the result of the translation unpredictable and poten-
tially altered in terms of semantics. There is a strong need to investigate how
to effectively and efficiently work with existing modeling languages for vehic-
ular embedded real-time systems. In this context, we focus on the challenges
that are faced when the end-to-end timing models are extracted from the sys-
tems that are developed and annotated with timing information with more than
one methodology and language at various abstraction levels and development
phases. Particularly, we target TIMMO methodology [26] and TADL2 lan-
guage [33] at higher abstraction level and the Rubus Component Model [34] at
lower abstraction level.

The research problem addressed in this thesis can be refined and formulated
into the following research challenges.

1. How to support the modeling of legacy network communication and us-
ing legacy nodes during the model- and component-based development
of distributed real-time embedded systems?

2. How to extract end-to-end timing models from component-based dis-
tributed real-time embedded systems that are built using the communi-
cations-oriented development processes?

2.5 While dealing with the first two research challenges, we discovered that
the existing worst-case response-time analysis for CAN does not support
mixed messages. These messages are partly periodic and partly sporadic.
They are implemented by some higher-level protocols for CAN used in
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the industry. This sub challenge can be formulated as follows. How
to analyze end-to-end times in the systems that use realistic CAN con-
trollers and protocols?

3. Given the timing model extraction method developed in response to the
second challenge, how can it be used at a higher abstraction level to
extract the end-to-end timing models from the systems?



Chapter 2

Technical Contributions

This thesis presents the development and implementation of new modeling and
timing analysis techniques which can be used for the state-of-the-practice de-
velopment of component-based vehicular distributed real-time embedded sys-
tems. The contributions in this thesis are organized in five parts. In the first
part, we introduce a new technique for modeling legacy network communi-
cation. In the second part, we present a method to extract end-to-end timing
models from the systems. In the third part, we identify a need for the exten-
sion of existing response-time analysis for CAN, and accordingly, we present
the extended analysis. In the fourth part, we provide a proof-of-concept imple-
mentation of the techniques developed in previous three parts. We also discuss
the challenges faced and corresponding solutions proposed during the imple-
mentation of these techniques in an industrial setup. Moreover, we perform
case studies to validate our techniques. Finally, in the fifth part, we broaden
the scope and usability of our techniques by providing a method to extract the
end-to-end timing models from the systems at a higher abstraction level. We
provide a summary of these contributions in the following sections.

Personal Contribution. The research work presented in these contributions is
done in collaboration with my supervisors Prof. Mikael Sjödin and Dr. Jukka
Mäki-Turja. I am the main contributor and first author of all the papers.

11
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2.1 Contribution 1: Modeling of Legacy Network
Communication

This contribution addresses first research challenge. We introduce a new ap-
proach for modeling real-time network and legacy communication in compo-
nent-based distributed real-time embedded systems. In order to show usabil-
ity of our modeling approach, we implement it by extending the existing in-
dustrial component model, i.e., the Rubus Component Model (RCM) [34].
By introducing special-purpose components to encapsulate and abstract the
communication protocols in the systems, we allow the use of legacy nodes
and legacy protocols in a component- and model-based software engineer-
ing environment. With the addition of these components, RCM is able to
not only model real-time network communication, but also support state-of-
the-practice development of the systems. The proposed extension also allows
model- and component-based development of new nodes that are deployed in
legacy systems that use predefined communication rules. These extensions
also enable adaptation of a node when communication rules change (e.g., due
to re-deployment in a new system or due to upgrades in the communication
system) without affecting its internal component design. The special-purpose
components can be automatically generated from the information about legacy
communication or from early design decisions about network communication.
A conceptual example of a two-node distributed real-time application modeled
with new components and objects namely Out software Circuit (OSWC), In
Software Circuit (ISWC) and Network Specification (NS) is depicted in Fig-
ure 2.1. Although RCM is selected for the proof-of-concept implementation,
the proposed extensions should be generally applicable for the extension of
several component technologies for the development of the systems that use a
pipe-and-filter style for components interconnection such as ProCom [29] and
COMDES-II [30]. This contribution is discussed in detail in Paper A.

2.2 Contribution 2: Extraction of End-to-end Tim-
ing Models

This contribution addresses second research challenge. The end-to-end res-
ponse-time and delay analyses are important activities during the development
of the systems. In order to perform the analysis, the end-to-end timing models
should be extracted from the systems. The extraction of these models can be
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challenging because the design and analysis models are usually built using dif-
ferent meta-models. We present a method to automatically extract such models
from the component-based systems to facilitate end-to-end response-time and
delay analyses. This method is built upon the modeling approach that we dis-
cussed in the first contribution. We discuss and solve the issues concerning the
model extraction such as extraction of unambiguous timing and linking infor-
mation from all nodes and networks in the system; and linking of event chains
in distributed transactions. For example, the linking information is captured in
the NS object shown by the curved arrows in Figure 2.1. The model extraction
method and the solutions of encountered problems may be applied to several
component technologies that use a pipe-and-filter style for components inter-
connection. The end-to-end timing model that we considered is also general
as it incorporates several real-time network protocols used in the automotive
domain. To show the applicability of our approach, we demonstrate the im-
plementation of the model extraction method in the analysis framework of an
existing industrial tool suite the Rubus-ICE [35]. This contribution is discussed
in detail in Paper A.
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Figure 2.1: Example of a two-node distributed real-time application modeled
with the new approach
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2.3 Contribution 3: Extension of the Worst-case
Response-time Analysis for Controller Area
Network

This contribution addresses a part of second research challenge identified as
sub challenge 2.5. To analyze communications in the systems, it is important
to find out whether the existing analysis is sufficient or extensions are required
to meet the industrial needs. In this work, we focus only on CAN and some
of its higher-level protocols. While attacking the first two research challenges,
we identified that the existing Worst-Case Response-Time (WCRT) analysis
for CAN does not support common message transmission patterns which are
implemented by some higher-level protocols used in the industry. The exist-
ing analysis calculates the response times of CAN messages that are queued for
transmission periodically or sporadically. However, there are a few higher-level
protocols based on CAN such as CANopen, HCAN and AUTOSAR commu-
nications that support the transmission of mixed messages as well. A mixed
message is partly periodic and partly sporadic, i.e., it can be queued for trans-
mission both periodically and sporadically. In other words, a mixed message is
simultaneously time and event triggered. Thus, it may not exhibit a periodic ac-
tivation pattern. In order to support the development of the systems employing
higher-level protocols based on CAN, we identify the need for the extension of
the existing WCRT analysis.

We extend the existing WCRT analysis for CAN to support mixed mes-
sages. We also extend the analysis for mixed messages while taking into
account limitations in CAN controllers such as abortable and non-abortable
transmit buffers. These extended analyses are discussed in detail in Paper B.
We further extend the WCRT analysis for mixed messages in CAN where some
CAN controllers use priority queues while others use First In First Out (FIFO)
queues. The extended analysis is discussed in detail in Paper C. Moreover,
we extend the WCRT analysis for mixed messages in CAN that are scheduled
with offsets and have arbitrary jitter and deadlines. The extended analysis is
discussed in detail in Paper D. All these extended analyses are applicable to any
higher-level protocol for CAN that uses periodic, sporadic and mixed transmis-
sion of messages. Figure 2.2 graphically depicts the relationship between the
existing and extended WCRT analyses for CAN.
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Figure 2.2: Graphical representation of the Response Time Analysis (RTA) and
its extensions as part of the contribution

2.4 Contribution 4: Proof-of-concept Implemen-
tation

In this contribution we validate our solutions to the first two research chal-
lenges. We develop a free graphical tool namely MPS-CAN1 analyzer and im-
plement the extended WCRT analyses for CAN in it. With the implementation
of the analyses, the tool is able to perform WCRT analysis for CAN while tak-
ing into account mixed messages, messages scheduled with offsets, messages
with arbitrary jitter and deadlines, various queueing policies (e.g., priority-
or FIFO-based), and limitations of transmit buffers in CAN controllers (e.g.,
abortable or non-abortable). The tool can also analyze network communica-
tions in heterogeneous CAN-based systems that may consist of different types
of ECUs supplied by different suppliers. We conduct a case study of a hetero-

1https://github.com/saadmubeen/MPS-CAN.
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geneous application from the automotive domain to show the usability of the
tool. Moreover, we perform a detailed evaluation of the implemented analyses.
This part of the fourth contribution explicitly addresses sub challege 2.5 and is
discussed in detail in Paper E.

In order to transfer the new modeling technique, timing model extraction
method and extended analysis (discussed in the previous three contributions)
to the industry, we need to validate them first. While validating our solutions,
we found out that the process of implementing and integrating state-of-the-art
real-time analysis with the existing industrial tool suite offers many challenges.
The implementer has to not only code and implement the analysis in the tool
suite, but also deal with several other issues. We discuss the implementation
of the end-to-end response-time and delay analyses as two individual plug-ins
for the existing industrial tool suite Rubus-ICE. The tool suite is used for the
development of software for vehicular embedded systems by several interna-
tional companies. As part of the end-to-end timing analysis, we implement the
existing as well as some of the extended analyses for CAN. The implemented
analysis is general as it supports the integration of response-time analysis of
various networks without a need for changing the algorithm for end-to-end
timing analysis. We describe and solve the problems encountered and highlight
the experiences gained during the process of implementation, integration and
evaluation of the analysis plug-ins for Rubus-ICE. We believe that most of the
experiences gained and solutions to the issues encountered in this work maybe
applicable when other complex real-time analysis techniques are implemented
in any industrial tool suite that supports a plug-in framework (for the integra-
tion of new tools) and component-based development of the systems. Finally,
we provide a proof of concept for all modeling approaches and extended anal-
ysis discussed in the first three contributions by modeling an automotive appli-
cation using the extended Rubus Component Model, and analyzing it with the
implemented analysis in Rubus-ICE. This contribution is discussed in detail in
Paper F.

2.5 Contribution 5: Extraction of End-to-end Tim-
ing Models at a Higher Abstraction Level

We take a step towards broadening the scope and usability of our techniques in
the first three contributions. The majority of existing model- and component-
based development approaches for the systems support the extraction of end-
to-end timing models at an abstraction level and development phase that is
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close to the system implementation [36, 29, 37, 38, 30, 32]. Furthermore, the
high-level timing analysis provided by existing approaches does not provide
high precision and is often not based on actual implementation of the system.
As a result, a high-precision end-to-end timing analysis cannot be performed
at higher abstraction levels. In the past few years, one of the focuses of several
large EU research projects, that involve both academia and industry, has been
on supporting the timing analysis at various abstraction levels and development
phases [26, 39, 28].

Extraction of the timing model at higher abstraction levels is challenging
mainly because not all timing information that is required to be captured in the
timing model is available. Moreover, mismatch and incompatibilities among
various methodologies, languages and tools that are used in different develop-
ment phases also add to the complexity of extracting the timing model. Since
complete timing information may not be available at higher levels, the timing
analysis results may not represent accurate timing behavior of the final system.
However, these results can provide useful information that can guide further
model refinement and implementation.

We envision the extraction of end-to-end timing model and performing
high-precision end-to-end timing analysis at higher levels of abstraction to be
state of the practice in the future. We believe, timing information will be for-
mally modeled at higher abstraction levels in the vehicular industry. In that
case, we need to extract the specified timing information at higher abstraction
levels and connect it to the implementation to generate the end-to-end timing
model. Otherwise, it can be too late to extract the timing model at lower ab-
straction levels that are close to system implementation.

We have experienced that timing information is modeled at higher abstrac-
tion levels in the vehicular industry. This may be carried out using SysML
language [40]. However, it is done mostly in an informal and textual way;
which cannot be used for any formal timing analysis. Today, TADL2 provides
the only viable formal method for modeling of timing information using timing
constraints at various abstraction levels. In order to extract a complete end-to-
end timing model and perform a high-precision timing analysis, TADL2 has to
be combined with a lower abstraction level execution modeling approach such
as RCM. We hope the industry will start using TADL2. If they do so, we can
reuse that information to perform high-precision end-to-end response-time and
delay analyses at a higher abstraction level.

We extend our model extraction method (from the second contribution)
to support the extraction of end-to-end timing models from the systems at a
higher abstraction level. At the higher level, the method extracts timing infor-
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mation from system models that are developed with EAST-ADL [41] using the
TIMMO methodology; and annotated with timing information using TADL2.
At the lower level, the method exploits RCM and its tool suite Rubus-ICE
to extract the timing information that cannot be clearly specified at the higher
level, e.g., trigger paths in distributed chains. However, it is not straightforward
to combine TADL2 with RCM due to several challenges such as unambiguous
transformation of TADL2 timing constraints in RCM; and unambiguous ex-
traction of control and data paths at the higher level. The main focus of this
contribution is to attack these challenges. Hence, we provide an interpreta-
tion of TADL2 timing constraints in RCM. Moreover, we propose extensions
in RCM for unambiguous transformation of TADL2 timing constraints. This
contribution is discussed in detail in Paper G.

A relationship among the research challenges, contributions and publica-
tions included in this thesis is depicted in Figure 2.3.
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Figure 2.3: Graphical relationship among the research challenges, contribu-
tions and publications

2.6 Discussion
We select Rubus (RCM and Rubus-ICE) to provide the proof-of-concept im-
plementation for our new modeling techniques and extended analysis for sev-
eral reasons such as its existing support for structural, functional and execution
modeling; capability for developing predictable and analyzable control func-
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tions with a support for modeling real-time properties and requirements; sep-
aration of interconnections between the functions in terms of data flow and
control flow; and automatic generation of run-time framework.

With the proposed extensions, RCM along with Rubus-ICE can be consid-
ered a suitable choice for the industrial development of the systems for many
reasons. For example, it complements the structural and functional modeling
with the execution modeling; supports communications-oriented development
process; enables the modeling of legacy communication and legacy systems;
models and specifies the timing related information easily; has a small run-
time footprint (timing and memory overhead); implements the state-of-the-art
research results; and has a strong support for development and analysis tools.

2.7 Impact of Contributions
The new approaches for modeling legacy network communication and extrac-
tion of end-to-end timing models may be suitable for other component models
that use a pipe-and-filter style for components interconnection. The end-to-end
timing model that we considered is also general as it incorporates several real-
time network protocols used in the automotive domain. The extended analysis
supports common message transmission patterns that are implemented by sev-
eral higher-level protocols used in the industry today. Further, the extended
analysis considers various queueing policies and limitation in practical CAN
controllers. The analysis engines support integration of the analysis of var-
ious real-time networks without a need for changing the holistic algorithm.
Most of the encountered issues, proposed solutions and gained experiences in
this work may provide guidance for the implementation of other complex real-
time analysis in any industrial tool suite that supports a plug-in framework and
component-based development of the systems.

The new release of RCM and Rubus-ICE (Version 4.0), which is already
in the industrial use, incorporates the contributions and results presented in
this thesis. Moreover, MPS-CAN analyzer (Version 0.3) includes the extended
analyses for CAN.
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Conclusions

3.1 Summary and Conclusions
In this thesis we introduced new techniques to provide a model- and component-
based support for communications-oriented development of vehicular distri-
buted real-time embedded control systems.

In response to the first research challenge, we proposed a new approach
for modeling legacy network communication in the systems. The proposed ap-
proach abstracts the implementation and configuration of communications in
the systems. It explicitly enables the communication capabilities of a node,
but hides the implementation or protocol details. Moreover, the new approach
allows model- and component-based development of new nodes that are de-
ployed in legacy systems that use predefined communication rules. It also en-
ables adaptation of a node when communication rules change without affecting
its internal component design. As a solution to the second research challenge,
we presented a method to extract end-to-end timing models from the systems
that are developed using the above modeling approach. We also discussed and
resolved various issues that are faced during the model extraction. The purpose
of extracting the end-to-end timing models is to support end-to-end response-
time and delay analyses of the systems. In response to the third research chal-
lenge, we broaden the scope of our techniques and methods by developing a
method to extract the end-to-end timing models at a higher abstraction level
and early parts of the development process.

We believe, these techniques may be suitable for several other model- and
component-based development technologies for distributed embedded systems

21
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that use a pipe-and-filter style for components interconnection. Moreover, they
can be used for any type of “inter-model signaling”, where a signal leaves one
model (e.g., a node, or a core, or a process) and appears again in some other
model.

While we were looking for solutions to the first two research challenges, we
identified a need for the extension of existing worst-case response-time anal-
ysis for CAN to support mixed messages that are partly periodic and partly
sporadic. These messages are implemented by several higher-level protocols
for CAN that are used in the industry today. We extended the existing analysis
which now supports mixed messages while taking into account offsets, arbi-
trary jitter and deadlines, various queueing policies (e.g., priority or FIFO),
and limitations of transmit buffers in the CAN controllers (e.g., abortable or
non-abortable). The extended analyses are applicable to any higher-level pro-
tocol or commercial extension of CAN that uses periodic, sporadic and mixed
messages. The extended analyses are able to analyze network communications
in heterogeneous CAN-based systems which may consist of different types of
ECUs (with respect to queueing policies and buffer limitations) supplied by
different Tier-1 suppliers. We implemented the extended analyses for CAN
in a free tool MPS-CAN analyzer. Using the tool we performed comparative
evaluation of the extended analyses in detail.

We provided a proof-of-concept implementation of our modeling and anal-
ysis approaches by extending the existing industrial component model RCM,
implementing the extended end-to-end response-time and delay analyses in
an industrial tool suite the Rubus-ICE, and conducting automotive-application
case studies. The analysis engines that we provide are able to predict impor-
tant execution characteristics of the system such as holistic response times and
delays without a need for tedious and expansive testing.

We believe, the tools implementing our modeling techniques and extended
analyses may prove helpful for the software development organizations in the
vehicular domain to decrease the costs for software development, configuration
and testing. Although we selected the platform from vehicular domain for the
proof-of-concept implementation, our techniques and methods can be equally
used in any other domain where distributed control functionality is involved.
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3.2 Future Work
In the future we plan to conduct industrial case studies to show the usability of
the timing model extraction method at various abstraction levels. An interest-
ing future research direction is to investigate and develop patterns that allow
transformation between several domain-specific modeling technologies in the
vehicular domain. In this context, we plan to bridge the semantic gap between
standard models and languages such as AUTOSAR and EAST-ADL; and/or
proprietary languages such as Simulink, Statemate and RCM. It would also be
interesting and useful to facilitate the exchange of timing analysis models and
tools between RCM and several other component models and tools, including
AUTOSAR-based tool chain. Another future work is to develop an optimized
offset assignment method for the systems that contain periodic as well as mixed
messages. In the future, the end-to-end response-time and delay analyses plug-
ins can be expanded by implementing and integrating the analysis of other
network communication protocols (e.g., Flexray and switched ethernet) within
the end-to-end analysis algorithms discussed in this thesis.
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Abstract

We propose a novel model- and component-based technique to support
communications-oriented development of software for vehicular distributed
real-time embedded systems. The proposed technique supports modeling of
legacy nodes and communication protocols by encapsulating and abstracting
the internal implementation details and protocols. It also allows modeling
and performing timing analysis of the applications that contain network traf-
fic originating from outside of the system such as vehicle-to-vehicle, vehicle-
to-infrastructure, and cloud-based applications. Furthermore, we present a
method to extract end-to-end timing models to support end-to-end timing anal-
ysis. We also discuss and solve the issues involved during the extraction of
these models. As a proof of concept, we implement our technique in the Rubus
Component Model which is used for the development of software for vehicu-
lar embedded systems by several international companies. We also conduct an
application-case study to validate our approach.
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4.1 Introduction
In most of the model- and component-based software development strategies
for automotive and other vehicular applications, models of the behavior of each
on-board function are developed and successively refined to reach the imple-
mentation of each node or Electronic Control Unit (ECU). In this refinement
process, the communications needed for each node are derived and a message
set for each on-board network is defined. Moreover, timing parameters and re-
quirements for each message are established. The majority of existing model-
and component-based development approaches for vehicular distributed real-
time embedded systems1 allow for structural and functional modeling. They
do not support execution modeling [1] which is concerned with the modeling
of run-time properties and/or requirements (e.g., end-to-end deadlines and jit-
ter) of software functions. The modeling of the systems should extend down
to the execution level to allow precise control of resource utilization and that
timing requirements are not violated when the system is executed. However,
providing such modeling support is very challenging because the functional-
ity in the systems can be realized with more than one execution model, e.g.,
separate execution models for the nodes and networks. Today, one of the main
challenges during the development of the systems in the industry is to model
and express timing related information and perform timing analysis [2].

One way to deal with these challenges is to use a component technology
that allows model- and component-based development of the systems with the
support for modeling, analyzing, predicting and modifying the execution be-
havior. Such a component technology should complement structural and func-
tional modeling with the modeling of execution requirements at an abstraction
level close to the functional specification while abstracting the implementation
details. The component technology should support the expression of timing
related information and facilitate the identification of timing errors during the
development by rendering the modeled application for end-to-end timing anal-
ysis with ease and unambiguity.

However, building such a component technology raises many challenges.
One of the main reasons behind these challenges is that the development pro-
cess for these systems in academia and industry may be very different from
each other. In academia, the development process often starts with discussions
about models and functions. The models are assumed to be platform indepen-
dent. Further, it is assumed that the models and functions will be deployed

1Throughout the paper, we use the terms system or application to refer to component-based
vehicular distributed real-time embedded system or application.
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on specific platforms at a later stage. However, this way of development for
the systems is often not practiced in the industry, especially in the automotive
or vehicle domain. The traditional process for the development of these sys-
tems in the industry starts with designing the bus (or network) communication.
The infrastructure for the system to be developed is already known. In the
early stage of industrial development process, usually the focus is on finding
the answers to the questions as follows. How many busses will there be in the
system? Which nodes will be connected to which bus? How many messages
will be there in the system? Which messages will be sent by each node? After
finding the answers to these questions, the focus is shifted towards the devel-
opment of functions. Thus, communications-oriented development process is
used.

An important class of emerging distributed applications is novel functional-
ity in road vehicles. These applications realize novel services based on vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. Both
V2V and V2I are expected to support novel applications for road-safety, traf-
fic efficiency, and driver/passenger comfort and entertainment. Already today,
there are examples of traffic related cloud-services, e.g., community map and
turn-by-turn navigation such as Waze2 and traffic-congestion information by
Google. However, to be successfully adopted, the development of these new
applications needs to be integrated in contemporary workflow for development
of vehicular functions. In most of the model- and component-based software
development strategies, there is often non-existing, or limited, support to model
network traffic originating from outside the vehicle. That is, traffic from V2V,
V2I, and other, e.g., cloud-based applications are not naturally modeled and
analyzed in existing approaches.

4.1.1 Goals and Paper Contributions
In order to provide a model- and component-based approach to support communi-
cations-oriented development of vehicular distributed real-time embedded sys-
tems, we target the following challenges in this paper.3

1. Modeling of legacy network communication.

(a) Use of legacy (previously developed) nodes.
(b) Development of new nodes that are deployed in legacy systems that

use predefined communication rules.
2http://www.waze.com
3This work is an extension of our previous work [3].
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(c) Adaptation4 of a node when communication rules change without
affecting its internal component design.

2. Extraction of end-to-end timing models from these systems.

3. Modeling and performing timing analysis of the applications that contain
network traffic originating from outside of the system.

In order to provide proof of concept, we realize this technique in the existing
industrial model the Rubus Component Model (RCM) [4]. We also conduct
the automotive-application case study to validate our approach.

4.1.2 Paper Layout
The rest of the paper is organized as follows. Section 4.2 discusses the back-
ground and related work. In Section 4.3, we discuss the research problem
in detail. In Section 4.4, we introduce a new approach for modeling legacy
network communication. In Section 4.5, we discuss a method to extract end-
to-end timing models. In Section 4.6, we present a case study. Section 4.7
concludes the paper and discusses the future work.

4.2 Background and Related Work

4.2.1 The Rubus Concept
Rubus is a collection of methods and tools for model- and component-based de-
velopment of dependable embedded real-time systems. Rubus is developed by
Arcticus Systems5 in close collaboration with several academic and industrial
partners. Rubus is today mainly used for development of control functionality
in vehicles by several international companies, e.g., BAE Systems Hägglunds6,
Volvo Construction Equipment7, Knorr-bremse8 and Mecel9. The Rubus con-
cept is based around RCM and its development environment Rubus-ICE (In-
tegrated Component development Environment) [5], which includes modeling

4We assume the adaptation (redeploying or upgrading) of a node is done offline. Dynamic
adaptation and reconfiguration of the system is not within the scope of our current work.

5http://www.arcticus-systems.com
6http://www.baesystems.com/hagglunds
7http://www.volvoce.com
8http://www.knorr-bremse.com
9http://www.mecel.se
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tools, code generators, analysis tools and run-time infrastructure. The overall
goal of Rubus is to be aggressively resource efficient and to provide means for
developing predictable, timing analyzable and synthesizable control functions
in resource-constrained embedded systems.

The Rubus concept jointly considers the following viewpoints during the
development. These viewpoints are also shown in Figure 4.1.

1. The viewpoint of the developer/designer.10

2. The viewpoint of the analysis framework.

3. The viewpoint of the run-time system.

Ericsson research Day 20101125

The development context

System Architecture

Analysis
FrameworkDeveloper

Run-time system

Automatic
translation

Synthesis

Designs

Execute

Figure 4.1: Three main viewpoints jointly considered in Rubus during the de-
velopment.

In the viewpoint of the developer, the software architecture of the applica-
tion is modeled in terms of software components and their interactions. This
viewpoint consists of tools that handle software complexity, support appro-
priate level of expressiveness, and provide abstraction mechanisms that hide
low-level details (such as source code).

In the viewpoint of the analysis framework, the software architecture is for-
mal enough to render itself to automated analysis (e.g., response-time analy-
sis). The analysis framework has the knowledge of the component architecture

10Developer refers to the application developer. We overload the terms “developer”, “designer”
and “user” throughout the paper.
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as well as the constraints and services provided by the run-time system. This
viewpoint comprises of tasks (which are run-time entities), their activations,
their interactions, and analysis models of tasks and messages. This viewpoint
hides the complexity from the developer by providing automated analysis tools
that extract the analysis models from the software architecture.

In the viewpoint of the run-time system, the synthesis takes (as input) the
architecture design and possibly some artifacts (such as priorities for a task
model) produced by the analysis framework, and maps it to the run-time sys-
tem. The synthesis tools use the task model attributes and the component ar-
chitecture, that is both syntactically and semantically correct, to generate code
for the run-time system. This viewpoint provides sufficient run-time services
to the components of the application while keeping a small footprint for the
run-time system. With this view, the entire component framework is provided
at development time, but only the parts that are used are mapped down to the
actual run-time system.

The Rubus Component Model (RCM)

The purpose of the component model is to express the infrastructure for soft-
ware functions, i.e., the interaction between the software functions in terms
of data and control flow. The control flow is expressed by triggering objects
such as internal periodic clocks, interrupts, internal and external events. One
important principle in RCM is to separate functional code and infrastructure
implementing the execution model. The infrastructure is synthesized from the
model.

In RCM, the basic component is called a Software Circuit (SWC). It is
the lowest-level hierarchical element in RCM and its purpose is to encapsulate
basic functions. The SWCs interact with each other through the use of trig-
ger and data ports. Trigger and data correspond to trigger flow and data flow
respectively. An SWC can be seen as a type, or a class, that can be instan-
tiated an arbitrary number of times. By separating functional code from the
infrastructure, RCM facilitates analysis and reuse of components in different
contexts (an SWC has no knowledge how it connects to other components).
Furthermore, the component model has a possibility to encapsulate SWCs into
software assemblies enabling the designer to construct the system at different
hierarchical levels.
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The execution semantics of software components (functions) is simply:

1. upon triggering, read data on data in-ports;

2. execute the function;

3. write data on data out-ports;

4. activate the output trigger.

The software architecture of an example system modeled with RCM is de-
picted in Figure 4.2. The example shows how components interact with exter-
nal events and actuators with regard to both data and triggering.
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Figure 4.2: Example of the architecture of a system modeled in RCM.

The Rubus Code Generator and Run-time System

Using the resulting software architecture of connected SWCs, the run-time sys-
tem maps SWCs to run-time entities; tasks. Each external event trigger defines
a task and SWCs connected through the chain of triggered SWCs (triggering
chain) are allocated to the corresponding task. All clock triggered “chains” are
allocated to an automatically generated static schedule that fulfills the prece-
dence order and other temporal requirements.

Within trigger chains, inter-SWC communication is aggressively optimized
to use the most efficient means of communication possible for each commu-
nication link. For example, there is no use of semaphores in point-to-point
communications within a trigger chain. Another example is sharing of mem-
ory buffers between ports when there are no overlapping activation periods.
This means that a buffer can be shared between two ports belonging to dif-
ferent SWCs if it can be guaranteed that these ports will never use the buffer
space at the same time. This is true in the case of a trigger chain because a task
early in the chain can never be active at the same time as a task late in the chain
(considering the deadlines of tasks are smaller than their respective periods).
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Allocation of SWCs to tasks and construction of schedule can be submitted
to different optimization criterion to minimize, e.g., response times for differ-
ent types of tasks, or memory usage. The run-time system executes all tasks on
a shared stack, thus eliminating the need for static allocation of stack memory
to each individual task.

The Rubus Analysis Framework

The Rubus model allows expressing real-time requirements and properties at
the architectural level. For example, it is possible to declare real-time require-
ments from a generated event and an arbitrary output trigger along the trigger
chain. For this purpose, the designer has to express real-time properties of
SWCs such as Worst Case Execution Times (WCETs). The scheduler will
take these real-time constraints into consideration when producing a sched-
ule. For event-triggered tasks, response-time calculations are performed and
compared to the requirements. The timing analysis supported by the model
includes tighter response-time analysis of tasks with offsets [6], response-time
analysis of Controller Area Network (CAN) [7, 8, 9], and distributed end-to-
end response time and delay analysis [10].

4.2.2 Related Work
There are many modeling technologies that support component-based develop-
ment of distributed systems, e.g., Distributed Component Object Model [11],
Common Object Request Broker Architecture (CORBA) [12] and Enterprise
JavaBeans (EJB) [13]. These models in their original form are not suitable for
the development of resource-constrained distributed embedded systems with
real-time requirements because they require excessive amount of computing
resources, have large memory footprint and have inadequate support for mod-
eling real-time communication. We focus on the component technologies that
are targeted towards the vehicular domain.

AUTOSAR

AUTOSAR (AUTomotive Open System ARchitecture) [14] is an industrial ini-
tiative to provide standardized software architecture for the development of
software in the automotive domain. In AUTOSAR, the application software is
defined in terms of Software Components (SWCs). The distribution of SWCs,
their virtual integration and communication at design time is handled by the
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Virtual Function Bus (VFB). Furthermore, VFB hides the low-level imple-
mentation and communication details at the design time. We list some of the
differences between AUTOSAR and RCM as follows.

• When AUTOSAR was being developed, there was no focus placed on
its ability to specify and handle timing-related information such as real-
time requirements and properties. On the other hand, these requirements
and capabilities were taken into account right from the beginning during
the development of the Rubus concept including RCM.

• AUTOSAR describes embedded software development at a higher level
of abstraction compared to RCM. A Software Circuit in RCM more re-
sembles to a runnable entity (schedulable element) compared to AU-
TOSAR SWC.

• Unlike AUTOSAR, RCM clearly distinguishes between the control flow
and the data flow among SWCs within a node.

• In RCM, special network interface components are used if SWCs require
inter-ECU communication; otherwise, SWCs communicate via data and
trigger ports. On the other hand, AUTOSAR does not differentiate be-
tween intra- and inter-node communication at modeling level. There are
no special components in AUTOSAR for modeling inter-node commu-
nication.

• AUTOSAR hides the modeling of the execution environment. On the
other hand, RCM explicitly allows the modeling of execution require-
ments, e.g., jitter and deadlines, at an abstraction level close to the func-
tional specification while abstracting the implementation details.

Despite these differences, there are some similarities between AUTOSAR and
RCM, e.g., the sender receiver communication mechanism in AUTOSAR is
very similar to the pipe-and-filter communication mechanism for components
interconnection in RCM. In conclusion, AUTOSAR is more focussed on the
functional and structural abstractions, hiding the implementation details about
execution and communication. Whereas, RCM is all about modeling, analysis
and synthesis of the execution environment of software functions. AUTOSAR
hides the details that RCM highlights.
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TIMMO, TIMMO-2-USE, TADL and TADL2

TIMing MOdel (TIMMO) [2] is a large EU research project with both aca-
demic and industrial partners. It is more academic driven. It is an initiative
to provide AUTOSAR with a timing model. The timing extensions proposed
in this project are included in the version 4.0 of AUTOSAR specification [15].
TIMMO describes a predictable methodology and a language, Timing Aug-
mented Description Language (TADL) [16], to express timing requirements
and constraints during all design phases in the development of automotive em-
bedded systems. TADL is inspired by Modeling and Analysis of Real Time
and Embedded systems (MARTE) [17] which is a UML profile for model-
driven development of real-time and embedded systems. TIMMO development
methodology makes use of structural modeling provided by EAST-ADL [18]
which is a domain specific architecture description language targeted towards
the automotive domain. TIMMO methodology and its model structure abstract
the modeling of communication at implementation level of EAST-ADL where
AUTOSAR is used. Hence, the modeling of intra- and inter-node communica-
tion mechanisms are the same as that of AUTOSAR. Both TIMMO method-
ology and TADL have been evaluated on prototype validators. To the best of
our knowledge there is no concrete industrial implementation of the results of
TIMMO project.

TIMMO-2-USE [19], another large EU research project, is a followup on
TIMMO project. In this project, TADL2 language has been introduced which
includes a major redefinition of TADL. TADL2 supports the AUTOSAR ex-
tensions regarding timing model. Apart from the redefinition of TADL, this
project provides new algorithms, tools, and a methodology to model advanced
timing information at different levels of abstraction. The use cases and val-
idators indicate that the project results are in compliance with the AUTOSAR-
based tool chain [15]. Since this project is recently finished, it may take some
time for its results to become mature and find their way in the industrial use.
Arcticus Systems has been involved in TIMMO-2-USE project as one of the
industrial partners.

In conclusion, TIMMO methodology and TADL focus on expressing tim-
ing information. They are initiatives to annotate AUTOSAR with a timing
model. This will be hard to accomplish all the way since AUTOSAR aims at
hiding implementation details of execution environment and communication
through the VFB. At the modeling level, there is no information in AUTOSAR
to express low-level details, e.g., linking information. These details are neces-
sary to extract the timing model from the architecture. There is no focus in this
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initiative on how to extract this information from the model or perform tim-
ing analysis or synthesize the run-time framework. In our view, timing model
means extracting enough information to be able to perform certain kind of tim-
ing analysis, e.g., end-to-end response-time analysis.

ProCom

ProCom [20], developed as part of a research project at Mälardalen University,
is a two-layered component model for the development of distributed embed-
ded systems. At the upper layer, called ProSys, it models a system with concur-
rent subsystems that communicate with each other by means of asynchronous
messages. At the lower layer, called ProSave, a subsystem is internally mod-
eled in terms of functional components which are implemented as a piece of
code, e.g., a C function. ProCom is inspired by RCM and there are a number
of similarities between the ProSave modeling layer and RCM:

• components in both ProSave and RCM are passive,

• both models clearly separate data flow from control flow among their
components,

• both models use pipe-and-filter style of communication mechanism for
components interconnection.

However, ProCom does not differentiate between intra- and inter-node commu-
nication which is unlike RCM. ProCom hides communication details, whereas
RCM lifts them up to the modeling level. It will be very hard in ProCom to
extract the timing model and perform end-to-end timing analysis at the level
where it is done in RCM.

COMDES-II

COMDES-II [21], developed at the University of South Denmark, provides
a component-based framework for the development of distributed embedded
control systems. It models the architecture of a system at two levels. At upper
level, an application is modeled as a network of actors that are active compo-
nents. Actors communicate with each other by sending labeled messages. At
the lower level, the functionality of an actor is modeled in terms of Function
Blocks which are passive components similar to the SWCs in RCM. Unlike
RCM, COMDES-II employs signal-based communication for both intra- and
inter-node interactions. COMDES-II does not include explicit components to
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model network communication. Despite few differences, there are a number of
similarities between RCM and COMDES-II. However, it will be very hard in
COMDES-II to extract the timing model and perform end-to-end timing anal-
ysis at the level where it is done in RCM.

Middleware-based Approaches

Object Management Group defined middleware technologies such as Real-
Time CORBA, minimum CORBA and CORBA lightweight services for the
development of real-time and distributed embedded systems [22]. The run-
time framework of Real-time CORBA is heavyweight. On the other hand,
RCM has a small run-time footprint, i.e., timing and memory overhead. In
RCM, we do the timing analysis and actually synthesize the application as run-
time and communication platform efficient as possible. We believe, due to high
resource requirements at run-time, Real-time CORBA is not efficiently usable
in the type of applications that RCM focuses on.

There are other middleware solutions such as iLand project [23] in which
a middleware-based framework is introduced to support predictable and time-
bounded reconfiguration at run-time for the service-oriented distributed real-
time systems. The methodology in this work supports composition of dis-
tributed applications based on the concept of services while taking into account
real-time properties and requirements. This work focuses on service-oriented
development, whereas our approach is based on component-based develop-
ment. The framework in [23] relies on run-time mechanisms such as dual-band
priority assignment [24] for dynamic resource management and reconfigura-
tion. In [25], a component-based modeling approach is introduced that enables
dynamic replacement of components at run-time while preserving the tempo-
ral properties of the system. On the other hand, we do not consider dynamic
reconfiguration and replacement of components in our work. Most of these
techniques have been validated for soft real-time systems in the multimedia-
applications domain. However, our approach mostly focuses on hard real-time
distributed embedded systems in the vehicular domain.

4.3 Problem Statement

To provide a model- and component-based approach to support communi-
cations-oriented development of the systems, we target the following issues.
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4.3.1 Modeling of Legacy Network Communication
In an ideal scenario, it should be possible to automatically generate the com-
munication from the design model for each distributed real-time application.
However, this is often not the practice in the industry because of presence of
legacy communications and legacy systems. These systems have their own
predefined rules for communication. In order to support the modeling of these
systems, the implementation details must be abstracted; the communication
protocols must be encapsulated and abstracted; and adaptation of a node must
be supported when communication rules change (e.g., due to re-deployment in
a new system or due to upgrades in the communication system) without affect-
ing its internal component design. This problem can be formulated as: how
to model legacy network communication and allow the use of legacy nodes to
support the communications-oriented development processes for component-
based distributed real-time embedded systems?

4.3.2 Issues Concerning the Extraction of End-to-end Tim-
ing Model

In order to ensure that the system will behave in a timely manner during its
execution, we need to analyze tasks, messages and event chains in distributed
transactions and predict the end-to-end delays. For this purpose, the end-to-end
timing model should be unambiguously extracted from the modeled applica-
tion. Moreover, the distributed transactions in the applications should be un-
ambiguously identified, extracted and linked. The distributed transactions may
consist of trigger chains, data chains or a combination of both. The first SWC
in a trigger chain is triggered independently, while the rest of the SWCs are
triggered by their respective predecessors as shown in Figure 4.3 (a). Whereas,
each SWC in a data chain is triggered independently as shown in Figure 4.3 (b).
A mixed chain is a combination of both trigger and data chains as shown in Fig-
ure 4.3 (c). The end-to-end timing model should include linking and mapping
information of all these chains. The model should also identify the type of
each chain because different timing constraints are specified on different types
of chains [26]. Furthermore, data chains require different end-to-end timing
analysis compared to trigger chains [10].

The linking and mapping problem is common in all types of chains. For
simplicity, we consider the system which is modeled with only trigger chains
as shown in Figure 4.4. There are two nodes in the system with three SWCs
in node A and four SWCs in node B. SWCs communicate with each other by
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Figure 4.3: Example of (a) Trigger chain (b) Data chain (c) Mixed Chain.

using both inter- and intra-node communication. The intra-node communica-
tion takes place via connectors. Whereas, the inter-node communication takes
place via a real-time network to which the nodes are connected. One trigger
chain that is activated by a clock consists of four SWCs namely SWC1, SWC2,
SWC4 and SWC5. We regard this chain as distributed trigger chain because
it is distributed over more than one node. It is identified with the solid-line
arrow in Figure 4.4. In this chain, a clock triggers SWC1 which in turn triggers
SWC2. SWC2 then sends a signal to the network. This signal is transmit-
ted over the network in a message (frame11) and is received by SWC4 at the
receiver node. SWC4 processes it and sends it to SWC5. The time elapsed
between the event trigger at input of the task corresponding to SWC1 and pro-
duction of the response of the task corresponding to SWC5 is referred to as the
holistic or end-to-end response time of the distributed chain and is identified in
Figure 4.4. The second distributed trigger chain that is activated by an external
event consists of three SWCs namely SWC3, SWC6 and SWC7. It is identified
by the dashed-line arrow in Figure 4.4.

There may not be direct triggering connections between any two neigh-
boring SWCs in the chain which is distributed over more than one node, e.g.,
SWC2 and SWC4 in Figure 4.4. In this case, SWC2 communicates with SWC4
by sending signals over the network. Here, the problem is that when a trigger
signal is produced by SWC2, it may not be sent straightaway as a message to
the network. A message may combine several signals, and hence, there may
be some waiting time for the signal to be sent to the network. The message
may be sent periodically or sporadically or by any other rule defined by the
underlying network protocol. When these trigger chains are modeled using the
component-based approach, it is not straightforward to link them to extract the
end-to-end timing model. For example, if a message is received at node B then
the following information should be available to correctly link the received
message in the chain: the ID of the sender node; the ID of the task corre-
sponding to SWC that generated this message; the ID of the destination node;

11We use the terms message and frame interchangeably because we only consider messages that
fit into one frame.
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and the ID (s) of the task (s) corresponding to SWC (s) that should receive this
message. In order to get a bounded end-to-end delay, a more important ques-
tion is when and who triggers the destination SWC when a message is received
at the destination node.

Model of a Distributed Real-time Embedded Application

Physical Network Communication

Physical Bus (Frames)

Node A Node B

SWC1 SWC2 SWC4 SWC5

SWC6 Inside the
Model

Outside the
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Ext
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Figure 4.4: Example of distributed trigger chains.

The existing modeling components in RCM do not provide enough sup-
port to link and extract the corresponding timing information of distributed
chains. Therefore, special objects in the component technology are needed to
provide the linking information of distributed chains to extract end-to-end tim-
ing information. Further, there is a need to model mapping between signals
and messages and vice versa. SWCs inside a node communicate via signals,
whereas they communicate via messages if located on different nodes. More-
over, there is a need to model exit and entry points for RCM models. An exit
point is where a message (data) leaves the model and is transmitted according
to the protocol-specific rules of the network. Similarly, an entry point is where
a message enters the model from the model of the network or any other model.
The reason for the need to model exit and entry points for RCM models is to get
the bounded delays for distributed chains. The model of entry and exit points
will support the use of nodes developed using RCM with the nodes developed
by other component technologies.

The problem discussed in this subsection can be formulated as: how to
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extract end-to-end timing models from component-based distributed real-time
embedded systems that are built using the communications-oriented develop-
ment processes? We believe that the issues discussed in this subsection may
occur during the development of any other component model for distributed
real-time embedded systems that uses the pipe-and-filter communication mech-
anism for components interconnection, e.g., ProCom [20] and COMDES [21].
The problem of linking distributed chains may also exist in any type of “inter-
model signaling”, where a signal leaves one model (e.g., a node, or a core, or a
process) and appears again in some other model.

4.3.3 Modeling and Timing Analysis of “Outside Traffic”
The problem arises when the requirements dictate the modeling and end-to-end
timing analysis of the system at a stage where the models of some ECUs may
not be available. However, the signals and messages which these missing ECUs
are supposed to send and receive have been decided. In such a system, the net-
work is assumed to contain “outside traffic”, i.e., the messages whose sender
nodes are not developed yet. This “outside traffic” could come from exter-
nal services (e.g., V2V, V2I, and other cloud-based applications), from legacy
nodes that lack proper behavior models, or from crude preliminary models of
nodes that have not been completely modeled yet. Regardless of source, it is
important to be able to analyze end-to-end timing behavior of vehicle internal
functions, while taking into account the outside generated traffic. Similarly,
the available ECUs may send messages via network to the nodes that will be
available at a later stage. Some reasons behind these requirements are to sup-
port design space exploration, allow fine tuning of the system with respect to
real-time requirements and detection of timing errors.

There exist timing dependencies among messages and their sender and re-
ceiver tasks. A message inherits some timing properties from its sender task,
e.g., transmission type and period. If the sender task is triggered periodically
then the message it sends is also periodic. Further, the message inherits period
from its sender task. Similarly, if the sender task is activated sporadically then
the corresponding message is sporadic and the message inherits inhibit time
from the sender task. The inhibit time is the minimum amount of time that
should elapse between two consecutive transmissions of a sporadic message.
In the case of mixed transmission mode, the message inherits both period and
inhibit time from its sender [9]. When the systems are analyzed, each message
is assumed to inherit the release jitter from its sender (attribute inheritance
[27]). For the messages whose sender tasks are unknown (because the sender
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ECUs are not available yet or the network traffic is generated from outside of
the model), these properties must be extracted in the timing model. Otherwise,
the end-to-end timing analysis of these systems cannot be performed. The
problem discussed in this subsection can be formulated as: how to model and
timing analyze the applications that contain network traffic originating from
outside of the system?

4.4 Modeling of Legacy Network Communication
We introduce a new modeling entity the Network Specification to represent
the model of communication in a physical network. In order to abstract the
implementation of communications in a node, we propose two special-purpose
modeling entities namely Out and In Software Circuits for each frame that a
node sends to and receives from the network respectively.

4.4.1 Network Specification (NS)
It is the model representation of a physical network. There is one NS for each
network protocol. It consists of two parts, one is independent of the underlying
communication protocol while the other is protocol dependent. The protocol-
independent part defines messages and the data-elements mapped to them. A
message is an entity that is used to send information from one node to another
via network. Moreover, the protocol-independent part of the NS describes mes-
sage properties such as a message ID, a unique sender node ID, a list of receiver
nodes IDs and an ordered set of signals included in the message. For example,
a signal in RCM has a name, data type, resolution and real-time properties. The
protocol-independent part of NS also contains the list of nodes in the system.

The protocol-dependent part of the NS is uniquely defined for each proto-
col, e.g., it will be different for different higher-level protocols for Controller
Area Network (CAN) [28] such as CANopen [29], Hägglunds Controller Area
Network (HCAN) [30] and CAN for Military Land Systems domain (MilCAN)
[31]. It defines the behavior semantics of each message according to the net-
work communication protocol. It contains complete information of all frames
which are sent to and received from the network. Moreover, it describes the
frame properties. A frame is a formatted sequence of bits that is actually trans-
mitted over the network. In RCM, a frame is a collection of RCM signals.

The frame properties described by the protocol-dependent part of the NS
(e.g., for the CANopen protocol) include an identifier (a reference to the corre-
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sponding message in the protocol-independent part), a priority, a transmission
type (e.g., different types of message transmission in the CANopen protocol), a
sender node ID, a list of receiver nodes IDs, whether the frame is an IN frame
or an OUT frame, a period (period with which a message is sent in the case
of periodic transmission), an inhibit time (minimum time between successive
transmission of a message in the case of one of the asynchronous transmis-
sion types in CANopen), SYNC period (time between SYNC messages sent
by the CANopen SYNC master), and real-time requirements (e.g., message
deadline). Moreover, it also specifies the bus speed. The transmission type of
a frame can be periodic, sporadic or mixed (transmitted periodically as well as
sporadically) [9].

In RCM, the components inside a node communicate with each other via
data and control signals. However, if a component on one node communicates
with a component on another node via a network then the signals are packed
into the frames. The frames are then transmitted over the network. Here, some
questions arise concerning the communication in the network. How are signals
mapped to messages? How are the signals packed into the frames? How are
the signals encoded into the frames at the sender node? How are the signals
decoded from the frames and sent to the respective SWCs at the receiver node?
How many signals are there in each frame? All rules concerning the answers
to these questions are specified in the Signal Mapping. The Signal Mapping
is a unique object for each protocol for network communication and is an in-
tegral part of the protocol-dependent part of the NS. The Signal Mapping also
describes the length of each signal in a frame, the type of signal encoding in a
frame (e.g., signed or unsigned 2’s complement), and maximum age of a signal
guaranteed by the sender.

4.4.2 Out Software Circuit (OSWC)
It is the model representation of signals in an outgoing message to the network.
Basically, it is a Software Circuit which denotes the data that leaves the model.
There is one OSWC in a node for every outgoing frame on the network. Each
OSWC describes the signals that can be sent in a particular frame. A frame
contains zero or more signals. The OSWC has only one trigger in-port and at
least one data in-port. Each data in-port is associated with one signal in the NS.
Therefore, the number of data in-ports may vary depending upon the number
of signals packed in the frame. The OSWC has no data and trigger out-ports.
However, an optional trigger out-port can be used. It uses protocol-specific
rules, specified in the protocol-specific part of the NS, while encoding data
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and mapping signals to a frame. In this way, it provides a clear abstraction to
the SWCs that send signals to one of its data in-ports. Thus, SWCs are kept
unaware of the protocol-specific details such as signal-to-frame mapping, data
type encoding and transmission patterns of frames. The conceptual model of
the OSWC is illustrated in Figure 4.5 (a), whereas its RCM model is shown in
Figure 4.5 (b).

4.4.3 In Software Circuit (ISWC)
It is the model representation of signals in an incoming message from the net-
work. Basically, it is a Software Circuit which denotes the data that enters
the model. There is one ISWC component in a node for every frame received
from the network. It describes all the signals that are contained in a received
frame that is associated to it. The ISWC component has one trigger out-port
that produces a trigger signal every time the component is executed. There is at
least one data out-port in the ISWC. Each data out-port is associated with one
signal in the NS. Therefore, the number of data out-ports may vary depending
upon the number of signals contained in the received frame. There are no data
in-ports in the ISWC. It has one trigger in-port which is triggered every time a
frame arrives from the network. When a frame arrives at a node, the physical
network drivers and protocol-specific implementation of the ISWC extract the
signals (zero or more signals per frame) and encode their data in the RCM data
type. When the signal (s) is delivered, the data is placed on the data port which
is connected to the data in-port of the destination SWC (the linking and map-
ping information is provided in the NS), and the corresponding trigger port
is triggered. Figures 4.5 (a) and 4.5 (a) graphically illustrate the conceptual
and RCM models of the ISWC respectively. It should be noted that the devel-
oper can specify timing parameters such as execution times for the OSWC and
ISWC.

The models of a node, a network, a signal database and a signal in RCM
are shown in Figures 4.6 (a), (b), (c) and (d) respectively. The signal database
object corresponds to the Signal Mapping which is part of the NS (as discussed
in Section 4.4.1). It contains all the signals that are sent over the network.
Each signal in the signal database is linked to one or more messages. The
model of a message along with the list of user-defined properties is shown
in Figure 4.6 (e). The developer specifies only the name, priority, data size,
value and type of identifier (in the case of CAN) of the message. The message
automatically inherits jitter, transmission type and period or inhibit time or
both from the sender OSWC.
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Consider an example of a node in a distributed real-time embedded applica-
tion modeled with the introduced objects as shown in Figure 4.7. Let the node
be connected to the CAN network. The upper half of Figure 4.7 represents
the model of a node, whereas the lower half represents the physical commu-
nication including the CAN controller and network. There are two grey boxes
outside the model called CAN SEND and CAN RECEIVE that are placed just
below the sets of OSWCs and ISWCs respectively. These grey boxes are spe-
cific for each network protocol. The frames that leave the model (sent to CAN
SEND) are denoted by S (Send), e.g., S1, S2 and S3. Similarly all the frames
that enter the model (received from CAN RECEIVE) are denoted by R (Re-
ceive), e.g., R1 and R2. All signals that are sent in the frame S1 are provided
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at the data in-ports of OSWC1. These signals are mapped and encoded into S1
by OSWC1 according to the protocol-specific information available in the NS.
Once the frame is ready, it leaves the model as it is sent to the grey box CAN
SEND. In this example, this grey box represents a CAN controller in the node
which is responsible for physical transmission of this frame over the network
according to the arbitration and communication rules specified by the CAN
protocol.

Model Representation of OSWC and ISWC in one of the Nodes in 
a Distributed Embedded System
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Figure 4.7: Model of a node using OSWCs and ISWCs for network communi-
cation.

When a frame arrives at the receiving node, it is transferred by the network
drivers to the CAN RECEIVE grey box which is responsible for raising an in-
terrupt request and passing the frame to the corresponding ISWC. In this case,
the TrigInterrupt object in RCM corresponding to the interrupt is connected to
the in-port of the ISWC. If CAN drivers use polling-based processing instead
of interrupts then the in-port of the ISWC is connected to the clock, where
clock period is set equal to the polling period. Upon receiving the frame, the
ISWC decodes it, extracts signals from it, places the data on the corresponding
data port (connected to the data in-port of the destination SWC), and triggers
the corresponding trigger port by using the linking information available in the
NS. It should be noted that when the OSWC is triggered, it executes the re-
quired functionality (e.g., mapping of signals to a message) and then the data
(message) is transferred from the RCM model of node to the network con-
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troller or another model of communication network. Therefore, OSWC also
represents the model of an exit point for RCM models. Similarly, ISWC com-
ponent represents the model of an entry point for RCM models. Using our
new approach, nodes can be developed without explicit knowledge about the
communication configuration.

4.4.4 Automatic Generation of the OSWC and ISWC Com-
ponents

Both OSWC and ISWC can be automatically generated from the NS by a Net-
work Configuration Tool. The input to this tool is the protocol-specific infor-
mation about the network communication and the linking information of tasks
in all distributed chains (i.e., trigger, data and mixed) present in the applica-
tion. This information is provided from the configuration files that correspond
to the NS. The output of this tool is a set of automatically generated OSWCs
and ISWCs for each node in the network. This tool also carries out mapping
from the NS to the OSWC and ISWC and vice versa. One of the main purpose
of our modeling technique is to use legacy components, however, it can also
be used the other way around. That is, the protocol-independent part of the NS
can be automatically generated from the models of the OSWC and ISWC from
an existing system.

4.4.5 Support for Modeling “Outside Traffic”
A solution to the problem (discussed in Section 3.3) could be using the model
of a dummy sender node in place of the ECU that is not available but deci-
sions on the messages it sends are already taken. The only purpose of this
node is to encode and pack signals into messages and send them to the net-
work. Similarly, a dummy receiver node can be used to receive messages in
place of a missing ECU. Such a solution can be realized in RCM with the
models of sender and receiver nodes that contain one OSWC and one ISWC
for every message they send and receive respectively. However, this solution
is impractical as it adds design complexity to the system. Moreover, it adds an
extra modeling and testing overhead on the developer because there are several
modeling and specification steps involved when a node is modeled.

The problem can be solved in a better way by introducing a special type of
message called stand-alone message. This message supports the modeling of
“outside traffic”. It does not bear any association with the OSWC component.
This means, it does not have any sender task inside the model of the system.



56 Paper A

However, there is an option for the user to associate this message to any number
of ISWCs, i.e., it can be received by any number of tasks. Apart from the
name, priority, data size, value and type of identifier (user-defined properties
for a regular message); it is also possible for the user to specify the transmission
type and corresponding timing parameters (period, inhibit time or both) for this
message. The transmission type of a message is a very important parameter
because the network timing analysis is dependent upon it especially in the case
of CAN and its higher-level protocols. For example, if there are only periodic
and sporadic messages in the system then one type of timing analysis is used
such as [7]. On the other hand, if there is at least one mixed message in the
system then a different timing analysis (i.e., response-time analysis for mixed
messages) is used [9, 32, 33].

The user can also specify release jitter for the stand-alone message. The
release jitter may either be equal to the difference between the estimated worst-
and best-case response times of the sender (belonging to the node that is not
available) or zero if these response times cannot be estimated at this stage. The
extra user-defined information in the case of the stand-alone messages is vital
for the network timing analysis, and hence, for the end-to-end timing analysis.
The standalone message along with the list of its user-defined properties is
shown in Figure 4.8. The dark vertical stripes on both of its sides differentiate it
from the regular message in RCM. This message is treated differently from the
regular message at the attribute inheritance step by the holistic timing analysis
algorithm [27, 10].

 

 

 

 

 

Figure 4.8: Model of a stand-alone message with the list of user-defined prop-
erties.
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It should be noted that the list of user-defined properties of a stand-alone
message (see Figure 4.8) is more general and includes user-defined properties
of a regular message (see Figure 4.6 (e)). One may think of using the user-
defined properties in Figure 4.8 consistently for all types of messages. How-
ever, this is not practical mainly because of two reasons. First, the timing infor-
mation extracted from the modeled application may be redundant. That is, the
transmission type and corresponding period and inhibit time will be extracted
from the user-defined input as well as from the sender task. This redundancy
may result in the extraction of ambiguous end-to-end timing model. Informa-
tion duplication can lead to inconsistency in the model. Second, it will add
extra complexity and burden on the developer to specify too much informa-
tion during the modeling. Our intension is to extract unambiguous end-to-end
timing information and keep things as simple as possible for the developer.

4.5 Extraction of End-to-end Timing Models
In order to ensure all timing requirements are met, the modeled application
should render itself to the end-to-end timing analysis. For this purpose, the
end-to-end timing model of the application should be available.

4.5.1 End-to-end Timing Model
This model consists of timing properties, requirements and dependencies con-
cerning all tasks, messages, task chains and distributed transactions in the sys-
tem under analysis. It consists of the following sub models:

1. System timing model

(a) Node timing model

(b) Network timing model

2. System linking model

System Timing Model

This model is composed of node and network timing models.

1) Node timing model. This model contains node-level timing information.
We consider the model that is based on the transactional task model (i.e, tasks
with offsets ) introduced by [34] and later on, extended by many researchers,



58 Paper A

e.g., [35, 36]. A node, �, consists of a set of k transactions �1, . . . ,�k. Each
transaction �i is activated by mutually independent events, i.e., the phasing be-
tween the events is arbitrary. The activating events can be a periodic sequence
of events with a period Ti. In case of sporadic events, Ti denotes the minimum
inter-arrival time between two consecutive events.

There are |�i| tasks in a transaction �i. Each task in �i may not be activated
until a certain time, called an offset, elapses after the arrival of the external
event. By task activation we mean that the task is released for execution. A
task is denoted by ⌧ij . The first subscript, i, specifies the transaction to which
this task belongs and the second subscript, j, denotes the index of the task
within the transaction. A task, ⌧ij , is defined by the following attributes.

• Cij denotes the worst-case execution time of the task.

• Oij denotes the offset of the task.

• Dij specifies the optional deadline of the task.

• Jij denotes the maximum release jitter.

• Bij represents the maximum blocking time which is the maximum time
the task has to wait for a resource that is locked by a lower priority task.
In order to obtain the blocking time for a task, a resource sharing proto-
col, e.g., Stack Resource Policy (SRP) [37] or Priority Ceiling Protocol
(PCP) [38], that bounds the blocking time must be used.

• Pij denotes the priority of the task.

• Rij denotes the worst-case response time of the task.

In this model, there are no restrictions placed on offset, deadline or jitter,
i.e., they can each be either smaller or greater than the period.

2) Network timing model. This model contains network-level timing informa-
tion of the system. A network consists of a number of nodes that are connected
through a real-time network. Currently, RCM supports CAN and its higher-
level protocols such as CANopen, MilCAN and HCAN. However, it can be
easily extended to support other protocols such as Flexray [39]. In this model,
each message m has the following attributes.

• ID
m

denotes a unique identifier.

• FRAME TYPE specifies whether the frame is a Standard or an Ex-
tended CAN frame.
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• TRANSMISSION TYPE specifies whether the message is periodic or
sporadic or mixed (both periodic and sporadic).

• P
m

denotes unique priority.

• C
m

specifies the transmission time.

• J
m

denotes the release jitter. Usually, it is inherited from the task that
queues m .

• s
m

denotes the data payload in each message. It ranges from 0 to 8 bytes
in a CAN message.

• T
m

specifies the period of a message in the case of periodic transmission.
For a sporadic message, MINT

m

is used which refers to the minimum
time that should elapse between the transmission of any two messages.
For a mixed message, both T

m

and MINT
m

are specified.

• B
m

denotes the blocking time of the message. It refers to the maximum
amount of time during which this message can be blocked by the lower
priority messages.

• R
m

denotes the worst-case response time.

System Linking Model

In distributed embedded systems, there exist chains of components (tasks) that
may be distributed over more than one node. A task chain consists of a num-
ber of tasks that are in a sequence and have one common ancestor. A task in
a chain may receive trigger, data or both from its predecessor. Two neighbor-
ing tasks in a distributed transaction may reside on two different nodes, while
the nodes communicate with each other via network. When there are chains
in the system, the end-to-end timing model should not only contain timing
related information but also the linking information among all tasks and mes-
sages within each distributed chain. All mapping and linking information of
distributed chains is extracted into the system linking model.

4.5.2 Method to Unambiguously Extract and Link Distributed
Chains

We provide a method to identify, extract and link distributed chains from the
RCM models of component-based distributed real-time systems.
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Extraction of Unambiguous Timing Information

The end-to-end timing information that is extracted from all tasks, messages
and distributed chains can be divided into two categories. The first category
corresponds to the timing information that is provided by the user in the mod-
eled application, e.g., most of the task and message attributes discussed in Sec-
tion 4.5.1. Whereas, the second category corresponds to the timing information
which is not directly provided by the user but has to be extracted from the mod-
eled application. For example, release jitter for a message. It is inherited as the
difference between the worst- and best-case response times of the sending task.
Similarly, message transmission type, message period and inhibit times are of-
ten not specified by the user, rather they are inherited from the sender tasks.
Hence, these parameters must be extracted from the modeled application and
added in the timing model. We assign period or inhibit time to the message
which is equal to the period or inhibit time of its sender task. If the sender task
is activated by a clock, we assign periodic transmission type to the message.
Similarly, if the sender task is activated by a sporadic event then we assign spo-
radic transmission type to the message. However, if the sender task is triggered
by both a clock and a sporadic event then transmission type of the message is
considered as mixed. These assignments are important because a message is
analyzed differently based on its transmission type.

Identification of Trigger, Data and Mixed Distributed Chains

In order to unambiguously identify each individual chain, we attach trigger
dependency attribute with each task. This attribute is part of the data structure
of tasks in the timing model. Basically, it extracts the triggering information
for the corresponding task. If a task is triggered by an independent source,
such as a clock, then this attribute is set to “independent”. On the other hand, if
the task is triggered by another task then this parameter is set to “dependent”.
A precedence constraint is also specified on this task in the case of dependent
triggering.

An iterative method determines whether the triggering of every two neigh-
boring tasks in a chain is dependent or independent of each other by testing the
value of corresponding trigger dependency attributes. If this attribute for all
tasks (except the first) is “dependent”, the chain is identified as a trigger chain.
On the other hand, if this attribute for each and every task in the chain has
“independent” value, the chain is identified as a data chain. However, if this
attributed has “independent” value for some tasks in the chain while “depen-
dent” value for the rest, the chain is regarded as a mixed chain. This method is



4.5 Extraction of End-to-end Timing Models 61

applied to all chains in the system.

Linking of Distributed Trigger, Data and Mixed Chains

The method for linking distributed chains is built upon the modeling approach
that we discussed in the previous section. This method treats all types of chains
in a similar fashion. The linking information for all distributed chains in the
modeled application is provided in the NS. We assign references to trigger in-
ports of OSWCs and the trigger out-ports of ISWCs along the same distributed
chain. These references are contained in a reference array. There is one ref-
erence array for each distributed chain. The ordering of references within the
array corresponds to the ordering of the components (OSWC/ISWC) along the
trigger chain. That is, the first reference in the array corresponds to the trigger
port of the first component in the chain, and so on. The reference arrays cor-
responding to all distributed chains in the system are specified in the NS. Con-
sider the example shown in Figure 4.9. There are three SWCs in each node.
The nodes are connected to the CAN network. There are two trigger chains in
the system that are distributed over two nodes. These chains are identified as
TC1 and TC2 as shown below.

• TC1 : SWC1! SWC2! OSWC A1! ISWC B1! SWC4!
SWC5.

• TC2 : SWC6! OSWC B1! ISWC A1! SWC3.

Controller Area Network (CAN)

Inside the model

Outside the model

Frames

Signals

Signals

ISWC 
B1

SWC4 SWC5

SWC6

CAN 
RECEIVE

OSWC 
B1

CAN 
SEND

Node B

NS

* Protocol-specific 
details

* Signal Map
* Linking Information
* References

R1[R11, R12]

R2[R21, R22]

Data Port

Trigger Port

External Event
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Ext

Data Source

Data Sink

Node A
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RECEIVE

Frames

OSWC 
A1
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SEND

ISWC 
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Signals

SWC1 SWC2

Ext

Signals

SWC3

Figure 4.9: Demonstration of linking the distributed chains.
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The trigger chain TC1 is triggered by an external event, whereas TC2 is
triggered by a clock. There is a reference array R1 that contains references to
all the OSWC and ISWC components in TC1. R11 refers to the trigger in-port
of OSWC A1 in Node A, whereas R12 refers to the trigger out-port of ISWC
B1 in node B. Similarly, a reference array R2 is stored in the NS that contains
references to all OSWCs and ISWCs in TC2. R21 refers to the trigger in-port
of OSWC B1 in Node B, whereas R22 refers to the trigger out-port of ISWC
A1 in node A. In this way, all the neighboring components located in different
nodes within a distributed trigger chain can be linked.

4.5.3 Extraction of End-to-end Timing Model in Rubus-ICE
In Rubus-ICE, the application is modeled in the Rubus Designer tool. It is
then compiled to the Intermediate Compiled Component Model (ICCM). Apart
from the compiled component model, the ICCM file also includes timing and
linking information of the modeled system. The timing model that is imple-
mented in the Rubus Analysis Framework, extracts the required timing and
linking information from the ICCM file format12 as shown in Figure 4.10.
From the extracted model, the Rubus Analysis Framework performs the end-
to-end timing analysis and then provides the results, i.e., response times of in-
dividual tasks, response times of network messages, end-to-end response times
and delays of distributed chains, network utilization, etc., back to the Rubus-
ICE tool suite.

Rubus-ICE

Rubus Desiner

Modeled DRE Application

ICCM 
File

Rubus Analysis Framework

End-to-end Timing Model
System Timing Model

System Tracing Model

Network Timing ModelNode Timing Model

End-to-End Timing AnalysisAnalysis Results
(XML File)

Rubus-ICE

Rubus Desiner

Modeled Application

ICCM 
File

Rubus Analysis Framework

End-to-end Timing Model
System Timing Model

System Linking Model

Network Timing ModelNode Timing Model

End-to-End Timing AnalysisAnalysis Results
(XML File)

Figure 4.10: Extraction of the end-to-end timing model in Rubus-ICE tool-
suite.

12in XML format.
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4.6 Automotive-application Case Study
We provide a proof of concept for the modeling technique and timing model ex-
traction method that we implemented in Rubus-ICE by conducting an automotive-
application case study. We model the next-generation Adaptive Cruise Control
system with RCM and analyze it with the Holistic Response Time Analysis
(HRTA) plug-in in Rubus-ICE.

4.6.1 Next-generation Adaptive Cruise Control System
The Adaptive Cruise Control (ACC) system is an automotive feature that al-
lows a vehicle to automatically adapt itself to the traffic environment to main-
tain a steady speed to the value that is preset by the driver. Often, it uses a radar
to create a feedback of distance to, and velocity of, the preceding vehicle. It
also communicates (cooperates) with the surrounding vehicles. Moreover, it
receives traffic related cloud-services such as community map and turn-by-
turn navigation services from outside of the vehicle. Based on the feedback, it
either reduces the vehicle speed to keep a safe distance and time gap from the
preceding vehicle or accelerates the vehicle to match the preset speed speci-
fied by the driver. The ACC system may be modeled with four nodes namely
Cruise Control (CC), Engine Control (EC), Brake Control (BC) and User In-
terface (UI) [40]. Figure 4.11 shows the block diagram of the ACC system.
The nodes communicate with each other via CAN network.
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User 
Interface 

Node
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Control 
Node
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Control 
Node

Engine 
Control 
Node
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Traffic related cloud services, e.g., 
community map and turn-by-turn navigation
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community map and turn-by-turn navigation

Figure 4.11: Block diagram of Adaptive Cruise Control System.

Assume that the models of EC and BC nodes are available while the models
of CC and UI nodes will be available at a later stage. However, the decisions
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about network communication have been made. There is one stand-alone mes-
sage “ACC Control Msg” in the system that is assumed to be sent by the CC
node (not available yet). This message is received by the BC node as shown
by the dashed-line arrow in Figure 4.11. The BC node sends two messages
over the network. First message “Vehicle Control UI Msg” is sent to the UI
node (not available yet). Whereas, the second message “Vehicle Control Msg”
is sent to the EC node. It should be noted that the dashed-line arrows repre-
sent virtual communication while the actual message transmission takes place
through the CAN network.

The UI node reads driver inputs and shows status messages and warnings
on the display screen. The inputs are acquired by means of switches and but-
tons mounted on the steering wheel. These include Cruise Switch input that
corresponds to ON/OFF, Standby and Resume states for ACC; Set Speed input
(desired cruising speed set by the driver) and desired clearing distance from
the preceding vehicle. This node receives linear and angular speed, status of
manual brake sensor, and status messages and warnings to be displayed on the
screen from the BC node via the CAN network.

The CC node analyzes the state of the cruise control switch. If the switch
is in the ON state then the cruise control functionality is activated. It reads
input from a proximity sensor (e.g., radar) and processes it to determine the
presence of the vehicle in front of it. It also receives V2V communication and
navigation information from outside of the vehicle as shown in Figure 4.11.
Moreover, it processes the radar signals along with the other information, such
as vehicle speed, to determine its distance to the preceding vehicle. It sends
a CAN message to the BC node. The message carries the control information
that is used to adjust the speed of the vehicle with respect to the cruising speed
or clearing distance from the preceding vehicle.

The EC node is responsible for controlling vehicle speed by adjusting the
engine throttle. It reads sensor input and determines engine torque. It receives a
CAN message (from the BC node) that includes information regarding vehicle
speed and status of the manual brake sensor. Based on the received informa-
tion, it determines whether to increase or decrease engine throttle. It then sends
new throttle position to the actuators that control the engine throttle.

The BC node receives signals from the break sensors. It also receives the
status from the linear and angular speed sensors which are connected to the
wheels. It receives a CAN message that includes control information processed
by the CC node. Based on this feedback, it computes new vehicle speed. It
produces control signals and sends them to the brake actuator and brake light
controller. It also sends CAN messages to the EC and UI nodes that carry
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information regarding status of manual brake, vehicle speed and angular speed.

4.6.2 Modeling of the ACC System in Rubus-ICE
The RCM model of ACC system is shown in Figure 4.12. Since, CC and UI
nodes are not available at this stage, there are models of only CC and EC nodes
in the application. The model of CAN bus is also shown. The selected speed
of CAN bus is 500 kbps. The standard CAN frame format is selected.

 

 

 

 

Figure 4.12: Adaptive Cruise Control System modeled with RCM.

There are three CAN messages in the system ACC control Msg, Vehi-
cle Control Msg and Vehicle Con-trol UI Msg as shown in Figure 4.13. ACC
control Msg is the only stand-alone message. The senders and receivers of all
messages are shown in Figure 4.11. A signal database is also shown in Figure
4.13. It corresponds to the NS (see Section 4) and contains all the signals that
are sent over the network. Each signal in the signal database is linked to one or
more messages. The user-defined properties of all messages are also visible in
Figure 4.13.

The internal architecture of the BC node is shown in Figure 4.14. It is mod-
eled with five SWCs ( SpeedSensorInput, ManualBrakeSensorInput, RMPSen-
sorInput, SetBrakeSignal SWC and SetBrakeLightSignal SWC), one ISWC
component (ACC control Msg ISWC), two OSWC components (Vehicle Con-
trol Msg OSWC and Vehicle Control UI Msg OSWC) and one assembly de-
noted by Brake Control. An assembly in RCM is a container for various soft-
ware items. The Brake Control assembly is further modeled with two SWCs
BrakeInputInfoProcessing and BrakeController as shown in Figure 4.15. Each
component is named according to its functional behavior, e.g., the ACC control
Msg ISWC component is responsible for receiving ACC control Msg from

the network.
The internal architecture of EC node is shown in Figure 4.16. It is modeled

with two SWCs (EngineTorqueInput and SetThrottlePosition), one ISWC com-
ponent (Vehicle Con-trol Msg ISWC) and one assembly (Engine Control) as
shown in Figure 4.17. The Engine Control assembly is further modeled with
two SWCs EngineInputInformationProcessing and ThrottleControl.
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Figure 4.13: CAN messages and signal database modeled with RCM.

 

 

 

 

 

 

 

  

Figure 4.14: RCM model of the Brake Control node.

 

 

 

 

 

 

 

  Figure 4.15: Internal model of Brake Control assembly in RCM.
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Figure 4.16: RCM model of the Engine Control node.

 

 

 

 

Figure 4.17: Internal model of Engine Control assembly in RCM.

4.6.3 Holistic Response-time Analysis of the ACC System
The HRTA plug-in in Rubus-ICE calculates the response times of all messages
and tasks as well as end-to-end or holistic response times of Distributed Trans-
actions (DTs). We refer the reader to [41] for the details about the holistic
response-time analysis. We focus on the analysis of the following DTs.

1. DT1: ACC control Msg! ACC control Msg ISWC! BrakeInputIn-
foProcessing! BrakeController! SetBrakeSignal SWC

2. DT2: ACC control Msg! ACC control Msg ISWC! BrakeInputIn-
foProcessing! BrakeController! SetBrakeLightSignal SWC

3. DT3: SpeedSensorInput!BrakeInputInfoProcessing!BrakeController
! Vehicle Control UI Msg OSWC! Vehicle Control UI Msg

4. DT4: SpeedSensorInput!BrakeInputInfoProcessing!BrakeController
!Vehicle Control Msg OSWC!Vehicle Control Msg!Vehicle Con-
trol Msg ISWC! EngineInputInformationProcessing! ThrottleCon-
trol! SetThrottlePosition

Both distributed transactions DT1 and DT2 are initiated by the stand-alone
message ACC control Msg. They terminate by producing the control signals
for brake actuators and brake light controllers. DT3 starts with the speed sensor
input in the BC node and terminates by sending the message destined for the
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Table 4.1: Calculated holistic response times of distributed transactions under
analysis.

Distributed Transaction DT1 DT2 DT3 DT4

Holistic Response Time (µs) 520 555 1250 830

UI node. Finally, DT4 initiates with the speed sensor input in the BC node and
terminates by producing a control signal for engine throttle controller in the EC
node. The worst-case execution times of all SWCs are selected in the range of
(20 � 200 )µs . The holistic response times of these distributed transactions
are shown in Table 9.3. In order to interpret the calculated results, consider
the holistic response time of DT4 in Table 9.3. It indicates that the maximum
time required from sensing the variation in the vehicle speed to controlling the
engine throttle actuator is 830µs. The holistic response times of other DTs can
be interpreted in a similar fashion.

4.7 Conclusion and Future Work
We introduced a new technique to provide a model- and component-based sup-
port for communications-oriented development of vehicular distributed real-
time embedded systems. The proposed approach allows modeling of legacy
network communication and abstracts the implementation and configuration
of communications in the component-based systems. It explicitly enables the
communication capabilities of a node, but hides the implementation or pro-
tocol details. Moreover, it allows model- and component-based development
of new nodes that are deployed in legacy systems that use predefined com-
munication rules. The proposed approach also enables adaptation of a node
when communication rules change without affecting its internal architecture.
In order to support end-to-end timing analysis, we presented a method to ex-
tract end-to-end timing models from the systems that are developed using the
proposed approach. In this context, we discussed and resolved various issues.
Our technique also supports modeling and performing timing analysis of dis-
tributed applications that contain network traffic originating from outside of the
system, e.g., cloud-based applications. As a proof of concept, we implemented
this technique in the existing industrial tool Rubus-ICE, and validated it by
modeling and analyzing the automotive application-case study. We believe,
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this technique may be suitable for several other model- and component-based
development technologies that use a pipe-and-filter style for component inter-
connection, e.g., ProCom and COMDES. Moreover, it can be used for any type
of “inter-model signaling”, where a signal leaves one model (e.g., a node, or
a core, or a process) and appears again in some other model. We believe, the
tools implementing our technique may prove helpful for the software develop-
ment organizations in the vehicular domain to decrease the costs for software
development, configuration and testing.

An interesting future research direction is to bridge the semantic gap be-
tween functional models (expressed in standard languages as EAST-ADL and/or
proprietary languages such as Simulink or Statemate) and execution models
(expressed in proprietary languages like RCM). It would also be interesting
and useful to facilitate the exchange of timing analysis models and tools be-
tween RCM and several other component models and tools.
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Mixed Messages in Controller Area Network with Priority- and FIFO-
Queued Nodes. In 9th IEEE International Workshop on Factory Commu-
nication Systems (WFCS), 2012, May 2012.
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tic Response-time Analysis in an Industrial Tool Suite: Implementation
Issues, Experiences and a Case Study. In 19th IEEE Conference on Engi-
neering of Computer Based Systems, 2012, pages 210 –221, April 2012.



Chapter 5

Paper B:
Integrating Mixed
Transmission and Practical
Limitations with the
Worst-Case Response-Time
Analysis for Controller Area
Network
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Abstract

The existing worst-case response-time analysis for Controller Area Net-
work (CAN) calculates upper bounds on the response times of messages that
are queued for transmission either periodically or sporadically. However, it
does not support the analysis of mixed messages. These messages do not ex-
hibit a periodic activation pattern and can be queued for transmission both pe-
riodically and sporadically. They are implemented by several higher-level pro-
tocols based on CAN that are used in the automotive industry. We extend the
existing analysis to support worst-case response-time calculations for periodic
and sporadic as well as mixed messages. Moreover, we integrate the effect of
hardware and software limitations in the CAN controllers and device drivers
such as abortable and non-abortable transmit buffers with the extended analy-
sis. The extended analysis is applicable to any higher-level protocol for CAN
that uses periodic, sporadic and mixed transmission modes.
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5.1 Extended Version
This paper extends our previous works that are published in the conferences as
a full paper in the IEEE conference on Emerging Technologies and Factory Au-
tomation (ETFA-2011) [1] and two work-in-progress papers (discussing basic
ideas and preliminary work) in the IEEE Symposium on Industrial Embedded
Systems (SIES-2012) [2] and ETFA-2012 [3] respectively. To be precise, the
work in this paper generalizes the response-time analysis for Controller Area
Network (CAN) developed in [1] by extending the proposed analyses in [2]
and [3]. In addition, we conduct a case study to show a detailed comparative
evaluation of the extended analyses.

5.2 Introduction
Controller Area Network (CAN) [4] is a multi-master, event-triggered, serial
communication bus protocol supporting bus speeds of up to 1 mega bits per
second. It has been standardized by the International Organization for Stan-
dardization as ISO 11898-1 [5]. It is a widely used protocol in the auto-
motive domain. According to CAN in Automation (CiA) [6], the estimated
number of CAN enabled controllers sold in 2011 are about 850 million. In
total, more than two billion CAN controllers have been sold until 2011. Out
of this huge number, approximately 80% CAN controllers have been used in
the automotive domain [7]. CAN also finds its applications in other domains,
e.g., industrial control, medical equipments, maritime electronics, and produc-
tion machinery [8]. There are several higher-level protocols for CAN that are
developed for many industrial applications such as CAN Application Layer
(CAL), CANopen, J1939, Hägglunds Controller Area Network (HCAN), CAN
for Military Land Systems domain (MilCAN).

CAN is often used in hard real-time systems that have stringent deadlines
on the production of their responses. The providers of these systems are re-
quired to ensure that the systems meet their deadlines. Moreover, the need for
safety criticality in most of these systems requires evidence that the actions by
the system will be provided in a timely manner, i.e., each action will be taken
at a time that is appropriate to the environment of the system. For this purpose,
a priori analysis techniques such as schedulability analysis [9, 10, 11, 12, 13]
have been developed by the research community.

Response Time Analysis (RTA) [14, 9, 10, 11, 12] is a powerful, mature
and well established schedulability analysis technique. It is a method to cal-
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culate upper bounds on the response times of tasks or messages in a real-time
system or a network respectively. In crux, RTA is used to perform a schedu-
lability test which means it checks whether or not tasks (or messages) in the
system (or network) will satisfy their deadlines. RTA applies to systems (or
networks) where tasks (or messages) are scheduled with respect to their pri-
orities and which is the predominant scheduling technique used in real-time
operating systems (or real-time network protocols, e.g., CAN) [15].

5.2.1 Motivation and Related Work
RTA for CAN was developed by Tindell et al. [16] by adapting the theory
of fixed priority preemptive scheduling for uniprocessor systems. This analy-
sis has been implemented in the analysis tools that are used in the automotive
industry, e.g., Volcano Network Architect (VNA) [17]. Furthermore, this anal-
ysis has served as the basis for many research projects. Later on, Davis et
al. [18] refuted, revisited and revised the analysis developed by Tindell et al.
The revised analysis is also implemented in the existing industrial tool suite
Rubus-ICE [19, 20] which is used by several international companies.

The analysis in [16, 18] assumes that each node picks up the highest pri-
ority message (that is ready for transmission) from its transmit buffers when
entering into the bus arbitration. This assumption may not hold in some cases
due to different types of queueing policies and hardware limitations in the CAN
controllers [8, 21, 22]. The different types of queueing polices implemented by
the CAN device drivers and communications stacks, internal organization, and
hardware limitations in CAN controllers may have significant impact on the
timing behavior of CAN messages. Various practical issues and limitations
due to deviation from the assumptions made in the seminal worst-case analysis
for CAN are discussed in [23] and analyzed by means of message traces in [8].
These limitations are not considered in the seminal RTA for CAN by Tindel
et al. [16] and revised RTA for CAN by Davis et al. [18]. A few examples
of these limitations that are considered in RTA for CAN are controllers imple-
menting First-In, First-Out (FIFO) and work-conserving queues [24, 25, 22],
limited number of transmit buffers [26, 27], copying delays in transmit buffers
[28], transmit buffers supporting abort requests [21], the device drivers lack-
ing abort request mechanisms in transmit buffers [28], and protocol stack pro-
hibiting transmission abort requests in some configurations as in the case of
AUTOSAR [29].

Let us first consider the related works on RTA for CAN with different
queueing policies. The analysis in [16, 18] assumes that all CAN device drivers
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implement priority-based queues. In [25, 22] Davis et al. pointed out that this
assumption may become invalid when some nodes in the network implement
FIFO queues. Some examples of the CAN controllers implementing FIFO
queues are Infineon XC161CS, Microchip PIC32MX, Renesas R32C/160 and
XILINX LogiCORE IP AXI Controller [22, 21]. Davis et al. [25, 22] extended
the analysis for CAN where some nodes implement priority queues while oth-
ers implement FIFO. In the works in [25, 22], the message deadlines are as-
sumed to be smaller than or equal to the corresponding periods. In [24], Davis
et al. lifted this assumption by supporting the analysis for CAN messages with
arbitrary deadlines. Furthermore, they extended their previous works [25, 22]
to support RTA for CAN with FIFO and work-conserving queues.

Now we discuss the related works on RTA for CAN with practical lim-
itations in transmit message buffers of the CAN controllers. The analysis
in [16, 18] assumes that the CAN controllers have large number of trans-
mit buffers. However, some CAN controllers have small number of transmit
buffers, e.g., the CAN controllers 8xC592, SJA1000 and 82C200 by Philips
have less than three transmit buffers [22, 28, 24]. If a CAN controller has less
than three transmit buffers and does not support transmission abort requests as
in the case of Philips 82C200, a higher priority message released in the same
controller may suffer from priority inversion [27, 16, 28]. That is, if all buffers
in the CAN controller are occupied by lower priority messages, a higher pri-
ority message released in the same controller has to wait for one of the lower
priority messages to transmit thereby vacating a space in the transmit buffer.
During this waiting time, priority inversion occurs that adds an additional delay
to the response time of the higher priority message.

The priority inversion can occur even if the controllers support transmis-
sion abort requests [26, 21]. Consider the case in which there are two transmit
buffers in every CAN controller. If a higher priority message becomes ready
when both transmit buffers are occupied by the lower priority messages, the
lowest priority message in the transmit buffer (that is not under transmission)
is swapped with the higher priority message from the message queue. Dur-
ing the swapping process, it may be possible that the lower priority message
from the second buffer finishes its transmission and the next arbitration pe-
riod starts. At this point, both buffers may be empty while any other lower
priority message from another node wins the arbitration and starts to trans-
mit. This causes priority inversion for the higher priority message that is being
swapped. In [26], Meschi et al. proved that this type of priority inversion
can be avoided if the controller implements at least three transmit buffers.
According to [21], most of the CAN controllers implement more than three
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transmit buffers and are capable of aborting transmission requests, e.g., Atmel
AT89C51CC03/AT90CAN32/64 and Microchip MPC2515 [22].

The analysis in [26] does not account the overhead of the copying delay.
Khan et al. [21] integrated this extra delay with the analysis in [16, 18] caused
by priority inversion due to transmission abort requests supported in the CAN
controllers. In the case of CAN controllers implementing non-abortable trans-
mit requests (with more than three transmit buffers), RTA for CAN is extended
in [28, 27].

In order to avoid deadlines violations due to high transient loads, current
automotive embedded systems are often scheduled with offsets, i.e., using ex-
ternally imposed delays between the times when the messages can be queued
[30]. Furthermore, the worst-case response times of messages (especially with
lower priority) in CAN increase with the increase in the network load. How-
ever, the worst-case response-times of lower priority messages in CAN can be
reduced if the messages are scheduled with offsets [31, 32, 33]. A method for
the assignment of offsets to improve the overall bandwidth utilization is pro-
posed in [32, 33]. The worst-case RTA for CAN messages that are scheduled
with offsets has been developed by several researchers [34, 35, 31, 36, 30].

However, all these analyses assume that the messages are queued for trans-
mission either periodically or sporadically. They do not support mixed mes-
sages in CAN, i.e., the messages that are simultaneously time (periodic) and
event (sporadic) triggered. Mixed messages are implemented by several higher-
level protocols based on CAN that are used in the automotive industry. Mubeen
et al. [1] extended the seminal analysis [16, 18] to support mixed messages in
CAN where nodes implement priority-based queues. Mubeen et al. [37] fur-
ther extended their analysis to support mixed messages in the network where
some nodes implement priority queues while others implement FIFO queues.
Mubeen et al. also extended the existing analysis for CAN to support worst-
case response-time calculations for periodic, sporadic and mixed messages that
are scheduled with offsets [38, 39]. In [2] and [3] we presented the basic idea
and work in progress on the RTA of mixed messages in CAN with controllers
implementing abortable and non-abortable transmit buffers respectively.

5.2.2 Paper Contributions
In this paper, we extend and generalize the RTA for periodic, sporadic and
mixed messages in CAN by integrating it with the effect of buffer limitations
in the CAN controllers namely abortable and non-abortable transmit buffers.
The relationship between the existing and extended RTA for CAN is shown
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in Figure 5.1. The analyses enclosed within the dashed-line box in Figure 5.1
are the focus of this paper. The extended analysis is able to analyze network
communications in not only homogeneous systems, but also heterogeneous
systems where:

1. CAN-enabled Electronic Control Units (ECUs) are supplied by different
tier-1 suppliers such that some of them implement abortable transmit
buffers, some implement non-abortable transmit buffers, while others
may not have buffer limitations because they implement very large but
finite number of transmit buffers.

2. any higher-level protocol based on CAN is employed that uses periodic,
sporadic and mixed transmission modes for messages.

It should be noted that the main contribution in this paper, compared to
the contributions in [1, 2, 3], is that the extended analysis is also applicable
to the heterogeneous systems. Moreover, we conduct a case study to show the
applicability of the extended analyses. We also carry out a detailed comparative
evaluation of the extended analyses.

5.2.3 Paper Layout
The remainder of the paper is organized as follows. In Section 5.3, we dis-
cuss mixed transmission modes implemented by higher-level protocols based
on CAN. Section 5.4 describes the system model. In Section 5.5, we present
the extended RTA for mixed messages without buffer limitations. Sections 5.6
and 5.7 discuss the extended RTA for mixed messages in the case of abortable
and non-abortable transmit buffers respectively. Section 5.8 discusses the case
study and presents the comparative evaluation of the extended analyses. Sec-
tion 5.9 concludes the paper and discusses the future work.

5.3 Mixed Transmission Patterns Implemented by
Higher-level Protocols

When CAN is employed for network communication in a distributed real-time
system, each node (processor or ECU) is equipped with a CAN interface that
connects the node to the network [40]. Application tasks in each node, that
require remote transmission, are assumed to queue messages for transmission
over the CAN network. The messages are transmitted according to the protocol
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Figure 5.1: Relation between the existing and extended response-time analyses
for CAN

specification of the CAN protocol. Traditionally, it is assumed that the tasks
queueing CAN messages are invoked either by periodic events with a period
or sporadic events with a minimum inter-arrival time. However, there are some
higher-level protocols and commercial extensions of CAN in which the task
that queues the messages can be invoked periodically as well as sporadically. If
a message can be queued for transmission periodically as well as at the arrival
of a sporadic event then the transmission type of the message is said to be
mixed. In other words, a mixed message is simultaneously time (periodic) and
event triggered (sporadic). We identified three types of implementations of
mixed messages used in the industry.

Consistent terminology. To stay consistent, we use the terms message and
frame interchangeably because we only consider messages that fit into one
frame (maximum 8 bytes). For the purpose of using simple notation, we call
a CAN message as periodic, sporadic or mixed if it is queued by an appli-
cation task that is invoked periodically, sporadically or both (periodically and
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sporadically) respectively. If a message is queued for transmission at periodic
intervals, we use the term “Period” to refer to its periodicity. A sporadic mes-
sage is queued for transmission as soon as an event occurs that changes the
value of one or more signals contained in the message provided the Minimum
Update Time (MUT ) between queueing of two successive sporadic messages
has elapsed. Hence, the transmission of a sporadic frame is constrained by
the MUT . We overload the term “MUT ” to refer to the “Inhibit Time” in
CANopen protocol [41] and the “Minimum Delay Time (MDT)” in AUTOSAR
communication [42].

5.3.1 Method 1: Implementation in the CANopen Protocol

The CANopen protocol [41] supports mixed transmission that corresponds to
the Asynchronous Transmission Mode coupled with the Event Timer. The
Event Timer is used to transmit an asynchronous message cyclically. A mixed
message can be queued for transmission at the arrival of an event provided the
Inhibit Time has expired. The Inhibit Time is the minimum time that must be
allowed to elapse between the queueing of two consecutive messages. A mixed
message can also be queued periodically at the expiry of the Event Timer. The
Event Timer is reset every time the message is queued. Once a mixed message
is queued, any additional queueing of it will not take place during the Inhibit
Time [41].

The transmission pattern of a mixed message in CANopen is illustrated in
Figure 5.2. The down-pointing arrows symbolize the queueing of messages
while the upward lines (labeled with alphabetic characters) represent arrival of
the events. Message 1 is queued as soon as the event A arrives. Both the Event
Timer and Inhibit Time are reset. As soon as the Event Timer expires, mes-
sage 2 is queued due to periodicity and both the Event Timer and Inhibit Time
are reset again. When the event B arrives, message 3 is immediately queued
because the Inhibit Time has already expired. Note that the Event Timer is
also reset at the same time when message 3 is queued as shown in Figure 5.2.
Message 4 is queued because of the expiry of the Event Timer. There exists
a dependency relationship between the Inhibit Time and the Event Timer, i.e.,
the Event Timer is reset not only with every periodic transmission but also with
every sporadic transmission.
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(a) Mixed message in CANopen

Figure 5.2: Mixed transmission pattern in the CANopen protocol

5.3.2 Method 2: Implementation in the AUTOSAR Commu-
nications

AUTOSAR (AUTomotive Open System ARchitecture) [43] can be viewed as
a higher-level protocol if it uses CAN for network communication. Mixed
transmission mode in AUTOSAR is widely used in practice. In AUTOSAR, a
mixed message can be queued for transmission repeatedly with a period equal
to the mixed transmission mode time period. The mixed message can also be
queued at the arrival of an event provided the MDT timer has been expired.
However, each transmission of the mixed message, regardless of being periodic
or sporadic, is limited by the MDT timer. This means that both periodic and
sporadic transmissions are delayed until the MDT timer expires. The trans-
mission pattern of a mixed message implemented by AUTOSAR is illustrated
in Figure 5.3. Message 1 is queued (the MDT timer is started) because of
partly periodic nature of the mixed message. When the event A arrives, mes-
sage 2 is queued immediately because the MDT timer has already expired.
The next periodic transmission is scheduled 2 time units after the transmission
of message 2. However, the next two periodic transmissions corresponding to
messages 3 and 4 are delayed because the MDT timer is not expired. This
is indicated by the comment “Delayed Periodic Transmissions” in Figure 5.3.
The periodic transmissions corresponding to messages 5 and 6 occur at the
scheduled times because the MDT timer is already expired in both cases.
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(b) Mixed message in AUTOSAR

Figure 5.3: Mixed transmission pattern in the AUTOSAR Communications

5.3.3 Method 3: Implementation in the HCAN Protocol

A mixed message in the HCAN protocol [44] contains signals out of which
some are periodic and some are sporadic. A mixed message is queued for trans-
mission not only periodically but also as soon as an event occurs that changes
the value of one or more event signals, provided the MUT timer between
the queueing of two successive sporadic instances of the mixed message has
elapsed. Hence, the transmission of the mixed message due to arrival of events
is constrained by the MUT timer. The transmission pattern of the mixed mes-
sage is illustrated in Figure 5.4. Message 1 is queued because of periodicity.
As soon as event A arrives, message 2 is queued. When event B arrives it is
not queued immediately because the MUT timer is not expired yet. As soon as
the MUT timer expires, message 3 is queued. Message 3 contains the signal
changes that correspond to event B. Similarly, a message is not immediately
queued when the event C arrives because the MUT timer is not expired. Mes-
sage 4 is queued because of the periodicity. Although, the MUT timer was
not expired, the event signal corresponding to event C was packed in message
4 and queued as part of the periodic message. Hence, there is no need to queue
an additional sporadic message when the MUT timer expires. This indicates
that the periodic transmission of the mixed message cannot be interfered by
its sporadic transmission (a unique property of the HCAN protocol). When
the event D arrives, a sporadic instance of the mixed message is immediately
queued as message 5 because the MUT timer has already expired. Message 6

is queued due to periodicity.
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(c) Mixed message in HCAN

Figure 5.4: Mixed transmission pattern in the HCAN protocol

5.3.4 Discussion

In the first method [41], the Event Timer is reset every time the mixed mes-
sage is queued for transmission. The implementation of mixed message in
method 2 [42] is similar to method 1 to some extent. The main difference is
that in method 2, the periodic transmission can be delayed until the expiry of
the MDT timer. Whereas in method 1, the periodic transmission is not de-
layed, in fact, the Event Timer is restarted with every sporadic transmission.
The MDT timer is started with every periodic or sporadic transmission of the
mixed message. Hence, the worst-case periodicity of the mixed message in
methods 1 and 2 can never be higher than the Inhibit Timer and MDT timer
respectively. This means that the models of mixed messages in the first and
second implementation methods reduce to the classical sporadic model. There-
fore, the existing analyses for CAN [16, 18, 21, 28] can be used for analyzing
mixed messages in the first and second implementation methods.

However, the periodic transmission is independent of the sporadic trans-
mission in the third method [44]. The periodic timer is not reset with every
sporadic transmission. The mixed message can be queued for transmission
even if the MUT timer is not expired. Hence, the worst-case periodicity of the
mixed message is neither bounded by period nor by the MUT timer. There-
fore, the analyses in [16, 18, 21, 28] cannot be used for analyzing the mixed
messages in the third implementation method. This implies the need for the
extension of existing analyses to support the mixed messages.
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5.4 System Model
The system model is an extension of the model developed by Tindell et al. [16]
and later extended in the works [28, 21]. The previous models do not support
mixed messages. This model is extended in such a way that it supports mixed
messages along with periodic and sporadic messages. The system consists of
a number of CAN controllers (nodes1) denoted by CC

1

,CC
2

, ...CC
n

. The
nodes are connected to a single CAN network. The nodes implement priority-
ordered queues, i.e., the highest priority message in each node enters into the
bus arbitration. The set of messages in the system is defined as @.

Let @
c

defines the set of messages sent by the CAN controller CC
c

. We
assume that each CAN controller has a finite number of transmit buffers (how-
ever, each CAN controller is assumed to contain at least three transmit buffers).
Let K

c

denote the transmit buffers in the CAN controller CC
c

. The number of
transmit buffers in CC

c

is returned by the function Sizeof (K
c

).
Each CAN message m

m

has a unique identifier and a priority denoted by
ID

m

and P
m

respectively. The priority of a message is assumed to be equal to
its ID. The priority of m

m

is considered higher than the priority of m
n

if Pm <
Pn. Let the sets hp(m

m

), lp(m
m

), and hep(m
m

) contain the messages with
priorities higher, lower, and equal and higher than m

m

respectively. Although
the priorities of CAN messages are unique, the set hep(m

m

) will be used in
the case of mixed messages.

Associated to each message is a FRAME TYPE that specifies whether
the frame is a standard or an extended CAN frame. The difference between
the two frame types is that the standard CAN frame uses an 11-bit identifier
whereas the extended CAN frame uses a 29-bit identifier. In order to keep
the notations simple and consistent, we define a function ⇠

m

that denotes the
transmission type of a message. ⇠

m

specifies whether m
m

is periodic (P ),
sporadic (S ) or mixed (M ). Formally, the domain of ⇠

m

can be defined as
follows.

⇠m 2 [P, S, M ]

Each message m
m

has a transmission time C
m

and queueing jitter J
m

which is inherited from the task that queues m
m

, i.e., the sending task. We
assume that J

m

can be smaller, equal or greater than T
m

or MUT
m

. Each
message can carry a data payload that ranges from 0 to 8 bytes. This integer
value is specified in the header field of the frame called Data Length Code and

1we overload the terms node and CAN controller throughout the paper
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is denoted by s
m

. In the case of periodic transmission, m
m

has a transmission
period which is denoted by T

m

. Whereas in the case of sporadic transmission,
m

m

has the MUT
m

time. B
m

denotes the blocking time of m
m

which refers
to the largest amount of time m

m

has to wait for the transmission of a lower
priority message.

We duplicate a message when its transmission type is mixed. Hence, each
mixed message m

m

is treated as two separate messages, i.e., one periodic and
the other sporadic. The duplicates share all the attributes except the T

m

and
MUT

m

. The periodic copy inherits T
m

while the sporadic copy inherits the
MUT

m

. Each message has a worst-case response time, denoted by R
m

, and
defined as the longest time between the queueing of the message (on the send-
ing node) and the delivery of the message to the destination buffer (on the
destination node). m

m

is deemed schedulable if its R
m

is less than or equal to
its deadline D

m

. The system is considered schedulable if all of its messages
are schedulable.

We consider the deadlines to be arbitrary which means that they can be
greater than the periods or MUT s of corresponding messages. We assume
that the CAN controllers are capable of buffering more than one instance of
a message. The instances of a message are assumed to be transmitted in the
same order in which they are queued (i.e., we assume FIFO policy among the
instances of the same message). For better readability, all the notations used in
this paper are tabulated in Appendix A.

5.5 Extended Worst-case RTA for CAN without
Buffer Limitations

In this section, we extend the existing RTA for CAN [16, 18] to support all
types of messages namely periodic, sporadic, and mixed. However, we do not
consider the buffer limitations in this section. That is, the CAN controllers are
assumed to implement very large but finite number of transmit buffers such that
there is no need to abort transmission requests2. The effect of buffer limitations
will be integrated with the extended analysis in the subsequent sections.

Let m
m

be the message under analysis. First, we discuss few terms that
are used in the extended analysis. In order to calculate the worst-case response
time of m

m

, the maximum busy period [16, 18] for priority level-m should be
known.

2We use the term “no buffer limitations” consistently throughout the paper
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Maximum busy period. It is the longest contiguous interval of time during
which m

m

is unable to complete its transmission due to two reasons. First,
the bus is occupied by the higher priority messages. In other words, at least
one message of priority level-m or higher has not completed its transmission.
Second, a lower priority message already started its transmission when m

m

is queued for transmission. The maximum busy period starts at the so-called
critical instant.

Critical instant. For a system where messages are scheduled without offsets,
the critical instant corresponds to the point in time when all higher priority
messages in the system are assumed to be queued simultaneously with m

m

while their subsequent instances are assumed to be queued after the shortest
possible interval of time [18].

We analyze m
m

differently based on its transmission type. Intuitively, we
consider two different cases: (1) periodic and sporadic, and (2) mixed.

5.5.1 Case 1: When the Message Under Analysis (mm) is Pe-
riodic or Sporadic

Consider m
m

to be a periodic or sporadic message. Since we consider arbi-
trary deadlines for messages, there can be more than one instance of m

m

that
may become ready for transmission before the end of priority level-m busy
period. There can be another reason to check if more than one instance of
m

m

is queued for transmission in the priority level-m busy period. Since, the
message transmission in CAN is non-preemptive, the transmission of previous
instance of m

m

could delay the current instance of a higher priority message
that may add to the interference received by the current instance of m

m

. This
phenomenon was identified by Davis et al. [18] and termed as “push-through
interference”. Because of this interference, a higher priority message may be
waiting for its transmission before the transmission of the current instance of
m

m

finishes. Hence, the length of busy period may extend beyond Tm or
MUTm.

Therefore, we need to calculate the response time of each instance of m
m

within priority level-m busy period. The maximum value among the response
times of all instances of m

m

is considered as the worst-case response-time of
m

m

. Let q
m

be the index variable to denote instances of m
m

. The worst-case
response time of m

m

is given by:

Rm = max{Rm(qm)} (5.1)
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According to the existing analysis [16, 18], the worst-case response-time
of any instance of m

m

consists of three parts as follows.

1. The queueing jitter denoted by J
m

. It is inherited from the sending task,
i.e., the task that queues m

m

for transmission. Basically, it represents the
maximum variation in time between the release of the sending task and
queuing of the message in the transmit queue (buffers). It is calculated
by taking the difference between the worst- and best-case response times
of the sending task.

2. The queueing delay denoted by !
m

. It is equal to the longest time that
elapses between the instant m

m

is queued by the sending task in the
transmit queue and the instant when m

m

is about to start its successful
transmission. In other words, !

m

is the interference caused by other
messages to m

m

.

3. The worst-case transmission time denoted by C
m

. It represents the
longest time it takes for m

m

to be transmitted over the network.

Thus, the worst-case response time of any instance q
m

of a periodic or
sporadic message m

m

is given by the following set of equations.

Rm(qm) =

8
<

:
Jm + !m(qm)� qmTm + Cm, if ⇠k = P

Jm + !m(qm)� qmMUT
m

+ Cm, if ⇠k = S
(5.2)

The terms q
m

T
m

and q
m

MUT
m

in (5.2) are used to support the response-
time calculations for multiple instances of m

m

.

Calculations for the Worst-case Transmission Time C
m

The worst-case transmission time of m
m

is calculated according to the method
derived in [16] and later adapted by [18]. For the standard CAN identifier
frame format, C

m

is calculated as follows.

Cm =

✓
47 + 8sm +

�
34 + 8sm � 1

4

⌫◆
⌧bit (5.3)

Where ⌧
bit

denotes the time required to transmit a single bit of data on the
CAN network. Its value depends upon the speed of the network. In (5.3), 47
is the number of bits due to protocol overhead. It is composed of start of frame
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bit (1-bit), arbitration field (12-bits), control field (6-bits), Cyclic Redundancy
Check (CRC) field (16-bits), acknowledgement (ACK) field (2-bits), End of
Frame (EoF) field (7-bits), and inter-frame space (3-bits). The number of bits
due to protocol overhead in the case of extended CAN frame format is equal to
67 .

In [45], Broster identified that the analysis in [16, 18] uses 47 -bits instead
of 44 -bits as the protocol overhead for a standard CAN identifier frame format.
This is because the analysis in [16, 18] accounts 3-bit inter-frame space as part
of the CAN frame. The 3-bit inter-frame space must be considered when cal-
culating the interferences or blocking from other messages. However, Broster
argued that this adds slight amount of pessimism to the response time of the
message under analysis if the 3-bit inter-frame space is also considered in its
transmission time. This is because the destination node can access the message
before the inter-frame space. In order to avoid this pessimism, we subtract 3-bit
time from the response time of the instance of the message under analysis.

The term
�

34+8s

m

�1

4

⌫
in (5.3) is added to compensate for the extra time

due to bit stuffing. It should be noted that the bit sequences 000000 and
111111 are used for error signals in CAN. In order to be unambiguous in
non-erroneous transmission, a stuff bit of opposite polarity is added whenever
there are five bits of the same polarity in the sequence of bits to be transmitted
[18]. The value 34 indicates that only 34-bits out of 47-bits protocol overhead
are subjected to bit stuffing. The term ba

b

c is the notation for floor function. It
returns the largest integer that is less than or equal to a

b

.
Similarly, C

m

is calculated for the extended CAN identifier frame format
as follows.

Cm =

✓
67 + 8sm +

�
54 + 8sm � 1

4

⌫◆
⌧bit (5.4)

The calculations for C
m

in (5.3) can be simplified as follows.

Cm = (55 + 10sm)⌧bit (5.5)

Similarly, the calculations for C
m

in (5.4) can be simplified as follows.

Cm = (80 + 10sm)⌧bit (5.6)

Calculations for the Queueing Delay !
m

In (5.2), the queueing delay for any instance of m
m

consists of two elements.
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1) Blocking delay. If any lower priority message just starts its transmis-
sion when m

m

is queued for transmission then m
m

has to wait in the transmit
queue and is said to be blocked by the lower priority message. The lower pri-
ority message cannot be preempted during its transmission because CAN uses
fixed-priority non-preemptive scheduling. Since we consider arbitrary dead-
line, m

m

can also be blocked from its own previous instance due to push-
through blocking [18] as discussed in Subsection 5.5.1. It should be noted
that a CAN message can be blocked either by only one message in the set of
lower priority messages or by only one of its previous instances. Moreover,
the message under analysis can only be blocked by either the periodic copy
or the sporadic copy of any lower priority mixed message (both copies of a
mixed message have the same transmission time, C

m

). Therefore, the maxi-
mum blocking delay is equal to the largest transmission time in the set of lower
priority messages including the message itself. The maximum blocking delay
for m

m

denoted by B
m

is calculated as follows.

Bm = max

8mj2lep(mm)
{Cj} (5.7)

Since we consider arbitrary deadlines, m
m

can also be blocked from its
own previous instance due to push-through blocking [18] as discussed in Sub-
section 5.5.1. That is the reason why (5.7) includes the function lep(m

m

)

instead of lp(m
m

). It is important to point out that the blocking delay for the
lowest priority message in the system is equal to zero if (5.7) is used. However,
Broster [45] identified that lowest priority message can be blocked for 3-bits
of time due to inter-frame space before it. Therefore, we consider 3⌧

bit

time as
the blocking delay for only the lowest priority message.

2) Delay due to interference from higher priority messages. Since CAN
uses fixed-priority non-preemptive scheduling, a message cannot be interfered
by higher priority messages during its transmission. Whenever we use the term
interference, it refers to the amount of time m

m

has to wait in the transmit
queue because the higher priority messages in the system win the arbitration,
i.e., the right to transmit before m

m

. We adapt the calculations for the interfer-
ence from higher priority messages from the existing analysis [16, 18]. How-
ever, the existing analysis considers the interference from only higher-priority
periodic or sporadic messages. As we discussed in the system model that a
mixed message is duplicated as two messages (one periodic and the other spo-
radic), each higher-priority mixed message should contribute interference from
both the duplicates.
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Thus, the queueing delay sums up the interferences due to higher priority
messages, previous instances of the same message and the blocking delay. The
queueing delay !

m

for the instance q
m

of m
m

can be calculated by solving the
following equation.

!n+1
m (q) = Bm + qmCm +

X

8mk2hp(mm)

IkCk (5.8)

(5.8) is an iterative equation. It is solved iteratively until two consecutive
solutions become equal or the solution exceeds the message deadline in which
case the message is deemed unschedulable. The starting value for !n

m

can
be selected equal to B

m

+ q
m

C
m

. In (5.8), I
k

is calculated differently for
different values of ⇠

k

(k is the index of any higher priority message) as shown
below.

Ik =

8
>>>>>>>>><

>>>>>>>>>:

⇠
!n

m(qm)+Jk+⌧bit
Tk

⇡
, if ⇠k = P

⇠
!n

m(qm)+Jk+⌧bit
MUT

k

⇡
, if ⇠k = S

⇠
!n

m(qm)+Jk+⌧bit
Tk

⇡
+

⇠
!n

m(qm)+Jk+⌧bit
MUT

k

⇡
, if ⇠k = M

(5.9)
The term da

b

e is the notation for ceil function. It returns the smallest in-

teger that is greater than or equal to a

b

. The three terms
⇠

!n

m

(q
m

)+J

k

+⌧
bit

T

k

⇡
,

⇠
!n

m

(q
m

)+J

k

+⌧
bit

MUT

k

⇡
and

⇠
!n

m

(q
m

)+J

k

+⌧
bit

T

k

⇡
+

⇠
!n

m

(q
m

)+J

k

+⌧
bit

MUT

k

⇡�
in (5.9) rep-

resent the maximum number of instances of higher-priority periodic, sporadic
and mixed messages that are queued for transmission in the maximum busy
period respectively. It is evident that the interference from a higher-priority
mixed message contains the contribution from both of its duplicates.

Calculations for the Length of Priority Level-m Busy Period

In order to calculate the worst-case response time of m
m

, the number of in-
stances of q

m

that become ready for transmission before the end of the priority
level-m busy period should be known. The length of the priority level-m busy
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period, denoted by t
m

, can be calculated by adapting the existing analysis [18]
as follows.

tn+1
m = Bm +

X

8mk2hep(mm)

I 0kCk (5.10)

where I 0k is given by the following relation. Note that the contribution from
both the duplicates of the mixed message m

k

is taken into account, provided it
belongs to the set of equal or higher priority messages with respect to m

m

.

I 0k =

8
>>>>>>>><

>>>>>>>>:

⇠
tnm+Jk

Tk

⇡
, if ⇠k = P

⇠
tnm+Jk

MUT

k

⇡
, if ⇠k = S

⇠
tnm+Jk

Tk

⇡
+

⇠
tnm+Jk

MUT

k

⇡
, if ⇠k = M

(5.11)

In order to solve the iterative equation (5.10), C
m

can be used as the initial
value of tn

m

. The right hand side of (5.10) is a monotonic non-decreasing func-
tion of t

m

. The iterative equation (5.10) is guaranteed to converge if the bus
utilization for messages of priority level-m and higher, denoted by U

m

, is less
than 1. That is,

Um < 1 (5.12)

where U
m

is calculated as follows.

Um =

X

8mk2hep(mm)

CkI
00
k (5.13)

where I 00
k

is given by the following relation:

I 00k =

8
>>><

>>>:

1
Tk

, if ⇠k = P

1
MUT

k

, if ⇠k = S

1
Tk

+

1
MUT

k

, if ⇠k = M

(5.14)

In the above equation, the contribution from both copies of all mixed messages
that are included in the set of equal and higher priority messages with respect
to m

m

is taken into account while calculating the bus utilization.
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Calculations for the number of instances of m
m

. The number of instances
of m

m

, denoted by Q
m

, that become ready for transmission before the busy
period ends is calculated as follows.

Qm =

8
>>><

>>>:

⇠
tm+Jm

Tm

⇡
, if ⇠k = P

⇠
tm+Jm
MUT

m

⇡
, if ⇠k = S

(5.15)

The range for the index variable q
m

for the number of instances of m
m

queued in the priority level-m busy period is given as follows.

0  qm  Qm � 1 (5.16)

The response times of all instances of m
m

in the range shown in (5.16)
should be calculated while the largest among them represents the worst-case
response time of m

m

.

5.5.2 Case 2: When the Message Under Analysis is Mixed
When the message under analysis is mixed, we treat the message as two sep-
arate message streams, i.e., the mixed message is duplicated as the periodic
and sporadic messages. The response time of both the duplicates is calculated
separately. Consider m

m

to be a mixed message. For simplicity, we denote
the periodic and sporadic copies of m

m

by m
m

P

and m
m

S

respectively. Let
the worst-case response times of m

m

P

and m
m

S

are denoted by R
m

P

and R
m

S

respectively. The worst-case response time of m
m

is the largest value between
R

m

P

and R
m

S

as given by the following equation.

Rm = max{RmP , RmS} (5.17)

Where R
m

P

and R
m

S

are equal to the maximum value among the response
times of their respective instances. Let q

m

P

and q
m

S

be the index variables to
denote the instances of m

m

P

and m
m

S

respectively. The calculations for R
m

P

and R
m

S

are adapted from the periodic and sporadic cases (discussed in the
previous subsection) respectively as follows.

RmP = max{RmP (qmP )}, 8 0  qmP  (QmP � 1) (5.18)
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RmS = max{RmS (qmS )}, 8 0  qmS  (QmS � 1) (5.19)

Where, Q
m

P

and Q
m

S

represent the number of instances of m
m

P

and m
m

S

that
are queued in the priority level-m busy period respectively. We will come back
to these two terms later in this subsection.

In (5.18) and (5.19), R
m

P

and R
m

S

for each respective instance are calcu-
lated separately by adapting the response-time calculations for the periodic and
sporadic messages (from previous subsection) as follows.

RmP (qmP ) = Jm + !mP (qmP )� qmP Tm + Cm (5.20)

RmS (qmS ) = Jm + !mS (qmS )� qmSMUT
m

+ Cm (5.21)

The queueing jitter, J
m

, is the same (equal) in both the equations (5.20) and
(5.21). The worst-case transmission time, C

m

, is also the same in these equa-
tions and is calculated using (5.5) or (5.6) depending upon the type of CAN
frame identifier. Although, m

m

P

and m
m

S

inherit same J
m

and C
m

from m
m

,
they experience different amount of queueing delay caused by other messages.

Calculations for the Queueing Delay

The queueing delay experienced by m
m

P

and m
m

S

is denoted by !
m

P

and
!
m

S

in (5.20) and (5.21) respectively. !
m

P

and !
m

S

can be calculated by
adapting the calculations for the queueing delay in (5.8). However, in this
equation we need to add the effect of self interference in a mixed message. By
self interference, we mean that the periodic copy of a mixed message can be
interfered by the sporadic copy and vice versa. Since, both m

m

P

and m
m

S

have
equal priorities, any instance of m

m

S

queued ahead of m
m

P

will contribute an
extra delay to the queueing delay experienced by m

m

P

. A similar argument
holds in the case of m

m

S

. Let the self interference experienced by m
m

P

due to
one or more instances of m

m

S

be denoted by SIP
m

S

. Similarly, SI S
m

P

represents
the self interference experienced by m

m

S

due to one or more instances of m
m

P

.
Hence, !

m

P

and !
m

S

can be calculated as follows.

!n+1
mP

(qmP ) = Bm + qmPCm +

X

8mk2hp(mm)

IkPCk + SIPmS
(5.22)
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!n+1
mS

(qmS ) = Bm + qmSCm +

X

8mk2hp(mm)

IkSCk + SISmP
(5.23)

Calculations for the self interference in a mixed message. In order to
derive the contribution of one copy of a mixed message to the queueing delay
of the other, consider three different cases, depicting the transmission pattern
of a mixed message m

m

, shown in Figure 5.5. In the first case, we assume
T

m

to be greater than MUT
m

. That is, there can be more transmissions of
m

m

S

compared to that of m
m

P

. Since, the maximum update time between
the queueing of any two instances of m

m

S

can be arbitrarily very long, it is
possible to have fewer sporadic transmissions than periodic transmissions of
m

m

. In the second case, we assume that T
m

is equal to MUT
m

. In this case,
there are equal number of transmissions of m

m

P

and m
m

S

. In the third case,
we assume T

m

to be smaller than MUT
m

. This implies that the number of
sporadic transmissions will be less than the periodic transmissions of m

m

.
It is important to note that in the example shown in Figure 5.5, there is a

small offset between the first periodic and sporadic transmission of m
m

. This
offset is used to maximize the queueing delay. If this offset is removed then
only one message will be queued corresponding to the first instance of both
m

m

P

and m
m

S

. Moreover, the larger value between T
m

and MUT
m

is the
integer multiple of the smaller in all the cases. This relationship along with the
offset between T

m

and MUT
m

ensures that periodic and sporadic transmis-
sions of m

m

will not overlap, there by, maximizing the queueing delay.

Case (a): Tm > MUTm

Let the message under analysis be m
m

P

and consider case (a) in Figure 5.5.
An application task queues m

m

periodically with a period T
m

(equal to 9 time
units). Moreover, the same task can also queue m

m

sporadically at the arrival
of events (labeled with numbers 1-6). The queueing of m

m

S

is constrained by
MUT

m

(equal to 3 time units). The first instance of m
m

P

(q
m

P

= 0 ) is queued
for transmission as shown by m

m

P

(0 ) in Figure 5.5. If event 1 had arrived at
the same time as the queueing of m

m

P

(0 ) then the signals in m
m

S

(0 ) would
have been updated as part of m

m

P

(0 ). In that case, m
m

S

(0 ) would not have
been queued separately (this is the property of the mixed message in the HCAN
protocol). In order to maximize the contribution of m

m

S

on the queueing delay
of m

m

P

, m
m

S

(0 ) is queued just after the queueing of m
m

P

(0 ) as shown in all
the cases in Figure 5.5. Therefore, m

m

S

(0 ) and subsequent instances of m
m

S
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Case (b)

Case (a)

1 2 3

MUTm=3

4 5 6

mmP(0) mmP(1) mmP(2)

mmS(0) mmS(1) mmS(2) mmS(3) mmS(4) mmS(5)

Tm = 9 Tm = 9

mmP(0) mmP(1) mmP(2)

mmS(0) mmS(1) mmS(2)

1 2 3
MUTm = 9 MUTm = 9

Tm = 9 Tm = 9

Event arrival Message queued for transmission

Case (c)
mmP(0)

mmS(0) mmS(1) mmS(2)

mmP(1) mmP(2) mmP(3) mmP(4) mmP(5) mmP(6)

1 2 3
MUTm = 9 MUTm = 9

Tm=3 Tm=3 Tm=3 Tm=3 Tm=3 Tm=3

Figure 5.5: Self interference in a mixed message: (a) Tm > MUTm, (b)
Tm = MUTm, (c) Tm < MUTm

.

will have no contribution in the worst-case queueing delay of the first instance
of m

m

P

denoted by m
m

P

(0 ).
Consider the second instance of m

m

P

. All those instances of m
m

S

that
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are queued ahead of m
m

P

(1 ) will contribute to its queueing delay. It can be
observed in the case (a) that the first three instances of m

m

S

are queued ahead
of m

m

P

(1 ). Similarly, there are six instances of m
m

S

that are queued ahead of
m

m

P

(2 ).
Let QP

m

S

denotes the total number of instances of m
m

S

that are queued
ahead of the q th

m

P

instance of m
m

P

. We can generalize QP

m

S

for the case (a) as
follows.

QP
mS

=

⇠
qmP Tm

MUT
m

⇡
(5.24)

For example, consider again the queueing of different instances of m
m

S

and
m

m

P

in the case (a). Equation (5.24) yields the set {QP

m

S

= 0 , 3 , 6 , ...} for
the corresponding values in the set {q

m

P

= 0 , 1 , 2 , ...}. Thus the total number
of instances of m

m

S

queued ahead of each instance of m
m

p

calculated by (5.24)
are consistent with the case (a) in Figure 5.5.

Case (b): Tm = MUTm

Consider case (b) in which T
m

is equal to MUT
m

. It can be observed from
Figure 5.5 that there are 0, 1, and 2 instances of m

m

S

that are queued ahead of
m

m

P

(0 ), m
m

P

(1 ) and m
m

P

(2 ) respectively. When (5.24) is applied in case
(b), we get the set {QP

m

S

= 0 , 1 , 2 , ...} for the corresponding values in the set
{q

m

P

= 0 , 1 , 2 , ...}. Therefore, (5.24) is also applicable on case (b).

Case (c): Tm < MUTm

Now, consider case (c) in which T
m

(3 time units) is smaller than MUT
m

(9 time units). The first instance of m
m

S

denoted by m
m

S

(0 ) will be queued
ahead of m

m

P

(1 ), m
m

P

(2 ) and m
m

P

(3 ). Similarly, the two instances of
m

m

S

denoted by m
m

S

(0 ) and m
m

S

(1 ) will contribute to the queueing delay of
m

m

P

(4 ), m
m

P

(5 ) and m
m

P

(6 ). (5.24) yields the set {QP

m

S

= 0 , 1 , 1 , 1 , 2 , 2 ,
2 , ...} for the corresponding values in the set {q

m

P

= 0 , 1 , 2 , 3 , 4 , 5 , 6 , ...}.
Thus the total number of instances of m

m

S

queued ahead of each instance of
m

m

P

calculated by (5.24) are consistent with the case (c) in Figure 5.5.
Now we consider the effect of jitter on the instances of m

m

S

prior to m
m

S

(0 )
which can be queued just ahead of m

m

P

(0 ) and contribute to the queueing de-
lay of m

m

P

. We assume FIFO queueing policy among the instances of the same
message. By considering the jitter of m

m

S

in QP

m

S

, (5.24) can be generalized
for the three cases as follows.

QP
mS

=

⇠
qmP Tm + Jm

MUT
m

⇡
(5.25)
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The self interference experienced by m
m

P

due to one or more instances
of m

m

S

is the product of QP

m

S

and worst-case transmission time of m
m

S

as
follows.

SIPmS
= QP

mS
Cm =

⇠
qmP Tm + Jm

MUT
m

⇡
Cm (5.26)

The total number of instances of m
m

P

that are queued ahead of the q th
m

S

instance of m
m

S

, denoted by QS

m

P

, can be derived in a similar fashion. Thus,
QS

m

P

can be calculated by the following equation.

QS
mP

=

⇠
qmSMUT

m

+ J
m

Tm

⇡
(5.27)

Once again, the self interference experienced by m
m

S

due to one or more
instances of m

m

P

is the product of QS

m

P

and worst-case transmission time of
m

m

P

as follows.

SISmP
= QS

mP
Cm =

⇠
qmSMUT

m

+ J
m

Tm

⇡
Cm (5.28)

From (5.26) and (5.28) it is obvious that when q
m

P

and q
m

S

are zero (i.e.,
zeroth instances of m

m

P

and m
m

S

) as well as J
m

is also zero then SIP
m

S

and
SI S

m

P

are also zero respectively. However, even if J
m

is zero, the zeroth in-
stance of m

m

P

can be interfered by one instance of m
m

S

. Similar argument
holds for the zeroth instance of m

m

E

. For example, consider Case (a) in Fig-
ure 5.5. Let m

m

be the highest priority message. Let m
m

S

(0 ) is queued just
after the queueing of m

m

P

(0 ). The instance m
m

P

(0 ) can be blocked by any
lower priority message. However, m

m

S

(0 ) cannot start its transmission unless
m

m

P

(0 ) is transmitted. Therefore, we have to consider this specific case for
the calculation of self interference in (5.26) and (5.28) as follows. This specific
case is not considered for the calculations of self interference in [1]. It should
be noted that this specific case may not occur if we consider holistic view of
a distributed system using CAN network. This is because a message inherits
its release jitter (most often non-zero) that is equal to the difference between
worst- and best-case response times of the sending task.

SIPmS
=

8
>>><

>>>:

⇠
qmP

Tm+Jm+⌧bit
MUT

m

⇡
Cm, if (qmP = 0) && (Jm = 0)

⇠
qmP

Tm+Jm

MUT

m

⇡
Cm, otherwise

(5.29)
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SISmP
=

8
>>><

>>>:

⇠
qmS

MUT

m

+Jm+⌧bit
T

m

⇡
Cm, if (qmS = 0) && (Jm = 0)

⇠
qmS

MUT

m

+Jm

Tm

⇡
Cm, otherwise

(5.30)
(5.22) and (5.23) are solved iteratively until two consecutive solutions of each
equation become equal or the solution exceeds the message deadline in which
case the message is deemed unschedulable. The starting values for !n

m

P

and
!n

m

S

can be selected equal to B
m

+ q
m

P

C
m

and B
m

+ q
m

S

C
m

respectively.
The blocking time B

m

is calculated using (5.7). The calculations for I
k

P

and
I
k

S

are adapted from (5.9) separately for m
m

P

and m
m

S

as follows.

IkP =

8
>>>>>>>><

>>>>>>>>:

⇠
!n

mP
(qmP

)+Jk+⌧bit

Tk

⇡
, if ⇠k = P

⇠
!n

mP
(qmP

)+Jk+⌧bit

MUT

k

⇡
, if ⇠k = S

⇠
!n

mP
(qmP

)+Jk+⌧bit

Tk

⇡
+

⇠
!n

mP
(qmP

)+Jk+⌧bit

MUT

k

⇡
, if ⇠k = M

(5.31)

IkS =

8
>>>>>>>><

>>>>>>>>:

⇠
!n

mS
(qmS

)+Jk+⌧bit

Tk

⇡
, if ⇠k = P

⇠
!n

mS
(qmS

)+Jk+⌧bit

MUT

k

⇡
, if ⇠k = S

⇠
!n

mS
(qmS

)+Jk+⌧bit

Tk

⇡
+

⇠
!n

mS
(qmS

)+Jk+⌧bit

MUT

k

⇡
, if ⇠k = M

(5.32)

Calculations for the Length of Priority Level-m Busy Period

The length of priority level-m busy period, denoted by t
m

, can be calculated
using (5.10) that was developed for the periodic and sporadic messages. This is
because (5.10) takes into account the effect of queueing delay from all higher
and equal priority messages. Since, the duplicates of a mixed message inherit
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the same priority from it, the contribution of queueing delay from the duplicate
is also covered in (5.10). Therefore, there is no need to calculate t

m

for m
m

P

and m
m

S

separately. In fact, t
m

should be calculated only once for the mixed
message that is under analysis.

Although the length of priority level-m busy period is the same for m
m

P

and m
m

S

, the number of instances of both these messages that become ready
for transmission just before the end of the busy period, denoted by Q

m

P

and
Q

m

S

respectively, may be different. The reason is that the calculations for Q
m

P

and Q
m

S

require T
m

and MUT
m

respectively and which may have different
values. Q

m

P

and Q
m

S

can be calculated by adapting (5.15) that was derived for
the calculations for the number of instances of periodic and sporadic messages.
Q

m

P

and Q
m

S

are given by the following equations.

QmP =

⇠
tm + Jm

Tm

⇡
(5.33)

QmS =

⇠
tm + Jm
MUTm

⇡
(5.34)

5.6 Integrating the Effect of Abortable Transmit
Buffers with the Extended Worst-case RTA for
CAN

In this section, we integrate the effect of abortable transmit buffers in the CAN
controllers with the extended RTA of CAN for periodic, sporadic and mixed
messages. We assume that the CAN controllers implement limited number of
transmit buffers (at least three) and support transmission abort requests.

5.6.1 Priority Inversion in the Case of Abortable Transmit
Buffers

If the CAN controller supports transmission abort requests (and implements
more than 3 transmit buffers) then the lowest priority message in the transmit
buffer (that is not undergoing transmission) is swapped with the higher prior-
ity message from the message queue. During the swapping process, a lower
priority message from the transmit buffer in any other controller may win the
bus arbitration and contribute an extra delay to the response time of the higher
priority message. The copying delay and the extra blocking delay during the
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swapping process should be taken into account while calculating the response
time of the higher priority message.

Additional delay and jitter due to priority inversion. In order to demon-
strate the additional delay due to priority inversion when CAN controllers sup-
port transmission abort requests, consider the example of transmission of a
message set as shown in Figure 5.6. Assume there are three nodes CC

c

, CC
j

and CC
k

in the system and each node has three transmit buffers. m
1

is the
highest priority message in the node CC

c

as well as in the system.
When m

1

becomes ready for transmission in the message queue, a lower
priority message m

6

belonging to node CC
k

is already under transmission.
This represents the blocking delay for m

1

. At this point in time, all transmit
buffers in CC

c

are occupied by the lower priority messages (say m
3

, m
4

and
m

5

). The device drivers signal an abort request for the lowest priority message
in K

c

(transmit buffers in CC
c

) that is not under transmission.
Hence, m

5

is aborted and copied from the transmit buffer to the message
queue whereas m

1

is moved to the vacated transmit buffer. The time required
to do this swapping is identified as swapping time in Figure 5.6. During the
swapping time a series of events occur: m

6

finishes its transmission, new ar-
bitration round starts, another message m

2

belonging to node CC
j

and having
priority lower than m

1

wins the arbitration and starts its transmission. Thus
m

1

has to wait in the transmit buffer until m
2

finishes its transmission. This
results in the priority inversion and adds an extra delay to the response time of
m

1

. In [21], Khan et al. pointed out that this extra delay of the higher priority
message appears as its additional jitter to the lower priority messages, e.g., m

5

in Figure 5.6.

Calculations for the additional jitter. The calculations for the additional
jitter are adapted from the analysis in [21]. Let m

m

be the message under
analysis that belongs to the node CC

c

. Let K
c

denote the transmit buffer queue
in CC

c

. Let CT
m

denotes the maximum between the time required to copy
m

m

from the message queue to the transmit buffer and from transmit buffer
to the message queue. As noted in [21], these two times are very similar to
each other in practice. Let the additional jitter of m

m

as seen by the lower
priority messages due to priority inversion (discussed above) be denoted by
AJA

m

. Where AJ stands for “Additional Jitter” while the superscript “A” stands
for Abortable transmit buffer. The maximum jitter of m

m

denoted by Ĵ
m

is
the summation of its original jitter J

m

and the additional jitter due to priority
inversion. Mathematically, the additional jitter of m

m

that is seen by lower
priority messages is calculated as follows.
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Figure 5.6: Demonstration of priority inversion in the case of abortable trans-
mit buffers

Ĵ
m

= Jm +AJA
m (5.35)

The additional jitter for m
m

depends upon the following three elements.

1. The largest copy time of a message in the set of lower priority messages
that belong to the same node CC

c

.

2. The largest value among the worst-case transmission times of all those
messages whose priorities are lower than the priority of m

m

but higher
than the highest priority message in K

c

.

3. Since the original blocking time B
m

for m
m

is separately considered as
part of the queueing delay, it should be subtracted from the additional
delay.

Therefore, AJA

m

is calculated as follows:

AJA
m = max(0, max

8ml2CCc^ml2lep(mm)
(CTl) + max

Pm<PlPhKc

(Cl)�Bm)

(5.36)
where m

h

K

c

is the highest priority message in K
c

. We will come back to the
calculations for finding the priority of m

h

K

c

in the next subsection.
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Calculations for the blocking delay. When m
m

is subjected to priority in-
version, it experiences an extra amount of blocking in addition to the original
blocking delay B

m

. Let the total blocking delay for m
m

due to priority inver-
sion be denoted by B̂

m

. Mathematically, it is equal to the sum of the original
blocking delay and the largest copy time of a message in the set of lower pri-
ority messages that belong to the same node CC

c

.

B̂
m

= max

8mj2lep(mm)
{Cj}+ max

8ml2CCc^ml2lep(mm)
(CTl) (5.37)

Since we consider arbitrary deadlines, m
m

can also be blocked from its
own previous instance due to push-through blocking [18] as discussed in Sub-
section 5.5.1. That is the reason why (5.37) includes the function lep(m

m

)

instead of lp(m
m

).

5.6.2 Extended RTA
The work in [21] noted that not all messages in a node suffer from priority
inversion. Therefore we consider two different cases for calculating response
times of periodic, sporadic and mixed messages in CAN with abortable trans-
mit buffers. In this section, first we determine which messages are free from
priority inversion. After that we extend the analysis from Section 5.5 by adapt-
ing the analysis in [21].

Calculations for the Number of Messages Free from Priority Inversion

If we assume that multiple instances of a message cannot occupy transmit
buffers then the number of lowest priority messages equal to the number of
transmit buffers in a node will be safe from priority inversion. Whereas, the
rest of the messages in the same node may suffer from priority inversion. This
can be explained by a simple but intuitive example. Let there be 4 transmit
buffers in a node. Let there be 6 messages m

1

, m
2

, m
3

, m
4

, m
5

and m
6

in
this node. m

1

has the highest priority, while m
6

has the lowest priority. As-
sume m

3

arrives in the message queue when 3 out of 4 transmit buffers are
occupied by the three lowest priority messages m

6

, m
5

and m
4

. The fourth
transmit buffer can either be empty or occupied by one of the higher priority
messages m

1

or m
2

. If the fourth transmit buffer is empty then m
3

is imme-
diately copied to it. On the other hand, m

3

has to wait in the message queue
because at least one transmit buffer contains a higher priority message. In both
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cases there is no need to abort any transmission. This implies that m
6

, m
5

, m
4

and m
3

will be safe from priority inversion, whereas m
1

and m
2

may undergo
priority inversion. In this case, m

h

K

c

is represented by message m
3

.
This means that the set of lower priority messages whose size is equal to the

number of transmit buffers will be free from priority inversion. However, this
condition may become invalid if we assume that multiple instances of a mes-
sage can occupy transmit buffers at the same time. In that case we need to find
out the worst-case scenario where messages are free from priority inversion.

Worst-case scenario for m
h

K

c

. For convenience, assume that N
c

repre-
sents the number of messages sent by the node CC

c

. Intuitively, we can as-
sume that the lowest priority message belonging to CC

c

can be indexed as
mN

c

�1

m

. It should be noted that N
c

� 1 does not represent the priority of the
message. Similarly, the second lowest priority message belonging to CC

c

can
be indexed as mN

c

�2

m

.
Let the total number of instances of all messages occupying the transmit

buffers in CC
c

be denoted by ⌦
c

. Assume that the maximum number of in-
stances of mN

c

�1

m

occupying transmit buffers ahead of mN

c

�2

m

is denoted by
⌦N

c

�1

2

c

. Its value depends upon three factors.

1. Periods of these two messages. If the period of mN

c

�2

m

is higher than
the period of mN

c

�1

m

, there can be more than one instance of mN

c

�1

m

that may occupy transmit buffers in CC
c

ahead of mN

c

�2

m

.

2. Due to jitter of mN

c

�1

m

, more than one instance of mN

c

�1

m

may occupy
transmit buffers in CC

c

.

3. Transmission type of mN

c

�1

m

. If mN

c

�1

m

is a mixed message, we need to
consider the contribution of its periodic as well as sporadic part.

The value of ⌦N

c

�1

2

c

can be calculated with a similar intuition that we used
in (5.25) as follows.

⌦

Nc�12
c =

8
>>>>>>>>><

>>>>>>>>>:

⇠
Tm

Nc�2+Jm
Nc�1

T

m

N

c

�1

⇡
, if ⇠mNc�1 = P

⇠
Tm

Nc�2+Jm
Nc�1

MUT

m

N

c

�1

⇡
, if ⇠mNc�1 = S

⇠
Tm

Nc�2+Jm
Nc�1

T

m

N

c

�1

⇡
+

⇠
Tm

Nc�2+Jm
Nc�1

MUT

m

N

c

�1

⇡
, if ⇠mNc�1 = M

(5.38)
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In this case, ⌦
c

is equal to ⌦N

c

�1

2

c

because we consider only two lowest
priority messages. It should be noted that we consider period or minimum
update time of mN

c

�2

m

if it is periodic or sporadic. However, if mN

c

�2

m

is
mixed then we select the maximum between its period and minimum update
time in (5.38).

Let us consider three lowest priority messages in CC
c

denoted by mN

c

�1

m

,
mN

c

�2

m

and mN

c

�3

m

. We denote the maximum number of instances of mN

c

�1

m

occupying the transmit buffers ahead of mN

c

�3

m

by ⌦N

c

�1

3

c

. Similarly, the
maximum number of instances of mN

c

�2

m

occupying the transmit buffers ahead
of mN

c

�3

m

be denoted by ⌦N

c

�2

3

c

. The calculations for ⌦N

c

�1

3

c

and ⌦N

c

�2

3

c

are adapted from (5.38) as follows.

⌦

Nc�13
c =

8
>>>>>>>>><

>>>>>>>>>:

⇠
Tm

Nc�3+Jm
Nc�1

T

m

N

c

�1

⇡
, if ⇠mNc�1 = P

⇠
Tm

Nc�3+Jm
Nc�1

MUT

m

N

c

�1

⇡
, if ⇠mNc�1 = S

⇠
Tm

Nc�3+Jm
Nc�1

T

m

N

c

�1

⇡
+

⇠
Tm

Nc�3+Jm
Nc�1

MUT

m

N

c

�1

⇡
, if ⇠mNc�1 = M

(5.39)

⌦

Nc�23
c =

8
>>>>>>>>><

>>>>>>>>>:

⇠
Tm

Nc�3+Jm
Nc�2

T

m

N

c

�2

⇡
, if ⇠mNc�2 = P

⇠
Tm

Nc�3+Jm
Nc�2

MUT

m

N

c

�2

⇡
, if ⇠mNc�2 = S

⇠
Tm

Nc�3+Jm
Nc�2

T

m

N

c

�2

⇡
+

⇠
Tm

Nc�3+Jm
Nc�2

MUT

m

N

c

�2

⇡
, if ⇠mNc�2 = M

(5.40)
In this case, ⌦

c

is equal to the sum of ⌦N

c

�1

3

c

and ⌦N

c

�2

3

c

as follows.

⌦
c

= ⌦N

c

�1

3

c

+ ⌦N

c

�2

3

c

(5.41)
Similarly, the maximum number of instances for any arbitrary number Z of

lower priority messages occupying transmit buffers in CC
c

can be calculated
using the following equation. We assume Z to be smaller than or equal to N

c

.

⌦
c

= ⌦N

c

�1

Z

c

+ ⌦N

c

�2

Z

c

+ ⌦N

c

�3

Z

c

+ ...+ ⌦N

c

�(Z�1)
Z

c

(5.42)
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In this manner, we need to keep on calculating the number of instances of
lower priority messages occupying transmit buffers in CC

c

until the value of
⌦

c

exceeds Sizeof (K
c

). The starting value for Z is 2. Once we have reached
this condition, the highest priority message in this set of low priority messages
is designated as m

h

K

c

.

Case1: When Message Under Analysis is Free from Priority Inversion

Let the message under analysis be m
m

and it belongs to the node CC
c

. Once
again, m

m

is treated differently in the extended RTA based on its transmission
type. In this case, we consider that m

m

is free from priority inversion, i.e., its
priority is smaller than or equal to the priority of m

h

K

c

.

Case 1(a): When (m
m

) is periodic or sporadic

Most of the equations to calculate response time of m
m

from Subsection
5.5.1 are applicable in this case. However, the only difference lies in the calcu-
lations for the queueing delay !

m

and the length of priority level-m busy period
t
m

. The calculations for !
m

should take into account two more elements.

1. The copying delay (from the message queue to the transmit buffer) de-
noted by CT

m

for every instance of m
m

in the priority level-m busy
period.

2. Additional jitter of higher priority messages that is experienced by m
m

.

Adding these elements to (5.8) and (5.9), !
m

can be calculated as follows.

!n+1
m (q) = Bm + qmCm + (qm + 1)CTm +

X

8mk2hp(mm)

IkCk (5.43)

Ik =

8
>>>>>>>>><

>>>>>>>>>:

⇠
!n

m(qm)+Ĵ
k

+⌧bit
Tk

⇡
, if ⇠k = P

⇠
!n

m(qm)+Ĵ
k

+⌧bit
MUT

k

⇡
, if ⇠k = S

⇠
!n

m(qm)+Ĵ
k

+⌧bit
Tk

⇡
+

⇠
!n

m(qm)+Ĵ
k

+⌧bit
MUT

k

⇡
, if ⇠k = M

(5.44)
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The calculations for t
m

should take into account only one more element,
i.e., the additional jitter of higher priority messages that is experienced by m

m

.
Adding it to (5.10) and (5.11), t

m

can be calculated as follows.

tn+1
m = Bm +

X

8mk2hep(mm)

I 0kCk (5.45)

I 0k =

8
>>>>>>>><

>>>>>>>>:

⇠
tnm+Ĵ

k

Tk

⇡
, if ⇠k = P

⇠
tnm+Ĵ

k

MUT

k

⇡
, if ⇠k = S

⇠
tnm+Ĵ

k

Tk

⇡
+

⇠
tnm+Ĵ

k

MUT

k

⇡
, if ⇠k = M

(5.46)

In (7.25) and (5.46), Ĵ
k

is calculated by replacing the index m with k in (5.35)
and (5.36).

Case 1(b): When (m
m

) is mixed

Similar to Case 1(a), most of the equations to calculate response time of
m

m

from Subsection 5.5.2 are applicable in this case. The only difference
lies in the calculations for !

m

and t
m

. The same arguments from Case 1(a)
hold for the calculations of !

m

. In this case, t
m

can be calculated using (7.26)
and (5.46). However, the queueing delay should be calculated separately for
periodic (m

m

P

) and sporadic (m
m

S

) copies of m
m

by integrating CT
m

and Ĵ
m

in (5.22), (5.23), (5.31) and (5.32) as follows.

!n+1
mP

(qmP ) = Bm + qmPCm + (qmP + 1)CTm +

X

8mk2hp(mm)

IkPCk

+SIPmS
(5.47)

!n+1
mS

(qmS ) = Bm + qmSCm + (qmS + 1)CTm +

X

8mk2hp(mm)

IkSCk

+SISmP
(5.48)
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IkP =

8
>>>>>>>><

>>>>>>>>:

⇠
!n

mP
(qmP

)+Ĵ
k

+⌧bit

Tk

⇡
, if ⇠k = P

⇠
!n

mP
(qmP

)+Ĵ
k

+⌧bit

MUT

k

⇡
, if ⇠k = S

⇠
!n

mP
(qmP

)+Ĵ
k

+⌧bit

Tk

⇡
+

⇠
!n

mP
(qmP

)+Ĵ
k

+⌧bit

MUT

k

⇡
, if ⇠k = M

(5.49)

IkS =

8
>>>>>>>><

>>>>>>>>:

⇠
!n

mS
(qmS

)+Ĵ
k

+⌧bit

Tk

⇡
, if ⇠k = P

⇠
!n

mS
(qmS

)+Ĵ
k

+⌧bit

MUT

k

⇡
, if ⇠k = S

⇠
!n

mS
(qmS

)+Ĵ
k

+⌧bit

Tk

⇡
+

⇠
!n

mS
(qmS

)+Ĵ
k

+⌧bit

MUT

k

⇡
, if ⇠k = M

(5.50)
In (5.49) and (5.50), Ĵ

k

is calculated by replacing
m

with
k

in (5.35) and (5.36).

Case2: When Message Under Analysis is Subjected to Priority Inversion

In this case, we consider that m
m

can undergo priority inversion, i.e., its prior-
ity is greater than the priority of m

h

K

c

.

Case 2(a): When (m
m

) is periodic or sporadic

Most of the equations to calculate response time of m
m

from Subsection
5.5.1 are applicable in this case. However, the only difference lies in the cal-
culations for the queueing delay !

m

, blocking delay B
m

, and the length of
priority level-m busy period t

m

. The calculations for !
m

should take into ac-
count three more elements.

1. The copying delay (from the message queue to the transmit buffer) de-
noted by CT

m

for every instance of m
m

in the priority level-m busy
period.

2. Additional jitter of higher priority messages that is experienced by m
m

.

3. Additional blocking delay as shown in (5.37).
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Adding these elements to (5.8) and (5.9), !
m

can be calculated as follows.

!n+1
m (q) = B̂

m

+ qmCm + (qm + 1)CTm +

X

8mk2hp(mm)

IkCk (5.51)

It should be noted that B
m

is replaced with B̂
m

which is calculated using
(5.37). Ik in (5.51) is calculated differently for different values of ⇠

k

(k is
the index of any higher priority message) using (7.25).

The value of priority level-m busy period t
m

is calculated similar to Case
1(a) in Subsection 5.5.1. However, the calculations for t

m

should take into
account two more elements.

1. Additional jitter of higher priority messages that is experienced by m
m

.

2. Additional blocking delay as shown in (5.37).

Adding these elements to (5.10) and (5.11), t
m

can be calculated as follows.

tn+1
m = B̂

m

+

X

8mk2hep(mm)

I 0kCk (5.52)

I 0k in (5.52) is calculated differently for different values of ⇠
k

(k is the index
of any higher priority message) using (5.46).

Case 2(b): When (m
m

) is mixed

Similar to Case 2(a), most of the equations to calculate response time of
m

m

from Subsection 5.5.2 are applicable in this case. The only difference lies
in the calculations for !

m

, B
m

and t
m

. In this case, t
m

can be calculated using
(5.52) and (5.46). However, the queueing delay should be calculated separately
for periodic (m

m

P

) and sporadic (m
m

S

) copies of m
m

by integrating CT
m

,
B̂
m

, Ĵ
m

in (5.22) and (5.23).

!n+1
mP

(qmP ) = B̂
m

+ qmPCm + (qmP + 1)CTm +

X

8mk2hp(mm)

IkPCk

+SIPmS
(5.53)

!n+1
mS

(qmS ) = B̂
m

+ qmSCm + (qmS + 1)CTm +

X

8mk2hp(mm)

IkSCk

+SISmP
(5.54)
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Where I
k

P

and I
k

S

are calculated using (5.49) and (5.50) respectively.

5.7 Integrating the Effect of Non-abortable Trans-
mit Buffers with the Extended Worst-case RTA
for CAN

In this section, we integrate the effect of non-abortable transmit buffers in the
CAN controllers with the extended RTA of CAN for periodic, sporadic and
mixed messages. Basically, we extend the analysis from Section 5.5 by adapt-
ing the analysis in [28]. We assume that the CAN controllers do not support
transmission abort requests. We use the same assumption about the number of
transmit buffers in the CAN controllers that we used in Section 5.6. That is, the
CAN controllers are assumed to implement limited number of transmit buffers
(at least three).

5.7.1 Additional Delay and Jitter due to Priority Inversion
When CAN controllers do not support transmission abort requests, a higher
priority message may suffer from priority inversion and this, in turn, adds ex-
tra delay to its response time [28]. Consider an example of three controllers
CC

c

, CC
j

, CC
k

connected to a single CAN network in Figure 5.7. Let m
1

,
belonging to CC

c

, be the highest priority message in the system. Assume that
when m

1

is ready to be queued, all transmit buffers in CC
c

are occupied by
lower priority messages which cannot be aborted because the controllers im-
plement non-abortable transmit buffers. In addition, m

1

can be blocked by
any lower priority message because the lower priority message already started
its transmission. In this example m

1

is blocked by m
5

that belongs to node
CC

k

. Since all transmit buffers in CC
c

are full, m
1

has to wait in the message
queue until one of the messages in K

c

is transmitted. Let m
4

be the highest
priority message in K

c

. m
4

can be interfered by higher priority messages (m
2

and m
3

) belonging to other nodes. Hence, it can be seen that priority inver-
sion takes place because m

1

cannot start its transmission before m
4

finishes
its transmission while m

4

has to wait until messages m
2

and m
3

are transmit-
ted. This adds an additional delay to the worst-case response time of m

1

. Let
this additional delay for m

1

be denoted by AD
1

. In this example, AD
1

is the
sum of the worst-case transmission times of m

2

, m
3

and m
4

. Generally, this
additional delay is denoted by ADN

m

for any message m
m

. As we discussed
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in Subsection 5.6.1, this additional delay appears as additional jitter of m
m

as seen by the lower priority messages. Let the additional jitter be denoted
by AJN

m

. Where AJ stands for “Additional Jitter” while the superscript “N”
stands for Non-abortable transmit buffer.
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Figure 5.7: Demonstration of priority inversion in the case of non-abortable
transmit buffers

5.7.2 Calculations for the Additional Delay, Jitter and Block-
ing

The calculations for the additional delay, additional jitter and extra blocking
due to priority inversion (discussed in the above subsection) are adapted3 from
the existing analysis [28] to support mixed messages as well.

Calculations for the additional delay. Let m
h

K

c

be the highest priority
message in the transmit buffers of CC

c

denoted by K
c

. The calculations to
determine the priority of m

h

K

c

can be adapted from Section 5.6.2. Let m
m

be
the message under analysis whose priority is higher than m

h

K

c

and belongs to
the same node CC

c

. Assume all transmit buffers are occupied by lower priority
messages when m

m

becomes ready for transmission. So m
m

has to wait until
m

h

K

c

is transmitted. This waiting time for m
m

depends upon the response
time of m

h

K

c

. Let us term the response time of m
h

K

c

without its jitter as the
modified response time and denote it by R⇤

h

K

c

. Mathematically,

3the existing analysis [28] does not support mixed messages
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R⇤
hKc

= !⇤
hKc

+ ChKc
(5.55)

where, C
h

K

c

and !⇤
h

K

c

denote the the worst-case transmission time and queue-
ing delay of m

h

K

c

respectively. The reason for not considering jitter of m
h

K

c

as part of its modified response time is that m
h

K

c

is already in transmit buffer
and hence its jitter will have no impact on the response time of m

m

.
The message m

h

K

c

can be blocked by either one message in the set of lower
priority messages belonging to other nodes or from its previous instance due
to push-through blocking (discussed in Subsection 5.5.1). The queueing delay
for m

h

K

c

is calculated as follows.

!
⇤(n+1)
hKc

= BhKc
+

X

8mk2hp(mhKc
)

I⇤kCk (5.56)

In (5.56), I ⇤
k

is calculated differently for different values of ⇠
k

(k is the
index of any higher priority message) as shown below.

I⇤k =

8
>>>>>>>>><

>>>>>>>>>:

⇠
!

⇤(n)
hKc

+Ĵk+⌧bit

Tk

⇡
, if ⇠k = P

⇠
!

⇤(n)
hKc

+Ĵk+⌧bit

MUT

k

⇡
, if ⇠k = S

⇠
!

⇤(n)
hKc

+Ĵk+⌧bit

Tk

⇡
+

⇠
!

⇤(n)
hKc

+Ĵk+⌧bit

MUT

k

⇡
, if ⇠k = M

(5.57)

In (5.57), Ĵ
k

is the additional jitter of higher priority message m
k

as seen by
m

h

K

c

. We will come back to its calculations later.
Once m

h

K

c

is in K
c

, it cannot be interfered by hp
c

(m
h

K

c

) (i.e., the set
of messages that belong to CC

c

and have priorities higher than the priority
of m

h

K

c

) because the buffers are non-abortable. Let this interference be de-
noted IF c

h

K

c

. However, the messages in hp
c

(m
h

K

c

) can indirectly interfere
with m

h

K

c

before it occupies a buffer in K
c

by interfering with the messages
in the set hp(m

h

K

c

) belonging to other nodes. Let the interference received by
m

h

K

c

from the messages in the set hp(m
m

) belonging to all nodes other than
CC

c

be denoted by IFm

h

K

c

. The additional delay for m
m

will be equal to the
difference between the modified response time R⇤

h

K

c

of m
h

K

c

and the two com-
bined interferences IF c

h

K

c

and IFm

h

K

c

. It should be noted that m
m

can receive
this additional delay from any message in node CC

c

whose priority is smaller
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than m
m

and greater or equal to m
h

K

c

. Hence, we need to calculate all these
delays and select the maximum among them as the additional delay for m

m

as
follows.

ADN
m = max

8ml2CCc^(Pm<PlPhKc
)
(R⇤

hl
� IF c

hKc
� IFm

hKc
) (5.58)

Where the interferences IF c

h

K

c

and IFm

h

K

c

are calculated as follows.

IF c
hKc

=

X

8mi2CCc^(1Pi<Pl)

Ik1Ci (5.59)

IFm
hKc

=

X

8mj 62CCc^(1Pj<Pm)

Ik2Cj (5.60)

In (5.59) and (5.60), the values for I
k

1

and I
k

2

are calculated differently for
different values of ⇠

i

and ⇠
j

respectively as follows.

Ik1 =

8
>>>>>>>>><

>>>>>>>>>:

⇠
R⇤

hl
�Cl+Ĵi+⌧bit

Ti

⇡
, if ⇠i = P

⇠
R⇤

hl
�Cl+Ĵi+⌧bit

MUT

i

⇡
, if ⇠i = S

⇠
R⇤

hl
�Cl+Ĵi+⌧bit

Ti

⇡
+

⇠
R⇤

hl
�Cl+Ĵi+⌧bit

MUT

i

⇡
, if ⇠i = M

(5.61)

Ik2 =

8
>>>>>>>>><

>>>>>>>>>:

⇠
R⇤

hl
�Cl+Ĵj+⌧bit

Tj

⇡
, if ⇠j = P

⇠
R⇤

hl
�Cl+Ĵj+⌧bit

MUT

j

⇡
, if ⇠j = S

⇠
R⇤

hl
�Cl+Ĵj+⌧bit

Tj

⇡
+

⇠
R⇤

hl
�Cl+Ĵj+⌧bit

MUT

j

⇡
, if ⇠j = M

(5.62)

Calculations for the additional jitter. The total jitter of m
m

denoted by Ĵ
m

as seen by the lower priority messages is the sum of its original jitter J
m

and
the additional jitter due to priority inversion as follows.
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Ĵ
m

= Jm +AJN
m (5.63)

The additional jitter AJN

m

is calculated similar to the additional delay ADN

m

.
However, we need to subtract only interference IF c

h

K

c

from R⇤
h

l

because m
h

l

cannot be interfered by higher priority messages from the same node after it
has been transferred to the transmit buffer. Therefore, AJN

m

is calculated as
follows:

AJN
m = max

8ml2CCc^(Pm<PlPhKc
)
(R⇤

hl
� IF c

hKc
) (5.64)

Where, IF c

h

K

c

is calculated using (5.59) and (5.61).

Calculations for the blocking delay. When m
m

is subjected to priority in-
version due to non-abortable transmit buffers, it experiences an extra amount
of blocking in addition to the original blocking delay B

m

. The total block-
ing delay for m

m

denoted by B̂
m

is the maximum value between the original
blocking delay B

m

and additional delay ADN

m

. B
m

is calculated using (5.7)
while B̂

m

is calculated as follows.

B̂
m

= max(Bm, ADN
m) (5.65)

It is important to note that equations (5.55), (5.58), and (5.63) are implicitly
dependent on each other. Therefore, they are solved simultaneously and iter-
atively until two consecutive solutions of each equation become equal or the
solutions exceed the message deadline in which case the message is deemed
unschedulable.

5.7.3 Extended RTA
As discussed in the example given in Section 5.6.2, some messages will be
safe from priority inversion, whereas other messages in the same node may
suffer from priority inversion. Therefore, we consider two different cases for
calculating response times of messages in CAN with non-abortable transmit
buffers: Case(1) when message under analysis is free from priority inversion,
and Case (2) when message under analysis is subjected to priority inversion.
In each of these cases, we treat the message under analysis differently based
on its transmission type: Case (a) when message under analysis is periodic or
sporadic, and Case (b) when message under analysis is mixed. This is exactly
similar to the extended analysis for periodic, sporadic and mixed messages in
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CAN with abortable transmit buffers that is discussed in the previous section.
All equations for the response-time calculations from (5.43) to (5.54) from the
previous section are applicable with the following changes.

1. Since the controllers implement non-abortable transmit buffers, there
will be no copying delays. Therefore, the copying delay denoted by
CT

m

should be neglected. The following changes should be made in
the analysis from the previous section:

(a) (q
m

+ 1 )CT
m

should be removed from equations (5.43) and (5.51),

(b) (q
m

P

+ 1 )CT
m

should be removed from equations (5.47) and (5.53),

(c) (q
m

S

+ 1 )CT
m

should be removed from equations (5.48) and (5.54).

2. The total jitter of m
m

denoted by Ĵ
m

as seen by the lower priority mes-
sages should be calculated using (5.63) instead of (5.35).

3. Additional delay should be calculated using (5.58).

4. The total blocking delay for m
m

denoted by B̂
m

should be calculated
using (5.65) instead of (5.37).

5.8 Comparative Evaluation
In this section, we perform a number of tests on a message set consisting of 50
messages to evaluate and compare the three extended analyses with each other.
The message set is generated using the NETCARBENCH tool [46] which is a
benchmark for techniques and tools that are used in the design of automotive
embedded systems. In all these tests, the system consists of 5 ECUs that are
connected to a single CAN network. The speed of the network is set to 250
Kbit/s (kilo bits per second). The buffer limitations in the ECUs are different
in different tests. Each message in the generated message set has a unique pri-
ority. The highest priority is 1, whereas the lowest priority is 50. It should
be noted that the NETCARBENCH tool cannot generate mixed messages. Af-
ter generating the message set from NETCARBENCH, we randomly assigned
mixed, periodic, and sporadic transmission types to 40%, 30%, and 30% mes-
sages respectively. This means, there are 20 mixed, 15 periodic and 15 sporadic
messages in the message set under analysis. The messages are equally dis-
tributed among the ECUs, i.e., each ECU sends 10 messages over the network
out of which 4 are mixed, 3 are periodic, and 3 are sporadic.
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5.8.1 Comparison of the Extended Analyses

In the first test, we consider three different cases: (i) all ECUs are assumed to
have no buffer limitations in the CAN controllers, (ii) each ECU in the system
implements three transmit buffers in the CAN controller and the buffers are
abortable, and (iii) each ECU in the system implements three transmit buffers
in the CAN controller and the buffers are non-abortable. In the case (i), we ana-
lyze the message set with the extended analysis that does not take into account
buffer limitations in the CAN controllers (the analysis from Section 5.5). In
the case (ii), we analyze the same message set with the extended analysis that
considers abortable transmit buffers (the analysis from Section 5.6). Finally in
the case (iii), we analyze the same message set with the extended analysis that
considers non-abortable transmit buffers (the analysis from Section 5.7).

Figure 5.8(a) depicts the bar graph that shows the response times of mes-
sages that are calculated with three different analyses discussed above. The
blue bars (first one in each set of the three bars) represent the response times
of messages that are calculated using the analysis that does not consider buffer
limitations. The red bars (second one in each set of the three bars) repre-
sent the response times of messages that are calculated using the analysis with
abortable transmit buffers. Whereas, the green bars (third one in each set of
the three bars) represent the response times of messages that are calculated us-
ing the analysis with non-abortable transmit buffers. In order to magnify the
difference between the response times in different cases, we split the Figure
5.8(a) into five parts with each figure showing the set of response times for
every 10 messages as shown in Figures 5.8(b), 5.8(c), 5.8(d), 5.8(e) and 5.8(f)
respectively.

The results indicate that the message response times that are calculated with
the extended analysis without buffer limitations is always smaller than or equal
to the response times that are calculated with the extended analysis with buffer
limitations. This means that if there are limited buffers in the CAN controllers
and the effect of buffer limitations is not considered in the RTA, the calculated
response times can be optimistic.

Let’s compare the response times that are calculated with the extended anal-
yses with buffer limitations, i.e., abortable and non-abortable transmit buffers
separately. Apart from those lowest priority messages that are equal to the
number of transmit buffers in each CAN controller (three lowest priority mes-
sages in this case), the response times of messages are smaller if CAN con-
trollers implement abortable transmit buffers compared to non-abortable trans-
mit buffers. On the other hand, the response times of the three lowest priority
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Figure 5.8: Comparison of message response times that are calculated with the
extended analyses (i) without buffer limitations, (ii) with abortable transmit
buffers, and (iii) with non-abortable transmit buffers.

messages in the system with non-abortable transmit buffers is smaller com-
pared to the system with abortable transmit buffers because the three lowest
priority messages are free from priority inversion (this was discussed in Sec-
tion 5.7). In fact, the response times of the three lowest priority messages in the
system with non-abortable transmit buffers match their response times when
there are no buffer limitations in the CAN controllers. It can be concluded that
it is more feasible to use CAN controllers with abortable transmit buffers com-
pared to non-abortable transmit buffers. Moreover, it is important to use the
RTA that matches the actual limitations and constraints in the hardware, device
drivers and protocol stack.
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5.8.2 Application of the Extended Analyses to Heterogeneous
Systems

In the second test, we consider the case of a heterogeneous system in addi-
tion to the three cases from the first test. By heterogeneous system, we mean
that the ECUs have different buffer limitations. That is, two ECUs implement
abortable transmit buffers, two implement non-abortable transmit buffers while
there are no buffer limitations in one ECU. Those ECUs that have buffer lim-
itations implement three transmit buffers. We use the same message set in the
heterogeneous system. In this case the messages that belong to the ECUs with-
out buffer limitations are analyzed with the extended analysis from Section
5.5. The messages that belong to the ECUs that implement abortable transmit
buffers are analyzed with the extended analysis from Section 5.6. Similarly,
the messages that belong to the ECUs that implement non-abortable transmit
buffers are analyzed with the extended analysis from Section 5.7.

In order to magnify the difference between the response times in different
cases, we show the response time results for every 10 messages separately in
Figures 5.9(a), 5.9(b), 5.9(c), 5.9(d) and 5.9(e) respectively. In each figure, the
blue bars (first one in each set of the four bars) represent the response times
of messages that are calculated using the analysis that does not consider buffer
limitations. The red bars (second one in each set of the four bars) represent the
response times of messages that are calculated using the analysis with abortable
transmit buffers. Similarly, the green bars (third one in each set of the four
bars) represent the response times of messages that are calculated using the
analysis with non-abortable transmit buffers. Whereas, the purple bars (fourth
one in each set of the four bars) represent the response times of messages in
the heterogeneous system that are calculated using all three extended analyses
together.

The results indicate that the message response times in the heterogeneous
system are always greater than the message response times when the ECUs
have no buffer limitations or the ECUs implement abortable transmit buffers.
However, the response times of the 47 highest priority messages in the hetero-
geneous system are smaller than their response times when the ECUs imple-
ment non-abortable transmit buffers. Whereas, this trend is reversed for the
three lowest priority messages because these messages are free from priority
inversion.
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Figure 5.9: Comparison of message response times that are calculated with the
extended analyses (i) without buffer limitations, (ii) with abortable transmit
buffers, (iii) with non-abortable transmit buffers, and (iv) all three analysis in
(i), (ii) and (iii) are applied on a heterogeneous system.

5.8.3 Effect of Copy Times of Messages on their Response
Times

In the third test, we explore the effect of message copy times on their response
times in the systems where ECUs implement three transmit buffers which are
of abortable type. We use the same message set that we used in the previous
tests. In this test, we consider six different cases with respect to the amount
of message copy times: (i) copy time of all messages is four times the trans-
mission time of a single bit of data over CAN (1-bit more time than the time
required for inter-frame space of 3-bits), (ii) copy time of each message is 5%
of its transmission time, (iii) copy time of each message is 10% of its transmis-
sion time, (iv) copy time of each message is 15% of its transmission time, (v)
copy time of each message is 20% of its transmission time, and (vi) copy time
of each message is 25% of its transmission time.

We analyze the message set in all these cases with the extended analysis
from Section 5.6. In order to magnify the difference between the response
times in different cases, we show the response time results for every 10 mes-
sages separately in Figures 5.10(a), 5.10(b), 5.10(c), 5.10(d) and 5.10(e) re-
spectively. In each figure, the dark blue bars (first one in each set of the seven
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Figure 5.10: Comparison of message response times that are calculated with
the extended analysis with abortable transmit buffers with different amount of
message copy times.

bars) represent the response times of messages that are calculated using the
analysis that does not consider buffer limitations. These response times are
used just for the reference. The rest of the bars (in each set of the seven bars)
represent the response times of messages that are calculated using the extended
analysis with abortable transmit buffers while taking into account the different
amount of message copy times as shown in Figure 5.10.

The results indicate that the increase in the response times of messages
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is directly proportional to the increase in the amount of message copy times.
If the message copy time is less than the inter-frame space (time required to
transmit 3-bits of data on CAN), the response times of messages in the system
with abortable transmit buffers becomes equals to the response times of same
messages in the system with no buffer limitations.

5.8.4 Effect of the Number of Transmit Buffers on Message
Response Times

In the fourth test, we explore the effect of the number of transmit buffers on
message response times in the systems where ECUs implement non-abortable
transmit buffers. Once again, the same message set is used. In this test, we
consider eight different cases with respect to the number of transmit buffers
in the CAN controllers, i.e., the number of transmit buffers in each ECU are
equal to: (i) three, (ii) four, (iii) five, (iv) six, (v) seven, (vi) eight, (vii) nine,
and (viii) ten. We analyze the message set in all these cases separately with the
extended analysis from Section 5.7.

In order to magnify the difference between the response times in different
cases, we show the response time results for every 10 messages separately
in Figures 5.11(a), 5.11(b), 5.11(c), 5.11(d) and 5.11(e) respectively. In each
figure, the dark blue bars (first one in each set of the nine bars) represent the
response times of messages that are calculated using the extended analysis that
does not consider buffer limitations. These response times are used just for
the reference. The rest of the bars (in each set of the nine bars) represent the
response times of messages that are calculated using the extended analysis with
non-abortable transmit buffers while taking into account the different number
of transmit buffers in the CAN controllers as shown in Figure 5.11.

As expected, the response times of messages in the system with no buffer
limitations are always smaller than or equal to their response times when the
ECUs in the system implement non-abortable transmit buffers. Let’s consider
the three lowest priority messages (priorities 48, 49 and 50). The response
times of these messages are equal in all the cases because there are at least
3 transmit buffers in every ECU in each case. Therefore, these messages are
free from priority inversion. Now consider the message with priority equal to
47. This message has the highest response time when ECUs contain 3 transmit
buffers as shown by the red bar (second in the set of the nine bars) in Figure
5.11(e). Since, it is fourth lowest priority message in the system, it is not save
from priority inversion when there are three transmit buffers in each ECU.
Similarly, for the message with priority equal to 46, the message has higher
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Figure 5.11: Comparison of message response times that are calculated with
the extended analysis with non-abortable transmit buffers with different size of
transmit buffers in the CAN controllers.
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response times in the system where ECUs implement 3 and 4 transmit buffers
as shown by red and green bars (second and third in the set of the nine bars) in
Figure 5.11(e) respectively. This trend of the increase in the response times of
messages with priorities 45, 44, 43, 42, 42, and 40 continues as the number of
transmit buffers in the ECUs keeps on increasing from 5 to 10. However, this
trend breaks at message with priority equal to 38 where it has equal response
times in different systems with respect to different number of transmit buffers
in the ECUs. This new trend remains the same for the rest of the highest priority
messages (messages with priorities from 37 to 1).

5.9 Conclusion
The existing worst-case Response Time Analysis (RTA) for Controller Area
Network (CAN) does not support mixed messages. Mixed messages can be
queued for transmission both periodically and sporadically. They are imple-
mented by some of the higher-level protocols and commercial extensions of
CAN that are used in the automotive industry. We extended the existing anal-
ysis to support mixed messages. The extended analysis is able to calculate
the upper bounds on the response times of CAN messages with all types of
transmission patterns, i.e., periodic, sporadic and mixed. Furthermore, we in-
tegrated the effect of hardware and software limitations in the CAN controllers
and device drivers such as abortable and non-abortable transmit buffers with
the extended analysis for mixed messages. The extended analyses are also ap-
plicable to heterogeneous types of systems where ECUs (Electronic Control
Units) are supplied by different tier-1 suppliers. These ECUs may have differ-
ent limitations in the CAN controllers, device drivers and protocol stack.

We also conducted a case study to show the applicability of the extended
analyses and performed the comparative evaluation of the extended analyses.
The evaluation results indicate that if there are limited number of transmit
buffers in the CAN controllers and the effect of buffer limitations is not con-
sidered in the RTA, the calculated response times can be optimistic. Hence, it
is important to use the RTA that matches the actual limitations and constraints
in the hardware, device drivers and protocol stack.

An interesting future work is to integrate the effect of buffer limitations
with the offset-based RTA for mixed messages in CAN. Currently, we have
implemented the extended analysis for mixed messages in CAN without buffer
limitations in an existing industrial tool suite the Rubus-ICE [19]. In the future,
we plan to implement the extended analysis for mixed messages with buffer
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limitations in the Rubus-ICE.
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Appendix A

Notation Explanation
CC

n

CAN Controller (or a node)
n

@ Total number of messages in the system
@
n

Set of messages belonging to CC
n

K
n

Transmit buffers in CC
n

m
n

Any message
n

ID
n

Unique identifier of
n

P
n

Priority of
n

hp(m
n

) Set of higher priority messages than m
n

lp(m
n

) Set of lower priority messages than m
n

hep(m
n

) Set of higher and equal priority messages than m
n

lep(m
n

) Set of lower and equal priority messages than m
n

FRAME TYPE Specifies whether the frame is a standard or an
extended CAN frame

⇠
n

Transmission type of m
n

. It specifies whether m
n

is periodic (P ), sporadic (S) or mixed (M )
C

n

Worst-case transmission time of m
n

J
n

Queueing jitter of m
n

s
n

Size of data payload in m
n

T
n

Transmission period of m
n

MUT
n

Minimum Update Time of m
n

. It is the minimum
time that should elapse between the transmission
of any two sporadic messages

B
n

Blocking time of m
n

R
n

Worst-case response time of m
n

D
n

Deadline of m
n

!
n

Queueing delay for m
n

⌧
bit

Time required to transmit a single bit of data over the CAN
network

t
n

Length of the priority level-n busy period
U

m

Bus utilization for priority level-n
Q

n

Number of instances of m
n

that are queued in priority
level-n busy period

Table 5.1: Notations and terminology
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Abstract

The existing worst-case response-time analysis for Controller Area Network
(CAN) with nodes implementing priority and First In First Out (FIFO) queues
does not support mixed messages. It assumes that a message is queued for
transmission either periodically or sporadically. However, a message can also
be queued both periodically and sporadically using mixed transmission mode
implemented by several higher-level protocols for CAN that are used in the
automotive industry. We extend the existing analysis for CAN to support any
higher-level protocol for CAN that uses periodic, sporadic, and mixed trans-
mission of messages in the systems where some nodes implement priority
queues while others implement FIFO queues. In order to provide a proof
of concept, we implement the extended analysis in a free tool, conduct an
automotive-application case study, and perform comparative evaluation of the
extended analysis with the existing analysis.
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6.1 Introduction
The Controller Area Network (CAN) [1] is a widely used real-time network
protocol in the automotive domain. In 2003, the International Organization
for Standardization (ISO) standardized CAN in ISO 11898-1 [2]. It is a multi-
master, event-triggered, serial communication bus protocol supporting bus speeds
of up to 1 Mbit/s. CAN with Flexible Data-rate (CAN FD) [3] is a new protocol
based on CAN that can achieve bus speed of more than 1 Mbit/s. According
to CAN in Automation (CiA) [4], the estimated number of CAN enabled con-
trollers sold in 2011 are about 850 million. In total, more than two billion
CAN controllers have been sold until today. Out of this huge number, approx-
imately 80% CAN controllers have been used in the automotive applications.
For example, there can be as many as 20 CAN networks1 used in a modern
heavy truck, while the number of CAN messages transmitted over these net-
works can be over 6000 [5]. These facts and figures indicate the popularity of
CAN in the automotive domain. It is also used in other domains such as indus-
trial control, medical equipments, maritime electronics, production machinery,
and many others. There are a number of higher-level protocols for CAN that
are developed for many industrial applications such as CAN Application Layer
(CAL) [6], CANopen [7], Hägglunds Controller Area Network (HCAN) [8],
and CAN for Military Land Systems domain (MilCAN) [9].

CAN finds its applications in the systems that have real-time requirements.
This means that the time for response to some stimulus is as crucial as logical
correctness of the response. In other words, logically correct but late response
may be considered as bad as logically incorrect response. Hence, the providers
of these systems are required to ensure that the actions by the systems will be
taken at times that are appropriate to their environment. In order to provide
evidence that each action by the system will be provided in a timely manner,
a priori analysis techniques, such as schedulability analysis [10, 11, 12], have
been developed by the research community. Response-Time Analysis (RTA)
[13, 10, 11, 12] is a powerful, mature and well established schedulability anal-
ysis technique. It is a method to calculate upper bounds on the response times
of tasks or messages in a real-time system or a real-time network respectively.
RTA applies to systems (or networks) where tasks (or messages) are scheduled
with respect to their priorities and which is the predominant scheduling tech-
nique used in real-time operating systems (or real-time network protocols, e.g.,
CAN) today [14].

1Since, CAN uses bus topology, we use the terms network and bus interchangeably throughout
the paper.
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6.1.1 Extended Version
This paper extends our previous work that was presented in the 9th IEEE In-
ternational Workshop on Factory Communication Systems (WFCS 2012) [15].
The workshop paper presents the response-time analysis for mixed messages
in CAN with FIFO queues. However, it lacks the calculations for maximum
buffering time in the FIFO queues which is an important factor in the response-
time calculations. Moreover, it does not evaluate and compare the extended
analysis with the other related analyses. In the extended version of the paper,
we generalize the analysis, by complementing it with the algorithm to calcu-
late maximum buffering time in the FIFO queues. Moreover, we implement
the extended analysis in a freely-available tool. We also show the applicability
of the extended analysis by conducting an automotive-application case study.
We also perform extensive evaluation of the extended analysis.

6.1.2 Related Works
Tindell et al. [16] developed the schedulability analysis for CAN. It has been
implemented in the automotive industrial tools such as Volcano Network Ar-
chitect (VNA) [17]. Davis et al. [18] found the analysis to be flawed in some
cases. Accordingly, they revisited and revised the original analysis. The re-
vised analysis is also implemented in the existing industrial tool suite Rubus-
ICE [19, 20] which is used by several international companies.

The scheduling model used in [16, 18] assumes that the messages are
queued for transmission either periodically or sporadically. These analyses
do not support the response time calculations for mixed messages in CAN,
i.e., the messages that are simultaneously time (periodic) and event triggered.
Mixed messages are implemented by several higher-level protocols based on
CAN that are used in the automotive industry. Mubeen et al. [21] extended the
seminal analysis [16, 18] to support the worst-case response-time calculations
for mixed messages in CAN.

However, the analyses in [16, 18, 21] assume that the device drivers in the
CAN controllers implement priority-based queues. This means that the highest
priority message at each node2 enters into the bus arbitration. This assumption
may become invalid when some controllers in the network implement FIFO
queues. Some examples of the CAN controllers implementing FIFO queues
are Infineon XC161CS, Microchip PIC32MX, Renesas R32C/160 and XILINX

2It should be noted that a node or ECU contains a CAN controller. We overload the terms node,
processor, Electronic Control Unit (ECU), and CAN controller throughout the paper.
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LogiCORE IP AXI Controller [22, 23, 24]. Davis et al. [25, 22] extended the
analysis for CAN where some nodes implement priority queues while others
implement FIFO queues.

In the works in [25, 22], the message deadlines are assumed to be smaller
than or equal to the corresponding periods. In [26], Davis et al. lifted this
assumption by supporting the analysis for CAN messages with arbitrary dead-
lines. Furthermore, they extended their previous works to support RTA for
CAN with FIFO and work-conserving queues. However, the analyses for CAN
with FIFO queues do not support mixed messages.

6.1.3 Paper Contributions and Motivation
We identified that the existing RTA for CAN with FIFO queues [25, 22, 26]
does not support the analysis of common message transmission patterns, i.e.,
mixed messages. These type of messages are implemented by some higher-
level protocols for CAN that are used in the automotive industry. Further, the
existing analysis for mixed messages in CAN [21] does not support the analysis
of the systems containing nodes that implement FIFO queues. We extend the
existing analysis for CAN with FIFO queues [25, 22, 26] by integrating it with
the analysis for mixed messages in CAN with priority queues [21]. Moreover,
we generalize the extended analysis for CAN with FIFO queues by present-
ing the algorithm for the calculations of maximum buffering time in the FIFO
queues. The relationship between the existing and extended analyses is shown
in Figure 6.1.

The extended analysis does not put any restrictions on the message dead-
lines, i.e., the deadline of a message can be lower, equal, or higher than its
transmission period. The extended analysis is able to calculate the worst-case
response times of periodic, sporadic and mixed CAN messages in networks
where some nodes implement priority queues while others implement FIFO
queues. We also implement the extended analysis in a freely-available tool
[27]. Furthermore, we show the applicability of the extended analysis by con-
ducting the automotive-application case study. We also perform extensive eval-
uation of the extended analysis.

The motivation for this work comes from the industrial requirements and
the activity of implementing the holistic response-time analysis [28] in the ex-
isting industrial tool suite, Rubus-ICE [20]. This tool provides a model- and
component-based development environment for resource-constrained automo-
tive distributed real-time systems while supporting several higher-level proto-
cols based on CAN.
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Figure 6.1: Relationship between the existing and extended analyses for CAN.

6.1.4 Paper Layout
The rest of the paper is organized as follows. In Section 6.2, we discuss mixed
transmission patterns supported by several higher-level protocols for CAN. In
Section 6.3, we discuss some common queueing policies in the transmit buffers
of the CAN controllers. In Section 6.4, we describe the system model. In
Section 6.5, we extend the existing analysis. Section 6.6 presents the case
study and evaluation of the extended analysis. Finally, Section 6.7 summarizes
and concludes the paper.

6.2 Mixed Transmission Patterns Supported by the
Higher-level Protocols for CAN

In order to be consistent throughout the paper, we use the terms message and
frame interchangeably. This is because we only consider messages that fit into
one frame, i.e., the maximum size of a message can be 8 bytes. If a mes-
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sage is queued for transmission at periodic intervals, we use the term “Period”
to refer to its periodicity. On the other hand, a sporadic message is queued
for transmission as soon as a sporadic event occurs that changes the value of
one or more signals contained in the message provided the Minimum Update
Time (MUT 3) between the queueing of two successive sporadic messages has
elapsed. The seminal RTA for CAN [16] and most of its extensions assume
that the tasks queueing CAN messages are invoked either periodically or spo-
radically. However, there are some higher-level protocols and commercial ex-
tensions of CAN in which the tasks that queue the messages can be invoked
periodically as well as sporadically. If a message is queued for transmission
periodically as well as sporadically, the transmission type of a message is called
mixed. That is, a mixed message is simultaneously time- and event-triggered.
We identify three different types of implementations of the mixed messages by
the higher-level protocols for CAN that are used in the automotive industry.

6.2.1 Implementation of Mixed Message in the CANopen Pro-
tocol

The CANopen protocol [7] supports mixed transmission that corresponds to
the Asynchronous Transmission Mode coupled with Event Timer. The Event
Timer is used for cyclic transmission of an asynchronous message. The mixed
message in this protocol can be queued for transmission at the arrival of a
sporadic event provided the Inhibit Time has expired. The Inhibit Time is the
minimum time that must be allowed to elapse between the queueing of two
consecutive messages. The mixed message can also be queued periodically
when the Event Timer expires. The Event Timer is reset every time the message
is queued. Once the mixed message is queued, any additional queueing of this
message will not take place during the Inhibit Time [7]. The transmission
pattern of the mixed message in the CANopen protocol is illustrated in Figure
6.2(a). The down-pointing arrows show queueing of the message while the
numbers below them represent the instance number of the queued message.
The upward lines labeled with alphabetic characters represent the arrival of
events. Instance 1 of the mixed message is queued as soon as the event A
arrives. Both the Event Timer and Inhibit Time are reset. As soon as the
Event Timer expires, instance 2 is queued due to periodicity and both the Event
Timer and Inhibit Time are reset again. Instance 3 of the mixed message is
immediately queued upon arrival of the event B because the Inhibit Time has

3We overload the term MUT to refer to the Inhibit Time in the CANopen protocol [7] and the
Minimum Delay Time (MDT) in the AUTOSAR communication [29].
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already expired. Note that the Event Timer is also reset at the same time when
instance 3 is queued as shown in Figure 6.2(a). The instance 4 of the mixed
message is queued because of the expiry of the Event Timer. There exists a
dependency relationship between the Inhibit Time and the Event Timer, i.e.,
the Event Timer is reset with every sporadic transmission.

Implementation in CANopen

Event 
Arrival

Message 
Queued for 

Transmission

Periodic Transmission is independent of 

Sporadic Transmission

A B C D

1 2 5 63 4

Delayed Periodic Transmissions

A

1 2 5 63 4

Event Timer is 

reset

1 3 4

B

2

A

(a) Mixed message in CANopen (b) Mixed message in AUTOSAR (c) Mixed message in HCAN

Figure 6.2: Mixed transmission pattern in higher-level protocols for CAN.

6.2.2 Implementation of Mixed Message in the AUTOSAR
Communications

AUTOSAR (AUTomotive Open System ARchitecture) [30] can be viewed as a
higher-level protocol if it uses CAN for network communication. Mixed trans-
mission in AUTOSAR is widely used in practice. In this protocol, a mixed mes-
sage can be queued for transmission periodically with the mixed transmission
mode time period. The mixed message can also be queued at the arrival of an
event provided the Minimum Delay Time (MDT ) has been expired. However,
each transmission of the mixed message, regardless of being periodic or spo-
radic, is limited by the MDT timer. This means that both periodic and sporadic
transmissions will always be delayed until the expiry of the MDT timer. Fig-
ure 6.2(b) shows the transmission pattern of the mixed message implemented
by AUTOSAR. The MDT timer is started as soon as the first instance of the
mixed message is queued due to partly periodic nature of the mixed message.
Its second instance is queued immediately upon arrival of the event A because
the MDT timer has already expired. The next periodic transmission is sched-
uled 2 time units after the transmission of instance 2. However, the next two
periodic transmissions corresponding to instances 3 and 4 are delayed because
the MDT timer is still running. The transmissions that are delayed due to
non-expiry of the MDT timer are identified in Figure 6.2(b). The periodic
transmissions corresponding to instances 5 and 6 take place at the scheduled
times because the MDT timer is already expired in both cases.
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6.2.3 Implementation of Mixed Message in the HCAN Pro-
tocol

The mixed message in the HCAN protocol [8] contains signals out of which
some are periodic and some are sporadic. The mixed message is queued for
transmission not only periodically, but also as soon as an event occurs that
changes the value of one or more event signals, provided the MUT between
the queueing of two successive sporadic instances of the mixed message has
elapsed. Hence, the transmission of the mixed message due to arrival of events
is constrained by the MUT . The transmission pattern of mixed message in
the HCAN protocol is illustrated in Figure 6.2(c). Instance 1 of the mixed
message is queued because of periodicity. As soon as event A arrives, instance
2 is queued. When event B arrives, the next instance of the mixed message
is not queued immediately because the MUT is not expired yet. As soon as
the MUT expires, the third instance is queued. The third instance contains
the signal changes that correspond to event B. Similarly, the next instance
of the mixed message is not immediately queued when the event C arrives
because the MUT is not expired. Instance 4 of the mixed message is queued
because of periodicity. Although, the MUT was not expired, the event signal
corresponding to event C was packed in instance 4 and queued as part of the
periodic message. Hence, there is no need to queue an additional sporadic
instance of the mixed message when the MUT expires. This indicates that the
periodic transmission of a mixed message cannot be interfered by its sporadic
transmission. This is a unique property of the HCAN protocol. When the event
D arrives, a sporadic instance of the mixed message is immediately queued as
message 5 because the MUT has already expired. Instance 6 is queued due to
partly periodic nature of the mixed message.

6.2.4 Comparison of the Three Implementations of Mixed
Message

In the first implementation method, the Event Timer is reset every time the
mixed message is queued for transmission. The implementation of the mixed
message in method 2 is similar to method 1 to some extent. The main differ-
ence is that the periodic transmission can be delayed until the expiry of the
MDT in method 2. Whereas in method 1, the periodic transmission is not
delayed, in fact, the Event Timer is restarted with every sporadic transmis-
sion. The MDT timer is started with every periodic or sporadic transmis-
sion of the mixed message. Hence, the worst-case periodicity of the mixed
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message in methods 1 and 2 can never be higher than the Inhibit Timer and
the MDT respectively. Therefore, the existing analyses for CAN with FIFO
queues [25, 22, 26] hold intact. However, the periodic transmission is inde-
pendent of the sporadic transmission in the third implementation method. The
periodic timer is not reset with every sporadic transmission. The mixed mes-
sage can be queued for transmission even if the MUT is not expired. The
worst-case periodicity of the mixed message is neither bounded by the period
nor by the MUT . Therefore, the existing analyses for CAN with FIFO queues
[25, 22, 26] cannot be applied to the mixed messages in the third implementa-
tion method.

6.3 Common Queueing Policies Used in the CAN
Controllers

The timing behavior of CAN messages is influenced by many factors including
the type of queueing polices implemented by the CAN device drivers and com-
munication stack. The most common queueing policies in the nodes connected
to the CAN network are priority- and FIFO-ordered policies.

6.3.1 Priority-ordered Queues
The CAN protocol implements priority-based arbitration for the transmission
of messages on the network. This means, each node selects the highest priority
message from its transmit buffers while entering into the bus arbitration. The
highest priority message among the messages selected from each node wins
the arbitration, i.e., the right to transmit over the network. Intuitively, the most
natural queueing policy suited to CAN controllers is priority-ordered queueing.

Let us consider an example to demonstrate the priority-based queueing pol-
icy as shown in Figure 6.3. Let there be three nodes namely Node A, Node B
and Node C that are connected to a single CAN network . Each node sends
three messages over the network. Node A sends the messages m

1

, m
3

and
m

5

; Node B sends the messages m
2

, m
4

and m
9

; whereas, Node C sends the
messages m

6

, m
7

and m
8

. The subscript in the name of a message represents
its priority. We assume that the smaller the value of the subscript, the higher
the priority of the message. Intuitively, m

1

is the highest priority message,
whereas, m

9

is the lowest priority message in the system.
In order to simplify the example, assume that the transmission periods of

all messages are very high compared to their transmission times. Assume that
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all messages in each node are queued for transmission. We also assume that
there cannot be multiple instances of a message queued for transmission at the
same time.
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Figure 6.3: Example to demonstrate the effect of queueing policy on message
transmission.

Let the nodes implement priority queues. Each node selects the highest
priority message from its queue to enter into bus arbitration. In the first round,
Nodes A, B, and C select messages m

1

, m
2

and m
6

respectively. Message m
1

wins the arbitration and is transmitted over the network as shown in Figure 6.4.
In the second round, Nodes A, B, and C pick messages m

3

, m
2

and m
6

re-
spectively. This time, message m

2

wins the arbitration and is transmitted over
the network. Similar priority-based selection and arbitration continue during
the rest of the rounds as shown in Figure 6.4.Controller Area Network (CAN)
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Figure 6.4: Demonstration of CAN arbitration and priority-based queueing.
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6.3.2 FIFO Queues
The main advantages of FIFO queueing policy is that it is simple to implement
and use. Some examples of the CAN controllers that implement FIFO queue-
ing policy are Microchip PIC32MX, Infineon XC161CS, Renesas R32C/160
and XILINX LogiCORE IP AXI Controller [22, 23]. When nodes implement
FIFO queues, the oldest message in the transmit queue of each node competes
for the network with the oldest messages in the transmit queues in the rest of
the nodes. It should be noted that even in the case of FIFO queues, the bus ar-
bitration among CAN messages from different nodes is done on priority basis.
Let us consider the three nodes, shown in Figure 6.3, implement FIFO queues.
Intuitively, each node selects the oldest message in its queue to enter into the
bus arbitration. In the first round, Nodes A, B, and C pick messages m

5

, m
9

and m
6

respectively. Due to higher priority, message m
5

wins the arbitration
and is transmitted over the network as shown in Figure 6.5. In the second
round, Nodes A, B, and C pick messages m

1

, m
9

and m
6

respectively. In this
round, message m

1

wins the arbitration and is transmitted over the network.
Similar FIFO selection and priority-based arbitration occur during the rest of
the rounds as shown in Figure 6.5.
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Figure 6.5: CAN arbitration and FIFO-based queueing.

6.3.3 Effect of Queueing Policy on the Response Times of
Messages

When FIFO queues are used, the priorities of messages are often not respected
in the transmit queue within a node, e.g., the lower priority message m

5

is
transmitted before the highest priority message m

1

as shown in Figure 6.5.
As a result, priority inversion can occur due to which higher priority messages



6.4 System Model 147

may have very large response times. This becomes evident by comparing the
response time of message m

2

in the systems with priority and FIFO queues as
shown in Figure 6.4 and Figure 6.5 respectively.

6.4 System Model
The system scheduling model is based on the seminal model in [16] and its
extensions for FIFO queues [25] and mixed messages [21]. The system con-
sists of a number of nodes connected to a single CAN network. A node may
implement a priority queue or a FIFO queue. In the former case, the node is
designated as a PQ-node and it enters the highest priority message from its
transmit queue in the bus arbitration. Whereas, in the later case the node is
identified as an FQ-node and it enters the oldest message from its transmit
queue in the bus arbitration.

Each CAN message m
m

has a unique identifier and a priority denoted by
ID

m

and P
m

respectively. The priority of a message is assumed to be equal to
its ID. The priority of the message m

m

is considered higher than the priority
of another message m

n

if Pm < Pn. Let the sets hp(m
m

), lp(m
m

), and
hep(m

m

) contain the messages with priorities higher, lower, and equal and
higher than m

m

respectively. Although the priorities of CAN messages are
unique, the set hep(m

m

) is used in the case of mixed messages.
Associated to each message is a FRAME TYPE that specifies whether

the frame is a standard or an extended CAN frame. The difference between
the two frame types is that the standard CAN frame uses an 11-bit identifier
whereas the extended CAN frame uses a 29-bit identifier. In order to keep
the notations simple and consistent, we define a function ⇠

m

that denotes the
transmission type of a message. ⇠

m

specifies whether m
m

is periodic (P ),
sporadic (S ) or mixed (M ). Formally, the domain of ⇠

m

can be defined as
follows.

⇠m 2 [P, S, M ]

Each message m
m

has a transmission time C
m

and queueing jitter J
m

which is inherited from the task that queues m
m

, i.e., the sending task. We
assume that J

m

can be smaller, equal or greater than T
m

or MUT
m

. Each
message can carry a data payload that ranges from 0 to 8 bytes. This integer
value is specified in the header field of the frame called Data Length Code and
is denoted by s

m

. In the case of periodic transmission, m
m

has a transmission
period which is denoted by T

m

. Whereas, in the case of sporadic transmission,
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m
m

has the MUT
m

time. B
m

denotes the blocking time of m
m

which refers
to the largest amount of time m

m

has to wait for the transmission of a lower
priority message.

If an FQ-node transmits the message m
m

then the set of all messages trans-
mitted by this node is defined by M (m

m

). The Lowest priority message in
M (m

m

) is denoted by L
m

. The sum of the transmission time of all the mes-
sages in M (m

m

) is identified by C SUM

m

. The transmission time of the shortest
and longest messages in M (m

m

) are denoted by CMIN

m

and CMAX

m

respec-
tively. f

m

denotes the maximum buffering time between the instant the mes-
sage m

m

enters the FIFO queue and the instant it becomes the oldest message
in the queue. It is equal to zero for a message belonging to a node that imple-
ments a priority queue [25].

We duplicate a message when its transmission type is mixed. Hence, each
mixed message m

m

is treated as two separate messages, i.e., one periodic and
the other sporadic. The duplicates share all the attributes except for T

m

and
MUT

m

. The periodic copy inherits T
m

while the sporadic copy inherits the
MUT

m

. Each message has a worst-case response time, denoted by R
m

, and
defined as the longest time between the queueing of the message (on the send-
ing node) and the delivery of the message to the destination buffer (on the
destination node). m

m

is deemed schedulable if its R
m

is less than or equal to
its deadline D

m

. The system is considered schedulable if all of its messages
are schedulable.

We consider the deadlines to be arbitrary which means that they can be
greater than the periods or MUT s of corresponding messages. We assume
that the CAN controllers are capable of buffering more than one instance of
a message. The instances of a message are assumed to be transmitted in the
same order in which they are queued (i.e., we assume FIFO policy among the
instances of the same message). For better readability, all the notations used in
this paper are tabulated at the end of the paper.

6.5 Extended Analysis
We extend the existing analysis of CAN with both PQ-nodes and FQ-nodes
[25] by adapting the RTA of CAN for mixed messages [21]. Let the mes-
sage under analysis be denoted by m

m

. The extended analysis treats a mes-
sage differently based on its transmission type. Here we consider two different
cases. In the first case, m

m

is assumed to be a periodic or a sporadic message.
Whereas, m

m

is considered to be a mixed message in the second case.
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6.5.1 Case 1: When mm is a Periodic or a Sporadic Message
Consider m

m

to be a periodic or a sporadic message. We calculate the worst-
case response time of a message differently depending upon the type of the
queueing policy implemented in the sending node. That is, we treat the mes-
sage under analysis differently for the PQ-and FQ-nodes. Therefore, once
again, we consider two cases: (a) the first case assumes that m belongs to
a node that implements priority queue, (b) the second case considers that m
belongs to a node that implements FIFO queue.

Case 1 (a): When m
m

Belongs to a Priority-queued Node

Since we consider arbitrary deadlines for messages, there can be more than
one instance of m

m

that may become ready for transmission before the end
of priority level-m maximum busy period. The maximum busy period is the
longest contiguous interval of time during which m

m

is unable to complete its
transmission due to two reasons. First, the network is occupied by the higher
priority messages. In other words, at least one message of priority level-m
or higher has not completed its transmission. Second, a lower priority mes-
sage already started its transmission when m

m

is queued for transmission. The
maximum busy period starts at the so-called critical instant. In a system where
messages are scheduled without offsets, the critical instant corresponds to the
point in time when all higher priority messages in the system are queued si-
multaneously with m

m

while their subsequent instances are queued after the
shortest possible interval of time [18].

There can be another reason to check if more than one instance of m
m

is
queued for transmission in the priority level-m maximum busy period. Since,
the message transmission in CAN is non-preemptive, the transmission of pre-
vious instance of m

m

could delay the current instance of a higher priority mes-
sage that may add to the interference received by the current instance of m

m

.
This phenomenon was identified by Davis et al. [18] and termed as “push-
through interference”. Because of this interference, a higher priority message
may be waiting for its transmission before the transmission of the current in-
stance of m

m

finishes. Hence, the length of busy period may extend beyond
Tm or MUTm.

Intuitively, the response time of each instance of m
m

within priority level-
m maximum busy period should be calculated. The largest value among the
calculated response times of all instances of m

m

is considered as the worst-
case response-time of m

m

. Let q
m

be the index variable to denote instances of
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m
m

. The worst-case response time of m
m

is given by:

Rm = max{Rm(qm)} (6.1)

Constituents of the worst-case response time. According to the existing anal-
ysis [16, 18], the worst-case response-time of any instance of m

m

consists of
three parts as follows.

1. The queueing jitter denoted by J
m

. It is inherited from the sending task,
i.e., the task that queues m

m

for transmission. Basically, it represents the
maximum variation in time between the release of the sending task and
queuing of the message in the transmit queue (buffers). It is calculated
by taking the difference between the worst- and best-case response time
of the sending task.

2. The worst-case transmission time denoted by C
m

. It represents the
longest time it takes for m

m

to be transmitted over the network.

3. The queueing delay denoted by !
m

. It is equal to the longest time that
elapses between the instant m

m

is queued by the sending task in the
transmit queue and the instant when m

m

is about to start its successful
transmission. In other words, !

m

is the interference caused by other
messages to m

m

.

Thus, the worst-case response time of any instance q
m

of a periodic or
sporadic message m

m

is given by the following set of equations.

Rm(qm) =

8
<

:
Jm + !m(qm)� qmTm + Cm, if ⇠m = P

Jm + !m(qm)� qmMUT
m

+ Cm, if ⇠m = S
(6.2)

The terms q
m

T
m

and q
m

MUT
m

in (6.2) are used to support the response-
time calculations for multiple instances of m

m

. If the transmission type of
m

m

is periodic then the message period is taken into account. However, if
the transmission type of m

m

is sporadic, minimum update time is used in the
above equation.
Calculations for the worst-case transmission time C

m

. The worst-case trans-
mission time of m

m

can be calculated using the method derived in [16] and
later adapted in [18]. For the standard CAN identifier format, C

m

is calculated
as follows.
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Cm =

✓
47 + 8sm +

�
34 + 8sm � 1

4

⌫◆
⌧bit (6.3)

Where ⌧
bit

represents the time required to transmit a single bit of data on the
CAN network. Its value depends upon the speed of the network. In (6.3), 47
is the number of bits due to protocol overhead. It is composed of start of frame
bit (1-bit), arbitration field (12-bits), control field (6-bits), Cyclic Redundancy
Check (CRC) field (16-bits), acknowledgement (ACK) field (2-bits), End of
Frame (EoF) field (7-bits), and inter-frame space (3-bits). The number of bits
due to protocol overhead in the case of extended CAN frame format is equal to
67 .

In [31], Broster identified that the analysis in [16, 18] uses 47 -bits instead
of 44 -bits as the protocol overhead for a standard CAN identifier frame format.
This is because the analysis in [16, 18] accounts 3-bit inter-frame space as part
of the CAN frame. The 3-bit inter-frame space must be considered when cal-
culating the interferences or blocking from other messages. However, Broster
argued that this adds slight amount of pessimism to the response time of the
message under analysis if the 3-bit inter-frame space is also considered in its
transmission time. This is because the destination node can access the message
before the inter-frame space. In order to avoid this pessimism, we subtract 3-bit
time from the response time of the instance of the message under analysis.

The term
�

34+8s

m

�1

4

⌫
in (6.3) is added to compensate for the extra time

due to bit stuffing. It should be noted that the bit sequences 000000 and
111111 are used for error signals in CAN. In order to be unambiguous in
non-erroneous transmission, a stuff bit of opposite polarity is added whenever
there are five bits of the same polarity in the sequence of bits to be transmitted
[18]. The value 34 indicates that only 34-bits out of 47-bits protocol overhead
are subjected to bit stuffing. The term ba

b

c is the notation for floor function. It
returns the largest integer that is less than or equal to a

b

.
For the message with extended CAN identifier format, C

m

is calculated as
follows.

Cm =

✓
67 + 8sm +

�
54 + 8sm � 1

4

⌫◆
⌧bit (6.4)

The calculations for C
m

in (6.3) can be simplified as follows.

Cm = (55 + 10sm)⌧bit (6.5)
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Similarly, the calculations for C
m

in (6.4) can be simplified as follows.

Cm = (80 + 10sm)⌧bit (6.6)

Calculations for the worst-case queueing delay !
m

. The calculations for !
m

should include the interference caused by all the other periodic, sporadic and
mixed messages. The existing analyses for CAN with FIFO queues [25, 22, 26]
have a limitation that they consider the effect of interference from only periodic
and sporadic messages.

It is important to mention that CAN uses fixed-priority non-preemptive
scheduling, therefore, a message cannot be interfered by higher priority mes-
sages during its transmission on the bus. Whenever we use the term interfer-
ence, it refers to the amount of time m

m

has to wait in the transmit queue
because the higher priority messages win the arbitration, i.e., the right to trans-
mit before m

m

. For a message queued at a PQ-node, !
m

is calculated by the
following fixed-point iteration.

!n+1
m (qm) = Bm + qmCm +

X

8mk2hp(mm)

IkCk (6.7)

The last term in (6.7) represents the interference from the higher priority mes-
sages. In order to solve this iterative equation, initial value of !n

m

can be taken
as follows.

!0
m(qm) = Bm + qmCm (6.8)

The iterations in (6.7) stop either when the queueing delays in the previous and
current iterations are equal or when the response time exceeds the deadline.
Since, CAN uses fixed priority non-preemptive scheduling, any message can be
blocked by only one message in the set of lower priority messages. Hence, the
message under analysis can only be blocked by either the periodic copy or the
sporadic copy of any lower priority mixed message. It should be noted that both
the copies of a mixed message have the same transmission time, C

m

. Hence,
B

m

is equal to the largest transmission time among all periodic, sporadic and
mixed messages in the set of lower priority messages with respect to m

m

and
is given by the following equation.

Bm = max

8mk2lp(mm)
(Ck) (6.9)

A higher priority message m
k

contributes an extra delay, equal to f
k

, to the
worst-case queueing delay of m

m

if m
k

belongs to the FQ-node. f
k

represents
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the delay after which the higher priority message m
k

belonging to the FQ-node
becomes the oldest message in the queue and can take part in the priority-based
arbitration [25]. The existing analysis for mixed messages in CAN [21] does
not take this additional delay into account. f

k

is zero if m
k

belongs to a PQ-
node. We will come back to the calculations for f

k

in Section 6.5.3.
In (6.7), I

k

is calculated differently for different values of ⇠
k

(k is the index
of any higher priority message) as shown below. The interference by a higher
priority mixed message contains the contribution from both the duplicates.

Ik =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

⇠
!n

m(qm)+Jk+fk+⌧bit
Tk

⇡
, if ⇠k = P

⇠
!n

m(qm)+Jk+fk+⌧bit
MUT

k

⇡
, if ⇠k = S

⇠
!n

m(qm)+Jk+fk+⌧bit
Tk

⇡
+

⇠
!n

m(qm)+Jk+fk+⌧bit
MUT

k

⇡
, if ⇠k = M

(6.10)

Length of the maximum busy period. The length of priority level-m maxi-
mum busy period, denoted by t

m

, is given by the following equation. The effect
of extra delay from the messages belonging to the FQ-nodes is also taken into
account. t

m

can be calculated by the following iterative equation.

tn+1
m = Bm +

X

8mk2hep(mm)

I 0kCk (6.11)

I 0
k

is given by the following relation. Note that the contribution of both the
duplicates of a mixed message m

k

in the set hep(m
m

) is taken into account.

I 0k =

8
>>>>>>>><

>>>>>>>>:

⇠
tnm+Jk+fk

Tk

⇡
, if ⇠k = P

⇠
tnm+Jk+fk

MUT

k

⇡
, if ⇠k = S

⇠
tnm+Jk+fk

Tk

⇡
+

⇠
tnm+Jk+fk

MUT

k

⇡
, if ⇠k = M

(6.12)

In order to solve the iterative equation (6.11), C
m

can be used as the initial
value of tn

m

as shown below.
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t0m = Cm (6.13)

The right hand side of (6.11) is a monotonic non-decreasing function of t
m

.
Equation (6.11) is guaranteed to converge if the bus utilization for messages of
priority level-m and higher, denoted by U

m

, is less than 1. That is,

Um < 1 (6.14)

where U
m

is calculated by the following equation:

Um =

X

8mk2hep(mm)

CkI
00
k (6.15)

where I 00
k

is given by the following relation:

I 00k =

8
>>><

>>>:

1
Tk

, if ⇠k = P

1
MUT

k

, if ⇠k = S

1
Tk

+

1
MUT

k

, if ⇠k = M

(6.16)

In the above equation, the contribution by both the copies of all mixed mes-
sages belonging to the set hep(m

m

) is taken into account while calculating the
bus utilization.

The number of instances of m
m

, denoted by Q
m

, that becomes ready for
transmission before the busy period ends is given by the following equation
(similar to the existing analysis for mixed messages).

Qm =

8
>>><

>>>:

⇠
tm+Jm

Tm

⇡
, if ⇠m = P

⇠
tm+Jm
MUT

m

⇡
, if ⇠m = S

(6.17)

The index of each message instance is identified by q
m

and its range is
given as follows.

0  qm  (Qm � 1) (6.18)



6.5 Extended Analysis 155

Case 1 (b): When m
m

Belongs to a FIFO-queued Node

Similar to the existing RTA for CAN with FIFO queues [25], the extended
analysis is FIFO-symmetric. This means that all the messages belonging to
FQ-node will have same upper bound for their worst-case response times. In
order to derive the worst-case response time of a periodic or sporadic message
belonging to the FQ-node, we consider the worst-case conditions. Hence, we
assume that the message under analysis is the lowest priority message, i.e., L

m

in the group M (m
m

) with the largest transmission time CMAX

m

(to maximize
the interference from the messages in M (m

m

) as well as from the messages
belonging to other nodes). The response time of a particular instance q

m

of a
periodic or sporadic message m

m

that is queued at the FQ-node is given by the
following equation.

Rm(qm) =

8
<

:
Jm + !m(qm)� qmTm + CMAX

m , if ⇠m = P

Jm + !m(qm)� qmMUTm + CMAX
m , if ⇠m = S

(6.19)

In [25], message deadlines are assumed to be equal to or less than the cor-
responding periods. Hence, for any message m

m

belonging to M (m
m

) in
the FQ-node, there could be only one instance of every other message queued
ahead of m

m

. In the existing analysis, the maximum amount of interference
received by m

m

before it becomes the oldest message in the FIFO queue and
ready to take part in the priority-based arbitration is bounded by (C SUM

m

�
CMIN

m

). This interference bound may not be applicable in our case because we
assume that the messages have arbitrary deadlines which means that they can
be greater than the periods or minimum update times of the corresponding mes-
sages. Therefore, it is possible to have more than one instance of any higher
priority message queued ahead of m

m

in the FIFO queue. This is the reason
we select the transmission time of m

m

in FIFO-queued nodes to be equal to
CMAX

m

instead of CMIN

m

.

Interference received by m
m

from the messages in M (m
m

). Now, we de-
rive an upper bound for the number of instances of each message in the group
M (m

m

) that can be queued ahead of m
m

. Consider a simple but intuitive ex-
ample as shown in Figure 6.6. Let the message under analysis be m

m

(lowest
priority message in M (m

m

)). Also consider an arbitrary message m
i

belong-
ing to the group M (m

m

). Assume both m
i

and m
m

are periodic and have
same transmission times. We consider four different cases with respect to the
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relationship between message periods as shown in Figure 6.6. In case (a), T
i

is
smaller than T

m

. In case (b), T
i

is equal to T
m

. In case (c), T
i

is greater than
T

m

. In case (d), T
i

is smaller than T
m

and at the same time T
m

is an integer
multiple of T

i

. These cases essentially cover all the cases required to derive
the upper bound on the maximum number of instances of m

i

queued ahead of
any instance of m

m

.

i m i i m ii m i

m i m m m im i m

m i m i m i

i m i i m im i iCase 
(a)

Case 
(b)

Case 
(c)

Case 
(d)

mi i i i i im m
0 101 2 3 4 5 6 7 8 9 11 12

mi mi mi
0 101 2 3 4 5 6 7 8 9 11 12

mi m m m mi mi
0 101 2 3 4 5 6 7 8 9 11 12

mi i i i i im m
0 101 2 3 4 5 6 7 8 9 11 12

Case 
(a)

Case 
(b)

Case 
(c)

Case 
(d)

mi i i i i im m
0 101 2 3 4 5 6 7 8 9 11 12

mi mi mi
0 101 2 3 4 5 6 7 8 9 11 12

mi m m m mi mi
0 101 2 3 4 5 6 7 8 9 11 12

mi i i i i im m
0 101 2 3 4 5 6 7 8 9 11 12

Ti = 2,
Tm= 5

i m i i m im i i

m i m i m i

m i m m m im i m

i m i i m ii m i

FIFO

Ti = 5,
Tm= 5

Ti = 5,
Tm= 2

Ti = 2,
Tm= 4

Figure 6.6: Demonstration of maximum interference on m
m

from the messages
in the group M (m

m

).

The periods of m
i

and m
m

in each case are shown in Figure 6.6. The
left hand side of Figure 6.6 shows the time line during which each instance
of m

i

and m
m

is queued in the FIFO queue. Whereas, the right hand side of
Figure 6.6 depicts the corresponding FIFO queue as if none of the messages
was transmitted. The maximum number of instances of m

i

that are queued
ahead of any instance of m

m

in the FIFOs are 3, 1, 1 and 2 in the case (a), (b),
(c) and (d) respectively. Let Q

i

denotes the maximum number of instances of
m

i

in the group M (m
m

) that can be queued ahead of any instance of m
m

in
the FIFO queue. We can generalize Q

i

for all the cases as follows.

Qi =

⇠
Tm

Ti

⇡
(6.20)

Let us consider the effect of jitter of m
i

, denoted by J
i

, on the interference
of m

m

. Because of J
i

, additional instances of m
i

can be queued ahead of m
m

.
Thus, taking the effect of jitter into account, (6.20) can be written as:

Qi =

⇠
Tm + Ji

Ti

⇡
(6.21)
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Since, m
i

can be periodic, sporadic or mixed, we can generalize (6.21) as
follows.

Qi =

8
>>>>>>>><

>>>>>>>>:

⇠
Tm+Ji

Ti

⇡
, if ⇠i = P

⇠
Tm+Ji
MUT

i

⇡
, if ⇠i = S

⇠
Tm+Ji

Ti

⇡
+

⇠
Tm+Ji
MUT

i

⇡
, if ⇠i = M

(6.22)

Calculations for the worst-case queueing delay. The worst-case queueing
delay, !

m

, in (6.19) can be calculated in a similar fashion as in (6.7) with the
addition of extra delay shown in (6.22).

!n+1
m (qm) = BLm +

X

8mi2M(mm)^i6=m

QiCi

+qmCMAX
m +

X

8mk2hp(Lm)^mk /2M(mm)

IkCk (6.23)

Where m
k

is any message that has priority higher than the lowest priority mes-
sage in the FQ-node in which m

m

is queued. Moreover, m
k

does not belong to
the FQ-node in which m

m

is queued. m
i

is any message, other than m
m

, in the
group M (m

m

). B
L

m

is the blocking time of L
m

which refers to the maximum
transmission time of a message in the set of messages with lower priority than
L
m

that are sent by the other nodes. Since, the interference contributed to m
m

by higher priority messages from other nodes (both PQ and FQ) is independent
of m

m

belonging to a PQ-node or FQ-node, I
k

can be calculated using (6.10).
The initial value of !n

m

to solve the iterative equation (6.23) can be selected as
follows.

!0
m = BLm +

X

8mi2M(mm)^i6=m

QiCi + qmCMAX
m (6.24)

Length of the maximum busy period. The length of priority level-m
maximum busy period, denoted by t

m

, can be calculated in a similar fashion as
in (6.11) and by following the intuition from (6.23). The effect of extra delay
from the messages belonging to the FQ-nodes is also taken into account. t

m

can be calculated by the following iterative equation.
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tn+1
m = BLm +

X

8mi2M(mm)^i6=m

QiCi

+

X

8mk2hep(Lm)^mk /2M(mm)

I 0kCk (6.25)

The initial value for tn
m

can be selected using (6.13). Since, the interference
to m

m

by higher priority messages from other nodes (both PQ and FQ) is
independent of m

m

belonging to a PQ-node or FQ-node, I 0
k

can be calculated
using (6.12). Similarly, the total number of instances of m

m

that becomes
ready for transmission before the busy period ends can be calculated using
(6.17). The worst-case response time of m

m

is the largest value of response
time among all its instances as shown in (6.1).

6.5.2 Case 2: When mm is a Mixed Message
When the message under analysis is mixed, we treat it as two separate message
streams, i.e., each mixed message is duplicated as the periodic and sporadic
messages. The response times of both the duplicates are calculated separately.
For simplicity, we denote the periodic and sporadic copies of a mixed message
m

m

by m
m

P

and m
m

S

respectively. Let the worst-case response time of m
m

P

and m
m

S

be denoted by R
m

P

and R
m

S

respectively. The worst-case response
time of m

m

is equal to the largest value between R
m

P

and R
m

S

as given by the
following equation.

Rm = max(RmP , RmS ) (6.26)

Case 2 (a): When m
m

Belongs to a Priority-queued Node

For a priority-queued mixed message, the response times of each instance of
m

m

P

and m
m

S

are calculated separately by adapting the existing analysis for
mixed messages in CAN [21]. Let us denote the total number of instances
of m

m

P

and m
m

S

, occurring in the priority level-m maximum busy period,
by Q

m

P

and Q
m

S

respectively. Assume that the index variable for message
instances of m

m

P

and m
m

S

is denoted by q
m

P

and q
m

S

respectively. Their
ranges are given by the following equations.

0  qmP  (QmP � 1) (6.27)
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0  qmS  (QmS � 1) (6.28)

The worst-case response time of m
m

P

is equal to the largest value among
the response times of all of its instances occurring in the busy period as shown
by the following equation.

RmP = max(RmP (qmP )) (6.29)

Similarly, the worst-case response time of m
m

S

is equal to the largest value
among the response times of all of its instances occurring in the busy period. It
is given by the following equation.

RmS = max(RmS (qmS )) (6.30)

The worst-case response time of each instance of m
m

P

and m
m

S

can be
derived by adapting the equations for the calculation of worst-case response
time of periodic and sporadic messages respectively (derived in the first case)
as given by the following two equations.

RmP (qmP ) = Jm + !mP (qmP )� qmP Tm + Cm (6.31)

RmS (qmS ) = Jm + !mS (qmS )� qmSMUT
m

+ Cm (6.32)

The queueing jitter, J
m

, is the same (equal) in both the equations (6.31)
and (6.32). The transmission time, C

m

, is also the same in these equations
and is calculated using (6.5) or (6.6) depending upon the type of CAN frame
identifier. Although, both the duplicates of m

m

inherit same J
m

and C
m

from
it, they experience different amount of worst-case queueing delays caused by
other messages.

Calculations for the worst-case queueing delay. The worst-case queueing
delay experienced by m

m

P

and m
m

S

is denoted by !
m

P

and !
m

S

in (6.31) and
(6.32) respectively. !

m

P

and !
m

S

can be calculated by adapting the equation
for the calculations of worst-case queueing delay in (6.7). However, in this
equation we need to add the effect of self interference in a mixed message.
By self interference we mean that the periodic copy of a mixed message can
be interfered by the sporadic copy and vice versa. Since, both m

m

P

and m
m

S

have equal priorities, any number of instances of m
m

P

queued ahead of m
m

S

contribute an extra delay to the worst-case queueing delay experienced by m
m

S
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and vice versa. We adapt the calculations for self interference in a mixed mes-
sage that we derived in [21]. The worst-case queueing delay for m

m

P

and m
m

S

can be calculated using the following equations.

!n+1
mP

(qmP ) = Bm + qmPCm +

X

8mk2hp(mm)

IkPCk +QP
mS

Cm (6.33)

!n+1
mS

(qmS ) = Bm + qmSCm +

X

8mk2hp(mm)

IkSCk +QS
mP

Cm (6.34)

The effect of self interference can be seen in the last terms of (6.33) and (6.34).
QP

m

S

denotes the total number of instances of m
m

S

that are queued ahead of
q th
m

P

instance of m
m

P

. Similarly, QS

m

P

denotes the total number of instances of
m

m

P

that are queued ahead of q th
m

S

instance of m
m

S

. The values of QP

m

S

and
QS

m

P

are calculated as follows.

QP
mS

=

8
>>><

>>>:

⇠
qmP

Tm+Jm+⌧bit
MUT

m

⇡
, if (qmP = 0) && (Jm = 0)

⇠
qmP

Tm+Jm

MUT

m

⇡
, otherwise

(6.35)

QS
mP

=

8
>>><

>>>:

⇠
qmS

MUT

m

+Jm+⌧bit
T

m

⇡
, if (qmS = 0) && (Jm = 0)

⇠
qmS

MUT

m

+Jm

Tm

⇡
, otherwise

(6.36)

In order to solve the iterative equations (6.33) and (6.34), the initial values
of !n

m

P

(q
m

P

) and !n

m

S

(q
m

S

) can be selected according to (6.8) in a similar
fashion. I

k

P

and I
k

S

are calculated using to the following equations.
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IkP =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

⇠
!n

mP
(qmP

)+Jk+fk+⌧bit

Tk

⇡
, if ⇠k = P

⇠
!n

mP
(qmP

)+Jk+fk+⌧bit

MUT

k

⇡
, if ⇠k = S

⇠
!n

mP
(qmP

)+Jk+fk+⌧bit

Tk

⇡
+

⇠
!n

mP
(qmP

)+Jk+fk+⌧bit

MUT

k

⇡
, if ⇠k = M

(6.37)

IkS =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

⇠
!n

mS
(qmS

)+Jk+fk+⌧bit

Tk

⇡
, if ⇠k = P

⇠
!n

mS
(qmS

)+Jk+fk+⌧bit

MUT

k

⇡
, if ⇠k = S

⇠
!n

mS
(qmS

)+Jk+fk+⌧bit

Tk

⇡
+

⇠
!n

mS
(qmS

)+Jk+fk+⌧bit

MUT

k

⇡
, if ⇠k = M

(6.38)

The values of I
k

P

and I
k

S

in (6.37) and (6.38) differ from those calculated in
[21] in a way that we consider an extra jitter, i.e., f

k

from every message that
belongs to the FQ-node.

Calculations for the length of the maximum busy period. The length of pri-
ority level-m maximum busy period, denoted by tm, can be calculated using
(6.11) that is developed for periodic and sporadic messages in a PQ-node. This
is because (6.11) takes into account the effect of queueing delay from all the
higher and equal priority messages. Since, the duplicates of a mixed message
inherit the same priority from it, the contribution of queueing delay from the
duplicate is also covered in this equation. Therefore, there is no need to calcu-
late t

m

for m
m

P

and m
m

S

separately. It should be calculated only once for a
mixed message.

Although t
m

is the same for m
m

P

and m
m

S

, the number of instances of
both the messages that become ready for transmission just before the end of
the maximum busy period, i.e., Q

m

P

and Q
m

S

respectively, may be different.
The reason is that the calculations for Q

m

P

and Q
m

S

require T
m

and MUT
m

respectively and which may have different values. Q
m

P

and Q
m

S

can be cal-
culated by adapting (6.17) that is derived for the calculation of the number
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of instances of periodic and sporadic messages that become ready for trans-
mission before the end of the busy period. Q

m

P

and Q
m

S

are given by the
following equations.

QmP =

⇠
tm + Jm

Tm

⇡
(6.39)

QmS =

⇠
tm + Jm
MUTm

⇡
(6.40)

Case 2 (b): When m
m

Belongs to a FIFO-queued Node

The worst-case response times of each instance of m
m

P

and m
m

S

queued at
the FQ-node are calculated similar to the case of FIFO-queued messages that
are periodic or sporadic.

RmP (qmP ) = Jm + !mP (qmP )� qmP Tm + CMAX
m (6.41)

RmS (qmS ) = Jm + !mS (qmS )� qmSMUT
m

+ CMAX
m (6.42)

Calculations for the worst-case queueing delay. The worst-case queueing
delays for m

m

P

and m
m

S

are calculated by adapting the calculations in the
equations (6.23), (6.33) and (6.34) as follows.

!n+1
mP

(qmP ) = BLm +

X

8mi2M(mm)^i6=m

QiCi + qmPC
MAX
m

+

X

8mk2hp(Lm)^mk /2M(mm)

IkPCk +QP
mS

Cm (6.43)

!n+1
mS

(qmS ) = BLm +

X

8mi2M(mm)^i6=m

QiCi + qmSC
MAX
m

+

X

8mk2hp(Lm)^mk /2M(mm)

IkSCk +QS
mP

Cm (6.44)
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Since, the interference caused by higher priority messages from other PQ- and
FQ-nodes is independent of the mixed message m

m

belonging to a PQ-node
or FQ-node, I

k

P

and I
k

S

can be calculated using (6.37) and (6.38). The initial
values of !

m

P

and !
m

S

can be selected according to (6.24) while consider-
ing the respective index of each instance of m

m

P

and m
m

S

. The value of Q
i

is calculated using (6.22) similar to the case of FIFO queued periodic or spo-
radic messages. The values of QP

m

S

and QS

m

P

are calculated using (6.35) and
(6.36) that are derived for mixed message in a PQ-node. QP

m

S

denotes the to-
tal number of instances of mS that are queued ahead of qthmP

instance of mP .
Therefore, we consider only queueing jitter in (6.35) and do not take into ac-
count any additional delay that may occur after queueing of m

m

P

such as f
m

.
Similar arguments hold for QS

m

P

.
Calculations for the length of the maximum busy period. The length of
priority level-m maximum busy period, denoted by t

m

, can be calculated by
using (6.25) that is developed for periodic and sporadic messages in a FQ-node.
This is because (6.25) takes into account the effect of queueing delay from
all the higher and equal priority messages. Since, the duplicates of a mixed
message inherit the same priority from it, the contribution of the queueing delay
from the duplicate is also covered in (6.25). Therefore, there is no need to
calculate t

m

for m
m

P

and m
m

S

separately. It should be calculated only once
for a mixed message.

Although the length of the busy period is the same, the number of instances
of m

m

P

and m
m

S

that become ready for transmission just before the end of
the maximum busy period, i.e., Q

m

P

and Q
m

S

respectively, may be different.
Q

m

P

and Q
m

S

can be calculated by following the same reasoning and using
the equations that we derived for a mixed message in the PQ-node in (6.39)
and (6.40) respectively.

6.5.3 Algorithm for the Calculations of Maximum Buffering
Time in FIFO Queues

The algorithm for the calculations of maximum buffering time in FIFO queues
is adapted from [25] to support mixed messages in CAN with FIFO queues.
The buffering time for any priority-queued message is equal to zero. It should
be noted that the calculations for the response times in equations (6.2), (6.19),
(6.31), (6.32), (6.41) and (6.42) are dependent upon the corresponding iterative
calculations for the queueing delays in (6.7), (6.23), (6.33), (6.34), (6.43) and
(6.44) respectively. Whereas, the calculations for queueing delay depends upon
the maximum buffering time. Therefore, the response times and maximum
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buffering times should be calculated iteratively and simultaneously as shown
in Algorithm 1.

6.6 Case Study and Evaluation
In this section, we conduct an automotive-application case study. Basically,
we adapt the case study of the experimental vehicle that is analyzed for only
periodic messages in [32]. We implemented4 the extended analysis in a freely-
available tool MPS-CAN Analyzer [27]. Using this tool, we compare and
evaluate the response times of periodic, sporadic and mixed messages in the
experimental vehicle using the extended analysis for mixed messages in CAN
with FIFO queues and the existing analysis for CAN with priority queues.

6.6.1 Experimental Setup
There are six ECUs in the experimental vehicle that are connected to a single
CAN network. The selected speed for CAN is 500 Kbit/s. There are 81 CAN
messages in the system; out of which 27 are periodic, 27 are sporadic, while
the remaining 27 are mixed. All the attributes of these messages are shown in
the table depicted in Figure 6.7. The attributes of each message are identified as
follows. The priority, transmission type, number of data bytes in the message,
transmission period, and minimum update time are represented by P

m

, ⇠
m

,
s
m

, T
m

, and MUT
m

respectively. We assume, the smaller the value of the P
m

parameter of a message, the higher its priority. Accordingly, the message with
priority 1 is the highest priority message, whereas the message with priority
81 is the lowest priority message in the system. All timing parameters are in
microseconds. We perform two sets of experiments. In the first set, all ECUs
in the system implement priority queues. In the second set of experiments, all
ECUs implement FIFO queues. In both sets of experiments, each ECU has 32
buffers in the transmit queue.

6.6.2 Comparison of Various Response-time Analyses
In the first set of experiments, the response times of all messages are calculated
using the existing response-time analysis for mixed, periodic and sporadic mes-
sages in CAN with priority queues [21]. The calculated response times are de-
noted by R

m

[Prio] in the table in Figure 6.7. On the other hand, in the second

4The discussion about the implementation in the tool is not in the scope of this paper.
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Algorithm 1 Algorithm for the calculations of maximum buffering times and
message response times simultaneously.

1: begin
2: for all Messages in the system do
3: f

m

 0 . Initialize buffering time for all messages.
4: end for
5: Repeat  TRUE
6: while Repeat = TRUE do
7: REPEAT FALSE
8: for Every message m

m

in the system do
9: if m

m

2 ECU with FIFO queue then
10: if Message type of m

m

== PERIODIC or SPORADIC then
11: CALCULATE R

m

USING EQUATION (6.19)
12: else if Message type of m

m

== MIXED then
13: CALCULATE R

m

USING EQUATIONS (6.41) AND (6.42)
14: end if
15: if R

m

> D
m

then
16: m

m

IS UNSCHEDULABLE
17: end if
18: if f

m

< !
m

then
19: f

m

 !
m

20: REPEAT TRUE
21: end if
22: else if m

m

2 ECU with priority queue then
23: f

m

 0 . buffering time for a priority queued message is
always zero.

24: if Message type of m
m

== PERIODIC or SPORADIC then
25: CALCULATE R

m

USING EQUATION (6.2)
26: else if Message type of m

m

== MIXED then
27: CALCULATE R

m

USING EQUATIONS (6.31) AND (6.32)
28: end if
29: if R

m

> D
m

then
30: m

m

IS UNSCHEDULABLE
31: end if
32: end if
33: end for
34: end while
35: end
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Pm ξm sm Tm (us) MUTm (us) Rm[Pio] (us) Rm[FIFO] (us) Pm ξm sm Tm (us) MUTm (us) Rm[Pio] (us) Rm[FIFO] (us)
1 P 8 12500 0 540 32440 42 P 8 100000 0 15560 35600
2 S 8 0 12500 810 39210 43 S 8 0 100000 15830 40020
3 M 8 12500 12500 1080 34870 44 P 8 100000 0 16100 42860
4 S 8 0 12500 1620 32980 45 S 8 0 50000 16370 33250
5 S 8 0 50000 1890 35410 46 P 8 50000 0 16640 40020
6 M 8 50000 50000 2160 35450 47 S 8 0 50000 16910 35600
7 S 8 0 100000 2700 42860 48 M 8 50000 50000 17180 40160
8 S 8 0 20000 2970 35410 49 S 8 0 1000000 17720 35600
9 M 8 50000 50000 3240 33000 50 P 8 1000000 0 17990 43140
10 S 8 0 125000 3780 35330 51 S 8 0 1000000 18260 40020
11 S 8 0 25000 4050 42860 52 P 8 1000000 0 18530 42860
12 S 3 0 10000000 4220 43140 53 M 8 128000 128000 18800 43260
13 M 8 100000 100000 4490 42980 54 S 8 0 128000 19340 35680
14 P 8 100000 0 5030 40020 55 P 8 128000 0 19610 35600
15 M 8 100000 100000 5300 42980 56 M 8 1000000 1000000 19880 40160
16 M 8 100000 100000 5840 42980 57 S 8 0 250000 22040 40020
17 S 8 0 100000 6380 33250 58 M 3 250000 250000 22210 43160
18 P 8 1000000 0 6650 33250 59 M 8 500000 500000 22650 40160
19 S 8 0 1000000 6920 40020 60 M 8 500000 500000 23190 35680
20 P 8 1000000 0 7190 35600 61 M 7 500000 500000 23710 33270
21 P 8 1000000 0 7460 33250 62 M 8 500000 500000 24230 35720
22 M 8 500000 500000 7730 35720 63 S 2 0 500000 24650 35720
23 P 8 500000 0 8270 35600 64 M 8 1000000 1000000 24920 35720
24 S 8 0 500000 8540 43140 65 P 8 1000000 0 27080 35680
25 P 8 500000 0 8810 40020 66 M 8 1000000 1000000 27350 35680
26 P 8 100000 0 9080 35680 67 P 8 1000000 0 27890 35680
27 S 8 0 100000 9350 43140 68 P 8 1000000 0 28160 43140
28 P 8 100000 0 9620 35600 69 P 6 1000000 0 28390 42860
29 S 8 0 1000000 9890 43140 70 S 8 0 2000000 28660 33250
30 M 8 1000000 1000000 10160 33270 71 S 8 0 2000000 28930 42860
31 S 8 0 1000000 10700 33250 72 P 8 2000000 0 29200 43140
32 M 8 20000 20000 10970 35680 73 M 8 2000000 2000000 29470 43260
33 S 8 0 50000 11510 35600 74 M 8 2000000 2000000 30010 40160
34 M 8 500000 500000 11780 33270 75 S 8 0 2000000 30550 35680
35 P 8 20000 0 12320 33250 76 P 8 2000000 0 30820 42860
36 P 8 500000 0 12590 40020 77 M 8 2000000 2000000 31090 35680
37 P 8 20000 0 14210 33250 78 M 2 2000000 2000000 31390 42860
38 S 8 0 200000 14480 42860 79 M 1 50000 50000 31670 40040
39 P 8 20000 0 14750 43140 80 M 2 1000000 1000000 31950 42860
40 P 8 200000 0 15020 35600 81 M 2 2000000 2000000 32250 43140
41 P 8 1000000 0 15290 43140

Figure 6.7: Attributes and calculated response times of the periodic, sporadic
and mixed messages in the experimental vehicle.

set of experiments, the response times of all messages are calculated using the
extended analysis presented in the previous section. The calculated response
times in this case are denoted by R

m

[FIFO ] in the table in Figure 6.7. The
maximum network bandwidth utilization calculated in both cases is equal to
33.776970%.

The response times of all messages in these two cases are shown by the
bar graphs in Figure 6.8. The first bar (solid black bar) in each set of the two
bars represents the response time of a message in the system where all ECU’s
implement priority queues. Whereas, the second bar (pattern bar) in each set
of the two bars represents the response time of a message in the system where
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all ECUs implement FIFO queues.
The response-time graphs show that the message response times are the

best (smallest) in the case when all the ECUs use priority-based queueing
policy. On the other hand, the response times of the messages are the worst
(largest) in the system where the ECUs implement FIFO queues. In fact, the
response times are significantly large in the case of FIFO queues. This is be-
cause of the priority inversion in FIFO queues (discussed in Section 6.3.3).
Moreover, the worst-case buffering time in the FIFO queues can be signifi-
cantly large that adds to the worst-case response times of the messages.
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Figure 6.8: Comparison of message response-times with respect to different
types of queueing policies in the ECUs.

6.6.3 Discussion and Recommendations
In order to get short response times of CAN messages, those ECUs should be
selected that implement priority-based queueing policy. Although FIFO policy
is simple and easy to implement, configure, and use as compared to the pri-
ority queueing policy, the messages can have very large worst-case response
times in the case of ECUs implementing FIFO queues as shown in Figure
6.8. The ECUs which implement priority-based queueing policy should be
preferred over the ECUs which implement FIFO queues especially in the sys-
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tems that have high network utilization and short stimulus-to-response require-
ments. Moreover, it is important to use the right RTA that correctly matches
the queueing policies in the ECUs; and transmission type of messages used in
the higher-level protocols. If these constraints are not rightly considered in the
RTA, the calculated response times can be optimistic.

6.7 Summary and Conclusion

The existing worst-case response-time analysis for messages in Controller Area
Network (CAN) with priority- and FIFO-queued nodes does not support the
analysis of mixed messages. A mixed message can be queued both periodically
and sporadically, i.e., it may not have a periodic activation pattern. Mixed mes-
sages are implemented by several high-level protocols based on CAN that are
used in the automotive industry. We identified three different implementations
of mixed messages in higher-level protocols for CAN. For some implemen-
tations, the existing analysis still provides safe upper bounds for worst-case
response times. Whereas for the others, the existing analysis calculates opti-
mistic worst-case response times.

We extended the existing analysis for CAN with FIFO queues to provide
safe upper bounds on the worst-case response times of mixed messages. The
extended analysis is generally applicable to any higher-level protocol for CAN
that supports periodic, sporadic, and mixed transmission of messages in a sys-
tem comprising of priority- and FIFO-queued nodes. We conducted a case
study and performed comparative evaluation of the extended analysis with the
existing analysis for mixed, periodic and sporadic messages in CAN with pri-
ority queues.

The FIFO queues are already used in practical CAN controllers. Although,
they are easy to implement and use, they can result in higher response times
of messages. Therefore, the CAN controllers which implement priority queues
should be preferred over the CAN controllers that implement FIFO queues.
Moreover, it is important to use the response-time analysis that correctly matches
the queueing policies in the ECUs; and transmission types of messages used in
the higher-level protocols. If these constraints are not rightly considered in the
response-time analysis, the calculated response times can be optimistic.
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Appendix A

Notation Explanation
m

n

Any message
n

ID
n

Unique identifier of m
n

P
n

Priority of m
n

⇠
n

Transmission type of m
n

. It specifies whether m
n

is periodic
(P ), sporadic (S) or mixed (M )

C
n

Worst-case transmission time of m
n

J
n

Queueing jitter of m
n

s
n

Size of data payload in m
n

T
n

Transmission period of m
n

MUT
n

Minimum Update Time of m
n

. It is the minimum time that
should elapse between the transmission of any two sporadic
messages

B
n

Blocking time of m
n

R
n

Worst-case response time of m
n

D
n

Deadline of m
n

hp(m
n

) Set of higher priority messages than m
n

lp(m
n

) Set of lower priority messages than m
n

hep(m
n

) Set of higher and equal priority messages than m
n

lep(m
n

) Set of lower and equal priority messages than m
n

!
n

Queueing delay for m
n

f
n

Maximum buffering time for m
n

⌧
bit

Time required to transmit a single bit of data over CAN
t
n

Length of the priority level-n busy period
q
n

Index variable to denote multiple instances of m
n

U
n

Bus utilization for priority level-n
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Q
n

Total Number of instances of m
n

that are queued in priority
level-n busy period

M (m
n

) The set of FIFO-queued messages in the sender ECU of m
n

L
n

The lowest priority message in the set M (m
n

)

B
L

n

Blocking time due to L
n

CMAX

n

Maximum transmission time of a message in the set M (m
n

)

CMIN

n

Minimum transmission time of a message in the set M (m
n

)

m
n

P

Periodic part of a mixed message m
n

m
n

S

Sporadic part of a mixed message m
n

R
n

P

Response time of mnP

R
n

S

Response time of mnS

Table 6.1: Notations and terminology.
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Abstract

The existing offset-based response-time analysis for mixed messages in Con-
troller Area Network (CAN) assumes the jitter and deadline of a message to
be smaller or equal to the transmission period. However, practical systems
may contain messages whose release jitter and deadlines can be greater than
their periods, e.g., in the gateway nodes. We extend the existing response-time
analysis for mixed messages in CAN that are scheduled with offsets and have
arbitrary jitter and deadlines. Mixed messages are implemented by several
higher-level protocols for CAN that are used in the automotive industry. The
extended analysis is applicable to any higher-level protocol for CAN that uses
periodic, sporadic and mixed transmission modes.
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7.1 Introduction
The Controller Area Network (CAN) [1] is a multi-master, event-triggered, se-
rial communication bus protocol supporting bus speeds of up to 1 mega bits per
second. It is a widely used protocol in the automotive domain. It has been stan-
dardized as ISO 11898-1 [2]. According to CAN in Automation (CiA) [3], the
estimated number of CAN enabled controllers sold in 2011 are about 850 mil-
lion. CAN also finds its applications in other domains, e.g., industrial control,
medical equipments, maritime electronics, and production machinery. There
are several higher-level protocols for CAN that are developed for many indus-
trial applications such as CAN Application Layer (CAL), CANopen, J1939,
Hägglunds Controller Area Network (HCAN), CAN for Military Land Sys-
tems domain (MilCAN).

In order to provide evidence that each action by the system will be provided
in a timely manner, i.e., each action will be taken at a time that is appropriate
to the environment of the system, a priori analysis techniques such as schedu-
lability analysis have been developed by the research community. Response-
Time Analysis (RTA) [4, 5, 6, 7] is a powerful, mature and well established
schedulability analysis technique. It is a method to calculate upper bounds on
the response times of tasks or messages in a real-time system or a network re-
spectively. RTA is used to perform a schedulability test which means it checks
whether or not tasks (or messages) in the system (or network) will satisfy their
deadlines. RTA applies to systems (or networks) where tasks (or messages) are
scheduled with respect to their priorities and which is the predominant schedul-
ing technique used in real-time operating systems (or real-time network proto-
cols, e.g., CAN) [8].

7.1.1 Motivation and Related Work
Tindell et al. [9] developed the schedulability analysis for CAN. This analysis
has been implemented in several tools that are used in the automotive industry
[10, 11, 12, 13]. Davis et al. [14] refuted, revisited and revised the analysis
by Tindell et al. In [15], Davis et al. extended the analysis in [9, 14] which is
applicable to the CAN network where some nodes implement priority queues
and some implement FIFO queues. All these analyses assume that the mes-
sages are queued for transmission periodically or sporadically. They do not
support mixed messages in CAN, i.e., the messages that are simultaneously
time (periodic) and event (sporadic) triggered. Mubeen et al. [16] extended the
existing analysis to support mixed messages in CAN where nodes implement
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priority-based queues. Mubeen et al. [17] further extended their analysis to
support mixed messages in the network where some nodes implement priority
queues while others implement FIFO queues.

Saad Mubeen ETFA-2012, Krakow September 19, 2012

Related Analysis
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Figure 7.1: Relation between the existing and extended Response Time Anal-
ysis (RTA)

But, none of the analysis discussed above supports messages that are sched-
uled with offsets, i.e., using externally imposed delays between the times when
the messages can be queued. In order to avoid deadlines violations due to
high transient loads, current automotive embedded systems are often sched-
uled with offsets [18]. Furthermore, the worst-case response times of mes-
sages (especially with lower priority) in CAN increase with the increase in
the network load. However, the worst-case response-times of lower priority
messages in CAN can be reduced if the messages are scheduled with offsets
[19, 20, 21]. A method for the assignment of offsets to improve the over-
all bandwidth utilization is proposed in [20, 21]. The worst-case response-
time analysis for CAN messages with offsets has been developed by several
researchers [22, 23, 19, 24, 18].

None of these analyses support mixed messages that are scheduled with
offsets. In [25], we extended the existing offset-based analysis [22] to support
worst-case response-time calculations for mixed messages in CAN. However,
this analysis is restricted due to limitations regarding message jitter and dead-
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lines. The source of these limitations comes from the base analysis [22]. In
this paper, we remove these limitations. Basically, we extend the analysis for
mixed messages [16] by building it upon the analysis for CAN messages with
offsets [18]. Figure 7.1 depicts the relation between the existing and extended
analyses.

7.1.2 Paper Contribution

We extend the response-time analysis of CAN for mixed messages that are
scheduled with offsets. The existing analysis for mixed messages with offsets
[25] places restrictions on message deadline and jitter, i.e., each of them should
be less than or equal to message period. Release jitter of a message can be
higher than its transmission period in practical systems. For example, consider
a message is exchanged between two networks (or two segments of a network)
via a gateway node. At the gateway node, the message inherits its response time
on the incoming network as part of its release jitter on the outgoing network.
This release jitter can be higher than the period of the message [18]. The
existing offset-based analysis does not support mixed messages whose jitter
and deadlines are higher than their transmission periods.

In this paper, we lift these restrictions by assuming deadline and jitter to
be arbitrary, i.e., each one of them can be higher than message period. Intu-
itively, there can be several instances of the same message that are queued for
transmission. Hence, our extended analysis considers the response times of all
these instances while calculating the worst-case response time. Mixed mes-
sages are implemented by several higher-level protocols used in the industry.
The analysis is applicable to any higher-level protocol for CAN that uses pe-
riodic, sporadic and mixed transmission of messages that are scheduled with
offsets. We also show the applicability of the extended analysis by conducting
the automotive-application case study.

7.1.3 Paper Layout

The remainder of the paper is organized as follows. In Section 7.2, we dis-
cuss mixed transmission patterns supported by higher-level protocols for CAN.
Section 7.3 describes the scheduling model. Section 7.4 presents the extended
analysis. In Section 7.5, we present a case study. Section 7.6 concludes the
paper and discusses the future work.
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7.2 Mixed Transmission Patterns Supported by
Higher-level Protocols

When CAN is employed for network communication in a distributed real-time
system, each node (processor) or Electronic Control Unit (ECU) is equipped
with a CAN interface that connects the node to the bus [26]. Application tasks
in each node, that require remote transmission, are assumed to queue mes-
sages for transmission over the CAN network. The messages are transmitted
according to the protocol specification of the CAN protocol. Traditionally, it
is assumed that the tasks queueing CAN messages are invoked either by peri-
odic events with a period or sporadic events with a minimum inter-arrival time.
However, there are some higher-level protocols and commercial extensions of
CAN in which the task that queues the messages can be invoked periodically as
well as sporadically. If a message can be queued for transmission periodically
as well as at the arrival of a sporadic event then the transmission type of the
message is said to be mixed. In other words, a mixed message is simultane-
ously time (periodic) and event triggered (sporadic). We identified three types
of implementations of mixed messages used in the industry.

Implementation in CANopen

Event 
Arrival

Message 
Queued for 

Transmission

Periodic Transmission is independent of 

Sporadic Transmission

A B C D

1 2 5 63 4

Delayed Periodic Transmissions

A

1 2 5 63 4

Event Timer is 

reset

1 3 4

B

2

A

(a) Mixed message in CANopen (b) Mixed message in AUTOSAR (c) Mixed message in HCAN

Figure 7.2: Mixed transmission pattern in higher-level protocols for CAN

Consistent terminology. To stay consistent, we use the terms message and
frame interchangeably because we only consider messages that will fit into
one frame (maximum 8 bytes). For the purpose of using simple notation, we
call a CAN message as periodic, sporadic or mixed if it is queued by an appli-
cation task that is invoked periodically, sporadically or both (periodically and
sporadically) respectively. If a message is queued for transmission at periodic
intervals, we use the term “Period” to refer to its periodicity. A sporadic mes-
sage is queued for transmission as soon as an event occurs that changes the
value of one or more signals contained in the message provided the Minimum
Update Time (MUT ) between queueing of two successive sporadic messages
has elapsed. Hence, the transmission of a sporadic frame is constrained by
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the MUT . We overload the term “MUT ” to refer to the “Inhibit Time” in
CANopen protocol [27] and the “Minimum Delay Time (MDT)” in AUTOSAR
communication [28].

7.2.1 Method 1: Implementation in CANopen
The CANopen protocol [27] supports mixed transmission that corresponds to
the Asynchronous Transmission Mode coupled with the Event Timer. The
Event Timer is used to transmit an asynchronous message cyclically. A mixed
message can be queued for transmission at the arrival of an event provided the
Inhibit Time has expired. The Inhibit Time is the minimum time that must be
allowed to elapse between the queueing of two consecutive messages. A mixed
message can also be queued periodically at the expiry of the Event Timer. The
Event Timer is reset every time the message is queued. Once a mixed message
is queued, any additional queueing of it will not take place during the Inhibit
Time [27].

The transmission pattern of a mixed message in CANopen is illustrated in
Figure 7.2(a). The down-pointing arrows symbolize the queueing of messages
while the upward lines (labeled with alphabetic characters) represent arrival of
the events. Message 1 is queued as soon as the event A arrives. Both the Event
Timer and Inhibit Time are reset. As soon as the Event Timer expires, message
2 is queued due to periodicity and both the Event Timer and Inhibit Time are
reset again. When the event B arrives, message 3 is immediately queued be-
cause the Inhibit Time has already expired. Note that the Event Timer is also
reset at the same time when message 3 is queued as shown in Figure 7.2(a).
Message 4 is queued because of the expiry of the Event Timer. There exists
a dependency relationship between the Inhibit Time and the Event Timer, i.e.,
the Event Timer is reset not only with every periodic transmission but also with
every sporadic transmission.

7.2.2 Method 2: Implementation in AUTOSAR
AUTOSAR (AUTomotive Open System ARchitecture) [29] can be viewed as a
higher-level protocol if it uses CAN for network communication. Mixed trans-
mission mode in AUTOSAR is widely used in practice. In AUTOSAR, a mixed
message can be queued for transmission repeatedly with a period equal to the
mixed transmission mode time period. The mixed message can also be queued
at the arrival of an event provided the Minimum Delay Time (MDT ) has been
expired. However, each transmission of the mixed message, regardless of be-
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ing periodic or sporadic, is limited by the MDT . This means that both periodic
and sporadic transmissions are delayed until the MDT expires. The transmis-
sion pattern of a mixed message implemented by AUTOSAR is illustrated in
Figure 7.2(b). Message 1 is queued (the MDT is started) because of partly
periodic nature of the mixed message. When the event A arrives, message 2

is queued immediately because the MDT has already expired. The next peri-
odic transmission is scheduled 2 time units after the transmission of message
2. However, the next two periodic transmissions corresponding to messages
3 and 4 are delayed because the MDT is not expired. This is indicated by
the comment “Delayed Periodic Transmissions” in Figure 7.2(b). The periodic
transmissions corresponding to messages 5 and 6 occur at the scheduled times
because the MDT is already expired in both cases.

7.2.3 Method 3: Implementation in HCAN

A mixed message in HCAN protocol [30] contains signals out of which some
are periodic and some are sporadic. A mixed message is queued for transmis-
sion not only periodically but also as soon as an event occurs that changes the
value of one or more event signals, provided the MUT between the queueing
of two successive sporadic instances of the mixed message has elapsed. Hence,
the transmission of the mixed message due to arrival of events is constrained
by the MUT . The transmission pattern of the mixed message is illustrated in
Figure 7.2(c). Message 1 is queued because of periodicity. As soon as event
A arrives, message 2 is queued. When event B arrives it is not queued imme-
diately because the MUT is not expired yet. As soon as the MUT expires,
message 3 is queued. Message 3 contains the signal changes that correspond
to event B. Similarly, a message is not immediately queued when the event C
arrives because the MUT is not expired. Message 4 is queued because of the
periodicity. Although, the MUT was not expired, the event signal correspond-
ing to event C was packed in message 4 and queued as part of the periodic mes-
sage. Hence, there is no need to queue an additional sporadic message when
the MUT expires. This indicates that the periodic transmission of the mixed
message cannot be interfered by its sporadic transmission (a unique property
of the HCAN protocol). When the event D arrives, a sporadic instance of the
mixed message is immediately queued as message 5 because the MUT has
already expired. Message 6 is queued due to periodicity.
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7.2.4 Discussion
In the first method, the Event Timer is reset every time the mixed message is
queued for transmission. The implementation of mixed message in method 2 is
similar to method 1 to some extent. The main difference is that in method 2, the
periodic transmission can be delayed until the expiry of the MDT . Whereas
in method 1, the periodic transmission is not delayed, in fact, the Event Timer
is restarted with every sporadic transmission. The MDT timer is started with
every periodic or sporadic transmission of the mixed message. Hence, the
worst-case periodicity of the mixed message in methods 1 and 2 can never
be higher than the Inhibit Timer and MDT respectively. This means that the
models of mixed messages in the first and second implementation methods
reduce to the classical sporadic model. Therefore, the existing analyses for
CAN messages with offsets [22, 23, 19, 24, 18] can be used for analyzing
mixed messages in the first and second implementation methods.

However, the periodic transmission is independent of the sporadic trans-
mission in the third method. The periodic timer is not reset with every spo-
radic transmission. The mixed message can be queued for transmission even if
the MUT is not expired. Hence, the worst-case periodicity of the mixed mes-
sage is neither bounded by period nor by the MUT . Therefore, the analyses
in [22, 23, 19, 24, 18] cannot be used for analyzing the mixed messages in the
third implementation method.

7.3 System Model
The system, S, consists of a number of CAN controllers that are connected to
a single CAN network. The nodes implement priority-ordered queues, i.e., the
highest priority message in a node enters into the bus arbitration. Each CAN
message m

m

has a unique identifier and a priority denoted by ID
m

and P
m

respectively. The priority of a message is assumed to be equal to its ID. The
priority of m

m

is considered higher than the priority of m
n

if Pm < Pn.
Let the sets hp(mm), lp(mm), and hep(mm) contain the messages with

priorities higher, lower, and equal and higher than m
m

respectively. Although
the priorities of CAN messages are unique, the set hep(mm) will be used in
the case of mixed messages. Associated to each message is a FRAME TYPE
that specifies whether the frame is a standard or an extended CAN frame. The
difference between the two frame types is that the standard CAN frame uses an
11-bit identifier whereas the extended CAN frame uses a 29-bit identifier. In
order to keep the notations simple and consistent, we define a function ⇠

m

that
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denotes the transmission type of a message. ⇠
m

specifies whether m is periodic
(P ), sporadic (S) or mixed (M ). Formally, the domain of ⇠

m

can be defined as
follows.

⇠m 2 [P, S, M ]

Each message m
m

has a transmission time C
m

and queueing jitter J
m

which is inherited from the task that queues m
m

, i.e., the sending task. We
assume that J

m

can be smaller, equal or greater than T
m

or MUT
m

. Each
message can carry a data payload that ranges from 0 to 8 bytes. This number
is specified in the header field of the frame called Data Length Code and is
denoted by s

m

. In the case of periodic transmission, m
m

has a transmission
period which is denoted by T

m

. Whereas in the case of sporadic transmission,
m

m

has the MUT
m

(Minimum Update Time) that refers to the minimum time
that should elapse between the transmission of any two sporadic messages.
B

m

denotes the blocking time of m
m

which refers to the largest amount of
time m

m

can be blocked by any lower priority message.
We duplicate a message when its transmission type is mixed. Hence, each

mixed message m
m

is treated as two separate messages, i.e., one periodic and
the other sporadic. The duplicates share all the attributes except the T

m

and
MUT

m

. The periodic copy inherits T
m

while the sporadic copy inherits the
MUT

m

. Each message has a worst-case response time, denoted by R
m

, and
defined as the longest time between the queueing of the message (on the send-
ing node) and the delivery of the message to the destination buffer (on the
destination node). m

m

is deemed schedulable if its R
m

is less than or equal to
its deadline D

m

. The system is considered schedulable if all of its messages are
schedulable. We consider the deadlines to be arbitrary which means that they
can be greater than the periods or MUT s of corresponding messages. We as-
sume that the CAN controllers are capable of buffering more than one instance
of a message. The instances of a message are assumed to be transmitted in the
same order in which they are queued (i.e., we assume FIFO policy among the
instances of the same message).

Let Om denotes the offset of m
m

. We assume that the offset of m
m

is
always smaller than its period. The first arrival time of m

m

is equal to its offset
while the subsequent arrivals occur periodically with respect to the first arrival.
We assume that the smallest offset in a node is zero. It should be noted that each
node has its own local time and there is no global synchronization among the
nodes. We assume that the offset relations exist only among periodic messages
and periodic copies of mixed messages within a node. We further assume that
there are no offset relations:
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1. among sporadic messages,

2. between a periodic message and a sporadic message,

3. between a periodic copy of a mixed message and a sporadic message,

4. between the duplicates of a mixed message,

5. between any two messages belonging to different nodes.

All periodic messages and periodic copies of mixed messages in a node are
gathered into a single transaction denoted by �i. Each transaction �i belongs
to � which is the set of all transactions in the system. This transactional model
is adapted from [31]. It should be noted that the offset relations exist only
within a transaction, and there are no offset relations among transactions. In
the context of a transaction, we denote a message m

j

belonging to transaction
i by m j

i

. Each transaction has a period denoted by T�i and defined as the
Least Common Multiple (LCM) of the periods of all messages present in the
transaction. Each sporadic message or sporadic copy of a mixed message is
modeled as a transaction of its own.

An example of two messages transmitted by a node is depicted in Figure
7.3. m

1

is a mixed message with high priority while m
2

is a periodic message
with low priority. Transaction �1 contains both m

2

and periodic copy of m
1

.
The period of �1 denoted by T�i is the LCM of T

1

and T
2

. Transaction �2

consists of only the sporadic copy of m
1

.

7.4 Worst-case Response-time Analysis
Let m

m

be the message under analysis. We analyze m
m

differently based on
its transmission type. Intuitively, we consider three different cases namely pe-
riodic, sporadic and mixed. We discuss few terms that are used in the analysis.
In order to calculate the worst-case response time of m

m

, the maximum busy
period [9, 14] for priority level-m should be known first.
Maximum Busy Period. It is the longest contiguous interval of time during
which m

m

is unable to complete its transmission due to two reasons. First,
the bus is occupied by the higher priority messages. Second, a lower priority
message already started its transmission when m

m

is queued for transmission.
The maximum busy period starts at the critical instant.
Critical Instant. For a system where messages are scheduled without offsets,
the critical instant corresponds to the point in time when all higher priority
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Figure 7.3: Example demonstrating messages and transactions

messages are assumed to be queued simultaneously with m
m

while their sub-
sequent instances are assumed to be queued after the shortest possible interval
of time [14]. However, this assumption does not hold in the system where
messages are scheduled with offsets.

We redefine the critical instant for priority level-m busy period as the in-
stant when (1) m

m

or any other higher priority message belonging to the same
node as that of m

m

is queued for transmission, (2) At least one message with
priority higher than m

m

is queued for transmission from every node, (3) all
sporadic messages and sporadic copies of mixed messages belonging to the set
hp(mm) from every node are simultaneously queued for transmission at the
respective nodes, and (4) a lower priority message just started its transmission
when m

m

is queued. The critical instant for priority level-2 busy period is
identified at tc in Figure 7.3. According to the condition (3) stated above, the
arrival of �2 should coincide with the critical instant.
Worst-Case Candidates. The main issue regarding the condition (2) is to de-
termine which message in the set hp(mm) is the candidate to start the critical
instant, i.e., contributing to the worst-case response-time of m

m

. The solu-
tion is that any message in the set hp(mm) can be the worst-case candidate.
Therefore, each message has to be tested in the busy period as the potential
worst-case candidate. The response time of m

m

should be calculated from ev-
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ery worst-case candidate and the maximum among all should be considered as
the worst-case response time of m

m

.
We present the response-time analysis with respect to any worst-case can-

didate in the following subsections.

7.4.1 Case: When mm is a Periodic Message
Let m

m

belongs to transaction �i. The worst-case response time of m
m

is
equal to the maximum value among the response times of all of its instances.
We calculate the response times of all instances of m

m

within the priority level-
m busy period. Let qm be the index variable to denote instances of m

m

. Let
qLm and qHm denote lowest- and highest-numbered instances respectively. The
worst-case response time of m

m

is given by:

Rm = max{Rm(qm)}, 8 qLm  qm  qHm (7.1)

It should be noted that qm will be equal to 1 if the message instance is
queued for transmission between the critical instant and T

m

. Further, qm will
be equal to 2 if the message instance is queued for transmission between T

m

and 2.T
m

. Similarly, qm will be equal to 0 if the message instance is queued
for transmission between the critical instant and �T

m

. Since the jitter of a
message can be greater than its transmission period, it is possible that the pre-
vious instances of the message may also be delayed due to jitter and enter in
the maximum busy period. The calculations for the response time of instance
qm are adapted from [18] as follows.

Rm(qm) = STm + Cm � ('m(�i) + (qm � 1).Tm) (7.2)

�i in (7.2) denotes the time interval between latest arrival of �i (prior to the
critical instant) and the critical instant. Consider the example message set in
Figure 7.3. �i is equal to 1 time unit and is identified as �1 on the third time
line from the top. 'm(�i) in (7.2) represents the length of the time interval
between the critical instant and first release of m

m

that occurs at or after the
critical instant. Consider again the example message set in Figure 7.3. 'm(�i)

for messages mP

1

and m
2

are identified by '1(�1) and '2(�1) respectively.
The calculations for 'm(�i) are adapted from [31] as follows.

'm(�i) = (Tm � (�i �Om) mod Tm) mod Tm (7.3)

STm in (7.2) denotes the Start Time (ST) when the priority level-m busy
period ends and m

m

(q
m

) can start its transmission. Basically, it sums up the
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interferences due to higher priority messages, previous instances of the same
message and the blocking factor. It can be calculated by solving the following
equation.

STn+1
m = Bm + (qm � qLm).Cm +

X

8�k2�

Wm(�k,�k, ST
n
m) (7.4)

Where the term (qm � qLm).Cm represents the interference due to previous
instances of m

m

that are queued ahead of the instance under analysis. Bm is the
blocking delay for m

m

. It is defined as the amount of time equal to the largest
transmission time in the set of lower priority messages. Bm is calculated as
follows.

Bm = max

8mj2lp(mm)
{Cj} (7.5)

(7.4) is an iterative equation. It is solved iteratively until two consecutive
solutions become equal. The starting value for STn

m in (7.4) can be selected
equal to Bm+(qm� qLm).Cm. In (7.4), Wm represents the amount of interfer-
ence due to the messages in the set hp(mm) that are queued for transmission
since the beginning of the busy period. It is important to mention that a mes-
sage cannot be interfered by higher priority messages during its transmission
because CAN uses fixed-priority non-preemptive scheduling. Whenever we
use the term interference, it refers to the amount of time m

m

has to wait in the
send queue because the higher priority messages win the arbitration, i.e., the
right to transmit before m

m

. Wm can be calculated as follows.

Wm(�k,�k, ST
n
m) =

X

8mj2hpk(mm)

⌥

j
k(ST

n
m).Cj (7.6)

Where hpk(mm) represents the set of all those messages that belong to �k

and have priority higher than m
m

. ⌥j
k(ST

n
m) in (7.6) is calculated differently

based on the transmission type ⇠j of the higher priority message m
j

. The cal-
culations for ⌥j

k(ST
n
m) are adapted from [18] and [16] as follows. It should

be noted that the existing analysis considers only higher priority periodic mes-
sages while calculating ⌥

j
k(ST

n
m). On the other hand, we consider all higher
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priority periodic, sporadic and mixed messages while calculating ⌥

j
k(ST

n
m).

⌥

j
k(ST

n
m) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

�
Jj+'j(�k)

Tj

⌫
+

�
STn

m�'j(�k)
Tj

⌫
+ 1, if ⇠j =P

�
STn

m+Jj

MUT

j

⌫
+ 1, if ⇠j =S

�
Jj+'j(�k)

Tj

⌫
+

�
STn

m�'j(�k)
Tj

⌫
+ 1

+

�
STn

m+Jj

MUT

j

⌫
+ 1, if ⇠j =M

(7.7)

Where 'j(�k) is calculated by replacing the indices m and i with j and k in

(7.3) respectively. In (7.7), the periodic case is adapted from [18].
�

Jj+'j(�k)
Tj

⌫

represents the maximum number of instances of the higher priority periodic
message or periodic copy of mixed message m

j

that may accumulate at the

critical instant. Whereas
�

STn
m�'j(�k)

Tj

⌫
+ 1 represents the maximum number

of instances of m
j

that are queued for transmission in the interval that starts
with the critical instance and ends at ⌥n

m.
There are no offset relations of m

m

with any sporadic message. Moreover,
all sporadic messages are assumed to be queued for transmission at the critical
instant. Therefore, the sporadic and mixed cases in (7.7) are adapted from [16].�

STn
m+Jj

MUT

j

⌫
+ 1 represent the maximum number of instances of higher priority

sporadic message or sporadic copy of mixed message m
j

that are queued for
transmission in the interval that starts with the critical instance and ends at ⌥n

m.
This also includes the number of instances of m

j

that may accumulate at the
critical instant due to jitter.

It is evident from (7.7) that interference from both periodic and sporadic
copies of every higher priority mixed message is taken into account. The
lowest- and highest-numbered instances of m

m

denoted by qLm and qHm are
calculated as follows.

qLm = �
�
Jm + 'm(�i)

T
m

⌫
+ 1 (7.8)

qHm =

⇠
Lm � 'm(�i)

T
m

⇡
(7.9)
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Where Lm represents the length of priority level-m busy period. The existing
analysis [18] considers only higher priority periodic messages while calculat-
ing Lm. We adapt the existing analysis to consider all higher priority periodic,
sporadic and mixed messages while calculating Lm. Similar to (7.4), Lm can
be calculated using the fixed-point method as follows.

Ln+1
m =

�
Jm + 'm(�i)

Tm

⌫
+

⇠
Ln
m � 'm(�i)

Tm

⇡�
.Cm +

Bm +

X

8�k2�,mj2hpk(mm)

Mj
k(L

n
m).Cj (7.10)

Where

Mj
k(L

n
m) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

�
Jj+'j(�k)

Tj

⌫
+

⇠
Ln

m�'j(�k)
Tj

⇡
, if ⇠j =P

�
Ln

m+Jj

MUT

j

⌫
+ 1, if ⇠j =S

�
Jj+'j(�k)

Tj

⌫
+

⇠
Ln

m�'j(�k)
Tj

⇡

+

�
Ln

m+Jj

MUT

j

⌫
+ 1, if ⇠j =M

(7.11)

7.4.2 Case: When mm is a Sporadic Message
Let again the message under analysis be m

m

that belongs to �i, i.e, the transac-
tion of its own. The worst-case response time of m

m

can be calculated similar
to the periodic case with one exception. That is, sporadic message does not
hold any offset relations with any other message in the system. Moreover, all
sporadic messages including m

m

are assumed to be queued for transmission at
the critical instant. Intuitively, �i will be equal to MUT

m

, i.e., the latest arrival
of m

m

prior to critical instant will be MUT
m

time units before the critical in-
stant. Let us use O

m

equal to zero, and MUT
m

in place of both T
m

and �i in
(7.3).

'm(�i) = 0 (7.12)

In this case, (7.1), (7.4), (7.5), (7.6), (7.7) and (7.11) hold intact. However,
we need to replace the new value of 'm(�i) from (7.12) in the calculations for
(7.2), (7.8), (7.9) and (7.10) as follows.

Rm(qm) = STm + Cm � (qm � 1).MUTm (7.13)



7.4 Worst-case Response-time Analysis 191

qLm = �
�

Jm
MUT

m

⌫
+ 1 (7.14)

qHm =

⇠
Lm

MUT
m

⇡
(7.15)

Ln+1
m =

�
Jm

MUTm

⌫
+

⇠
Ln
m

MUTm

⇡�
.Cm +Bm +

X

8�k2�,mj2hpk(mm)

Mj
k(L

n
m).Cj (7.16)

7.4.3 Case: When mm is a Mixed Message
Let again m

m

be the message under analysis. Since a mixed message is dupli-
cated as two separate messages, the extended analysis treats them separately.
Let the periodic and sporadic copies of m

m

be denoted by m
m

P

and m
m

S

re-
spectively. We denote the worst-case response times of m

m

P

and m
m

S

by R
m

P

and R
m

S

respectively. The worst-case response time of m
m

is the maximum
between R

m

P

and R
m

S

as follows.

Rm = max{RmP , RmS} (7.17)

Where R
m

P

and R
m

S

are equal to the maximum value among the response
times of their respective instances. Let q

m

P

be the index variable to denote the
instances of m

m

P

. Let qLmP
and qHmP

denote the lowest- and highest-numbered
instances of m

m

P

respectively. Let qmS , qLmS
and qHmS

denote the index vari-
able for instances, and lowest- and highest-numbered instances of m

m

S

respec-
tively. The calculations for R

m

P

and R
m

S

are adapted from the periodic and
sporadic cases respectively as follows.

RmP = max{RmP (qmP )}, 8 qLmP
 qmP  qHmP

(7.18)

RmS = max{RmS (qmS )}, 8 qLmS
 qmS  qHmS

(7.19)

The calculations for the worst-case response time of each instance of m
m

P

and m
m

S

are adapted from (7.2) and (7.13) as follows.

RmP (qmP ) = STmP + Cm � ('mP (�i) + (qmP � 1).Tm) (7.20)

RmS (qmS ) = STmS + Cm � (qmS � 1).MUTm (7.21)
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Where 'mP (�i) is calculated using (7.3). The calculations for STmP and
STmS are adapted from (7.4) after some augmentation.

STn+1
mP

= Bm +QP
mS

.Cm + (qmP � qLmP
).Cm +

X

8�k2�

WmP (�k,�k, ST
n
mP

) (7.22)

STn+1
mS

= Bm +QS
mP

.Cm + (qmS � qLmS
).Cm +

X

8�k2�

WmS (�k,�k, ST
n
mS

) (7.23)

Effect of Self Interference in a Mixed Message
QP

mS
.Cm and QS

mP
.Cm in (7.22) and (7.23) respectively represent the ef-

fect of self interference in a mixed message. By self interference we mean that
the periodic copy of a mixed message can be interfered by the sporadic copy
and vice versa. Since, both m

m

P

and m
m

S

have equal priorities, any instance
of m

m

S

queued ahead of m
m

P

will contribute an extra delay to the worst-case
queueing delay experienced by m

m

P

. A similar argument holds in the case
of m

m

S

. We reuse the effect of self interference in a mixed message that we
derived in [16] as follows.

In order to derive the contribution of one copy of a mixed message to the
worst-case queueing delay of the other, consider three different cases, depicting
the transmission pattern of a mixed message m, shown in Figure 7.4. In the
first case, we assume T

m

to be greater than MUT
m

. That is, there can be more
transmissions of m

m

S

compared to that of m
m

P

. Since, the maximum update
time between the queueing of any two instances of m

m

S

can be arbitrarily
very long, it is possible to have fewer sporadic transmissions than periodic
transmissions of m. In the second case, we assume that T

m

is equal to MUT
m

.
In this case, there are equal number of transmissions of m

m

P

and m
m

S

. In the
third case, we assume that T

m

is smaller than MUT
m

. This implies that the
number of sporadic transmissions will be less than the periodic transmissions
of m.

It is important to note that in the example shown in Figure 7.4, there is a
small offset between the first periodic and sporadic transmission of m. This
offset is used to maximize the queueing delay. If this offset is removed then
only one message will be queued corresponding to the first instance of both
m

m

P

and m
m

S

. Moreover, the larger value between T
m

and MUT
m

is the
integer multiple of the smaller in all the cases. This relationship along with the
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offset between Tm and MUT
m

ensures that periodic and sporadic transmis-
sions of m will not overlap, there by, maximizing the queueing delay.

Case (b)

Case (a)

1 2 3

MUTm=3

4 5 6

mmP(0) mmP(1) mmP(2)

mmS(0) mmS(1) mmS(2) mmS(3) mmS(4) mmS(5)

Tm = 9 Tm = 9

mmP(0) mmP(1) mmP(2)

mmS(0) mmS(1) mmS(2)

1 2 3
MUTm = 9 MUTm = 9

Tm = 9 Tm = 9

Event arrival Message queued for transmission

Case (c)
mmP(0)

mmS(0) mmS(1) mmS(2)

mmP(1) mmP(2) mmP(3) mmP(4) mmP(5) mmP(6)

1 2 3
MUTm = 9 MUTm = 9

Tm=3 Tm=3 Tm=3 Tm=3 Tm=3 Tm=3

Figure 7.4: Self interference in a mixed message: (a) Tm > MUTm, (b)
Tm = MUTm, (c) Tm < MUTm

.

Case (a): Tm > MUTm

Let the message under analysis be mmP and consider case (a) in Figure 7.4.
An application task queues m periodically with a period Tm (equal to 9 time
units). Moreover, the same task can also queue m sporadically at the arrival
of events (labeled with numbers 1-6). The queueing of mmE is constrained by
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MUT
m

(equal to 3 time units). The first instance of mmP (qmP = 0) is queued
for transmission as shown by mmP (0) in Figure 7.4. If event 1 had arrived at
the same time as the queueing of mmP (0) then the signals in mmS (0) would
have been updated as part of mmP (0). In that case, mmS (0) would not have
been queued separately (this is the property of the mixed message in the HCAN
protocol). In order to maximize the contribution of mmS on the queueing delay
of mmP , mmS (0) is queued just after the queueing of mmP (0) as shown in all
the cases in Figure 7.4. Therefore, mmS (0) and subsequent instances of mmS

will have no contribution in the worst-case queueing delay of the first instance
of mmP denoted by mmP (0).

Consider the second instance of mmP . All the instances of mmS that are
queued ahead of mmP (1) will contribute to its worst-case queueing delay. It
can be observed in the case (a) that the first three instances of mmS are queued
ahead of mmP (1). Similarly, there are six instances of mmS that are queued
ahead of mmP (2).

Let QP
mS

denotes the total number of instances of mmS that are queued
ahead of the qthmP

instance of mmP . We can generalize QP
mS

for the case (a) as
follows.

QP
mS

=

⇠
qmP Tm

MUT
m

⇡
(7.24)

For example, consider again the queueing of different instances of mmS and
mmP in the case (a). Equation (7.24) yields the set {QP

m

S

= 0 , 3 , 6 , ...} for the
corresponding values in the set {q

m

P

= 0 , 1 , 2 , ...}. Thus the total number of
instances of mmS queued ahead of each instance of mmp calculated by (7.24)
are consistent with the case (a) in Figure 7.4.
Case (b): Tm = MUTm

Consider case (b) in which T
m

is equal to MUT
m

. It can be observed from
Figure 7.4 that there are 0, 1, and 2 instances of mmS that are queued ahead
of mmP (0), mmP (1) and mmP (2) respectively. When Equation (7.24) is used
in case (b), we get the set {QP

m

S

= 0 , 1 , 2 , ...} for the corresponding values in
the set {q

m

P

= 0 , 1 , 2 , ...}. Therefore, (7.24) is also applicable on case (b).
Case (c): Tm < MUTm

Now, consider case (c) in which T
m

(3 time units) is smaller than MUT
m

(9 time units). The first instance of mmS denoted by mmS (0) will be queued
ahead of mmP (1), mmP (2) and mmP (3). Similarly, the two instances of mmS

denoted by mmS (0) and mmS (1) will contribute to the worst-case queueing
delay of mmP (4), mmP (5) and mmP (6). (7.24) yields the set {QP

m

S

= 0 , 1 , 1 ,
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1 , 2 , 2 , 2 , ...} for the corresponding values in the set {q
m

P

= 0 , 1 , 2 , 3 , 4 , 5 ,
6 , ...}. Thus the total number of instances of mmS queued ahead of each in-
stance of mmP calculated by equation (7.24) are consistent with the case (c) in
Figure 7.4.

Now we consider the effect of jitter on the instances of mmS prior to
mmS (0) which can be queued just ahead of mmP (0) and contribute to the
worst-case queueing delay of mmP . We assume FIFO queueing policy among
the instances of the same message. Due to the offset of mmP , there may be
one or more instances of mmS that can be queued ahead of the first instance
of mmP . Hence, the offset of mmP should also be taken into account when
considering the self interference from mmS . By considering the jitter of mmS

and offset of mmP to QP
mS

, equation (7.24) can be generalized for the three
cases as follows.

QP
mS

=

⇠
qmP Tm + Jm +Om

MUT
m

⇡
(7.25)

The total number of instances of mmP that are queued ahead of the qthmS

instance of mmS , denoted by QS
mP

, can be derived in a similar fashion. How-
ever, QS

mP
does not contain the term Om because sporadic messages do not

have any offset relations with any other message. Thus QS
mP

can be calculated
by the following equation.

QS
mP

=

⇠
qmSMUT

m

+ J
m

Tm

⇡
(7.26)

Using the values of QS
mP

and QP
mS

from (7.26) and (7.25) in (7.22) and
(7.23) respectively as follows.

STn+1
mP

= Bm +

⇠
qmP .Tm + Jm +Om

MUTm

⇡
.Cm

+(qmP � qLmP
).Cm +

X

8�k2�

WmP (�k,�k, ST
n
mP

) (7.27)

STn+1
mS

= Bm +

⇠
qmS .MUTm + Jm

Tm

⇡
.Cm

+(qmS � qLmS
).Cm +

X

8�k2�

WmS (�k,�k, ST
n
mS

) (7.28)

The calculations for WmP , qLmP
, qHmP

and LmP are done using (7.6), (7.8),
(7.9) and (7.10) by replacing the index

m

with
m

P

respectively. Similarly,
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ECU mm Pm ⇠m Tm MUTm Cm Om Jm Dm Rm

ECUS m1 1 P 10 - 1 0 1 10 3
ECUS m2 2 M 10 10 1 1 11 20 15
ECUS m3 3 S - 10 1 0 0 10 7
ECUW m4 4 P 10 - 1 0 0 10 8
ECUW m5 5 P 10 - 1 2 12 20 18

Table 7.1: Attributes and response times of periodic, sporadic and mixed mes-
sages in the steer-by-wire system

WmS , qLmS
, qHmS

and LmS are calculated using (7.6), (7.14), (7.15) and (7.16)
by replacing the index

m

with
m

S

respectively. Further, the calculations in
(7.5), (7.7) and (7.11) hold intact with proper replacement of the index variable
for both m

m

P

and m
m

S

.

7.5 Automotive-application Case Study
In this section, we conduct the Steer-By-Wire (SBW) case study. The SBW
system is an automotive feature that substitutes most of the mechanical and
hydraulic components with the electronic components in the steering system
of the vehicle. We adapt the SBW system from [32]. The partial architecture
of the SBW system is shown in Figure 7.5. There are two ECUs (rest of the
ECUs are not shown for simplicity) that are connected to the CAN network.

The Steering Control ECU denoted by ECU
S

receives input from three
sensors that correspond to the steering angle, steering torque (applied by the
driver) and vehicle speed signals. It sends three messages m

1

, m
2

and m
3

to the network. These messages carry information regarding steering angle,
torque and feedback signals. m

1

is a periodic, m
2

is a mixed and m
3

is a
sporadic message. ECU

S

receives the periodic message m
4

that contains in-
formation about wheel torque that is sent by the Wheel Control ECU. Based
on these inputs, it calculates the feedback steering torque and sends it to the
feedback actuator. The feedback torque actuator is responsible for producing
the turning effect of the steering which in turn produces the feeling of turning
the wheels for the driver.

Similarly, the Wheel Control ECU denoted by ECU
W

acquires signals
from wheel angle and wheel torque sensors. Depending upon these signals and
the signals received in the CAN message, it calculates the wheel torque, and
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produces actuation signals for the wheel control actuators. Apart from m
4

, it
also sends a periodic message m

5

to the network. The timing attributes of all
messages are shown in Table 1. We analyzed this message set with the extended
analysis. The response times calculated using the extended analysis are also
listed in Table 1. Since, the jitter of messages m

2

and m
5

is higher than the
corresponding periods, there are several instances of these messages present
in the corresponding busy periods. For example, there are four instances of
m

2

that are present in the priority level-2 busy period. The extended analysis
calculates the response times of all these instances and considers maximum
among them as the worst-case response time of m

2

. It should be noted that
correct analysis of this message set would not have been possible with the
existing analysis because it contains a mixed message whose jitter and deadline
are greater than the corresponding period.

Controller Area Network (CAN)

Feedback 
Steering 
Torque

Steer 
angle
Steer 
torque

Steer
Control
ECU

Vehicle 
speed

Wheel 
Actuation 

Signal

Wheel
angle

Wheel
torque

Wheel
Control
ECU

Figure 7.5: Partial architecture of the steer-by-wire system

7.6 Conclusion
The existing response-time analysis of CAN does not support the analysis of
mixed messages that are scheduled with offsets and have jitter and deadlines
higher than their transmission periods. Message jitter can be higher than its
period in practical systems. We extended the existing offset-based analysis for
CAN by lifting the restrictions on message jitter and deadline. The extended
analysis provides safe upper bounds on the response times of mixed messages
that are scheduled with offsets. Mixed messages are implemented by several
higher-level protocols for CAN that are used in the automotive industry today.
The extended analysis is applicable to any higher-level protocol for CAN that
uses periodic, sporadic, and mixed transmission of messages that are sched-
uled with offsets. We also conducted the automotive-application case study to
demonstrate the applicability of our analysis.
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In the future, we plan to develop an optimized offset assignment method
for the systems that contain periodic as well as mixed messages. We also plan
to implement the extended analysis as a plug-in for the existing industrial tool
suite the Rubus-ICE [13].
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system development using AUTOSAR methodology. In 14th IEEE Con-
ference on Emerging Technologies and Factory Automation, 2009.



Chapter 8

Paper E:
MPS-CAN Analyzer:
Integrated Implementation
of Response-Time Analyses
for Controller Area Network

Saad Mubeen, Jukka Mäki-Turja and Mikael Sjödin
In Journal of Systems Architecture (JSA), Elsevier, May, 2014.

203



Abstract

We present a new response-time analyzer for Controller Area Network (CAN)
that integrates and implements a number of response-time analyses which ad-
dress various transmission modes and practical limitations in the CAN con-
trollers. The existing tools for the response-time analysis of CAN support only
periodic and sporadic messages. They do not analyze mixed messages which
are partly periodic and partly sporadic. These messages are implemented by
several higher-level protocols based on CAN that are used in the automotive
industry. The new analyzer supports periodic, sporadic as well as mixed mes-
sages. It can analyze the systems where periodic and mixed messages are
scheduled with offsets. It also supports the analysis of all types of messages
while taking into account several queueing policies and buffer limitations in the
CAN controllers such as abortable or non-abortable transmit buffers. More-
over, the tool supports the analysis of mixed, periodic and sporadic messages
in the heterogeneous systems where Electronic Control Units (ECUs) imple-
ment different types of queueing policies and have different types of buffer
limitations in the CAN controllers. We conduct a case study of a heteroge-
neous application from the automotive domain to show the usability of the
tool. Moreover, we perform a detailed evaluation of the implemented analyses.
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8.1 Introduction
The Controller Area Network (CAN) [1] is a widely used real-time network
protocol in the automotive domain. In 2003, it was standardized by the Inter-
national Organization for Standardization in ISO 11898-1 [2]. It is a multi-
master, event-triggered, serial communication protocol supporting bus speeds
of up to 1 megabits per second. Over 850 million CAN enabled controllers
were sold in 2011 according to the CAN in Automation (CiA) [3] estimate.
Over 2 billion controllers have been sold to date and most of them have been
used in the automotive industry. The CAN protocol also finds its applications
in other domains, e.g., industrial control, medical equipments, maritime elec-
tronics, and production machinery. There are several higher-level protocols for
CAN that are developed for many industrial applications such as CAN Appli-
cation Layer (CAL), CANopen, J1939, Hägglunds Controller Area Network
(HCAN), and CAN for Military Land Systems domain (MilCAN).

Often, CAN is used in hard real-time systems. The providers of these sys-
tems are required to ensure that the systems meet their deadlines. In order to
provide evidence that each action by the system will be provided in a timely
manner, a priori analysis techniques, such as schedulability analysis [4, 5, 6],
have been developed by the research community. Response-Time Analysis
(RTA) [4, 5, 6, 7] is a powerful, mature and well established schedulability
analysis technique. It is a method to calculate upper bounds on the response
times of tasks or messages in a real-time system or a network respectively.

8.1.1 Paper Contribution
There is a limitation with the existing response-time analyses for CAN and
the corresponding tools that implement these analyses. That is, they support
only periodic and sporadic messages. They do not support the analysis of
mixed messages which are partly periodic and partly sporadic. Mixed mes-
sages are simultaneously time- and event-triggered and are implemented by
several higher-level protocols based on CAN that are used in the automotive
industry today. To the best our knowledge, there is no freely-available tool
that implements the analysis of mixed messages (a commercial tool Rubus-
ICE implements basic analysis of mixed messages in CAN). In this paper we
present a new response-time analyzer for CAN namely MPS-CAN analyzer
(MPS stands for Mixed, Periodic and Sporadic). It supports the analysis of pe-
riodic, sporadic and mixed messages. It implements several extensions of RTA
for CAN taking into account the following aspects:
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• analysis of mixed messages;

• analysis of messages scheduled with or without offsets;

• analysis of messages having arbitrary jitter and deadlines;

• analysis of network with CAN controllers implementing different queue-
ing policies, e.g., priority or First-In, First-Out (FIFO),

• analysis of network with no buffer limitations in the CAN controllers,
i.e., the controllers implement such a large (but finite) number of transmit
buffers that there is no need to abort transmission requests;

• analysis of network with limitations in CAN controllers, e.g., the con-
trollers implement abortable or non-abortable transmit buffers.

The tool also supports the analysis of mixed, periodic and sporadic messages in
heterogeneous systems where Electronic Control Units (ECUs) implement dif-
ferent types of queueing policies and have different types of buffer limitations
in the CAN controllers. In these systems, the tool treats each message differ-
ently depending upon its transmission type, and the type of queueing policy and
buffer limitations in the sender ECU. We also conduct a case study in which
we analyze the CAN messages in the heterogeneous system to show usability
of the tool. Moreover, we perform a detailed evaluation of the implemented
analyses.

8.1.2 Paper Layout
The remainder of the paper is organized as follows. In Section 8.2, we discuss
mixed transmission patterns supported by several higher-level protocols. In
Section 8.3, we discuss the practical limitations in the CAN controllers. Sec-
tion 8.4 discusses the related works. Section 8.5 discusses the implemented
analyses, layout and usability of the MPS-CAN analyzer. Section 8.6 presents
the case study and evaluation. Finally, Section 8.7 concludes the paper.

8.2 Mixed Transmission Supported by Higher-level
Protocols

The analysis implemented in the MPS-CAN analyzer supports periodic and
sporadic as well as mixed messages. In this section, we discuss and compare
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the implementation of mixed messages by several higher-level protocols for
CAN. Traditionally, it is assumed that the tasks queueing CAN messages are
invoked either by periodic or sporadic events. If a message is queued for trans-
mission at periodic intervals, we use the term “Period” to refer to its periodicity.
A sporadic message is queued for transmission as soon as an event occurs that
changes the value of one or more signals contained in the message provided
the Minimum Update Time (MUT 1) between the queueing of two successive
sporadic messages has elapsed. However, there are some higher-level protocols
and commercial extensions of CAN in which the tasks that queue the messages
can be invoked periodically as well as sporadically. If a message can be queued
for transmission periodically as well as sporadically, it is said to be mixed. In
other words, a mixed message is simultaneously time- and event-triggered. We
identified three different types of implementations of mixed messages used in
the industry.

8.2.1 Method 1: Implementation in the CANopen Protocol
The CANopen protocol [8] supports mixed transmission that corresponds to the
Asynchronous Transmission Mode coupled with the Event Timer. The Event
Timer is used to transmit an asynchronous message cyclically. A mixed mes-
sage can be queued for transmission at the arrival of an event provided the
Inhibit Time has expired. The Inhibit Time is the minimum time that must be
allowed to elapse between the queueing of two consecutive messages. A mixed
message can also be queued periodically when the Event Timer expires. The
Event Timer is reset every time the message is queued. Once a mixed mes-
sage is queued, any additional queueing of this message will not take place
during the Inhibit Time [8]. The transmission pattern of a mixed message in
CANopen is illustrated in Figure 8.1(a). The down-pointing arrows symbol-
ize the queueing of messages while the upward lines (labeled with alphabetic
characters) represent arrival of the events. Message 1 is queued as soon as the
event A arrives. Both the Event Timer and Inhibit Time are reset. As soon as
the Event Timer expires, message 2 is queued due to periodicity and both the
Event Timer and Inhibit Time are reset again. When the event B arrives, mes-
sage 3 is immediately queued because the Inhibit Time has already expired.
Note that the Event Timer is also reset at the same time when message 3 is
queued as shown in Figure 8.1(a). Message 4 is queued because of the expiry
of the Event Timer. There exists a dependency relationship between the Inhibit

1We overload the term “MUT ” to refer to the Inhibit Time in the CANopen protocol and the
Minimum Delay Time (MDT) in the AUTOSAR communication.
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Time and the Event Timer, i.e., the Event Timer is reset with every sporadic
transmission.

Implementation in CANopen

Event 
Arrival

Message 
Queued for 

Transmission

Periodic Transmission is independent of 

Sporadic Transmission

A B C D

1 2 5 63 4

Delayed Periodic Transmissions

A

1 2 5 63 4

Event Timer is 

reset

1 3 4

B

2

A

(a) Mixed message in CANopen (b) Mixed message in AUTOSAR (c) Mixed message in HCAN

Figure 8.1: Mixed transmission pattern in higher-level protocols for CAN

8.2.2 Method 2: Implementation in the AUTOSAR Commu-
nications

AUTOSAR (AUTomotive Open System ARchitecture) [9] can be viewed as
a higher-level protocol if it uses CAN for network communication. Mixed
transmission mode in AUTOSAR is widely used in practice. In AUTOSAR, a
mixed message can be queued for transmission repeatedly with a period equal
to the mixed transmission mode time period. The mixed message can also be
queued at the arrival of an event provided the Minimum Delay Time (MDT )
has been expired. However, each transmission of a mixed message, regardless
of being periodic or sporadic, is limited by the MDT . This means that both
periodic and sporadic transmissions are delayed until the MDT expires. The
transmission pattern of a mixed message implemented by AUTOSAR is illus-
trated in Figure 8.1(b). Message 1 is queued (the MDT is started) because of
partly periodic nature of a mixed message. When the event A arrives, message
2 is queued immediately because the MDT has already expired. The next pe-
riodic transmission is scheduled 2 time units after the transmission of message
2. However, the next two periodic transmissions corresponding to messages 3
and 4 are delayed because the MDT is not expired. This is indicated by the
text “Delayed Periodic Transmissions” in Figure 8.1(b). The periodic trans-
missions corresponding to messages 5 and 6 take place at the scheduled times
because the MDT is already expired in both cases.
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8.2.3 Method 3: Implementation in the HCAN Protocol

A mixed message in the HCAN protocol [10] contains signals out of which
some are periodic and some are sporadic. A mixed message is queued for
transmission not only periodically, but also as soon as an event occurs that
changes the value of one or more event signals, provided the MUT between
the queueing of two successive sporadic instances of the mixed message has
elapsed. Hence, the transmission of the mixed message due to arrival of events
is constrained by the MUT . The transmission pattern of the mixed message
is illustrated in Figure 8.1(c). Message 1 is queued because of periodicity.
As soon as event A arrives, message 2 is queued. When event B arrives it is
not queued immediately because the MUT is not expired yet. As soon as the
MUT expires, message 3 is queued. Message 3 contains the signal changes
that correspond to event B. Similarly, a message is not immediately queued
when the event C arrives because the MUT is not expired. Message 4 is
queued because of the periodicity. Although, the MUT was not expired, the
event signal corresponding to event C was packed in message 4 and queued as
part of the periodic message. Hence, there is no need to queue an additional
sporadic message when the MUT expires. This indicates that the periodic
transmission of a mixed message cannot be interfered by its sporadic trans-
mission. This is a unique property of the HCAN protocol. When the event
D arrives, a sporadic instance of the mixed message is immediately queued as
message 5 because the MUT has already expired. Message 6 is queued due to
the partly periodic nature of the mixed message.

8.2.4 Discussion

In the first method [8], the Event Timer is reset every time the mixed message is
queued for transmission. The implementation of the mixed message in method
2 [9] is similar to method 1 to some extent. The main difference is that the
periodic transmission can be delayed until the expiry of the MDT in method
2. Whereas in method 1, the periodic transmission is not delayed, in fact, the
Event Timer is restarted with every sporadic transmission. The MDT timer
is started with every periodic or sporadic transmission of the mixed message.
Hence, the worst-case periodicity of the mixed message in methods 1 and 2 can
never be higher than the Inhibit Timer and the MDT respectively. Therefore,
the existing analyses hold intact. However, the periodic transmission is inde-
pendent of the sporadic transmission in the third method [10]. The periodic
timer is not reset with every sporadic transmission. The mixed message can
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be queued for transmission even if the MUT is not expired. The worst-case
periodicity of the mixed message is neither bounded by the period nor by the
MUT . Therefore, the existing analyses cannot be applied to the mixed mes-
sages in the third implementation method. Further, there is no free tool that is
able to analyze mixed messages that are implemented using the third method.
Our main goal is to develop a free tool that analyzes periodic, sporadic, and as
well as mixed messages in CAN.

8.3 Queueing Policies and Buffer Limitations in
the CAN Controllers

The different types of queueing polices implemented by the CAN device drivers
and communications stacks, internal organization, and hardware limitations in
the CAN controllers can have significant impact on the timing behavior of CAN
messages. In this section, we discuss various queueing policies and buffer lim-
itations in the CAN controllers.

8.3.1 Common Queueing Policies used in CAN Controllers
The most common queueing policies in the nodes connected to the CAN net-
work are priority-based and FIFO-based policies. It should be noted that a node
or an ECU contains a CAN controller. We overload the terms node, ECU and
CAN controller throughout this paper.

Priority-ordered Queues

CAN implements priority-based arbitration which means that each node selects
the highest priority message from its transmit buffers while entering into the
bus arbitrations. The highest priority message among the messages selected
from each node wins the bus arbitration, i.e., the right to transmit on the bus.
Thus the most natural queueing policy suited to CAN controllers is priority-
based queueing.

In order to demonstrate the priority based queueing policy, consider the
example of three nodes namely Node A, Node B and Node C that are connected
to a single CAN network as shown in Figure 8.2. Assume that each node
sends three messages over the network. Node A sends the messages m

1

, m
3

and m
5

. Node B sends the messages m
2

, m
4

and m
9

. Whereas, Node C
sends the messages m

6

, m
7

and m
8

. The number in the subscript denotes the
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message priority. We assume that the smaller the value of the subscript, the
higher the priority. Thus m

1

is the highest priority message, whereas m
9

is
the lowest priority message in the system. Assume that all messages in each
node are queued for transmission. In order to simplify the example, assume
that the periods of all messages are very high compared to their corresponding
transmission times. We also assume that there cannot be multiple instances of
a message queued for transmission at the same time.
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Figure 8.2: Example to demonstrate different queueing policies

Let the nodes implement priority ordered queues. Intuitively, each node
will select the highest priority message from its queue to enter into the bus ar-
bitration. In the first round, Nodes A, B, and C pick messages m

1

, m
2

and m
6

respectively. m
1

wins the bus arbitration and is transmitted over the network
as shown in Figure 8.3. In the second round, Nodes A, B, and C pick messages
m

3

, m
2

and m
6

respectively. This time, m
2

wins the bus arbitration and is
transmitted over the network. Similar priority-based selection and arbitration
occur during the rest of the rounds as shown in Figure 8.3.

FIFO Queues

Due to simplicity of FIFO policy, some CAN controllers implement FIFO
queues, e.g., Microchip PIC32MX, Infineon XC161CS, Renesas R32C/160
and XILINX LogiCORE IP AXI Controller [11, 12]. When the nodes im-
plement FIFO queues, the oldest message in the transmit queue of each node
competes for the bus with the oldest messages in the transmit queues in the rest
of the nodes. However, the bus arbitration among these messages is done on
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Figure 8.3: priority-based queues and CAN arbitration

priority basis. Consider again the example of the three nodes as shown in Fig-
ure 8.2. Assume that the nodes implement FIFO queues. Intuitively, each node
will select the oldest message in its queue to enter into the bus arbitration. In
the first round, Nodes A, B, and C pick messages m

5

, m
9

and m
6

respectively.
m

5

wins the bus arbitration due to its higher priority and is transmitted over the
network as shown in Figure 8.4. In the second round, Nodes A, B, and C pick
messages m

1

, m
9

and m
6

respectively. This time, m
1

wins the bus arbitration
and is transmitted over the network. Similar FIFO selection and priority-based
arbitration occur during the rest of the rounds as shown in Figure 8.4.
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Figure 8.4: FIFO-based queues and CAN arbitration

When FIFO queues are used, the priorities of messages are often not re-
spected in the transmit queue within a node, e.g., the lower priority message
m

5

is transmitted before the highest priority message m
1

as shown in Figure
8.4. Moreover, priority inversions can occur due to which higher priority mes-
sages may have very large response times. This becomes evident by comparing



8.3 Queueing Policies and Buffer Limitations in the CAN Controllers
213

the response time of m
2

in the systems with priority and FIFO queues as shown
in Figures 8.3 and 8.4 respectively.

8.3.2 Buffer Limitations in the CAN Controllers

When there are fewer number of transmit buffers in the CAN controller com-
pared to the number of messages sent by the ECU, the messages may be
subjected to extra delay and jitter due to priority inversion. Examples of the
CAN controllers that implement less than three transmit buffers are 8xC592,
SJA1000 and 82C200 by Philips [11, 13, 14]. If a CAN controller has less
than three transmit buffers and does not support transmission abort requests as
in the case of Philips 82C200, a higher priority message released in the same
controller may suffer from priority inversion [13, 15, 16]. That is, if all buffers
in the CAN controller are occupied by lower priority messages, a higher pri-
ority message released in the same controller has to wait for one of the lower
priority messages to transmit, thereby, vacating a space in the transmit buffer.
During this waiting time, priority inversion occurs that adds an additional delay
to the response time of the higher priority message.

The priority inversion can occur even if the controllers support transmission
abort requests. Consider the case of two transmit buffers in every CAN con-
troller. If a higher priority message becomes ready when both transmit buffers
are occupied by the lower priority messages, the lowest priority message in the
transmit buffer (that is not under transmission) is swapped with the higher pri-
ority message from the message queue. During the swapping process, it may
be possible that the lower priority message from the second buffer finishes its
transmission and the next arbitration period starts. At this point, both buffers
may be empty while any other lower priority message from another node wins
the arbitration and starts to transmit. This causes priority inversion for the
higher priority message that is being swapped.

In the remaining part of this subsection, we consider the CAN controllers
to implement limited number (at least three) of transmit buffers. First we con-
sider the case where the CAN controllers support transmission abort requests,
e.g., Atmel AT89C51CC03/AT90CAN32/64 and Microchip MPC2515 [11].
Second we consider the case in which the CAN controllers implement non-
abortable transmit buffers, e.g., Philips 82C200 [13, 15, 16].
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Additional Delay and Jitter due to Priority Inversion in the Case of Abortable
Transmit Buffers

If the CAN controller supports transmission abort requests (and implements at
least 3 transmit buffers) then the lowest priority message in the transmit buffer
that is not undergoing transmission is swapped with the higher priority mes-
sage from the message queue. During the swapping process, a lower priority
message from the transmit buffer in any other controller may win the bus arbi-
tration and contribute an extra delay to the response time of the higher priority
message. The copying delay and the extra blocking delay during the swapping
process should be taken into account while calculating the response time of the
higher priority message.

In order to demonstrate the additional delay due to priority inversion when
CAN controllers support transmission abort requests, consider the example of
transmission of a message set shown in Figure 8.5. Assume there are three
nodes CC

c

, CC
j

and CC
k

in the system and each node has three transmit
buffers. m

1

is the highest priority message in the node CC
c

as well as in
the system. When m

1

becomes ready for transmission in the message queue,
a lower priority message m

6

belonging to node CC
k

is already under transmis-
sion. m

6

cannot be preempted because CAN uses fixed priority non-preemptive
scheduling. This represents the blocking delay for m

1

. At this point in time, all
transmit buffers in CC

c

are occupied by the lower priority messages (say m
3

,
m

4

and m
5

). The device drivers signal an abort request for the lowest priority
message in K

c

(transmit buffers in CC
c

) that is not under transmission.
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Figure 8.5: Demonstration of priority inversion in the case of abortable trans-
mit buffers
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Hence, m
5

is aborted and copied from the transmit buffer to the message
queue, whereas m

1

is moved to the vacated transmit buffer. The time required
to do this swapping is identified as swapping time in Figure 8.5. During the
swapping time a series of events may occur: m

6

finishes its transmission, new
arbitration round starts, another message m

2

belonging to node CC
j

and hav-
ing priority lower than m

1

wins the arbitration and starts its transmission. Thus
m

1

has to wait in the transmit buffer until m
2

finishes its transmission. This
results in the priority inversion for m

1

and adds an extra delay to its response
time. In [12], Khan et al. pointed out that this extra delay of the higher priority
message appears as its additional jitter to the lower priority messages, e.g., m

5

in Figure 8.5.

Discussion on Message Copy Time and Delay

If the message copy time is smaller than or equal to the inter-frame space (i.e.,
time to transmit 3 bits on CAN bus), a lower priority message in the transmit
buffer (that is not under transmission) can be swapped with a higher priority
message in the message queue before the transmission of the next frame on the
CAN bus [1]. Hence, there will be no priority inversion. This means that the
message copy time must be, at least, 4⇤⌧bit for the priority inversion to occur.
Where ⌧bit is the time required to transmit a single bit on CAN. For example,
it is equal to 1 microsecond for the CAN bus speed of 1 Mbit/s. In Legacy
systems, there may be slow controllers, i.e., the speed of the controllers can be
slower than the maximum operating speed of the CAN bus (1 Mbit/s). Since
the amount of data transmitted in a CAN message rages from 0 to 8 bytes, the
transmission time of a message also varies accordingly. According to [17], the
transmission time of a CAN message with standard frame format ranges from
55⇤⌧bit to 135⇤⌧bit for the amount of data contained in the message that ranges
from 0 to 8 bytes respectively. Let us assume the message copy time to be
equal to 4⇤⌧bit. Intuitively, the message copy time can range from 7.3% to 3%
of transmission time of a message with 0 to 8 bytes of data respectively. Due to
slow controllers that may be found in legacy systems, the message copy time
can be greater than 4⇤⌧bit. Hence, the message copy time can be higher than
7.3% of its transmission time.
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Additional Delay and Jitter due to Priority Inversion in the Case of Non-
abortable Transmit Buffers

When CAN controllers do not support transmission abort requests, a higher
priority message may suffer from priority inversion and this, in turn, may add
extra delay to its response time [13]. Consider an example of three controllers
CC

c

, CC
j

, CC
k

connected to a single CAN network in Figure 8.6. Let m
1

,
belonging to CC

c

, be the highest priority message in the system. Assume that
when m

1

is ready to be queued, all transmit buffers in CC
c

are occupied by
lower priority messages which cannot be aborted because the controllers im-
plement non-abortable transmit buffers. In addition, m

1

can be blocked by any
lower priority message because the lower priority message already started its
transmission. In this example m

1

is blocked by m
5

that belongs to node CC
k

.
Since all transmit buffers in CC

c

are full, m
1

has to wait in the message queue
until one of the messages in the transmit buffers of node CC

c

is transmitted.
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Figure 8.6: Demonstration of priority inversion in the case of non-abortable
transmit buffers

Let m
4

be the highest priority message in the transmit buffers of node CC
c

.
m

4

can be interfered by higher priority messages (m
2

and m
3

) belonging to
other nodes. Hence, it can be seen that priority inversion for m

1

takes place
because m

1

cannot start its transmission before m
4

finishes its transmission,
while m

4

has to wait until messages m
2

and m
3

are transmitted. This adds an
additional delay to the worst-case response time of m

1

. In this example, this
additional delay is the sum of the worst-case transmission times of m

2

, m
3

and m
4

. This additional delay appears as additional jitter of m
1

as seen by the
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lower priority messages.

8.4 Related Works

8.4.1 Related Analyses

Tindell et al. [16] developed the schedulability analysis for CAN. It has been
implemented in the analysis tools that are used in the automotive industry, e.g.,
Volcano Network Architect (VNA) [18]. Davis et al. [17] refuted, revisited
and revised the seminal analysis of [16]. The revised analysis is implemented
in the existing industrial tool suite Rubus-ICE [19, 20]. These analyses assume
that each node selects the highest priority message, that is ready for trans-
mission, from its transmit buffers when entering into the bus arbitration. It is
noted in [11, 12, 13, 14, 15, 21, 22, 23, 24] that this assumption may become
invalid in some cases due to various practical limitations such as controllers
implementing FIFO and work-conserving queues, limited number of transmit
buffers, copying delays in transmit buffers, transmit buffers supporting abort
requests and protocol stack prohibiting transmission abort requests in some
configurations as in the case of AUTOSAR [25].

In [11, 14, 24], Davis et al. extended the analysis of CAN with FIFO and
work-conserving queues while supporting arbitrary deadlines of messages. In
[22], Meschi et al. proved the priority inversion due to limited buffers can be
avoided if the controller implements at least three transmit buffers. However,
the analysis in [22] does not account the overhead of the copying delay. Khan
et al. [12] integrated this extra delay with the analysis in [16, 17] for the case
of abortable transmit buffers. In the case of CAN controllers implementing
non-abortable transmit requests, RTA for CAN is extended in [13, 15]. But,
none of the analysis discussed above supports messages that are scheduled
with offsets. The worst-case RTA for CAN messages with offsets has been
developed in several works [26, 27, 28, 29, 30].

However, all these analyses assume that the messages are queued for trans-
mission either periodically or sporadically. They do not support mixed mes-
sages that are partly periodic and partly sporadic. Mubeen et al. [31] extended
the seminal and revised analyses [16, 17] to support mixed messages in CAN
where nodes implement priority queues. Mubeen et al. [32] further extended
their analysis to support mixed messages in CAN where some nodes imple-
ment priority queues while others implement FIFO queues. In [33] and [34]
we extended the analysis for mixed messages in CAN where the controllers
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implement abortable and non-abortable transmit buffers respectively. Mubeen
et al. also extended the existing analysis for CAN to support periodic, sporadic
and mixed messages that are scheduled with offsets [35, 36].

8.4.2 Related Tools
VNA [18] is a communication design tool that supports RTA for CAN. It im-
plements RTA of CAN developed by Tindell et al. [16].

Vector2 is a tools provider for the development of networked electronic
systems. CANalyzer [37] supports the simulation, analysis and data logging
for the systems that use CAN for network communication. CANoe [38] is a
tool for the simulation of functional and extra-functional (e.g., timing) behavior
of ECU networks. Network Designer CAN is another tool by Vector that is
used to design the architecture and perform timing analysis of CAN.

SymTA/S [39] is a tool by Symtavision for model-based timing analysis
and optimization. Among other analyses, it supports statistical, and worst- and
best-case timing analysis for CAN.

RTaW-Sim [40] is a tool for the simulation and performance evaluation of
the CAN network.

The Rubus-ICE is a commercial tool suite developed by Arcticus Systems3

in close collaboration with Mälardalen University Sweden. It supports model-
and component-based development of real-time embedded systems[41, 42].
Among other analyses, it supports RTA of CAN [16, 17] and RTA of CAN for
mixed messages[31].

To the best of our knowledge, there is no freely-available tool that imple-
ments RTA of CAN for mixed messages. The main purpose of MPS-CAN
analyzer is to support RTA of periodic, sporadic and mixed messages in CAN
while taking into account different queueing policies and buffer limitations in
the CAN controllers and device drivers.

8.4.3 Extended Version
This paper extends our previous work [43] where we discussed the implemen-
tation of RTA for periodic, sporadic and mixed messages in CAN without con-
sidering hardware and software limitations in the CAN controllers and device
drivers. In the extended version of the paper, we discuss the integration of
these limitations with the response-time analysis for CAN and implementation

2http://www.vector.com
3http://www.arcticus-systems.com
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of the analyses in the tool. Moreover, we conduct a detailed case study from
the automotive domain. We also evaluate the implemented analysis.

8.5 Implemented Analyses, Layout and Usage of
the Tool

8.5.1 Analyses Implemented in the MPS-CAN Analyzer

The analyses that we implemented in the MPS-CAN analyzer consist of RTA
for CAN and its several extensions as shown in Figure 8.7. The figure also
shows the relationship among the implemented analyses. We denote each ex-
tension of the RTA for CAN by the term “analysis profile”.

Response Time Analysis (RTA) for CAN 

Tindell, Hansson, Wellings (RTSS-1994)
Refuted and Revised RTA for CAN

Davis, Burns, Bril, Lukkien (RTS-2007)

RTA for mixed messages in CAN

Mubeen, Mäki-Turja, Sjödin
(ETFA-2011)

RTA of CAN for FIFO

queues

Davis et al.(ECRTS-2011)

RTA of CAN 

Supporting 

transmission

Abort requests

Khan, Bril, Navet
(WFCS-2010)

RTA of CAN with

non-abortable

transmission

requests

Khan, Davis. Navet
(EFTA-2011)

RTA of mixed messages

in CAN with priority- and

FIFO-queued nodes

Mubeen, Mäki-Turja,
Sjödin (WFCS-2012) RTA of mixed messages in CAN

Supporting Transmission abort requests

Mubeen, Mäki-Turja and Sjödin
(SIES-2012)

RTA of mixed messages in CAN

with controllers Implementing  

non-Abortable transmit buffers

Mubeen, Mäki-Turja, Sjödin (ETFA-2012)

Offset-based RTA 

for CAN

Chen, Kurachi,
Takada, Zeng
(RTNS-2011)

Yomsi, Bertrand, 
Navet, Davis 
(WFCS-2012)

Offset-based RTA for

mixed messages in 

CAN with arbitrary 

jitter and deadlines

Mubeen, Mäki-Turja,
Sjödin (ETFA-2013)

Offset-based RTA of CAN

for mixed messages

Mubeen, Mäki-Turja and
Sjödin (ETFA-2012)

RTA for tasks with static

and dynamic offsets

Palencia and Harbour
(RTSS-1998)

A B
Analysis B is based

on analysis A

Understanding and Using the Controller 

Area Network Communication Protocol:

Theory and Practice

Di Natale, Zeng, Giusto, Ghosal
(Springer-2012)

Figure 8.7: Graphical representation of the Response Time Analysis (RTA) and
its extensions implemented in the MPS-CAN analyzer
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8.5.2 Implementation and Distribution
We developed an algorithm that integrates the analysis profiles that are shown
in Figure 8.7. It also shows the high-level implementation of the analyses in
the MPS-CAN analyzer as depicted in Algorithm 2. The MPS-CAN analyzer
is implemented in the C language. The graphical user interface of the tool is
developed using the Windows Application Programming Interface (WinAPI).
Each analysis profile supported by the tool is implemented as a separate C
file which is accessed using function calls in the main file. The Figure 8.8
shows the screen shot of the code where a number of functions corresponding
to different analyses are shown. A new analysis can be easily added to the
MPS-CAN analyzer by adding a similar function and corresponding source
files (.c and .h) provided the new analysis complies with the input and output
interfaces shown in the structures in Figure 8.9. Hence, the tool supports a
simple and easy mechanism for further extensions and implementation of other
related analyses in the future. The tool, user manual, and test cases can be
downloaded at https://github.com/saadmubeen/MPS-CAN.

Figure 8.8: Screen shot from the code: functions corresponding to different
analyses

8.5.3 Tool Layout, Inputs and Outputs
The Layout of the MPS-CAN analyzer is shown in Figure 8.10. There is a main
window denoted by “MPS-CAN Analyzer” which serves as the user interface.
The input section of the tool consists of the list boxes (“Message List”, “Node



8.5 Implemented Analyses, Layout and Usage of the Tool 221

Algorithm 2 Algorithm for high-level implementation of the analyses
1: begin
2: RT

Prev

 0 . Initialize all Response Times (RTs) to zero
3: READ INPUT () . Bus speed, ECUs, and messages input
4: procedure CALCULATE MESSAGE RESPONSE TIME ()
5: if message under analysis 2 ECU with prrioty queue then
6: if bu↵er type == no limitaton then
7: RTA OF CAN WITH PRIORITY QUEUES ()
8: else if bu↵er type == abort then
9: RTA OF CAN ABORTABLE TRASNSMIT BUFFERS ()

10: else if bu↵er type == non abort then
11: RTA OF CAN NON-ABORTABLE TRASNSMIT BUFFERS ()
12: end if
13: else
14: RTA OF CAN WITH FIFO QUEUES ()
15: end if
16: end procedure
17: for all Messages in the system do
18: Repeat  TRUE
19: while Repeat = TRUE do
20: if messages are scheduled with o↵sets == FALSE then
21: CALCULATE MESSAGE RESPONSE TIME ()
22: else
23: CALCULATE MESSAGE RESPONSE TIME WITH OFFSETS ()
24: end if
25: if RT > RT

Prev

then
26: RT

Prev

 RT
27: Repeat  TRUE
28: else
29: Repeat  FALSE
30: end if
31: if RT � Deadline then
32: Repeat  FALSE
33: end if
34: end while
35: end for
36: end
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Figure 8.9: Screen shot from the code: structures for inputs and outputs

List”, “Network Speed” and “Number of Nodes”) and buttons. Whereas, the
output section of the tool comprises of the list boxes namely “Output”, “Net-
work Utilization”, and “Errors and Warnings”.

Figure 8.10: MPS-CAN analyzer layout, inputs and outputs



8.5 Implemented Analyses, Layout and Usage of the Tool 223

When the “New Node” button is clicked on the main window, a new win-
dow namely “New Node” opens up as shown in Figure 8.11. This window is
used to create a new node. In this window the user can specify the node ID and
the number of transmission buffers in the node. This window also allows im-
plicit selection of the analysis profiles. If the selected type of transmit buffers
is “Priority (no buffer limitations)”, the node is assumed to implement priority-
based queueing policy. Furthermore, the node contains very high (but finite)
number of transmit buffers compared to the number of messages that are sent
by this node. In this case, the RTA for mixed, periodic, and sporadic messages
without any buffer limitations is used to analyze all messages that are sent by
this node.

If the selected type of transmit buffers is “Priority (abortable buffer)” or
“Priority (non-abortable buffer)”, the node contains limited (at least three)
number of transmit buffers which are of abortable or non-abortable type respec-
tively. In both of these cases, the node is assumed to implement priority-based
queueing policy. In these two cases, the RTA for mixed, periodic, and spo-
radic messages supporting abortable or non-abortable transmit buffers is used
to analyze all messages that are sent by this node respectively. Similarly, if the
selected type of transmit buffers is “FIFO”, the node is assumed to implement
FIFO-based queueing policy. In this case, the RTA for mixed, periodic, and
sporadic messages in CAN with FIFO queues is used to analyze all messages
that are sent by this node.

When the “New Message” button is clicked on the main window, a new
window namely “New Message” pops up as shown in Figure 8.12. This win-
dow is used to create a new message. In this window, message attributes are
provided as input. For a mixed message, both period and minimum update time
are specified. Whereas for a periodic or sporadic message, only period or mini-
mum update time is specified respectively. The transmission type of a message
can be selected from periodic, sporadic, or mixed. There are two options for
specifying transmission type of a message. First option is based on specify-
ing Data Length Code (DLC), i.e., the number of data bytes present in the
CAN message. The second option allows to specify user-defined transmission
time. This option may be used for analyzing simplified test cases that are more
suitable for research-oriented work. There are several options to select and
specify “Message Copy Time” which is the time required to copy a message
from the transmit buffer to the message queue or vice versa. If the message
offset is specified, then the messages are analyzed using the offset-based RTA
for mixed, periodic, and sporadic messages in CAN.

In the main window, the network speed in bits per second (bps) can be spec-
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Figure 8.11: Creating a new node and implicitly selecting the RTA in the MPS-
CAN analyzer

Figure 8.12: Creating a new message in the MPS-CAN analyzer
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ified. Moreover, there are buttons provided to clear, save and load messages.
Any message set can be analyzed by clicking the “Analyze” button. If errors
and warnings occur during the run of the analyzer, they are displayed in the
“Errors and Warnings” list box. Figure 8.10 shows some errors and warnings
that may occur when the analyzer is run. The “Output” list box displays the
calculated response times of the messages. It also displays whether a message
meets its deadline or not (provided the deadline is specified by the user). The
percentage network utilization is also calculated and displayed in the “Network
Utilization” list box.

8.6 Case study and Evaluation
In order to show the usability of the MPS-CAN analyzer, we conduct an auto-
motive-application case study. Basically, we adapt the case study of the exper-
imental vehicle that is discussed and analyzed in [21].

8.6.1 Experimental Setup
The system model in the original experimental vehicle consists of 6 identical
ECUs (identical in terms of buffer limitations) that are connected to a single
CAN network. There are 81 periodic CAN messages in the system. We adapt
this system in such a way that it becomes heterogeneous in terms of different
queueing policies and buffer limitations in the ECUs. However, the number
of ECUs and messages remains unchanged. That is, the modified experimental
vehicle contains six ECUs out of which two use priority-based queueing policy
and each of them implements 3 abortable transmit buffers; two use priority-
based queueing policy and each of them implements 3 non-abortable trans-
mit buffers; one implements FIFO queue with 8 buffers; and the remaining
ECU uses priority-based queueing policy and has no buffer limitations which
means that it implements very large but finite number of transmit buffers (32
buffers). The 81 messages are equally assigned different transmission types.
This means, there are 27 periodic, 27 sporadic, and 27 mixed messages in the
system.

All the attributes of these messages are tabulated in Figure 8.13. The at-
tributes of each message are identified as follows. The priority, sender ECU
ID, type of transmit buffers implemented by the sender ECU, transmission
type, number of data bytes in the message, transmission period, minimum up-
date time, deadline, and calculated worst-case response time are represented by
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Prio ECU ID ECU Type ξ DLC(byte) T (us) MUT (us) D (us) R (us) Prio ECU ID ECU Type ξ DLC(byte) T (us) MUT (us) D (us) R (us)
1 5 Prio-No-Limit P 8 12500 0 12500 540 42 2 Abort P 8 100000 0 100000 16748
2 4 Non-Abort S 8 0 12500 25000 19140 43 4 Non-Abort S 8 0 100000 100000 22110
3 2 Abort M 8 12500 12500 12500 1458 44 6 FIFO P 8 100000 0 100000 32610
4 5 Prio-No-Limit S 8 0 12500 12500 1890 45 5 Prio-No-Limit S 8 0 50000 50000 17450
5 2 Abort S 8 0 50000 50000 2268 46 4 Non-Abort P 8 50000 0 50000 22380
6 1 Abort M 8 50000 50000 50000 2538 47 1 Abort S 8 0 50000 50000 18368
7 6 FIFO S 8 0 100000 100000 32610 48 4 Non-Abort M 8 50000 50000 50000 22650
8 2 Abort S 8 0 20000 20000 3348 49 1 Abort S 8 0 1000000 1000000 19448
9 5 Prio-No-Limit M 8 50000 50000 50000 3510 50 3 Non-Abort P 8 1000000 0 1000000 29670
10 1 Abort S 8 0 125000 125000 4158 51 4 Non-Abort S 8 0 1000000 1000000 23190
11 6 FIFO S 8 0 25000 35000 32610 52 6 FIFO P 8 1000000 0 1000000 32610
12 3 Non-Abort S 3 0 10000000 10000000 26700 53 3 Non-Abort M 8 128000 128000 128000 29940
13 6 FIFO M 8 100000 100000 100000 32730 54 2 Abort S 8 0 128000 128000 22418
14 4 Non-Abort P 8 100000 0 100000 20760 55 1 Abort P 8 128000 0 128000 22688
15 6 FIFO M 8 100000 100000 100000 32730 56 4 Non-Abort M 8 1000000 1000000 1000000 23460
16 6 FIFO M 8 100000 100000 100000 32730 57 4 Non-Abort S 8 0 250000 250000 24000
17 5 Prio-No-Limit S 8 0 100000 100000 7190 58 3 Non-Abort M 3 250000 250000 250000 30380
18 5 Prio-No-Limit P 8 1000000 0 1000000 7460 59 4 Non-Abort M 8 500000 500000 500000 24000
19 4 Non-Abort S 8 0 1000000 1000000 21030 60 2 Abort M 8 500000 500000 500000 24648
20 1 Abort P 8 1000000 0 1000000 8108 61 5 Prio-No-Limit M 7 500000 500000 500000 25060
21 5 Prio-No-Limit P 8 1000000 0 1000000 8270 62 1 Abort M 8 500000 500000 500000 26714
22 1 Abort M 8 500000 500000 500000 8648 63 1 Abort S 2 0 500000 500000 27110
23 1 Abort P 8 500000 0 500000 9188 64 1 Abort M 8 1000000 1000000 1000000 27404
24 3 Non-Abort S 8 0 500000 500000 26970 65 2 Abort P 8 1000000 0 1000000 28808
25 4 Non-Abort P 8 500000 0 500000 21300 66 2 Abort M 8 1000000 1000000 1000000 29078
26 2 Abort P 8 100000 0 100000 9998 67 2 Abort P 8 1000000 0 1000000 29564
27 3 Non-Abort S 8 0 100000 100000 27240 68 3 Non-Abort P 8 1000000 0 1000000 31090
28 1 Abort P 8 100000 0 100000 10538 69 6 FIFO P 6 1000000 0 1000000 32610
29 3 Non-Abort S 8 0 1000000 1000000 27510 70 5 Prio-No-Limit S 8 0 2000000 2000000 30280
30 5 Prio-No-Limit M 8 1000000 1000000 1000000 10970 71 6 FIFO S 8 0 2000000 2000000 32610
31 5 Prio-No-Limit S 8 0 1000000 1000000 11510 72 3 Non-Abort P 8 2000000 0 2000000 31090
32 2 Abort M 8 20000 20000 30000 11888 73 3 Non-Abort M 8 2000000 2000000 2000000 31360
33 1 Abort S 8 0 50000 50000 12428 74 4 Non-Abort M 8 2000000 2000000 2000000 32170
34 5 Prio-No-Limit M 8 500000 500000 500000 12590 75 2 Abort S 8 0 2000000 2000000 32764
35 5 Prio-No-Limit P 8 20000 0 50000 14210 76 6 FIFO P 8 2000000 0 2000000 32610
36 4 Non-Abort P 8 500000 0 500000 21570 77 2 Abort M 8 2000000 2000000 2000000 33304
37 5 Prio-No-Limit P 8 20000 0 50000 14750 78 6 FIFO M 2 2000000 2000000 2000000 32610
38 6 FIFO S 8 0 200000 200000 32610 79 4 Non-Abort M 1 50000 50000 100000 33830
39 3 Non-Abort P 8 20000 0 50000 27780 80 6 FIFO M 2 1000000 1000000 1000000 32610
40 1 Abort P 8 200000 0 200000 16208 81 3 Non-Abort M 2 2000000 2000000 2000000 33410
41 3 Non-Abort P 8 1000000 0 1000000 28590

Figure 8.13: Attributes and calculated response times of periodic, sporadic and
mixed messages in the automotive case study

Prio, ECU ID , ECU Type , ⇠, DLC , T , MUT , D , and R respectively. We
assume, the smaller the value of the Prio parameter of a message, the higher
its priority. Thus, the message with priority 1 is the highest priority message,
whereas the message with priority 81 is the lowest priority message in the sys-
tem under analysis. We assume that the copy time of each message is more
than the time required to transmit 4 bits on the CAN bus. For simplicity, the
copy time of each message is selected to be 10% of its transmission time. All
timing parameters are in microseconds. The selected speed for CAN is 500
Kbit/s.

The MPS-CAN analyzer treats each message differently depending upon
its transmission type; and the type of queueing policy and buffer limitations in
the sender ECU. The worst-case response times of all messages calculated by
the MPS-CAN analyzer are listed in Figure 8.13. The network utilization cal-
culated by the MPS-CAN analyzer for this message set is equal to 33.776970%.
The tool takes less than 2 seconds to analyze the case study on a laptop with
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dual core 2.4 GHz processor, 2 GB RAM and Windows (OS). By comparing
the calculated response time with the corresponding deadline of each message
in the table, it is obvious that all messages meet their deadlines. Hence, the
heterogeneous system is schedulable.

8.6.2 Comparison of Various Response-time Analyses
In order to compare the response times calculated from different analyses in
the MPS-CAN analyzer, we perform four more tests on four different sets of
ECUs. There are identical ECUs in each set. The same message set is analyzed
in all tests. In the first test, each ECU uses priority-based queueing policy and
implements large but finite number of transmit buffers (32 in this case). In
this test we use the analysis for mixed, periodic, and sporadic messages in
CAN with priority queues and no buffer limitations. In the second test, each
ECU uses priority-based queueing policy and implements 3 abortable transmit
buffers. In this test, we use the analysis for mixed, periodic, and sporadic
messages in CAN with abortable transmit buffers. In the third test, each ECU
uses priority-based queueing policy and implements 3 transmit buffers which
are of non-abortable type. In this test we use the analysis for mixed, periodic,
and sporadic messages in CAN with non-abortable transmit buffers available.
Whereas, in the fourth test, each ECU uses FIFO-based queueing policy and
implements 8 transmit buffers. In this test, the same message set is analyzed
using the analysis for mixed, periodic, and sporadic messages in CAN with
FIFO queues.

The response times of all messages in these four cases along with the re-
sponse times of messages in the heterogeneous system are shown by the bar
graphs in Figure 8.14. The results indicate that the message response times are
the best (smallest) in the first test. This is because the corresponding analysis
assumes the ideal behavior of the CAN controllers, i.e., no buffer limitations,
and hence, no extra delays due to priority inversion. The second best response
times are obtained in the second test. The response times in this test are higher
than the response times in the first test due to the copying delay and extra delay
because of the priority inversion discussed in the Section 8.3.2. The third best
response times are obtained in the third test. However, these response times
are considerably large compared to the response times in the first and second
tests. This is because of the extra delay due to priority inversion discussed
in the Section 8.3.2. Due to priority inversion, some higher priority messages
have larger response times compared to the lower priority messages. For ex-
ample, the response time of message with priority 2 is higher than the response
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time of the message with priority 10. On the average, the response times of the
messages in the heterogeneous system are comparable to the response times
of the messages in the third test. Finally, the response times of the messages
are the worst (largest) in the fourth test. The response times in this case are
significantly large compared to the first two tests because of large delays due
to priority inversion within the FIFO queues as discussed in the Section 8.3.1.

Figure 8.14: Comparison of message response-times with respect to different
types of buffer limitations in the ECUs
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8.6.3 Discussion

In order to get short response times of CAN messages, those ECUs should
be selected which use priority-based queueing policy and implement much
higher number of transmit buffers compared to the number of messages sent by
them. However, practical systems use ECUs with limited number of transmit
buffers. If ECUs with very large number of transmit buffers are not available
then the ECUs with abortable transmit buffers should be preferred over the
ECUs that implement non-abortable transmit buffers. Although FIFO policy is
easy to implement and simple to use as compared to the priority queueing pol-
icy, the messages can have very large worst-case response times in the case of
ECUs implementing FIFO queues. The ECUs which implement priority-based
queueing policy should be preferred over the ECUs which implement FIFO
queues especially in high utilization systems.

Moreover, it is important to use the right RTA that correctly matches the
queueing policies; buffer limitation in the CAN controllers; and transmission
type of messages used in the higher-level protocols. If the practical limitations
and constraints are not considered in the RTA, the calculated response times
can be optimistic. The MPS-CAN analyzer considers these limitations and
constraints while analyzing the CAN messages. It treats each message differ-
ently based on its transmission type, and queueing policy and buffer limitations
in the CAN controller of its sender ECU.

8.7 Conclusion
We introduced a new tool MPS-CAN analyzer to support Response Time Anal-
ysis (RTA) of periodic, sporadic and mixed messages in the Controller Area
Network (CAN). The existing RTA tools for CAN analyze only periodic and
sporadic messages. They do not support the analysis of mixed messages which
are partly periodic and partly sporadic. These messages are implemented by
several higher-level protocols for CAN that are used in the automotive industry
today.

The MPS-CAN analyzer implements various extensions of the RTA for
CAN while taking into account mixed messages, messages scheduled with off-
sets, messages with arbitrary jitter and deadlines, various queueing policies
(e.g., priority- or FIFO-based), and limitations of transmit buffers in the CAN
controllers (e.g., abortable or non-abortable). With the implementation of these
analyses, the MPS-CAN analyzer is able to analyze network communications
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in heterogeneous systems which may consist of different types of ECU’s sup-
plied by different Tier 1 suppliers.

We also showed the usability of the MPS-CAN analyzer by conducting the
case study of a heterogeneous automotive application where ECUs use differ-
ent queueing policies and have different buffer limitations, i.e., some have a
very large number of transmit buffers, whereas, some have limited number of
transmit buffers with some supporting transmission abort requests while oth-
ers don’t. In this application, we considered a large message set consisting
of periodic, sporadic, and mixed messages. By evaluating the case study, we
showed that it is important to use the RTA that matches the actual limitations
and constraints in the hardware, device drivers and protocol stack. Otherwise,
the calculated response times can be optimistic.

The structural organization of the MPS-CAN analyzer provides ease for
further extensions and implementations of other related analyses. Since, this
tool is freely available, we believe, it may prove helpful in the research-oriented
projects that require the analysis of CAN-based systems.
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Abstract

In this paper we discuss the implementation of the state-of-the-art end-to-end
response-time and delay analysis as two individual plug-ins for the existing
industrial tool suite Rubus-ICE. The tool suite is used for the development
of software for vehicular embedded systems by several international compa-
nies. We describe and solve the problems encountered and highlight the expe-
riences gained during the process of implementation, integration and evaluation
of the analysis plug-ins. Finally, we provide a proof of concept by modeling
the automotive-application case study with the existing industrial model (the
Rubus Component Model), and analyzing it with the implemented analysis
plug-ins.

Keywords: real-time systems, response-time analysis, end-to-end timing
analysis, component-based development, distributed embedded systems.
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9.1 Introduction
Often, an embedded system needs to interact and communicate with its envi-
ronment in a timely manner, i.e., the embedded system is a real-time system.
For such a system, the desired and correct output is one which is logically
correct as well as delivered within a specified time. Many real-time systems
are also safety critical which means that the system failure can result in catas-
trophic consequences such as endangering human life or the environment. The
safety-critical nature of these systems requires evidence that the actions by
them will be provided in a timely manner, i.e., each action will be taken at a
time that is appropriate to the environment of the system. Therefore, it is im-
portant to make accurate predictions of the timing behavior of these systems.

In order to provide evidence that each action in the system will meet its
deadline, a priori analysis techniques such as schedulability analysis have been
developed by the research community. Response Time Analysis (RTA) [1, 2]
is one of the methods to check the schedulability of a system. It calculates
upper bounds on the response times of tasks or messages in a real-time system
or a network respectively. Holistic Response-Time Analysis (HRTA) [3, 4, 5]
is an academic well established schedulability analysis technique to calculate
upper bounds on the response times of task chains that may be distributed over
several nodes in a Distributed Real-time Embedded (DRE) system.

A task chain is a sequence of more than one task in which every task (other
than the first) receives a trigger, data or both from its predecessor. One way
to classify these chains is as trigger chains and data chains. In trigger chains,
there is only one triggering source (e.g, event, clock or interrupt) that activates
the first task in the chain. The rest of the tasks are activated by their predeces-
sors. In data chains, tasks are activated independent of each other, often with
distinct periods. Each task (except the first) in these chains receives data from
its predecessor. The first task in a data chain may receive data from the pe-
ripheral devices and interfaces, e.g., signals from the sensors or messages from
the network interfaces. The end-to-end timing requirements on trigger chains
are different from those on data chains. If a system is modeled with trigger
chains only, it is called a single-rate system. On the other hand, if the system
contains at least one data chain with different clocks then the system is said to
be multi-rate.

In order to predict complete timing behavior of multi-rate real-time systems
[6], the end-to-end delays should also be computed along with the holistic re-
sponse times. For this purpose, the research community has developed the
End-to-End Delay Analysis (E2EDA). In [6], the authors have a view that al-



240 Paper F

most all automotive embedded systems are multi-rate systems. The industrial
tools used for the development of such systems should be equipped with the
state-of-the-art timing analysis.

The process of transferring such academic research results to the tools for
industrial use can be challenging. A tool chain for the industrial development
of component-based DRE systems consists of a number of tools such as de-
signer, compiler, builder, debugger, simulator, etc. Often, a tool chain may
comprise of tools that are developed by different tool vendors. The implemen-
tation of state-of-the-art complex real-time analysis techniques such as RTA,
HRTA and E2EDA in such a tool chain is non-trivial because there are several
challenges that are encountered apart from merely coding and testing the anal-
ysis algorithms. These challenges and corresponding solutions that we propose
are central to this paper.

9.1.1 Goals and Paper Contributions
In this paper, we discuss the implementation of holistic response time analysis
and end-to-end 1 delay analysis as two plug-ins in the existing industrial tool
suite Rubus-ICE (Integrated Component development Environment) [7]. Our
goals in this paper are as follows.

1. Transfer the state-of-the-art real-time analysis results, i.e., holistic response-
time analysis and end-to-end delay analysis to the existing tools for the
industrial use.

2. Discuss and solve several problems encountered during the implementa-
tion, integration and evaluation of HRTA and E2EDA as two individual
plug-ins for Rubus-ICE.

3. Discuss the experiences gained during the implementation, integration
and evaluation of the HRTA and E2EDA plug-ins.

4. Provide a proof of concept by conducting an automotive-application case
study.

1The terms “holistic” and “end-to-end” mean the same thing. In order to be consistent with the
previous work and naming conventions used in the existing industrial tools, we will use “holistic”
with response-times and “end-to-end” with delays.
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9.1.2 Paper Layout

The rest of the paper is organized as follows. Section 9.2 presents the back-
ground and related work. Section 9.3 discusses the end-to-end timing require-
ments and the analysis that we implemented in Rubus-ICE. Section 9.4 de-
scribes the challenges encountered, solutions proposed and experiences gained
during the implementation and integration of the HRTA and E2EDA plug-ins.
Section 9.5 presents our test plan. In Section 9.6, we present a case study by
modeling and analyzing the automotive DRE application. Section 9.7 con-
cludes the paper and presents the future work.

9.2 Background and Related Work

9.2.1 Relation to Authors’ Previous Work

This work is the extension of our previous work [8] in which we discussed the
implementation of only HRTA plug-in for the Rubus-ICE. In this paper, we im-
plement E2EDA as a second plug-in. As compared to our previous work, this
paper presents a detailed discussion on the end-to-end timing requirements in
the industrial DRE systems. We also discuss the algorithm of end-to-end de-
lay analysis and its conceptual organization in Rubus-ICE. Further, we discuss
several challenging problems that were encountered during the implementa-
tion, integration and evaluation of the E2EDA plug-in. Moreover, we discuss
the proposed solutions and gained experiences during the process of transfer-
ring state-of-the-art research results to the industrial tool suite. For the sake of
completeness, we also revisit the problems and their solutions corresponding
to the HRTA plug-in.

We also reconducted the case study. This is because the automotive DRE
application (Autonomous Cruise Control system) considered in the previous
work was modeled with only trigger chains. This limited the usability of our
modeling and analysis tools because many automotive embedded systems in
the industry are build using data and mixed chains as well. Therefore, we re-
modeled the same automotive-application with trigger, data and mixed chains.
We also analyzed it with both the HRTA and E2EDA plug-ins. With the addi-
tion of E2EDA plug-in, a complete end-to-end timing analysis of DRE systems
can be performed. Thus, the scope and usability of Rubus tools has widened
with the addition of HRTA and E2EDA plug-ins.
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9.2.2 The Rubus Concept
Rubus is a collection of methods and tools for model- and component-based de-
velopment of dependable embedded real-time systems. Rubus is developed by
Arcticus Systems [7] in close collaboration with several academic and indus-
trial partners. Rubus is today mainly used for development of control function-
ality in vehicles by several international companies [9, 10, 11, 12]. The Rubus
concept is based around the Rubus Component Model (RCM) [13] and its de-
velopment environment Rubus-ICE, which includes modeling tools, code gen-
erators, analysis tools and run-time infrastructure. The overall goal of Rubus is
to be aggressively resource efficient and to provide means for developing pre-
dictable and analyzable control functions in resource-constrained embedded
systems.

RCM expresses the infrastructure for software functions, i.e., the interac-
tion between software functions in terms of data and control flow separately.
The control flow is expressed by triggering objects such as internal periodic
clocks, interrupts, internal and external events. In RCM, the basic component
is called Software Circuit (SWC). The execution semantics of the SWC is sim-
ply:

1. Upon triggering, read data on data in-ports;

2. Execute the function;

3. Write data on data out-ports;

4. Activate the output trigger.

RCM separates the control flow from the data flow among SWCs within a
node. Thus, explicit synchronization and data access are visible at the mod-
eling level. One important principle in RCM is to separate functional code
and infrastructure implementing the execution model. RCM facilitates analy-
sis and reuse of components in different contexts (SWC has no knowledge how
it connects to other components). The component model has the possibility to
encapsulate SWCs into software assemblies enabling the designer to construct
the system at different hierarchical levels. Recently, we extended RCM for the
development of DRE systems by introducing new components [14, 15, 16]. A
detailed comparison of RCM with several component models is presented in
[15].
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Figure 9.1 depicts the sequence of main steps followed in Rubus-ICE from
modeling of an application to the generation of code. The component-based
design of an application is modeled in the Rubus Designer tool. Then the com-
piler compiles the design model into the Intermediate Compiled Component
Model (ICCM). After that the builder tool sequentially runs a set of plug-ins.
Finally, a coder tool generates the code.

API Calls

Analysis 
Algorithms

API Calls

User Interaction

Error Handling

API Calls Analysis 
Algorithms

User Interaction

Error Handling

API Calls

Designer Compiler Builder Coder
XML XML

Plug-ins

ICCM Code

Figure 9.1: Sequence of steps from design to code generation in Rubus-ICE

9.2.3 The Rubus Analysis Framework
The Rubus model allows expressing real-time requirements and properties at
the architectural level. For example, it is possible to declare real-time require-
ments from a generated event and an arbitrary output trigger along the trigger
chain. For this purpose, the designer has to express real-time properties of
SWCs, such as worst-case execution times and stack usage. The scheduler will
take these real-time constraints into consideration when producing a sched-
ule. For event-triggered tasks, response-time calculations are performed and
compared to the requirements. The analysis supported by the model includes
response time analysis and shared stack analysis.

9.2.4 Plug-in Framework in Rubus-ICE
The plug-in framework in Rubus-ICE [17] facilitates the implementation of
state-of-the-art research results in isolation (without needing Rubus tools) and
their integration as add-on plug-ins (binaries or source code) with the inte-
grated development environment. A plug-in is interfaced with the builder tool
as shown in Figure 9.1. The plug-ins are executed sequentially which means
that the next plug-in can execute only when the previous plug-in has run to
completion. Hence, each plug-in reads required attributes as inputs, runs to
completion and finally writes the results to the ICCM file. The Application
Programming Interface (API) defines the services required and provided by a
plug-in. Each plug-in specifies the supported system model, required inputs,
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provided outputs, error handling mechanisms and a user interface. Figure 9.2
shows a conceptual organization of a Rubus-ICE plug-in.

API Calls

Analysis 
Algorithms

API Calls

User Interaction

Error Handling

API Calls Analysis 
Algorithms

User Interaction

Error Handling

API Calls

Figure 9.2: Conceptual organization of a plug-in in Rubus-ICE

9.2.5 Response-Time Analysis

RTA of Tasks in a Node.

Liu and Layland [18] provided theoretical foundation for analysis of fixed-
priority scheduled systems. Joseph and Pandya published the first RTA [19]
for the simple task model presented in [18]. Subsequently, it has been ap-
plied and extended in a number of ways by the research community. RTA is
used to perform a schedulability test which means it checks whether or not
tasks in the system will satisfy their deadlines. RTA applies to systems where
tasks are scheduled with respect to their priorities and which is the predomi-
nant scheduling technique used in real-time operating systems [20]. In [20], it
is claimed that amongst the more traditional, analytical, schedulability analysis
techniques, RTA of tasks with offsets stands out as the prime candidate because
of its better precision and ability to analyze quite complex system behaviors.

Tindell [4] developed the schedulability analysis for tasks with offsets for
fixed-priority systems. It was extended by Palencia and Gonzalez Harbour [5].
Later, Mäki-Turja and Nolin [21] reduced pessimism from RTA developed in
[4, 5] and presented a tighter RTA for tasks with offsets by accurately modeling
inter-task interference. In [6, 22], the authors point out that the existing RTA
does not target general multi-rate systems. We implemented tighter version
of RTA of tasks with offsets [21] as part of the end-to-end response-time and
delay analysis.
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RTA of Messages in a Network.

There are many protocols such as Controller Area Network (CAN), Time-
Triggered CAN (TTCAN), FlexRay, etc., that are used for network commu-
nication in DRE systems. To stay focussed on the automotive or vehicular
domain, we will consider only CAN and its high-level protocols. Tindell et al.
[23] developed the schedulability analysis of CAN which has served as a basis
for many research projects. Later on, this analysis was revisited and revised by
Davis et al. [24].

The analysis in [23, 24] assumes that all CAN device drivers implement
priority-based queues. In [25] Davis et al. pointed out that this assumption may
become invalid when some nodes in a CAN network implement FIFO queues.
Hence, they extended the analysis of CAN with FIFO queues as well. In this
work, the message deadlines are assumed to be smaller than or equal to the
corresponding periods. In [26], Davis et al. lifted this assumption by support-
ing the analysis of CAN messages with arbitrary deadlines. Furthermore, they
extended their work to support RTA of CAN for FIFO and work-conserving
queues.

However, the existing analysis does not support mixed messages which are
implemented by several high-level protocols for CAN. In [27, 28, 29], Mubeen
et al. extended the existing analysis to support RTA of mixed messages in the
CAN network where some nodes use FIFO queues while others use priority
queues. Later on, Mubeen et al. [30] extended the existing analysis for CAN to
support mixed messages that are scheduled with offsets in the controllers that
implement priority-ordered queues. In this work we will consider all of the
above analyses as part of the end-to-end response-time and delay analysis.

Holistic RTA.

It combines the analysis of nodes (uniprocessors) and networks. In this pa-
per, we consider the end-to-end timing model that corresponds to the holistic
schedulability analysis for DRE systems [3]. In [31], Pop et al. provide a holis-
tic schedulability analysis of distributed embedded systems in which tasks are
both time- and event-triggered. The analysis is developed for ST/DYN bus
protocol that uses static and dynamic phases for sending messages. As com-
pared to this approach, we implement the holistic analysis of [3] because it
provides the flexibility to use several network-communication protocols used
in the automotive domain. In [32], we discussed our preliminary findings about
implementation issues that are encountered when HRTA is transferred to the
industrial tools.
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End-to-end Delay Analysis.

Stappert et al. [22] formally described end-to-end timing constrains for multi-
rate systems in the automotive domain. In [6], Feiertag et al. presented a
framework (developed in TIMMO project [33]) for the computation of end-
to-end delays for multi-rate automotive embedded systems. Furthermore, they
emphasized on the importance of two end-to-end latency semantics, i.e., “max-
imum age of data” and “first reaction” in control systems and body electronics
domains respectively. A scalable technique, based on model checking, for the
computation of end-to-end latencies is described in [34]. In this work, we will
implement the end-to-end delay analysis [6] as a plug-in for the Rubus-ICE
tool suite.

9.2.6 Tools for End-to-end Timing Analysis of DRE Systems
We briefly discuss few tool suites that provide similar real-time analysis sup-
port for DRE systems. The MAST tool suite [35] implements a number of
state-of-the-art analysis algorithms for DRE systems. Among them is the
offset-based analysis algorithm [4, 5] whose tighter version [21] is imple-
mented as part of the end-to-end response-time and delays analysis in Rubus-
ICE. The MAST model also allows visual modeling and analysis of real-time
systems in a Unified Modeling Language (UML) design environment.

The Volcano Family [36] is a bunch of tools for designing, analyzing, test-
ing and validating automotive embedded software systems. Among them, Vol-
cano Network Architect (VNA) [37] is a communication design tool that sup-
ports the analysis of Local Interconnect Network (LIN) and CAN networks.
It also supports end-to-end timing analysis of a system with more than one
network. It implements RTA of CAN developed by Tindell et al. [23].

SymTA/S [38] is a tool for model-based timing analysis and optimization.
It implements several real-time analysis techniques for single-node, multipro-
cessor and distributed systems. It supports RTA of software functions, RTA
of bus messages and end-to-end timing analysis of both single-rate and multi-
rate systems. It is also integrated with the UML development environment to
provide a timing analysis support for the applications modeled with UML [39].

Vector [40] is a tools provider for the development of networked electronic
systems in the automotive and related domains. In the Vector tool family, CA-
Noe [41] is a tool for the development, testing and analysis of ECU (Electronic
Control Units) networks and individual ECUs. It supports various protocols
for network communication including CAN, LIN, MOST, Flexray, Ethernet
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and J1708. Network Designer CAN is another tool by Vector that is used to
design the architecture and perform timing analysis of CAN network.

RAPID RMA [42] implements several scheduling schemes and supports
end-to-end analysis for single- and multiple-node real-time systems. It also
allows real-time analysis support for the systems modeled with Real-Time
CORBA [43].

The Rubus-ICE tool suite allows a developer to specify timing information
and perform end-to-end response time and delay analysis at the modeling phase
during component-based development of DRE systems. To the best of our
knowledge, Rubus-ICE is the first and only tool suite that implements RTA of
mixed messages in CAN [27], RTA of mixed messages with offsets [30] and
a tighter version of offset-based RTA algorithm [21] as part of the end-to-end
response time and delay analysis.

9.3 End-to-end Timing Requirements and Imple-
mented Analysis in Rubus-ICE

9.3.1 End-to-end timing requirements in trigger chains

A real-time system can be modeled with trigger chains (see Figure 9.4 and Fig-
ure 9.5), data chains (see Figure 9.6 and Figure 9.8) or a combination of both.
The end-to-end timing requirements on trigger chains are different from those
on data chains. If the system is modeled with trigger chains then the inter-
est, from the schedulability point of view, lies in the calculation of end-to-end
or holistic response times and their comparison with corresponding deadlines.
Hence, end-to-end deadline requirements placed on trigger chains correspond
to their holistic response times. If holistic response times of all trigger chains
are less than or equal to corresponding deadlines, the system is considered
schedulable.

The holistic response-time analysis calculates the response times of event
chains that are distributed over several nodes (also called distributed transac-
tions) in a DRE system. An example of a distributed transaction in a DRE sys-
tem is shown in Figure 9.3. The holistic response time is equal to the elapsed
time between the arrival of an event (corresponding to the brake pedal input in
the sensor node) and the response time of Task4 (corresponding to the produc-
tion of brake actuation signal in the actuation node).
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Figure 9.3: Holistic response-time in a distributed real-time system

Examples.

An example of a trigger chain that consists of three components is shown
in Figure 9.4. Assume that each component corresponds to a task at run-
time. When task ⌧

SWC A

finishes its execution, it triggers ⌧
SWC B

. Simi-
larly, ⌧

SWC C

can only be triggered by ⌧
SWC B

after finishing its execution.
There cannot be multiple outputs corresponding to a single input signal. In
fact, there will always be one output of the chain corresponding to the input
trigger. Hence, the end-to-end timing requirements correspond to the holistic
response times. In order to provide a comparison of holistic response time in a
trigger chain with the end-to-end delays in a data chain, assume that the trigger
chain shown in Figure 9.4 is the only chain of tasks in the system. Let the pri-
orities of all tasks be the same while WCET of each task is 1ms . The holistic
response time of this trigger chain is equal to the response time of ⌧

SWC C

which is, intuitively, equal to 3ms .

10 ms

SWC_A SWC_CSWC_BSensor Input Data sink

(a)

10 ms

SWC_A SWC_CSWC_BSensor Input Data sink

Node C

Node CNode A CAN

Event

ISWC_C Actuation 
Signal

Node A

10 ms

SWC_A OSWC_ASensor 
Input

Event

Figure 9.4: RCM model of a trigger chain in a single-node real-time system

Distributed real-time systems can also be modeled with trigger chains.
Consider a model of a two-node distributed real-time system modeled with
RCM as shown in Figure 9.5. There is only one triggering ancestor in node
A that activates SWC A which, in turn, triggers OSWC A component that is
responsible for sending a message to CAN. The ISWC C component in only
activated when an interrupt is raised due to the arrival of a CAN message at
node C. Hence, these three components form a distributed trigger chain. Once
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again, the end-to-end timing requirements correspond to the holistic response
times.

10 ms

SWC_A SWC_CSWC_BSensor Input Data sink

(a)

10 ms

SWC_A SWC_CSWC_BSensor Input Data sink

Node C

Node CNode A CAN

Event

ISWC_C Actuation 
Signal

Node A

10 ms

SWC_A OSWC_ASensor 
Input

Event

Figure 9.5: RCM model of a distributed trigger chain in a DRE system

9.3.2 End-to-end timing requirements in data chains
As compared to the systems which are modeled with trigger chains, merely
computing the holistic response times and comparing them with the end-to-end
deadlines is not sufficient to predict the complete timing behavior of multi-rate
real-time systems which are modeled with data chains. There may be over-
and under-sampling in such systems because the individual tasks are activated
by independent clocks, often with different periods. Since data is transferred
among tasks and messages within a data chain by means of asynchronous
buffers, there exist different semantics of end-to-end delay in a data chain.
These buffers are often of a non-consuming type which means the data stays
in the buffer after it is read by the reader task. Moreover, the data in the buffer
can be overwritten by the writer task with new values before the previous value
was read by the reader task. Therefore, some input values in the data buffers
can be overwritten by new values, and hence the effect of the old input values
may never propagate to the output of a data chain. Further, it is also possi-
ble to have several duplicates of the output of a data chain corresponding to a
particular input.

The end-to-end timing requirements in multi-rate real-time systems, espe-
cially in the automotive domain, are placed on the first reaction to the input and
age of the data received at the output [6]. Hence, it is important to calculate the
end-to-end delays in these systems. The end-to-end delay in a data chain refers
to the time elapsed between the arrival of a signal at the first task and produc-
tion of corresponding output signal by the last task in the chain (provided the
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information corresponding to the input signal has traversed the chain from first
to last task) [34].

In a single-rate real-time system that contains only trigger chains, tasks
in a chain are not activated by independent events, in fact, there is only one
activating event in the chain. Hence, the holistic response times and end-to-end
delays will have equal values. On the other hand, these values are not the same
in multi-rate real-time systems that are modeled with data chains. Therefore, a
complete analysis of a real-time system modeled with data chains requires the
calculation of not only holistic response times but also end-to-end delays.

Examples.

A multi-rate real-time system modeled with three SWCs in RCM is shown in
Figure 9.6. These SWCs are activated by independent clocks with different
periods, i.e., 8ms, 16ms and 4ms respectively. SWC A reads the input signals
from the sensors while SWC C produces the output signals for the actuators.
Assume that each SWC will be allocated to an individual task by the run-time
environment generator. Also assume that WCET of each task is 1ms .

8 ms 16 ms 4 ms

SWC_A SWC_CSWC_BSensor Input Data sink

Figure 9.6: RCM model of a data chain in a single-node real-time system

The time line corresponding to the run-time execution of the three tasks
(corresponding to three SWCs) is depicted in Figure 9.7. It can be seen that
there are multiple outputs corresponding to a single input signal. The four
end-to-end delays are identified in Figure 9.7.

Last In First Out (LIFO). This delay is equal to the time elapsed between
the current non-overwritten release of task ⌧A (input of the data chain) and
corresponding first response of task ⌧C (output of the data chain).

Last In Last Out (LILO). This delay is equal to the time elapsed between
the current non-overwritten release of task ⌧A (input of the data chain) and
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corresponding last response of task ⌧C (output of the data chain). This delay
is identified as “Data Age”2 in [6]. Data age specifies the longest time data
is allowed to age from production by the initiator until the data is delivered to
the terminator. This delay finds its importance in control applications where
the interest lies in the freshness of the produced data. For a data chain in a
control system that initiates with a sensor input and terminates by producing
an actuation signal, it is very important to ensure that the actuator signal does
not exceed a maximum age [6].

Generally speaking, we consider the last non-overwritten input that actually
propagates through the data chain towards the output in the case of both LIFO
and LILO delays.

First In First Out (FIFO). This delay is equal to the time elapsed between
the previous non-overwritten release of task ⌧A (input of the data chain) and
first response of task ⌧C (output of the data chain) corresponding to the current
non-overwritten release of task ⌧A. Assume that a new value of the input is
available in the input buffer of task ⌧A “just after” the release of the second
instance of task ⌧A (at time 8ms). Hence, the second instance of task ⌧A “just
misses” the read of the new value from its input buffer. This new value has to
wait for the next instance of task ⌧A to travel towards the output of the data
chain. Therefore, the new value will be read by the third and forth instances
of task ⌧A. The first output corresponding to the new value (arriving just after
8ms) will appear at the output of the chain at 34ms . This will result in the FIFO
delay of 26ms as shown in Figure 9.7. This phenomenon is more obvious in
the case of distributed embedded systems where a task in the receiving node
may just miss to read fresh signals from a message that is received from the
network.

This delay is identified as “first reaction to data or Data Reaction”3 in [6].
Data reaction delay is the longest allowed reaction time for data produced by
the initiator to be delivered to the terminator. This delay finds its importance
in the button-to-reaction applications in body electronics domain where first
reaction to input is important.

First In Last Out (FILO). This delay is equal to the time elapsed between
the previous non-overwritten release of task ⌧A (input of the data chain) and
last response of task ⌧C (output of the data chain) corresponding to the current

2We will use the term “Data Age delay” to refer to LILO delay throughout the paper.
3We will use the term “Data Reaction delay” to refer to FIFO delay throughout the paper.



252 Paper F

non-overwritten release of task ⌧A. The reasoning about “just missing” a fresh
input that we discussed in the case of FIFO delay is also applicable in the case
of FILO delay.
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Figure 9.7: End-to-end delays for a data chain in a real-time system

In the case of distributed real-time systems, data chains may also be dis-
tributed over more than one node. Consider a model of a two-node distributed
real-time system modeled with RCM as shown in Figure 9.8. The nodes are
connected to the CAN network. The internal model of the nodes is also shown
in Figure 9.8. In Node A, SWC A is triggered by a clock with a period of
8ms. The OSWC A component that is responsible for sending a message to
the network is triggered by another clock with a period of 16ms. ISWC C is
a component that receives a message from the network and is activated by a
clock with a period of 4ms. Assume that each component is allocated to a sep-
arate task at run-time, i.e., the components SWC A, OSWC A and ISWC C
are allocated to tasks ⌧A, ⌧B and ⌧C respectively. Since, the system consists
of tasks with similar activation patterns and periods as compared to the tasks
in the single-node real-time system example discussed above, it can be sched-
uled in a similar manner as indicated by ⌧A, ⌧B and ⌧C in Figure 9.7. The
end-to-end delays are also defined in a similar fashion.
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Node CNode A CAN

Node C4 ms

ISWC_C SWC_C Actuation 
Signal

Node A8 ms

SWC_A OSWC_A
Sensor 
Input

Node CNode A CAN

Node C

4 ms

ISWC_C Actuation 
Signal

Node A

8 ms

SWC_A OSWC_ASensor 
Input

16 ms

Figure 9.8: RCM model of a distributed data chain in a DRE system

9.3.3 Implemented Holistic Response-Time Analysis
We implemented HRTA as a plug-in in Rubus-ICE. The plug-in can be used
to compute the response times of individual tasks in a node, messages in a
network and Distributed Transactions (DTs) in a distributed real-time system.

In order to analyze tasks in each node, we implement RTA of tasks with
offsets developed by [4, 5] and improved by [21]. We implement the network
RTA that supports the analysis of CAN and its high-level protocols. It is based
on the following RTA profiles for CAN.

1. RTA of CAN [23, 24].

2. RTA of CAN for mixed messages [27].

3. RTA of CAN for mixed messages with offsets [30]4.

The above analyses assume that CAN nodes implement priority-ordered queues.
The next step, as a future work, will be the implementation of CAN analysis
that also supports FIFO ordered queues, i.e., RTA of CAN with FIFO and work-
conserving queues [26, 25] and RTA of CAN with FIFO Queues for Mixed
Messages [28].

The pseudocode of HRTA algorithm is shown in Algorithm 3. The HRTA
algorithm iteratively runs the algorithms for node and network analyses. In the
first step, release jitter of all messages and tasks in the system is assumed to
be zero. The response times of all messages in the network and all tasks in

4The analysis of this profile is implemented as a standalone analyzer whose integration with
Rubus-ICE is a work in progress
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each node are computed. In the second step attribute inheritance is carried out.
This means that each message inherits a release jitter equal to the difference
between the worst- and best-case response times of its sender task (computed
in the first step). Similarly, each task that receives the message inherits a release
jitter equal to the difference between the worst- and best-case response times
of the message (computed in the first step). In the third step, response times
of all messages and tasks are computed again. The newly computed response
times are compared with the response times previously computed in the first
step. The analysis terminates if the values are equal otherwise these steps are
repeated. The conceptual view of HRTA that we implemented in Rubus-ICE is
shown in Figure 9.9.

Algorithm 3 Algorithm for holistic response-time analysis
1: begin
2: RT

Prev

 0 . Initialize all Response Times (RTs) to zero
3: Repeat  TRUE
4: while Repeat = TRUE do
5: for all Messages and tasks in the system do
6: Jitter

Msg

 (WCRT
Sender task

� BCRT
Sender task

) . WCRT:
Worst-Case Response Time, BCRT: Best-Case Response Time

7: Jitter
Receiver task

 (WCRT
Msg

� BCRT
Msg

)

8: COMPUTE RT OF ALL MESSAGES()
9: COMPUTE RT OF ALL TASKS IN EVERY NODE()

10: if RT > RT
Prev

then
11: RT

Prev

 RT
12: Repeat  TRUE
13: else
14: Repeat  FALSE
15: end if
16: end for
17: end while
18: end

9.3.4 Implemented End-to-end Delay Analysis
We implemented the end-to-end delay analysis that is derived in [6] as the
E2EDA plug-in for Rubus-ICE. This analysis implicitly requires the calcula-
tion of response times of individual tasks, messages and holistic response times
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HRTA Plug-in

Algorithms for RTA of 
Tasks in a Node

Algorithms for RTA of 
Messages in a Network

HRTA Algorithm

Rubus Builder

End-to-end
Timing Information

Analysis 
Results

Figure 9.9: Conceptual view of the HRTA plug-in in Rubus-ICE

of task chains. For example, the calculation of four end-to-end delays for the
multi-rate real-time system shown in Figure 9.6 requires the response time of
the task ⌧C (corresponding to the component SWC C ) and the activation times
of tasks ⌧A and ⌧C . Similarly, the calculation of four end-to-end delays for the
multi-rate DRE system shown in Figure 9.8 requires the calculation of the re-
sponse time of the task ⌧C in node C and the activation times of tasks ⌧A and
⌧C in nodes A and C respectively. Since, the HRTA plug-in is able to calculate
response times of tasks, network messages and task chains, we reuse the anal-
ysis results computed by the HRTA plug-in as an input to the E2EDA plug-in
as shown in Figure 9.10. The pseudocode of E2EDA algorithm5 is shown in
Algorithm 4.

9.4 Encountered Problems, Proposed Solutions
and Gained Experiences

In this section we discuss several problems encountered during the process
of implementation and integration of HRTA and E2EDA as plug-ins for the
Rubus-ICE tool suite. We also present our solution to each individual prob-
lem. Moreover, we discuss the summary of the experiences that we gained
while transferring theoretical research results (i.e., HRTA and E2EDA) to the
industrial tool suite.

5[6] should be referred for detailed analysis.
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Algorithm 4 Algorithm for end-to-end delay analysis
1: begin
2: GET RT OF ALL TASKS MESSAGES TASK CHAINS() . Get the analysis

results from the HRTA plug-in
3: FIND ALL VALID TIMED PATHS() . Timed Path

(TP) is a sequence of task instances from input to output. A TP is valid
if information flow among tasks is possible [6], e.g., [⌧A(1stinstance),
⌧B(1stinstance), ⌧C(5thinstance)] in Figure 9.7 is a valid TP. On the other
hand, TP [⌧A(1stinstance), ⌧B(1stinstance), ⌧C(1stinstance)] in Figure 9.7
is invalid because information cannot flow between ⌧B(1stinstance) and
⌧C(1stinstance)

4: procedure COMPUTE FF DELAY(FF TP)
5: FF delay = ↵n(instance) + �n(instance) - ↵1(instance) . ↵n(instance):

Activation time of the corresponding instance of the nth task in timed path
FF TP

. �n(instance): Response time of the corresponding instance of the nth
task in timed path FF TP

6: return FF delay
7: end procedure

. The above mentioned procedure calculates FFDelay only. [6]
should be referred for the calculation of the rest of the delays

8: for all Delay constraints specified in the system do
9: FF

Delay

 0,FL
Delay

 0,LF
Delay

 0,LL
Delay

 0 . Initialize
all delays

10: COMPUTE ALL REACHABLE TIMED PATHS() . All those paths from
input to output in which the changes in input actually travel towards the
output, e.g., [⌧A(2ndinstance), ⌧B(1stinstance), ⌧C(5thinstance)] in Figure
9.7

11: FF TP
count

 GET ALL FF TPS() . TP: Timed Path, FF: First to
First

12: FL TP
count

 GET ALL FL TPS() . FL: First to Last
13: LF TP

count

 GET ALL LF TPS() . LF: Last to First
14: LL TP

count

 GET ALL LL TPS() . LL: Last to Last
15: for i:=1 doFF TP

count

16: if COMPUTE FF DELAY(i) > FF
Delay

then
17: FF

Delay

 COMPUTE FF DELAY()
18: end if
19: end for
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20: for i:=1 doFL TP
count

21: if COMPUTE FL DELAY(i) > FL
Delay

then
22: FL

Delay

 COMPUTE FL DELAY()
23: end if
24: end for
25: for i:=1 doLF TP

count

26: if COMPUTE LF DELAY(i) > LF
Delay

then
27: LF

Delay

 COMPUTE LF DELAY()
28: end if
29: end for
30: for i:=1 doLL TP

count

31: if COMPUTE LL DELAY(i) > LL
Delay

then
32: LL

Delay

 COMPUTE LL DELAY()
33: end if
34: end for
35: end for
36: end

Rubus Builder

End-to-end
timing information

Analysis 
Results

HRTA Plug-in

Algorithms for RTA of 
tasks in a node

Algorithms for RTA 
network messages

HRTA Algorithm E2EDA Plug-in

Algorithm for end-to-end 
delay analysis

End-to-end
timing information

Analysis 
Results

Figure 9.10: Conceptual view of the E2EDA plug-in in Rubus-ICE

9.4.1 Extraction of Unambiguous Timing Information
One common assumption in end-to-end response time and delay analyses is
that the timing attributes required by the analysis are available as input. How-
ever, when these analyses are implemented in a tool chain used for the component-
based development of DRE systems, the implementer has to not only code and
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implement the analysis, but also extract unambiguous timing information from
the component model and map it to the inputs for the analysis model. This is
because the design and analysis models are often build upon different meta-
models [44]. Moreover, the design model can contain redundant timing infor-
mation. Hence, it is not trivial to extract unambiguous timing information for
HRTA and E2EDA.

We divide the timing information (to be extracted) into two categories.

Extraction of Timing Information Corresponding to User Inputs.

The first category corresponds to the timing attributes of tasks (in each node)
and network messages that are provided in the modeled application by the user.
These timing attributes include Worst Case Execution Times (WCETs), pe-
riods, minimum update times, offsets, priorities, deadlines, blocking times,
precedence relations in task chains, jitters, etc. In [16], we identified all the
timing attributes of nodes, networks, transactions, tasks and messages that are
required by HRTA. This timing information should be extracted from the mod-
eled application and be made available as an input for the end-to-end response
time and delay analysis.

Extraction of Timing Information from the Modeled Application.

The second category corresponds to the timing attributes that are not directly
provided by the user but they must be extracted from the modeled application.
For example, message period (in the case of periodic transmission) or message
inhibit time (in the case of sporadic transmission) is often not specified by the
user. These attributes must be extracted from the modeled application because
they are required by the RTA of network communication. In fact, a message
inherits the period or inhibit time from the task that queues it. Thus, we assign
period or inhibit time to the message which is equal to the period or inhibit
time of its sender task respectively.

However, the extraction of message timing attributes becomes complex
when the sender task has both periodic and sporadic activation patterns. In
this case, not only the timing attributes of a message have to be extracted but
also the transmission type of the message has to be identified. This problem
can be visualized in the example shown in Figure 9.11. It should be noted
that the Out Software Circuit (OSWC), shown in the figure, is one of the net-
work interface components in RCM that sends a message to the network. The
other network interface component is In Software Circuit (ISWC) that receives
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a message from the network [15].
In Figure 9.11(a), the sender task is activated by a clock, and hence the

corresponding message is periodic. Similarly, the corresponding message is
sporadic in Figure 9.11(b) because the sender task is activated by an event.
However, the sender task in Figure 9.11(c) is triggered by both a clock and an
event. Here the relationship between two triggering sources is important. If
there exists a dependency relation between them as in the case of mixed trans-
mission mode in the CANopen protocol [45] and AUTOSAR communication
[46] then such message will be considered as a special type of sporadic mes-
sage. On the other hand, if triggering sources are independent of each other as
in the case of implementation in the HCAN protocol [47] then the correspond-
ing message will be considered a mixed message [27, 28].

If there are periodic and sporadic messages in the modeled application, the
HRTA plug-in uses the first profile for network analysis (discussed in Section
3.3). On the other hand, if the modeled application contains mixed messages
as well, the second profile for network analysis is used. We extract the trans-
mission type of a message from the modeled application as follows. If the
sender of a message has a periodic or sporadic activation pattern then the mes-
sage is assigned periodic or sporadic transmission type respectively. However,
if the sender is activated periodically as well as sporadically and both trigger-
ing sources are independent of each other, the message is assigned the mixed
transmission type.

(c)(a) (b)

Figure 9.11: Extraction of transmission type of a message

Identification of Trigger, Data and Mixed Chains. The end-to-end timing
requirements on trigger chains are different from those on data chains. These
requirements correspond to end-to-end response times for trigger chains and
both end-to-end response times and delays for data chains. Data and trigger
chains should be distinctly identified and the corresponding timing require-
ments should be unambiguously captured in the timing model on which the
analysis tools operate. For this purpose, we add a new attribute “trigger de-
pendency” in the data structure of tasks in the analysis model. If a task is
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triggered by an independent source such as a clock then this attribute will be
assigned “independent”. On the other hand, if the task is triggered by another
task then this parameter will be assigned “dependent”. Moreover, a precedence
constraint will also be specified on this task in the case of dependent triggering.
This is because, a task in a trigger chain cannot start its execution before the
completion of the previous task in the chain.

However, a system can also be modeled with task chains that are comprised
of data chains as well as trigger chains. We call these chains as mixed chains.
An example of a mixed chain modeled with RCM is shown in Figure 9.12.
In this chain, components SWC A, SWC B and SWC E are triggered by
independent clocks and which is the property of components in a data chain.
Hence, the “trigger dependency” attribute of the tasks corresponding to these
three components will be assigned “independent”. Whereas, the components
SWC C and SWC D are triggered by their respective predecessors and which
is the property of components in a trigger chain. The “trigger dependency”
attribute of the tasks corresponding to these two components will be assigned
“dependent”.

A task chain is identified by checking the “trigger dependency” parameter
for each individual task in the chain. If this parameter is “dependent” for all
tasks (except the first or initiating task) then the chain is identified as a trigger
chain. On the other hand, if this parameter for each task in the chain is “inde-
pendent” then the chain is identified as a data chain. However, if this parameter
for some tasks is “independent” and for the others it is “dependent” then the
chain is considered as mixed.

8 ms 16 ms 4 ms

SWC_A SWC_CSWC_BSensor Input Data sink

10 ms

SWC_A SWC_CSWC_BSensor Input Data sink

(a)

SWC_A SWC_CSWC_BSensor Input Data sinkSWC_ESWC_D

8 ms 16 ms 4 ms

Figure 9.12: RCM model of a mixed chain in a single-node real-time system

The problem of identification of a task chain becomes more challenging
to resolve when a chain mimics as a data chain as well as a trigger chain by
means of trigger merges as shown in Figure 9.13. It can be seen that SWC C
component can be triggered by both its predecessor task and a clock. In this
case, the “trigger dependency” attribute is assumed to have both the values,
i.e., “independent” and “dependent”. If such task is identified in a task chain,
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we consider it as a special type of mixed chain. For this chain, the end-to-end
timing requirements correspond to both holistic response times and end-to-end
delays.

10 ms

SWC_A SWC_CSWC_BSensor Input Data sink

(a)

10 ms

SWC_A SWC_CSWC_BSensor Input Data sink

Node C

Node CNode A CAN

Event

ISWC_C Actuation 
Signal

Node A

10 ms

SWC_A OSWC_ASensor 
Input

Event

Sensor
Input SWC_A SWC_B SWC_C

10 ms 15 ms

Data sink

Trigger Merge

Figure 9.13: An example of a data chain with trigger merges

9.4.2 Extraction of Linking Information from Distributed
Transactions

In order to perform HRTA, correct linking information of DTs should be ex-
tracted from the design model [48]. For this purpose, we need to have a map-
ping among signals, data ports and messages in the system. Consider the fol-
lowing DT in a two-node DRE system modeled with RCM as shown in Figure
9.14.
SWC1! OSWC A! ISWC B ! SWC2! SWC3

In this example, our focus is on the network interface components, i.e.,
OSWC and ISWC [15]. In order to compute the holistic response time of this
DT, we need to extract linking information from the component model. We
identified the need for the following mappings in the component model.

• At the sender node, mapping between signals and input data ports of
OSWC components.

• At the sender node, mapping between signals and a message that is sent
to the network.

• At the receiver node, mapping between data output ports of ISWC com-
ponents and the signals to be sent to the desired components.

• At the receiver node, mapping between message received from the net-
work and the signals to be sent to the desired component.

• Mapping between multiple signals and a complex data port. For exam-
ple, mapping of multiple signals extracted from a received message to a
data port that sends a complex signal (structure of signals).
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• Mapping of all trigger ports of network interface components along a DT
as shown by the bidirectional arrow in Figure 9.14.
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Node A
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Figure 9.14: Two-node DRE system modeled with RCM

Since, the E2EDA plug-in needs to compute all valid timed paths (i.e., those
paths in which input actually travels to the output) from initiator to the termi-
nator for every data chain (see Algorithm 2), the linking information among all
tasks and messages in the data chain should be available. We extract this infor-
mation about all tasks and messages in those data chains on which end-to-end
delay constraints are specified. The linking information also includes Trigger
Dependency attribute for every task in the chain.

9.4.3 Analysis of Distributed Transactions with Branches
If a modeled DRE application contains branches of task chains that are dis-
tributed over several nodes and have one common terminator task, the cal-
culations for the end-to-end response-time and delays of such chains are not
straight forward. Consider the example of a two-node DRE system contain-
ing branches in DTs as shown in Figure 9.15. The components OSWC A1
and OSWC A2 in node A send messages m1 and m2 which are received by
the components ISWC C1 and ISWC C2 in node C respectively. Hence,
there are two DTs that have different initiators but a single terminator, i.e.,
SWC C3 . These transactions are listed below.

1. SWC A1 ! SWC A2 ! OSWC A1 ! ISWC C1 ! SWC C1
! SWC C3

2. SWC A3 ! OSWC A2 ! ISWC C2 ! SWC C2 ! SWC C3
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Assume that Data Age delay constraint is specified on SWC C3 . Also
assume that the start of this constraint is specified on the component SWC A1
in node A. Therefore, we need to perform end-to-end delay analysis only on
the first DT (in the above list). It should be noted that the start (initiating
task of the data chain) and end (terminating task of the data chain) of each
delay constraint should be specified by the user. We know from Section 3
(Algorithm 2) that the calculations for Data Age delay require the calculation
of the holistic response time, i.e., the response time of the last task in the chain
(task corresponding to SWC C3 component). However, the response time
of this task depends upon the the holistic response times of both DTs listed
above. In this case, the HRTA plug-in will calculate the holistic response times
of all branches (two in this case) while the E2EDA plug-in will consider the
maximum value among these holistic response times during calculations for
the end-to-end delays. Although, the example in Figure 9.15 consisted of data
chains only, the HRTA plug-in treats trigger chains in a similar fashion.

Node CNode A CAN

12 ms8 ms 10 ms

Node CNode A

Speed

SWC_A2 OSWC_A1SWC_A1
15 ms15 ms

SWC_A3 OSWC_A2

ISWC_C1

ISWC_C2

Actuation 
Signal

SWC_C1

SWC_C2

SWC_C3

15 ms

15 ms
15 ms

20 ms 25 ms

Engine 
torque

Figure 9.15: RCM model of a two-node DRE system with branches in dis-
tributed transactions

9.4.4 Analysis of Mixed Task Chains
The four different end-to-end delays (discussed in Section 3.2) do not exist
in the case of trigger chains. This is because trigger chains are analogous to
single-rate systems in which over- and under-sampling cannot occur. More-
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over, there can never be multiple copies of a single input. If the user specifies
end-to-end delay constraints on a trigger chain then the E2EDA plug-in detects
this incorrect specification and complains about it. However, a system can also
be modeled with mixed chains that are comprised of data chains as well as
trigger chains as shown in Figure 9.12. Although a mixed chain contains a
trigger chain, it is meaningful to compute both holistic response time as well
as end-to-end delays for it. Therefore, the newly developed plug-ins compute
the holistic response-times as well as end-to-end delays for mixed chains.

There are two options to handle mixed chains in the analysis model. In the
first option, if a component is triggered by its predecessor then it is assumed to
be triggered by independent clock with the same period as that of its predeces-
sor’s clock. Moreover, this component is assumed to have implicit precedence
relation with its predecessor, i.e., it can be executed only upon completion of
its predecessor’s execution. SWC C and SWC D are the examples of such
components in the mixed chain shown in Figure 9.12. Using this option, the
execution time line of the task chain corresponding to component chain of Fig-
ure 9.12 is shown in Figure 9.16. This time line will be used by the E2EDA
plug-in to compute the total number of timed paths. However, there are sev-
eral timed paths (indicated with crosses in Figure 9.16) that are impossible to
occur in reality. This is because each instance of a task in a trigger chain can
be triggered only by one instance of its predecessor task. This will result in
unnecessary calculations, i.e., a considerable overhead on the execution time
of the analysis plug-ins. Therefore, we do not implement this option in the
analysis model.

Instead, we use the second option that reduces the mixed chain by combin-
ing all tasks belonging to a trigger sub-chain (within the mixed chain) into a
single task activated by independent clock. Hence, the reduced mixed chain
resembles a data chain. For example, SWC B , SWC C and SWC D are
combined to a single task (with combined WCETs, offsets, etc.) which is trig-
gered by independent clock whose period is exactly the same as that of the
clock that triggers SWC B component. The execution time line of the task
chain corresponding to reduced mixed chain of Figure 9.12 is shown in Figure
9.17. The corresponding end-to-end delays are also depicted in Figure 9.17.
By implementing the second option , we got rid of the so-called “impossible
timed paths”. It should be noted that these chain reductions are not required
by the HRTA plug-in. Mixed chain reduction method is only applied in the
analysis model of the E2EDA plug-in.

Mixed chains may also exist in the models of DRE systems where they may
contain many combinations of data and trigger chains distributed over several
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Figure 9.16: Demonstration of impossible timed paths in mixed chains
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Figure 9.17: Reduction of a mixed chain in the analysis model

nodes. Four such combinations in a two-node DRE system are shown in Figure
9.18. Mixed chain reduction method is applied on distributed mixed chains in
a similar fashion.
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Figure 9.18: Different combinations of data and trigger chains in a two-node
DRE system modeled with RCM

9.4.5 Analysis of the System Containing Messages Received
from Outside of the Model

One of the requirements by the users of the analysis tools was that the HRTA
and E2EDA plug-ins should be able to support the analysis of a system that
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receives messages from unknown senders (from outside of the modeled appli-
cation). One motivation behind this requirement may be the integration of two
systems that are build using different methodologies and tools. Second motiva-
tion could be the integration of legacy systems with newly developed systems.
Another motivation could be the requirement for the end-to-end timing anal-
ysis early during the development. At early stage, the models of some nodes
may not be available. However, the signals and messages which these missing
nodes are supposed to send and receive might have been decided. With these
requirements on the system development, the network is assumed to contain
messages whose sender nodes are not developed yet. Similarly, the available
nodes may send messages via network to the nodes that will be available at a
later stage.

As we discussed earlier in Section 3.3, the holistic response-time analysis
connects the tasks and messages in a DT by means of attribute inheritance
[3]. This means that a message inherits the difference between the worst- and
best-case response times of the sending task as its release jitter. Moreover, the
message also inherits other attributes from the sender task such as transmission
type (periodic, sporadic or mixed [27]); and period or inhibit time or both.
Since, the HRTA algorithm is iterative, the attribute inheritance is repeatedly
carried out until holistic response time of the chain converges or corresponding
deadlines are violated.

The only problem with this requirement is that a message, obviously, can-
not inherit these attributes if the sender is unknown or the message is received
from outside of the model. In order to solve this problem, we treat all such
messages in the analysis model differently from the rest of the messages in the
system. Each such message is assumed to be the initiator of the corresponding
DT. The transmission type and period (in the case of periodic transmission)
or inhibit time (in the case of sporadic transmission) or both (in the case of
mixed transmission) [28] of such message are extracted from the user input
(instead of the sending task as in the case of intra-model messages). However,
the forward attribute inheritance is valid for such messages. This means that
the receiver task of this message will inherit the difference between the worst-
and best-case response times of the message as its release jitter.

9.4.6 Impact of Design Decisions in the Component Technol-
ogy on the Implementation of the Analysis

The design decisions made in the component technology (i.e., RCM) can have
indirect impact on the response times computed by the analysis. For exam-
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ple, design decisions could have impact on WCETs and blocking times which
in turn have impact on the response times. In order to implement, integrate
and test HRTA and E2EDA, the implementer needs to understand the design
model (component model), analysis model and run-time translation of the de-
sign model. In the design model, the architecture of an application is described
in terms of software components, their interconnections and software architec-
tures. Whereas in the analysis model, the application is defined in terms of
tasks, transactions, messages and timing parameters. At run-time, a task may
correspond to a single component or a chain of components. The run-time
translation of a software component may differ among different component
models.

9.4.7 Direct Cycles in Distributed Transactions
A direct cycle in a DT is formed when any two tasks located on different nodes
send messages to each other. When there are direct cycles in a DT, the holistic
analysis algorithm may run forever and may not produce converging results (if
deadlines are not specified), i.e., the response times increase in every iteration.

Consider a two-node application modeled in RCM as shown in Figure
9.19 (a). The OSWC A component in node A sends a message m1 to node
B where it is received by ISWC B component. Similarly, OSWC B compo-
nent in node B sends a message m2 to ISWC A component in node A. There
are two options for the run-time allocation of network interface components
(OSWC and ISWC) as shown in Figure 9.19 (b). First option is to allocate
a network interface component to the task that corresponds to the immediate
SWC, i.e., to the same task as that of the component that receives/sends the
signals from/to it. Since SWC A is immediately connected to both network
interface components in node A, there will be only one task in node A denoted
by ⌧A as shown in Figure 9.19 (b). Similarly, ⌧B is the run-time representation
of ISWC B , SWC B and OSWC B components. It is obvious that the run-
time allocation of network interface components in the first option results in
direct cycles. This problem may appear in those component models which do
not use exclusive modeling objects or means to differentiate between intra- and
inter-node communication in the design model and rely completely on the run-
time environment to handle the communication. Hence, some special methods
are required to avoid direct cycles in these models.

However, the direct cycles in DTs can be avoided by allocating each net-
work interface component to a separate task as shown in the option 2 in Figure
9.19 (b). Although same messages are sent between the nodes, one task cannot
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be both a sender and a receiver. No doubt, there is a cycle between the nodes,
but not a direct one. In this case, the holistic algorithm may produce converging
response-times, and non-terminating execution of the plug-in may be avoided.
It is interesting to note that the requirements and limitations of the analysis
implementation may provide feedback to the design decisions concerning the
run-time allocation of modeling components.
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Figure 9.19: Options for the run-time allocation of network interface compo-
nents

9.4.8 Sequential Execution of Plug-ins in Rubus Plug-in
Framework

The plug-in framework in Rubus-ICE allows only sequential execution of plug-
ins. Hence, a plug-in has to execute to completion and terminate before the
next plug-in can start. It should be noted that there exists a plug-in in Rubus-
ICE that can perform RTA of tasks in a node and it is already in the industrial
use. There are two options to develop the HRTA plug-in for Rubus-ICE, i.e.,
option A and B as shown in Figure 9.20.

The option A supports reusability by building the HRTA plug-in upon the
existing Node RTA Plug-in. Thus, the HRTA plug-in is built by integrating ex-
isting RTA plug-in with two new plug-ins, i.e., one implementing network RTA
algorithms and the other implementing holistic RTA algorithm. In this case, the
HRTA plug-in will be lightweight. It iteratively uses the analysis results pro-
duced by the node and the network RTA plug-ins and accordingly provides
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new inputs to them until converging holistic response times are obtained or the
deadlines (if specified) are violated. On the other hand, option B requires the
development of the HRTA plug-in from the scratch, i.e, implementing the al-
gorithms of node, network and holistic RTA. This option does not support any
reuse of existing plug-ins.

Node RTA Plug-in

Rubus Builder

Algorithms for RTA 
of Tasks in a Node

Node Timing 
Information

Network RTA Plug-in

Algorithms for RTA of 
messages in a Network

Network Timing 
Information

Rubus-ICE

Rubus Desiner
Modeled DRE Application

Rubus Analysis Framework

End-to-end Timing Model

End-to-End Timing Analysis

ICCM File

Analysis Results
(XML File)

End-to-end Timing Model

System Timing Model

Network Timing
Model

System Tracing Model

Node Timing
Model

HRTA Plug-in

Response Time Analysis 
of messages in a Network

Holistic Response-Time Analysis

Analysis Results

HRTA Plug-in
Algorithms for HRTA

End-to-end
Timing Information

Rubus Builder

HRTA Plug-in

Algorithms for 
RTA of Tasks

in a Node

Algorithms for 
RTA of messages

in a Network

Algorithms for HRTA

End-to-end
Timing Information

Analysis 
Results

Analysis Results Analysis Results

Analysis 
Results

Option A Option B

Figure 9.20: Options to develop the HRTA Plug-in for Rubus-ICE

Since, option A allows the reuse of a pre-tested and heavyweight (having
most complex algorithms compared to the network and holistic RTA) node
RTA plug-in, it is easy to implement and requires less time for implementa-
tion, integration and test compared to option B. However, the implementation
method in option A is not supported by the plug-in framework of Rubus-ICE
because the plug-ins can only be executed sequentially. Moreover, one plug-in
cannot execute the other. Hence, we selected option B for the implementation
of HRTA.

The algorithm for the computation of end-to-end delays requires the re-
sponse times of all tasks, messages and task chains in the system as one of its
inputs. As compared to HRTA algorithm, it is not iterative. Therefore, there
is no need to build the E2EDA plug-in from the scratch. In fact, the HRTA
plug-in can be completely reused as a black box. This means that the response
times of tasks, messages and task chains computed by the HRTA plug-in can
be used as one of the inputs for the E2EDA plug-in.
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9.4.9 Analysis of DRE Systems with Multiple Networks
In a DRE system, a node may be connected to more than one network. This
type of node is called a gateway node. If a transaction is distributed over more
than one network, the computation of its holistic response time involves the
analysis of more than one network. Consider the example of a DRE system
with two networks, i.e., CAN and LIN as shown in Figure 9.21. There are five
nodes in the system. Node 3 is the gateway node that is connected to both the
networks. Consider a transaction in which task1 in Node1 sends a message
to task1 in Node5 via Node3. The computation of holistic response time of
this transaction will involve the computation of message response times in both
CAN and LIN networks.

If a modeled system contains more than one network, we divide it into sub-
systems (each having a single network) and analyze them separately in the first
step. In the second step, the attribute inheritance is carried out (see Section
3.3) and the subsystems are analyzed again. The second step is repeated until
the response times converge or the deadlines (if specified) are violated. In the
above example, we first perform HRTA using CAN and LIN networks sepa-
rately. Then we provide the response times of the messages that are received
at the gateway node as input jitters to the receiver tasks (attribute inheritance).
Then HRTA of CAN and LIN networks is performed again. These steps are
repeated until we get stable response times. Although we analyzed the subsys-
tems separately, the multi-step analysis (especially attribute inheritance step)
makes the overall analysis to be holistic.

The implemented HRTA does not support the analysis of a transaction that
is distributed cyclically on multiple networks, i.e., the transactions that is dis-
tributed over more than one network while its first and last tasks are located
on the same network. Since, the E2EDA plug-in receives the response-time re-
sults from the HRTA plug-in, it does not need to split the system (with multiple
networks) into sub-systems. In fact, the E2EDA plug-in analyzes it as a single
system.

9.4.10 Specification of Delay Constraints on Data Paths
One issue that concerns both modeling and analysis is how to specify the de-
lay constraints on data paths in both data and mixed chains. This is important
because the delay constraints specified in the modeled application have to be
extracted in the timing model and the end-to-end delays have to be computed
only for the specified data path(s) by the E2EDA plug-in. For this purpose,
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Figure 9.21: Multiple networks in a DRE system

we introduce start and end objects for each of the four delay constraints (dis-
cussed in Subsection 3.2) in the component technology. The constraint object
has a meaningful name, and start and end points along a data path. Figure
9.22 shows the “Data Age” delay constraint specified on a sensor-actuator data
path. Similarly, there are start and end objects for “Data Reaction”, “LIFO”
and “FILO” delays. All these delay constraints will be used in the case study
in Section 6. In the example shown in Figure 9.22, the E2EDA plug-in will
consider the tasks corresponding to the components sensor signal read, filter
and compute actuator signal while calculating the data age delay. A delay con-
straint can also be distributed over several nodes. It should be noted that the
delay constraints can be specified even on a small segment of a long data path.
Another useful method for specifying the delay constraints is by selecting each
component (e.g., with mouse click) along the data path. The implementation
of this method in Rubus-ICE is left for the future work.

 

 

 

 

 

 

 

Figure 9.22: Age delay constraint specified on a data path

9.4.11 Presentation of Analysis Results
When HRTA of a modeled application has been performed, the next issue is
how to present the analysis results. There can be a large number of tasks and
messages in the system. It may not be appropriate to display the response time
of all tasks and messages in the system because it may contain a lot of useless
information (if the user is not interested in all of it). Furthermore, presenting
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the end-to-end response times and delays of only DTs to the user may not be
appropriate because there may be hundreds of DTs in a DRE application. A
way around this problem is to provide the end-to-end response times and de-
lays of only those tasks and DTs which have deadline requirements and delay
constraints (specified by the user) or which produce control signals for exter-
nal actuators (e.g., the analysis results of case study that will be discussed in
Section 6). Apart from this, we also provide an option for the user to get de-
tailed analysis results from both the HRTA and E2EDA plug-ins. The analysis
report also shows network utilization which is defined as the sum of the ratio of
transmission time to the corresponding period (or minimum-update time) for
all messages in the network [27].

9.4.12 Interaction between the User and the HRTA Plug-in
We identified that it is important to provide a progress report of the HRTA
and E2EDA plug-ins during their executions. Based on the progress, the user
should be able to interact with the plug-in while it is running. The HRTA algo-
rithm iteratively runs the algorithms of node RTA and network RTA until con-
verging values of the response times are computed or the computed response
times exceed the deadlines (if deadlines are specified). We feel that it is im-
portant to display the number of iterations, running time and over all progress
of the plug-in during its execution. Moreover, the user should be able to stop,
rerun or exit the plug-in at any time.

9.4.13 Suggestions to Improve Schedulability Based on Anal-
ysis Results

If the analysis results indicate that the modeled system is unschedulable, it
can be interesting if the HRTA plug-in is able to provide suggestions (e.g., by
varying system parameters) guiding the user to make the system schedulable.
However, it is not trivial to provide such feedback because there can be so many
reasons behind the system being not schedulable. The support for this type of
feedback in the HRTA plug-in will be provided in the future. Another interest-
ing and related feature would be to provide a trace analyzer as another plug-in
that can be used after system has been developed. This analyzer will record
the execution of the actual system and then present a graphical comparison of
the trace with response times of tasks and messages; holistic response times
of trigger, data and mixed chains; and end-to-end delays of data and mixed
chains. Based on such comparisons, the user may have better understanding of
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how the schedulability of the system can be improved. The implementation of
this feature is left for the future work.

9.4.14 Requirement for Continuous Collaboration between
Integrator and Implementer

Our experience of integrating the HRTA and E2EDA plug-ins with Rubus-ICE
shows that there is a need for continuous collaboration between the integrator
of the plug-ins and its implementer especially during the phase of integration
testing (see next Section). This collaboration is more obvious when the plug-in
is developed in isolation by the implementer (from research background) and
integrated with the industrial tool chain by the integrator (with limited experi-
ence of integrating complex real-time analysis but aware of overall objective).
A continuous consultation and communication was required between the inte-
grator and the implementer for the verification of the plug-ins. Examples of
small DRE systems with varying architectures were created for the verifica-
tion. The implementer had to verify these examples by hand. The integration
testing and verification of the HRTA plug-in was non-trivial and most tedious
activity.

9.5 Testing and Evaluation
In this section we discuss our test plan for both standalone and integration
testing of the HRTA and E2EDA plug-ins. Error handling and sanity checking
routines make significant part of the implementation. The purpose of these
routines is to detect and isolate faults and present them to the user during the
analysis. Our test plan contains the following sets of error handling routines.

• A set of routines evaluating the validity of all inputs: attributes of all
nodes, transactions, tasks, networks and messages in the system.

• A set of routines evaluating the validity of linking information of all DTs
in the system.

• A set of routines evaluating the validity of intermediate results that are
iteratively inherited as inputs (e.g., a message inheriting the difference
between the worst- and best-case response times of the sender task as its
release jitter).
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• A set of routines evaluating the overload conditions during the analy-
sis. For example, processor or network utilization exceeding 100%, and
presence of direct cycles in the system. Since HRTA algorithm is itera-
tive, the analysis may never terminate in the presence of these conditions
if the deadlines are not specified.

• A set of routines evaluating variable overflow during the analysis.

• A set of routines verifying the design correctness of the modeled appli-
cation. These routines identify the presence of direct cycles in the mod-
eled application. Moreover, they also identify if the delay constraints are
wrongly specified, for example, a delay constraint specified on a trigger
chain instead of a data or a mixed chain.

9.5.1 Standalone Testing
Standalone testing means testing of the implementation of HRTA and E2EDA
before they are integrated as plug-ins with the Rubus builder tool. In other
words, it refers to the testing of HRTA and E2EDA in isolation. The following
input methods were used for the standalone testing.

1. Hard coded input test vectors.

2. Test vectors are read from external files.

3. Test vectors are generated using a test case generator (a separate pro-
gram). This generator produces test cases with varying architectures. It
also randomly inserts invalid inputs to check if the error handling rou-
tines are able to catch the errors.

The analysis results provided by the plug-ins corresponding to the test vectors
in the first two input methods were also verified by hand.

9.5.2 Integration Testing
Integration testing refers to the testing of the HRTA and E2EDA plug-ins after
they have been integrated with the Rubus builder tool. Although standalone
testing is already performed, the integration of these plug-ins with Rubus-ICE
may induce unexpected errors. Our experience shows that the integration test-
ing is much more difficult and time consuming activity compared to the stan-
dalone testing. The following input methods were used for the integration test-
ing.
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1. Test vectors are read from external files.

2. Test vectors are manually written in the ICCM file to make it appear as
if test vectors were extracted from the modeled application.

3. Test vectors are automatically extracted from several DRE applications
modeled with RCM.

The analysis results provided by the plug-ins corresponding to all types of test
cases were also verified by hand.

9.6 Automotive Application Case Study

We provide a proof of concept for the analysis techniques that we implemented
in the Rubus-ICE tool suite by conducting the automotive-application case
study. First, we model the Autonomous Cruise Control (ACC) system with
RCM using Rubus-ICE. Then, we analyze the modeled ACC system using the
HRTA and E2EDA plug-ins.

9.6.1 Autonomous Cruise Control System

A cruise control system is an automotive feature that allows a vehicle to au-
tomatically maintain a steady speed to the value that is preset by the driver.
It uses velocity feedback from the speed sensor (e.g., a speedometer) and ac-
cordingly controls the engine throttle. However, it does not take into account
traffic conditions around the vehicle. Whereas, an Autonomous Cruise Con-
trol (ACC) system allows the cruise control of the vehicle to adapt itself to the
traffic environment without communicating (cooperating) with the surrounding
vehicles. Often, it uses a radar to create a feedback of distance to and velocity
of the preceding vehicle. Based on the feedback, it either reduces the vehi-
cle speed to keep a safe distance and time gap from the preceding vehicle or
accelerates the vehicle to match the preset speed specified by the driver [49].

The ACC system may be divided into four subsystems, i.e., Cruise Control,
Engine Control, Brake Control and User Interface [50]. Figure 9.23 shows the
block diagram of the ACC system. The subsystems communicate with each
other via the CAN network.
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User Interface Subsystem.

The User Interface (UI) subsystem reads inputs (provided by the driver) and
shows status messages and warnings on the display screen. The inputs are ac-
quired by means of switches and buttons mounted on the steering wheel. These
include Cruise Switch input that corresponds to ON/OFF, Standby and Resume
(resuming to a speed predefined by the driver) states for ACC; Set Speed input
(desired cruising speed set by the driver) and desired clearing distance from the
preceding vehicle. Apart from user inputs, it also receives some other param-
eters from the rest of the subsystems via CAN network. These include linear
and angular speed of the vehicle, i.e., kilometer per hour (KPH) and revolution
per minute (RPM), status of manual brake sensor, state of ACC subsystem, sta-
tus messages and warnings to be displayed on the screen. Apart from showing
status messages and warnings, it sends messages (including status of driver’s
input) to other subsystems.

Controller Area Network (CAN)

Brake Control 
Subsystem

Engine Control 
Subsystem

Cruise Control 
Subsystem

User Interface 
Subsystem

Figure 9.23: Block diagram of Autonomous Cruise Control System

Cruise Control Subsystem.

The Cruse Control (CC) subsystem receives user input information as a CAN
message from the UI subsystem. From the received message it analyzes the
state of the cruise control switch; if it is in ON state then it activates the cruise
control functionality. It reads input from the proximity sensor (e.g., radar) and
processes it to determine the presence of a vehicle in front of it. Moreover,
it processes the radar signals along with the information received from other
subsystems such as vehicle speed to determine its distance from the preceding
vehicle. Accordingly, it sends control information to the Brake Control and
Engine Control subsystems to adjust the speed of the vehicle with the cruising
speed or clearing distance from the preceding vehicle. It also receives the sta-
tus of manual brake sensor from the Brake Control subsystem. If brakes are
pressed manually then the cruise control functionality is disabled. It also sends



278 Paper F

status messages to the UI subsystem.

Engine Control Subsystem.

The Engine Control (EC) subsystem is responsible for controlling the vehicle
speed by adjusting engine throttle. It reads sensor input and accordingly de-
termines engine torque. It receives CAN messages sent by other subsystems.
The messages include information regarding vehicle speed, status of manual
brake sensor, and input information processed by the UI system. Based on
the received information, it determines whether to increase or decrease engine
throttle. It then sends new throttle position to the actuators that control engine
throttle.

Brake Control Subsystem.

The Brake Control (BC) subsystem receives inputs from sensor for manual
brakes status and linear and angular speed sensors connected to all wheels. It
also receives a CAN message that includes control information processed by
the CC subsystem. Based on this feedback, it computes new vehicle speed. Ac-
cordingly, it produces control signals and sends them to the brake actuators and
brake light controllers. It also sends CAN messages to other subsystems that
carry information regarding status of manual brake, vehicle speed and RPM.

9.6.2 Modeling of ACC System with RCM in Rubus-ICE
In RCM, we model each subsystem as a separate node connected to a CAN
network as shown in Figure 9.24. The selected speed of the CAN bus is 500
kbps. The extended frame format is selected which means that each frame will
use 29-bit identifier [51]. The ACC system is modeled with trigger, data and
mixed chains.

�

� �
Figure 9.24: Autonomous Cruise Control System modeled with RCM
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Table 9.1: Message attributes extracted from the model

Msg sm Pm ⇠m Tm (µSec) Cm (µSec)
m1 8 7 Periodic 10000 320
m2 8 6 Periodic 10000 320
m3 8 4 Periodic 10000 200
m4 8 3 Sporadic 10000 320
m5 2 5 Sporadic 10000 320
m6 2 2 Periodic 10000 200
m7 1 1 Sporadic 10000 180

There are seven CAN messages that are sent by the nodes as shown in
Figure 9.25. A signal data base “signalDB” that contains all the signals sent
to the network is also shown. Each signal in the signal database is linked to
one or more messages. The extracted attributes of all messages including data
size (sm), priority (Pm), transmission type (⇠m) and period or minimum inter-
arrival time (Tm) are listed in Table 9.1.

�

�

�

� �

Figure 9.25: CAN messages and signal database modeled with RCM

The high-level architectures of CC, EC, BC and UI nodes modeled with
RCM are shown in Figure 9.26, 9.27, 9.28 and 9.29 respectively.

Internal Model of Cruise Control Node in RCM.

The CC node is modeled with four assemblies as shown in Figure 9.26. An as-
sembly in RCM is a container for various software items. The Input from Sen-
sors assembly contains one SWC that reads radar sensor values as shown in
Figure 9.30. The Input from CAN assembly contains three ISWCs, i.e., GUI
Input Msg ISWC, Vehicle speed Msg ISWC and Manual brake input Msg
ISWC as depicted in Figure 9.31. These components receive messages m1 ,
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Figure 9.26: RCM model of the Cruise Control node

 

 

 

 

 

  

Figure 9.27: RCM model of the Engine Control node

 

  Figure 9.28: RCM model of the Brake Control node

m6 and m7 from the CAN network respectively. Similarly, the assembly Out-
put to CAN contains three OSWC components as shown in Figure 9.32. These
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Figure 9.29: RCM model of the User Interface node

components send messages m5 , m4 and m2 to the CAN network. The Cruise
Control assembly contains two SWCs: one handles the input and cruise control
mode signals while the other processes the received information and produces
control messages for the other nodes. The internal model of this assembly is
shown in Figure 9.33.

Internal Model of Engine Control Node in RCM.

The Engine Control node is modeled with four assemblies as shown in Figure
9.27. The Input from Sensors assembly contains one SWC that reads the sen-
sor values corresponding to the engine torque as shown in Figure 9.34. The
Input from CAN assembly contains three ISWCs, i.e., Vehicle Speed Msg
ISWC, Engine control info Msg ISWC and Manual brake input Msg ISWC
as shown in Figure 9.35. These components receive messages m6 , m4 and m7
from the CAN network respectively. The third assembly, Output to Actuators
as shown in Figure 9.36, contains the SWC that produces control signals for the
engine throttle actuator. The fourth assembly, i.e., Engine Control as shown in
Figure 9.37, contains two SWCs: one handles and processes the inputs from
sensors and received messages, while the other computes the new position for
the engine throttle. These components are part of a distributed mixed chain
that we will analyze along with other distributed mixed chains in the next sub-
sections.
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Figure 9.30: CC node: Internal model of the Input from Sensors assembly

�

� �
Figure 9.31: CC node: Internal model of the Input from CAN assembly

Internal Model of Brake Control Node in RCM.

The Brake Control node is modeled with five assemblies as shown in Figure
9.28. The Input from Sensors assembly contains three SWCs as shown in Fig-
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Figure 9.32: CC node: Internal model of the Output to CAN assembly

 

 

 

 

 

  

Figure 9.33: CC node: SWCs comprising the Cruise Control assembly
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� �
Figure 9.34: EC node: Internal model of the Input from Sensors assembly

ure 9.38. These SWCs read the sensor values that correspond to the values
of speed, rpm and manual brake sensors in the vehicle. The Input from CAN
assembly, shown in Figure 9.39, contains the ISWC component Brake control
info Msg ISWC that receives a message m5 from the CAN network.

The third assembly, i.e., Brake Control as shown in Figure 9.40, contains
two SWCs: one handles and processes the inputs from sensors and received
messages while the other computes the control signals for brake actuators. The
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Figure 9.35: EC node: Internal model of the Input from CAN assembly
 

 

 

  Figure 9.36: EC node: Internal model of the Output to Actuators assembly 

 

 

  

Figure 9.37: EC node: SWCs comprising the Engine Control assembly

fourth assembly Output to CAN contains three OSWC components as shown
in Figure 9.41. These components send messages m7 , m6 and m3 to the
CAN network. The fifth assembly, Output to Actuators as shown in Figure
9.42, contains the SWCs that produce control signals for the brake actuators
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and brake light controllers.

 

 

 

 

 

  

Figure 9.38: BC node: Internal model of the Input from Sensors assembly
 

 

 

 Figure 9.39: BC node: Internal model of the Input from CAN assembly

 

 

   

 

Figure 9.40: BC node: Internal model of the Brake Control assembly

Internal Model of User Interface Node in RCM.

The User Interface node is modeled with four assemblies along with one SWC
as shown in Figure 9.29. The GUI Control SWC handles the input from the
sensors and messages from the CAN network. After processing the informa-
tion, it not only produces information for Graphical User Interface (GUI), but
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�

� �Figure 9.41: BC node: Internal model of the Output to CAN assembly

 

Figure 9.42: BC node: Internal model of the Output to Actuators assembly

also computes control signals for the other nodes. The Input from Sensors as-
sembly contains two SWCs as shown in Figure 9.43. One of them reads the
sensor values that correspond to the state of the cruise control switch on the
steering wheel. The other SWC reads the sensor values that correspond to
the vehicle cruising speed set by the driver. The Input from CAN assembly
contains four ISWC components, i.e., Vehicle Speed Msg ISWC, RPM Msg
ISWC, Manual brake input Msg ISWC and ACC text display Msg ISWC as
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shown in Figure 9.44. These components receive messages m6 , m3 , m7
and m2 from the CAN network respectively. The third assembly, i.e., Out-
put to CAN Periodic sends a message m1 to the CAN network via the OSWC
component as shown in Figure 9.45. The fourth assembly, i.e., GUI Display
Asm contains one SWC, i.e., GUIdisplay component as shown in Figure 9.46.

This component sends the signals (corresponding to updated information) to
GUI in the car.

�

�

�

�

� �

Figure 9.43: UI node: Internal model of the Input from Sensors assembly

 

  Figure 9.44: UI node: Internal model of the Input from CAN assembly
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�

� �Figure 9.45: UI node: Internal model of the Output to CAN Periodic assembly
 

 

 

Figure 9.46: UI node: Internal model of the GUI Display Asm assembly

9.6.3 Modeling of End-to-end Deadline Requirements
We specify end-to-end deadline requirements on four DTs in the ACC system
using a deadline object in RCM. All these DTs, i.e., DT1, DT2, DT3 and DT4

are distributed mixed chains as shown in Table 9.2. All these chains have one
common initiator, i.e., their first task corresponds to the SWC that reads radar
signal which is denoted by RadarSignalInput and located in the Cruise Control
node as shown in Figure 9.30. The last tasks of DT1 and DT2 are located in
the Brake Control node. These tasks correspond to the SWCs SetBrakeSignal
and SetBrakeLightSignal as shown in Figure 9.28. These two tasks are respon-
sible for producing brake actuation and brake light control signals respectively.
The last task of DT3 corresponds to SetThrottlePosition SWC and is located
in the Engine Control node as shown in Figure 9.27. This task is responsi-
ble for producing control signal for the engine throttle actuator. The last task
of DT4 corresponds to GUIdisplay SWC and is located in the User Interface
node as shown in Figure 9.29. This task is responsible for providing display
information for the driver.

All the mixed chains under analysis are distributed over more than one
node. For the sake of convenience, we list all the components in the data path
(from initiator to terminator) of each chain as shown below. We also specify
four delay constraints (discussed in Section 3) on each DT under analysis. In
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RCM, the model of each delay constraint consists of start object and end object.
The start objects for all four delay constraints for each DT are shown in Figure
9.30. There are sixteen start objects for delay constraints in Figure 9.30 because
there are four DTs under analysis with four delay constraints specified on each
DT. The end objects for all delay constraints for DT1 and DT2 are specified in
Figure 9.42. Similarly, the end objects for all delay constraints for DT3 and
DT4 are specified in Figure 9.36 and Figure 9.46 respectively.

1. DT1: RadarSignalInput ! InputAndModeControl !
InfoProcessing ! Brake control info Msg OSWC !
message : m5 ! Brake control info Msg ISWC !
BrakeInputInfoProcessing ! BrakeController
! SetBrakeSignal SWC

2. DT2: RadarSignalInput ! InputAndModeControl !
InfoProcessing ! Brake control info Msg OSWC !
message : m5 ! Brake control info Msg ISWC !
BrakeInputInfoProcessing ! BrakeController
! SetBrakeLightSignal SWC

3. DT3: RadarSignalInput ! InputAndModeControl !
InfoProcessing ! Engine control info Msg OSWC !
message : m4 ! Engine control info Msg ISWC !
EngineInputInformationProcessing ! ThrottleControl
! SetThrottlePosition

4. DT4: RadarSignalInput ! InputAndModeControl !
InfoProcessing ! ACC text display Msg OSWC !
message : m2 ! ACC text display Msg ISWC !
GUI Control ! GUIdisplay

9.6.4 Analysis of ACC System using the HRTA and E2EDA
Plug-ins

The run-time allocation of all the components in the model of the ACC system
results in 19 transactions, 36 tasks and 7 messages. We provide the analysis
results of only those transactions on which deadline requirements or delay con-
straints are specified. The transmission times (Cm) of all messages computed
by the HRTA plug-in are shown in Table 9.1. The WCET of each component in
the modeled ACC system is selected from the range of 10-60 µSec. The HRTA
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Table 9.2: Analysis report by the HRTA plug-in

Distributed Chain Control Signal Deadline Holistic
Transaction Type Produced by (µSec) Response

the Chain Time
(µSec)

DT1 Mixed SetBrakeSignal 1000 220
DT2 Mixed SetBrakeLightSignal 1000 280
DT3 Mixed SetThrottlePosition 1000 130
DT4 Mixed GUIdisplay 1500 345

plug-in analyzes all four DTs (discussed in the previous subsection). Once
the HRTA plug-in has completed its execution and produced analysis results
then the E2EDA plug-in analyzes only those DTs on which end-to-end delay
constraints are specified (i.e., all four DTs).

The analysis report in Table 9.2 provides worst-case holistic response times
of the four distributed mixed chains using the HRTA plug-in. The correspond-
ing deadlines are also shown. The response time of a DT is counted from the
activation of the first task to the completion of the last task in the chain. The
response times of these four DTs correspond to the production of control sig-
nals for brake actuators, brake lights controllers, engine throttle actuator and
graphical user interface.

The analysis report produced by the E2EDA plug-in is shown in Table 9.3.
It lists four end-to-end delays calculated for each DT under analysis. The corre-
sponding specified delay constraints are also listed in the table. By comparing
the end-to-end deadlines and specified delay constraints with the calculated
holistic response times and end-to-end delays in Tables 9.2 and 9.3 respec-
tively, we see that the modeled ACC system meets all of its deadlines.

9.7 Conclusion and Future Work
We presented the implementation of the state-of-the-art Holistic Response Time
Analysis (HRTA) and End-to-End Delay Analysis (E2EDA) as two individ-
ual plug-ins for the existing industrial tool suite Rubus-ICE. The implemented
analyses are general as they support the integration of real-time analysis of var-
ious networks without a need for changing the end-to-end analysis algorithms.
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Table 9.3: Analysis report by the E2EDA plug-in

Distributed Transaction DT1 DT2 DT3 DT4

Specified Age Delay 5000 5000 5000 5000
Constraint(µSec)
Calculated Age Delay (µSec) 4220 4280 4130 4345
Specified Reaction Delay 10000 10000 10000 10000
Constraint(µSec)
Calculated Reaction Delay (µSec) 8220 8280 8130 8345
Specified LIFO Delay 1000 1000 1000 1500
Constraint(µSec)
Calculated LIFO Delay (µSec) 220 280 130 345
Specified FILO Delay 15000 15000 15000 15000
Constraint(µSec)
Calculated FILO Delay (µSec) 12220 12280 12130 12345

With the implementation of these plug-ins, Rubus-ICE is able to support dis-
tributed end-to-end timing analysis of trigger flows as well as asynchronous
data flows which are common in automotive embedded systems.

There are many challenges faced by the implementer when state-of-the-art
real-time analyses like HRTA and E2EDA are transferred to the industrial tools.
The implementer has to not only code and implement the analyses in the tools,
but also deal with various challenging issues in an effective way with respect to
time and cost. We discussed and solved several issues that we faced during the
implementation, integration and evaluation of the HRTA and E2EDA plug-ins.
The experience gained by dealing with the implementation challenges provided
a feed back to the component technology (i.e., the Rubus Component Model),
for example, feed back on the design decisions for efficient run-time allocation
of network interface components.

We also discussed the steps that we followed for testing and evaluating the
HRTA and E2EDA plug-ins. We found the integration testing to be a tedious
and non-trivial activity. Our experience of implementing, integrating and eval-
uating these plug-ins shows that a considerable amount of work and time is
required to transfer complex real-time analysis results to the industrial tools.

We provided a proof of concept by modeling the autonomous cruise control
system with component-based development approach using the existing indus-
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trial component model (Rubus Component Model) and analyzing it with the
HRTA and E2EDA plug-ins.

We believe that most of the problems discussed in this paper are generally
applicable when real-time analysis is transferred to any industrial or academic
tool suite. Moreover, the contributions in this paper may provide guidance
for the implementation of other complex real-time analysis techniques in any
industrial tool suite that supports a plug-in framework for the integration of
new tools and allows component-based development of distributed real-time
embedded systems.

In the future, we plan to implement the analysis of other network commu-
nication protocols (e.g., Flexray, switched ethernet, etc.) and integrate them
within the HRTA plug-in. Another future work is the implementation of RTA
for CAN with FIFO and work-conserving queues [26, 25], and RTA of CAN
with FIFO Queues for Mixed Messages [28] within HRTA plug-in. We also
plan to integrate the stand alone analyzer, that we developed for the analysis of
mixed messages with offsets [30], with the HRTA plug-in.
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Acronyms and Abbreviations
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ACC Autonomous Cruise Control
API Application Programming Interface
AUTOSAR AUTomotive Open System ARchitecture
BC Brake Control
BCRT Best Case Response Time
CAN Controller Area Network
CC Cruise Control
DR Data Reaction
DRE Distributed Real-time Embedded
DT Distributed Transaction
EC Engine Control
E2EDA End To End Delay Analysis
FIFO First In First Out
FILO First In Last Out
HCAN Hägglunds Controller Area Network
HRTA Holistic Response Time Analysis
ICCM Intermediate Compiled Component Model
ICE Integrated Component development Environment
ISWC Input Software Circuit
LIFO Last In First Out
LILO Last In Last Out
OSWC Output Software Circuit
RCM Rubus Component Model
RTA Response Time Analysis
SWC Software Circuit
TIMMO TIMing MOdel
TP Timed Path
TTCAN Time Triggered Controller Area Network
UI User Interface
WCET Worst Case Execution Time
WCRT Worst Case Response Time
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Abstract

In order to perform the end-to-end response-time and delay analyses of a sys-
tem, its end-to-end timing model should be available. The majority of exist-
ing model- and component-based development approaches for vehicular dis-
tributed embedded systems extract the end-to-end timing model at an abstrac-
tion level and development phase that is close to the system implementation.
We present a method to extract the end-to-end timing models from the systems
at a higher abstraction level. At the higher level, the method extracts timing in-
formation from system models that are developed with EAST-ADL and Timing
Augmented Description Language (TADL2) using the TIMMO methodology.
At the lower level, the method exploits the Rubus component model to extract
the timing information that cannot be clearly specified at the higher level such
as trigger paths in distributed chains. We also discuss challenges and issues
faced during extraction of the timing models. Further, we present guidelines
and solutions to address these challenges.
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10.1 Introduction
Due to increase in the amount of advanced computer controlled functionality
in vehicular distributed embedded systems, the size and complexity of embed-
ded software has drastically increased in the past few years. For example, the
embedded software in heavy vehicle architectures such as a truck may consist
of as many as 2000 software functions that may be distributed over 45 ECUs
(Electronic Control Units) [1]. In order to deal with the software complex-
ity, the research community proposed model- and component-based develop-
ment of embedded real-time systems by using the principles of Model-Based
Software Engineering (MBSE) and Component-Based Software Engineering
(CBSE) [2, 3]. This approach is intended to capture requirements early during
the development, lower development cost, enable faster turn-around times in
early design phases, increase reusability, support modeling at higher abstrac-
tion levels, and to provide possibilities to automatically perform timing anal-
ysis; derive test cases; and generate code. MBSE provides the means to use
models to describe functions, structures and other design artifacts. Whereas,
CBSE supports the development of large software systems by integration of
software components. It raises the level of abstraction for software develop-
ment and aims to reuse software components and their architectures. Within the
segment of construction-equipment vehicles and similar segments for heavy
special-purpose vehicles, model-based development of software architectures
for embedded real-time systems has had a surge the last few years.

10.1.1 Problem Statement and Paper Contributions
Most of the vehicular functions are developed as distributed embedded sys-
tems with real-time requirements. Hence, the providers of these systems are
required to ensure that the actions by the systems will be taken at a time that
is appropriate to their environment. One way to guarantee that the system will
meet all its deadlines is to perform the end-to-end response-time and delay
analyses [4, 5]. These analyses can validate timing requirements, specified on
the system, without performing exhaustive testing. In order to perform the
timing analyses of the system, an end-to-end timing model needs to be avail-
able. The end-to-end timing model consists of the information containing tim-
ing properties, requirements and dependencies concerning all tasks, messages,
task chains and distributed transactions in the system. Based on this informa-
tion, execution behavior of the system, with respect to timing, can be predicted
by means of certain type of timing analysis such as end-to-end response-time
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and delay analysis.
The majority of existing approaches for component-based vehicular dis-

tributed embedded systems support the extraction of the timing models at an
abstraction level and development phase that is close to their implementa-
tion [6, 7, 8, 5, 9, 10]. An abstraction level provides a complete definition of
the system for a given purpose during the development process. Furthermore,
high-level timing analysis provided by existing approaches does not support
high precision and is often not based on actual implementation of the system.
As a result, a high-precision end-to-end timing analysis cannot be performed
at higher abstraction levels. In the past few years, one of the focuses of several
large EU research projects, that involve both academia and industry, has been
on supporting the timing analysis at various abstraction levels and development
phases [11, 12, 13].

Extraction of the timing model at higher abstraction levels is challenging
mainly because not all timing information that is required to be captured in the
timing model is available. Moreover, mismatch and incompatibilities among
various methodologies, languages and tools that are used in different develop-
ment phases also add to the complexity of extracting the timing model. Since
complete timing information may not be available at higher levels, the timing
analysis results may not represent accurate timing behavior of the final system.
However, these results can provide useful information that can guide further
model refinement and implementation.

We envision the extraction of end-to-end timing model and performing
high-precision end-to-end timing analysis at higher levels of abstraction to be
state of the practice in the future. We believe, timing information will be for-
mally modeled at higher abstraction levels in the vehicular industry. In that
case, we need to extract the specified timing information at higher abstraction
levels and connect it to the implementation to generate the end-to-end timing
model. Otherwise, it can be too late to extract the timing model at lower ab-
straction levels that are close to system implementation.

We have experienced that timing information is modeled at higher abstrac-
tion levels in the vehicular industry. This may be carried out using SysML
language [14]. However, it is done mostly in an informal and textual way;
which cannot be used for any formal timing analysis. Today, Timing Aug-
mented Description Language (TADL2) [15] provides the only viable formal
method for modeling of timing information using timing constraints at various
abstraction levels. In order to extract a complete end-to-end timing model and
perform a high-precision timing analysis, TADL2 has to be combined with a
lower abstraction level execution modeling approach such as the Rubus Com-
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ponent Model (RCM) [16]. We hope the industry will start using TADL2. If
they do so, we can reuse that information to perform high-precision end-to-end
response-time and delay analyses at a higher abstraction level.

In our previous work [8], we presented a method to extract end-to-end tim-
ing models at lower abstraction levels. In this paper, we extend our previous
method to extract the timing models at a higher abstraction level. At the higher
level, the method extracts timing information from system models that are de-
veloped with EAST-ADL [17] using the TIMMO methodology [18]; and an-
notated with timing information using TADL2. At the lower level, the method
exploits RCM and its tool suite Rubus-ICE [19] to extract the timing infor-
mation that cannot be clearly specified at the higher level, e.g., trigger paths
in distributed chains. However, it is not straightforward to combine TADL2
with RCM due to several challenges such as unambiguous transformation of
TADL2 timing constraints in RCM; and unambiguous extraction of control
and data paths at the higher level. The main focus of this paper is to attack
these challenges. As a contribution, we provide an interpretation of TADL2
timing constraints in RCM. Moreover, we propose extensions in RCM for un-
ambiguous transformation of TADL2 timing constraints.

We choose RCM instead of AUTOSAR [6] at the lower abstraction level.
This is because AUTOSAR lacks a complete timing model, e.g., control flow
is not specified in an unambiguous way. The work in this paper is a step to-
wards a bigger goal, i.e., development of a seamless tool-chain for model-based
development of vehicular distributed real-time systems; and support for inter-
operating various modeling and analysis tools, including the AUTOSAR-based
tool chain [13].

10.1.2 Paper Layout

The rest of the paper is organized as follows. In Section 10.2, we discuss
background and related work. In Section 10.3, we discuss an interpretation of
TADL2 timing constraints in RCM. In Section 10.4 we discuss other challenges
and corresponding solutions. Finally, Section 10.5 summarizes the paper and
presents the future work.
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10.2 Background and Related Works

10.2.1 Abstraction Levels Considered by Various Method-
ologies

There are several frameworks that support timing modeling such as AADL [20],
SCADE [21], MARTE [22], MAST [23], SysML, CHESS [24, 25]. However,
the focus in the vehicle industry, especially in the segment of construction-
equipment vehicles and other heavy road vehicle architectures, today is on
EAST-ADL and AUTOSAR; Rubus is also being used. In this work, we fo-
cus only on the vehicular domain. Various models and methodologies used
for the development of vehicular distributed embedded systems [17, 15, 6, 26]
consider four abstraction levels shown in Figure 10.1.
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Figure 10.1: Abstraction levels considered during the development

Vehicle or end-to-end level

At the vehicle level, requirements, functionality and features of the vehicle are
captured in an informal (often textual) and solution-independent way. This
level captures the information regarding what the system should do [27]. In
the segment of construction-equipment vehicles, this abstraction level is better
known as the end-to-end level because features and requirements on the end-
to-end functionality of the machine or vehicle are captured in an informal way.
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Analysis level

At the analysis level, the requirements are formally captured in a allocation-
independent way. Functionality of the system is defined based on the require-
ments and features without implementation details. A high-level analysis may
also be performed for functional verification.

Design level

The artifacts at this level are developed in an implementation-independent way.
These artifacts are refined from the analysis level artifacts; and also contains
middleware abstraction and hardware architecture. In addition, software func-
tions to hardware allocation may be present.

Implementation level

At the implementation level, the design-level artifact is refined to software-
based implementation of the system functionality. The EAST-ADL methodol-
ogy defines a system at this level in terms of AUTOSAR elements. However, in
this work, our focus is on using RCM and its development environment Rubus-
ICE at the implementation level. Hence, the artifact at this level consists of
software architecture of the system defined in terms of Rubus components and
their interactions.

In this work, we focus on the extraction end-to-end timing models mainly
at the design and implementation levels.

10.2.2 Models and Development Methodologies
We focus on some of the component technologies that are used for the devel-
opment of distributed embedded systems in the vehicular domain.

Rubus Component Model (RCM) and Rubus-ICE

Rubus [28] is a collection of methods and tools for model- and component-
based development of dependable embedded real-time systems. It is developed
by Arcticus Systems 1 in close collaboration with several industrial partners.
Rubus is today mainly used for the development of control functionality in
vehicles by several international companies, e.g., BAE Systems Hägglunds2,

1http://www.arcticus-systems.com
2http://www.baesystems.com/hagglunds
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Volvo Construction Equipment3, Knorr-bremse4, Mecel5 and Hoerbiger6. The
Rubus concept is based around RCM and its development environment Rubus-
ICE which includes modeling tools, code generators, analysis tools and run-
time infrastructure. The overall goal of Rubus is to be aggressively resource ef-
ficient and to provide means for developing predictable, timing analyzable and
synthesizable control functions in resource-constrained embedded systems. The
timing analysis supported by Rubus-ICE includes distributed end-to-end response-
time and delay analyses [5]. Rubus methods and tools mostly focus at the
implementation level in Figure 10.1.

The lowest-level hierarchical component in RCM is called Software Circuit
(SWC). Its purpose is to encapsulate basic functions. Figure 10.2 shows an ex-
ample of a software architecture in RCM composed of SWCs; interconnections
between SWCs; and their interactions with external events and actuators with
regard to both data and triggering.
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Figure 10.2: Example of software architecture of a system modeled in RCM.

AUTOSAR

AUTOSAR [29] is an industrial initiative to provide standardized software ar-
chitecture for the development of embedded software. It is used at the imple-
mentation level in Figure 10.1. It describes software development at a higher
level of abstraction compared to RCM. Unlike RCM, it does not separate con-
trol and data flows among components within a node. It does not differentiate
between the modeling of intra- and inter-node communication which is unlike
RCM. The timing model in AUTOSAR is introduced fairly recently compared
to that of Rubus. There are some similarities between AUTOSAR and RCM,

3http://www.volvoce.com
4http://www.knorr-bremse.com
5http://www.mecel.se
6http://www.hoerbiger.com
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e.g., the sender receiver communication in AUTOSAR resembles the pipe-and-
filter communication in RCM. AUTOSAR is more focussed on the functional
and structural abstractions, hiding the implementation details about execution
and communication. AUTOSAR hides the details that RCM highlights.

EAST-ADL, MARTE, TIMMO, TIMMO-2-USE, TADL and TADL2

TIMMO [11] is an initiative to provide AUTOSAR with a timing model [30]. It
is based around a methodology and TADL [26] language. TADL is used to ex-
press timing requirements and constraints. It is inspired by MARTE [22] which
is a UML profile for model-driven development of real-time and embedded
systems. TIMMO methodology uses EAST-ADL language [17] for structural
modeling and AUTOSAR for the implementation. TIMMO and EAST-ADL
focus on the top three levels in Figure 10.1. However, TIMMO methodology
uses AUTOSAR at the implementation level.

In TIMMO-2-USE project [12], a major redefinition of TADL is done and
released in TADL2 specification [15]. TADL2 can specify timing related infor-
mation at all abstraction levels shown in Figure 10.1. Most of these initiatives
lack the support on expressing low-level details at the higher levels such as
linking information in distributed chains. These details are necessary to extract
the end-to-end timing model from the architecture. Furthermore, there is no
support on how to extract this information from the model or perform timing
analysis. In our view, the end-to-end timing model includes enough informa-
tion from the systems to be able to perform certain type of timing analysis, e.g.,
end-to-end response-time analysis.

To the best of our knowledge, none of the existing approaches are able to
extract the end-to-end timing model and perform corresponding pre run-time
analysis at higher levels of abstraction. This is one of the objectives in an
ongoing EU research project [13].

COMDES and ProCom

COMDES-II [9] is a two-level component-based framework for the develop-
ment of distributed embedded control systems. Unlike RCM, COMDES-II
employs signal-based communication for both intra- and inter-node interac-
tions. COMDES-II does not include explicit components to model network
communication.

ProCom [7] is a two-layered component model for the development of dis-
tributed embedded systems. It is inspired by RCM and there are a number
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of similarities between the two. For example, both have passive components,
both separate control flow from the data flow, and both use a pipe-and-filter
style of communication mechanism for components interconnection. How-
ever, ProCom does not differentiate between intra- and inter-node communi-
cation which is unlike RCM. ProCom hides communication details, whereas
RCM lifts them up to the modeling level.

ProCom supports timing analysis [31], however, the analysis is not per-
formed with such a high precision as it is done in Rubus-ICE. Moreover, the
timing analysis in ProCom does not include execution models. It will be very
hard in ProCom and COMDES-II to extract the timing model and perform end-
to-end timing analysis with the precision that is done in RCM.

Previous Works

In our previous works [8, 32], we presented a method to automatically extract
the end-to-end timing models only at the lowest abstraction level shown in Fig-
ure 10.1. In this paper, we extend our previous method to raise the extraction of
end-to-end timing models at the design level. Since, we aim to extract the tim-
ing information from a higher abstraction level, we need to explicitly capture
timing requirements and constraints. For this purpose we provide unambiguous
interpretation and transformation of TADL2 timing constraints in RCM.

10.3 Interpretation of TADL2 Timing Constraints
in RCM

In the first subsection, we define some terms and notations. In the following
subsections, we discuss various timing constraints in TADL2. We also dis-
cuss the semantics of each timing constraint according to the specification of
TADL2 [15]. Moreover, we interpret and transform these timing constraints in
RCM.

10.3.1 Definitions and Notations
In TADL2, timing requirements are specified by means of timing constraints
on events and event chains [18]. Constraints are used to put restrictions on,
e.g., delays between a pair of events; repetition of an event; and synchronic-
ity of a set of events. An event denotes a distinct form of state change in a
running system. It takes place at distinct points in time which are called its
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occurrences. An event is used to trigger an analysis- or design-level function.
When the function is triggered, input data is consumed followed by processing
and transformation of the data and then production of the data at the output.
A function can also be time-triggered. In order to clarify the notations used to
define timing constraints in the following subsections, consider the following
example.

Example

Assume a timing constraint is denoted by TC. It can be specified on some
events. Let us denote two such events by source and target. We use object ori-
ented notation to define the attributes of the constraint. For example, TC.source
refers to the source event on which TC is specified. There can be any number
of occurrences of an event. Let us denote an occurrence of event TC.source
by an attribute s. This attribute is basically a time point when an instance of
the event occurs. These time points can be added, subtracted and compared. A
constraint often puts limits on the occurrences of events. These limits can be
specified in terms of time distances using upper and lower attributes. In that
case, the occurrences of the events are required to lie within these limits. The
following provides an example for the semantics of constraint TC.

A system behavior satisfies a specified timing constraint denoted by TC iff7

for every occurrence s of TC.source, there is an occurrence t of TC.target such
that

TC.lower  (t- s)  TC.upper

This means, the timing constraint TC is satisfied if the time distance be-
tween time points t and s is greater than or equal to the time distance specified
by the lower attribute; and is smaller than or equal to the time distance specified
by the higher attribute.

10.3.2 Delay Constraint
TADL2 Description

It constrains the distance between occurrences of source and target events. It
does not matter if matching target occurrence is caused by the corresponding
source occurrence or not.

7if and only if
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Semantics

A system behavior satisfies the specified DelayConstraint DC iff for every oc-
currence s of DC.source, there is an occurrence t of DC.target such that

DC.lower  (t- s)  DC.upper

Interpretation in RCM

There is no existing support in RCM to specify this constraint.
We propose the addition of a new timing constraint with the above men-

tioned semantics, denoted by Delay, in RCM. Since this constraint corresponds
to the distance between occurrences of source and target events, we associate
two objects with it, namely “Delay Start” and “Delay End” as shown in Figure
10.3. The Delay Start object can be specified at the Data Input Port (DIP) of
source SWC. The triggering of Trigger Input Port (TIP) of source SWC corre-
sponds to a new occurrence of source event. The triggering can be done by a
clock or an event in RCM. The Delay End object can be specified at the Data
Output Port (DOP) of target SWC. Production of a trigger at the Trigger Out-
put Port (TOP) of target SWC corresponds to a new occurrence of target event.
The lower and upper values of the constraint can be specified on Delay End
object.

Figure 10.3: Proposed objects to specify Delay constraint in RCM

The occurrences of target event (data on DOP 1 of SWC D) may corre-
spond to the input data at DIP 1 of SWC A or DIP 1 of SWC B or both de-
pending upon how the SWCs are triggered. In the example shown in Figure
10.3 and Figure 10.4, the occurrences of target event corresponds to input data
either from SWC B or from both SWC A and SWC B. The upward arrows in
Figure 10.4 symbolize occurrence of events. The lower and upper attributes



10.3 Interpretation of TADL2 Timing Constraints in RCM 313

for the Delay constraint are also identified in Figure 10.4. Assuming the prior-
ity of the task corresponding to SWC A to be higher than that of SWC B, the
first occurrence of target matches the first occurrences of both SWC B and the
source. Whereas, the second occurrence of target is due to only SWC B. As
discussed earlier, matching occurrence of target with respect to occurrences of
the source does not matter in this constraint.

Figure 10.4: Graphical illustration of Delay constraint

10.3.3 Strong Delay Constraint
TADL2 Description

It constrains the distance between each indexed occurrence of source event
and corresponding identically indexed occurrence of target event. Matching of
target occurrence caused by the corresponding source occurrence is vital for
this constraint.

Semantics

A system behavior satisfies the specified StrongDelayConstraint SDC iff the
number of occurrences of SDC.source and SDC.target events is equal; and for
each index i, if there is an ith occurrence of SDC.source at time s these is also
an ith occurrence of SDC.target at time t such that

SDC.lower  (t- s)  SDC.upper

Interpretation in RCM

There is no existing support in RCM to specify this constraint.
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We propose the addition of a new timing constraint with the above men-
tioned semantics, denoted by S-Delay, in RCM. Since this constraint corre-
sponds to the distance between two matching occurrences of source and target
events, we associate two objects with it, namely “S-Delay Start” and “S-Delay
End” as shown in Figure 10.5. As the number of occurrences of source and tar-
get events for each index are not equal in the example in Figure 10.3, S-Delay
constraint cannot be used in place of the Delay constraint. However, it can be
used on the same system if source SWC is changed as shown in Figure 10.5.
The S-Delay Start object can be specified at the DIP of source SWC. The trig-
gering of TIP of source SWC corresponds to a new occurrence of source event.
The S-Delay End object can be specified at DOP of target SWC. The produc-
tion of a trigger at the TOP of target SWC corresponds to a new occurrence of
target event. The lower and upper values of the constraint can be specified on
S-Delay End object. These values are identified in Figure 10.6. The figure also
shows that occurrences of the target match with the occurrences of the source.

Figure 10.5: Proposed objects to specify Strong Delay constraint in RCM

Figure 10.6: Graphical illustration of Strong Delay constraint
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10.3.4 Reaction Constraint
TADL2 Description

It constrains the occurrence of a response event after the occurrence of a cor-
responding stimulus event in an event chain. Basically it specifies “how long
after the occurrence of a stimulus a corresponding response must occur” [15].
This constraint differs from the Delay constraint in a way that it can only be
applied to event chains and not to individual events.

In multi-rate systems, components in an event chain can be triggered with
independent clocks. Hence, there can be multiple response occurrences to a
single occurrence of stimulus in an event chain. In these chains, multiple re-
sponse occurrences due to each consecutive stimulus occurrence are differen-
tiated by means of colors. In order to satisfy this constraint, the earliest oc-
currence of the response with same color as that of stimulus must take place
within the limits specified by this constraint as shown in Figure 10.7.

Semantics

A system behavior satisfies the specified ReactionConstraint ReaC iff for each
occurrence s in ReaC.stimulus, there is an occurrence r in ReaC.response such
that

(r.color = s.color)
and

(r is minimal in ReaC.response with that color)
and

(minimum  (r- s)  maximum)

Figure 10.7: Graphical illustration of Reaction constraint
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Interpretation in RCM

There is an existing support in RCM to specify the reaction constraint denoted
by DataReaction (DR for short). This constraint can be specified on an event
chain, event chain segment and distributed event chain (distributed over more
than one node) by means of DR Start and DR End objects as shown in Fig-
ure 10.8. The DR End object supports the specification of maximum value by
means of a deadline parameter associated to it. However, the minimum param-
eter is considered to be zero. In order to be consistent with TADL2 Reaction
constraint, we propose to associate a parameter with DR End object to specify
non-zero minimum value of the constraint.

Figure 10.8: Existing objects in RCM to specify Reaction constraint

The analysis engines provided by Rubus-ICE support the calculations for
the corresponding Reaction delay. Consider the example of an event chain in
a multi-rate system in Figure 10.8. Figure 10.9 shows the time line when this
chain is executed (assuming each SWC corresponds to a task denoted by ⌧
at run-time). It should be noted that task B is deliberately given an offset of
15 time units to maximize the delays. This delay is equal to the time elapsed
between the previous non-overwritten release of task ⌧A (input of the chain)
and first response of task ⌧C (output of the chain) corresponding to the current
non-overwritten release of task ⌧A. Assume that a new value of the input is
available in the input buffer of task ⌧A “just after” the release of the second
instance of task ⌧A (at time 8ms). Hence, the second instance of task ⌧A “just
misses” the read of the new value from its input buffer. This new value has to
wait for the next instance of task ⌧A to travel towards the output of the chain.
Therefore, the new value is read by the third and forth instances of task ⌧A. The
first output corresponding to the new value (arriving just after 8ms) appears at
the output of the chain at 34ms . This results in the delay of 26ms as shown
in Figure 10.9. This phenomenon is more obvious in the case of distributed
embedded systems where a task in the receiving node may just miss to read
fresh signals from a message that is received from the network. The analysis
engines calculate the Reaction delay as shown in Figure 10.9 and compare it
with the specified constraint parameters.
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Figure 10.9: Demonstration of Reaction and Age delay calculations by analysis
engines

10.3.5 Age Constraint
TADL2 Description

It constrains the occurrence of a stimulus from the occurrence of the corre-
sponding response looking back through the event chain. Basically it specifies
“how long before each response a corresponding stimulus must have occurred”
[15]. In order to satisfy this constraint, the latest occurrence of the stimulus
with same color as that of the response must lie within the limits specified by
this constraint as shown in Figure 10.10. This constraint differs from the De-
lay constraint in a way that it can only be applied to event chains and not to
individual events.

Semantics

A system behavior satisfies the specified AgeConstraint AgeC iff for each oc-
currence r in AgeC.response, there is an occurrence s in AgeC.stimulus such
that

(s.color = r.color)
and

(s is maximal in AgeC.stimulus with that color)
and

(minimum  (r- s)  maximum)
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Figure 10.10: Graphical illustration of Age constraint

Interpretation in RCM

There is an existing support in RCM to specify the age constraint denoted by
DataAge. This constraint can be specified on an event chain, event chain seg-
ment and distributed event chain by means of Age Start and Age End objects
as shown in Figure 10.11. The Age End object supports the specification of
maximum value by means of a deadline parameter associated to it. However,
the minimum parameter is considered to be zero. In order to be consistent with
TADL2 Age constraint, we propose to associate a parameter with Age End
object to specify non-zero minimum value of the constraint.

The analysis engines support the calculations for the corresponding Age
delay. Consider the example of an event chain in a multi-rate system shown in
Figure 10.11. Figure 10.9 shows the time line when this chain is executed. The
analysis engines calculate the Age delay as shown in Figure 10.9 and compare
it with the specified constraint parameters.

Figure 10.11: Existing objects in RCM to specify Age constraint
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10.3.6 Repetition Constraint
TADL2 Description

It constrains the distribution of occurrences of a single event that may also
experience jitter before its activation. Jitter represents the maximum variation
in time with which the event can be delayed. The span attribute associated with
this constraint determines which repeated occurrence will be constrained.

Semantics

A system behavior satisfies the specified RepetitionConstraint RC iff the fol-
lowing two are concurrently satisfied:

1. For each subsequence X of RC.event, if X contains span + 1 occurrences
then d is the distance between the outer- and inner-most occurrences in
X and

RC.lower  d  RC.upper

2. The number of occurrences of X and RC.event events is equal; and for
each index i, if there is an ith occurrence of X at time s these is also an
ith occurrence of RC.event at time t such that

0  (t� s)  RC.jitter

If the span attribute is equal to one; jitter is equal to zero; and the upper and
lower values are equal then the behavior becomes strictly periodic. Figure
10.12 graphically illustrates this constraint.

Interpretation in RCM

In RCM, an SWC can be time triggered or event triggered by means of Trig-
ClockTT and TrigClockET objects. The TrigClockTT object generates peri-
odic trigger signals with a period specified on it. Whereas, the TrigClockET
object generates sporadic trigger signals with a minimum inter-arrival time
specified on it. These two objects are shown in Figure 10.13. There is another
object in RCM called TrigJitterPeriod that provides the allowance for jitter to
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Figure 10.12: Graphical illustration of Repetition constraint

the trigger generating objects. Figure 10.13 contains two of these objects with
jitter values equal to 1 millisecond and 100 microseconds.

The TrigClockTT or TrigClockET objects can be combined with TrigJit-
terPeriod to represent TADL2 Repetition constraint. In order to be consis-
tent with TADL2 Repetition constraint, we propose to add span parameter to
TrigClockTT and TrigClockET objects. When TrigClockTT is combined with
TrigJitterPeriod, it represents TADL2 Repetition constraint with upper attribute
equal to lower. When TrigClockET is combined with TrigJitterPeriod, it rep-
resents TADL2 Repetition constraint with lower and upper values assigned to
minimum and maximum inter-arrival time attributes respectively.

Figure 10.13: Existing objects in RCM to specify triggers and jitter
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10.3.7 Sporadic Constraint
TADL2 Description

It constrains the occurrence of a sporadic event.

Semantics

It is a special type of Repetition constraint whose Span is equal to 1; and
two subsequent activations must be separated by Minimum Inter-arrival Time
(MIT). This constraint is graphically illustrated in Figure 10.14.

Figure 10.14: Graphical illustration of Sporadic constraint

Interpretation in RCM

The TrigClockET object can be combined with TrigJitterPeriod to represent
TADL2 Sporadic constraint as shown in Figure 10.15. In order to consistently
interpret this constraint, we set the span parameter to 1 and assign MIT value to
the period associated with the TrigClockET object. The lower and upper values
can be assigned to minimum and maximum inter-arrival times. If the maximum
inter-arrival time is not specified, it can be considered equal to infinity.

10.3.8 Periodic Constraint
TADL2 Description

It constrains the occurrence of a periodic event.
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Figure 10.15: Equivalent to Sporadic constraint specified in RCM

Semantics

It is a special type of Sporadic constraint whose lower and upper attributed are
equal. These attributes are assigned the value of the period. This constraint is
graphically illustrated in Figure 10.16.

Figure 10.16: Graphical illustration of Periodic constraint

Interpretation in RCM

The TrigClockTT object can be combined with TrigJitterPeriod to represent
TADL2 SporadicConstraint as shown in Figure 10.17. In order to consistently
interpret this constraint, we set the span parameter to 1; upper and lower pa-
rameters are equal and are assigned the value of period; and assign MIT value
to the period associated with the TrigClockTT object unless specified.
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Figure 10.17: Equivalent to Periodic constraint specified in RCM

10.3.9 Pattern Constraint
TADL2 Description

It constrains the occurrences of an event that follow a certain pattern with re-
spect to some periodic temporal points.

Semantics

A system behavior satisfies the specified PatternConstraint PC iff there is a
set of times X such that the same system behavior concurrently satisfies the
following conditions:

1. PeriodicConstraint with a period equal to PC.period

2. For each PC.offset index i: for every occurrence x of X, there is an oc-
currence t of the PC.event such that

PC.offseti  (t- x)  (PC.offseti + PC.jitter)

3. If X contains two occurrences then d is the distance between the outer-
and inner-most occurrences in X and

PC.minimum  d

This constraint is graphically illustrated in Figure 10.18. In each period
of event patterns, the event occurrences happen at predefined temporal points
called offsets with respect to the starting reference point in that period. Each
occurrence of the event can be influenced by the specified jitter.
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Figure 10.18: Graphical illustration of Pattern constraint

Interpretation in RCM

This constraint is similar to the transactional model of tasks with offsets which
is inherent to the time-triggered execution in RCM. At run-time, all time trig-
gered tasks (assuming an SWC corresponds to a task at run-time) from a node
are combined into one big transaction with a period while the tasks have off-
sets and jitter. The period of the transaction is the least common multiple of
the periods of all tasks in the transaction.

We propose the addition of a new timing constraint with the above men-
tioned semantics, denoted by Pattern constraint, in RCM as shown in Figure
10.19. The parameters associated to this object are period, minimum inter-
arrival time, jitter, number of event occurrences during the period time and a
set of offsets. The analysis engines are responsible to satisfy this constraint by
comparing the specified parameters with the corresponding parameters in the
transactional model.

Figure 10.19: Proposed object in RCM to specify Pattern constraint
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10.3.10 Arbitrary Constraint
TADL2 Description

It constrains an event that occurs irregularly. It contains a set of pairs consisting
of minimum inter-arrival time (denoted by min) and maximum inter-arrival
time (denoted by max).

Semantics

A system behavior satisfies the specified ArbitraryConstraint AC iff for each
AC.min index i, the same system behavior satisfies, for each subsequence X of
AC.event, if X contains i + 1 occurrences then d is the distance between the
outer- and inner-most occurrences in X and

AC.mini  d  AC.maxi

The constraint is graphically illustrated in Figure 10.20. In the figure,
min1, min2 and min3 represent minimum inter-arrival time between/among
two, three and four subsequent occurrences of the event respectively. Similarly,
max1, max2 and max3 represent maximum inter-arrival time between/among
two, three and four subsequent occurrences of the event respectively. Although,
three pairs of min and max parameters are plotted for first two occurrences of
the event, these parameters continue in a similar fashion for the rest of occur-
rences of the event.

Interpretation in RCM

There is no existing support to specify the arbitrary constraint in RCM.
We propose the addition of a new timing constraint with the above men-

tioned semantics, denoted by Arbitrary constraint, in RCM as shown in Figure
10.21. It is able to specify any number of pairs of min and max values.

10.3.11 Execution Time Constraint
TADL2 Description

It constrains the time between activation and completion of the execution of a
function (executable entity). However, the intervals, when the execution of the
function is interrupted due to preemptions and blocking, are not considered in
this constraint.
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Figure 10.20: Graphical illustration of Arbitrary constraint

Figure 10.21: Proposed object in RCM to specify Arbitrary constraint

Semantics

A system behavior satisfies the specified ExecutionTimeConstraint ETC iff for
each occurrence x of event ETC.activate, ETi is the set of times between x and
the next ETC.completion while excluding the times due to ETC.preemtion and
ETC.blocking, and that

ETC.lower  sum of all continuous intervals in ETi  ETC.upper
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This constraint is graphically illustrated in Figure 10.22.

Figure 10.22: Graphical illustration of Execution Time constraint

Interpretation in RCM

There is an equivalent existing support in RCM to specify the execution time
constraint for an SWC. Each SWC has one or more behaviors, whereas, each
behavior represents a function. When an SWC is triggered, its state and data
(from all of its DIPs) are passed to it. The states are updated and newly calcu-
lated data is placed on the DOPs while a trigger is produced at the TOP upon
completion of the behavior. RCM supports the specification of three types of
execution times on the behavior of SWC namely Best Case Execution Time
(BCET), Worst Case Execution Time (WCET) and Average Case Execution
Time (ACET) as shown in Figure 10.23. In order to unambiguously interpret
this constraint in RCM, the lower and upper values of this constraint (see Fig-
ure 10.22) can be assigned to the BCET and WCET parameters respectively in
Figure 10.23.

10.3.12 Synchronization Constraint

TADL2 Description

It constrains the closeness of the occurrences of a group of events.
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Figure 10.23: Equivalent to Execution Time constraint specified in RCM

Semantics

A system behavior satisfies the specified SynchronizationConstraint on a given
set of events and given the occurrence of any event in this set, then the rest
of the events in the set must occur at least once within a certain time window
called tolerance.

This constraint is graphically illustrated in Figure 10.24. It is applied on
the two events data A and data B. In this constraint, more than one instance of
the events may exist in a time window provided the above conditions are met.
Moreover, the windows may overlap and share occurrences of the events.

Figure 10.24: Graphical illustration of Synchronization constraint

Interpretation in RCM

There is an existing support in RCM to synchronize multiple triggers by means
of a synchronization object denoted by TrigSync as shown in Figure 10.25.
This object has two or more TIPs and only one TOP. The synchronization con-
dition can use either AND or OR semantics. In the case of AND condition, the
TOP is triggered only when trigger signals have arrived at all TIPs. Whereas,
in the case of OR condition, the TOP is triggered as soon as there is a trig-
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ger signal at one of the TIPs. In order to make it consistent with the TADL2
Synchronization constraint, we add the tolerance parameter to this object. The
analysis engine must ensure that this constraint is satisfied within the tolerance
window.

Figure 10.25: Synchronization constraint in RCM

10.3.13 Strong Synchronization Constraint
TADL2 Description

It constrains the closeness of the occurrences of a group of events.

Semantics

The semantics of this constraint differ from the SynchronizationConstraint in
a way that the occurrences of the events in a window must have same indices.
Therefore, more than one instance of the events cannot exist in a time window.
Moreover, the windows cannot overlap and share occurrences of the events.

This constraint is graphically illustrated in Figure 10.26. It is applied on
the two events data A and data B.

Figure 10.26: Graphical illustration of Strong Synchronization constraint
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Interpretation in RCM

There is an existing support in RCM to synchronize multiple triggers by means
of a synchronization object denoted by TrigSync. In order to differentiate the
strong synchronization constraint from this object, we propose to add a similar
object denoted by S-TrigSync as shown in Figure 10.27. This object has two
or more TIPs and only one TOP. The synchronization condition can use either
AND or OR semantics. In order to make it consistent with the TADL2 Strong
Synchronization constraint, we add the tolerance parameter to this object.

Figure 10.27: Proposed object in RCM to specify Strong Synchronization con-
straint

10.3.14 Output Synchronization Constraint
TADL2 Description

It constrains the closeness of the occurrences of responses to a certain stimulus.
Basically, it defines how far apart the responses to a certain stimulus can occur.
This constraint differs from the SynchronizationConstraint in a way that it can
only be applied to a set of event chains such that there are multiple responses
to a single stimulus as shown in Figure 10.28 and Figure 10.29. The tolerance
parameter constrains the latest of these response occurrences for each chain.
The system in Figure 10.28 is modeled with two event chains. They have
common stimulus but different responses denoted by response1 and response2.

Semantics

A system behavior satisfies the specified OutputSynchronizationConstraint OSC
iff for each occurrence s in OSC.stimulus, there is a time t such that for each
index i, there is an occurrence r in OSC.responsei such that

(r.color = s.color)
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Figure 10.28: Usage of Output synchronization constraint at the design level

Figure 10.29: Graphical illustration of Output Synchronization constraint

and
(r is minimal in OSC.responsei with that color)

and
(0  (r- t)  OSC.tolerance)

Interpretation in RCM

There is an existing support in RCM to synchronize multiple triggers by using
TrigSync object. We propose to add a similar object, denoted by Out-TrigSync,
in RCM. This object has two or more TIPs and only one TOP. The synchro-
nization condition can use either AND or OR semantics. In order to make it
consistent with the TADL2 Output Synchronization constraint, we add the tol-
erance parameter to it. The analysis engine must ensure that this constraint is
satisfied within the tolerance window. The example in Figure 10.30 depicts a
single rate system; hence there cannot be more than one occurrences of each
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response corresponding to single occurrence of the stimulus. However, Out-
TrigSync is equally applicable to multi-rate systems where the components are
triggered with independent clocks.

Figure 10.30: Proposed object to specify Output Synchronization constraint in
RCM

10.3.15 Input Synchronization Constraint
TADL2 Description

It constrains the closeness of the occurrences of stimuli corresponding to a
certain response. Basically, it defines how far apart the stimuli corresponding to
a certain response can occur. This constraint differs from the Synchronization
constraint in a way that it can only be applied to a set of event chains such
that there are multiple stimuli and a single corresponding response as shown in
Figure 10.31 and Figure 10.32. The tolerance parameter constrains the latest
of these stimuli occurrences for each chain. This means that once one of the
stimuli has been acquired, the others should be acquired within a time window
equal to the tolerance parameter. The system in Figure 10.31 is modeled with
two event chains. They are initiated by separate stimuli but have one common
response.

Figure 10.31: Usage of Input synchronization constraint at the design level
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Figure 10.32: Graphical illustration of Input Synchronization constraint

Semantics

A system behavior satisfies the specified InputSynchronizationConstraint ISC
iff for each occurrence r in ISC.response, there is a time t such that for each
index i, there is an occurrence s in ISC.stimulusi such that

(r.color = s.color)
and

(s is minimal in ISC.stimulusi with that color)
and

(0  (s- t)  ISC.tolerance)

Interpretation in RCM

There is an existing support in RCM to synchronize multiple triggers by using
TrigSync object. We propose to add a similar object, denoted by In-TrigSync,
in RCM. This object has two or more TIPs and only one TOP. The synchro-
nization condition can use either AND or OR semantics. In order to make
it consistent with the TADL2 Input Synchronization constraint, we add the
tolerance parameter to it. The example in Figure 10.33 depicts a single rate
system; hence there cannot be more than one occurrences of each response
corresponding to single occurrence of the stimulus. However, In-TrigSync is
equally applicable to multi-rate systems where the components are triggered
with independent clocks.
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Figure 10.33: Proposed object to specify Input Synchronization constraint in
RCM

10.4 Discussion
The models and approaches that are used at the implementation level such
as RCM and AUTOSAR support the extraction of end-to-end timing models.
However, the modeling approaches used at the design or higher levels such as
EAST-ADL, TIMMO and TADL2 do not support complete and unambiguous
extraction of the timing models. Due to unavailability of the end-to-end timing
model at higher abstraction levels, it may be impossible to perform the timing
analysis in some cases.

We focus on the design level within the context of this problem. We con-
sider the modeling support of EAST-ADL, TIMMO and TADL2 at the design
level. Whereas, the modeling support of RCM is considered at the implemen-
tation level. We discuss some of the challenges that hinder the extraction of
the end-to-end timing model. We also propose guidelines and solutions to deal
with these challenges. We also discuss a proposal for implementation of the
solutions in RCM.

10.4.1 Extraction of Control and Data Paths
Unambiguous extraction of control (trigger) and data paths from the system
are vital for performing its end-to-end timing analysis. A trigger path captures
the flow of triggers along a chain of components (tasks at run-time). For ex-
ample, trigger path of the chain shown in Figure 10.34(c) can be expressed as
{{SWC A! SWC B}, {SWC C}} because SWC B is triggered by SWC A,
while SWC C is triggered independently. Similarly, trigger paths of the chains
shown in Figure 10.34(a) and Figure 10.34(b) can be expressed as {{SWC A
! SWC B! SWC C} and {{SWC A}, {SWC B}, {SWC C}} respectively.

One of the main challenges in the extraction of the timing model at the de-
sign level is the lack of clear separation between the trigger and data paths. At
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the implementation level, e.g. in RCM, these paths are clearly separated from
each other by means of trigger and data ports as shown in Figure 10.35(b). A
TOP of an SWC can only be connected to the TIP(s) of other SWC(s). Simi-
larly, a DOP of an SWC can only be connected to the DIP(s) of other SWC(s).
Hence, the trigger and data paths can be clearly identified.

Sensor
Input SWC_A SWC_B SWC_C

10 ms 15 ms

Data sink

Trigger Merge

10 ms 10 ms

Data 
sink

Sensor 
Input

SWC_A SWC_B SWC_C

(c)

10 ms 10 ms 10 ms
SWC_A SWC_CSWC_B

Data 
sink

Sensor 
Input (b)

10 ms SWC_A SWC_CSWC_B

Data 
sink

Sensor 
Input (a)

Figure 10.34: Example of (a) Trigger chain, (b) Data chain, and (c) Mixed
chain.

On the other hand, at the design level, the components communicate via
flow ports as shown in Figure 10.35(a). A flow port is an EAST-ADL ob-
ject that is used to transfer data between components. It is single buffer, non-
consumable and over-writable. Without any explicit information, it can be
interpreted as a data or trigger port at the implementation level. There is no
support to specify explicit trigger paths at the design level. Moreover, a com-
ponent can be triggered via specified timing constraints on event, modes, or
internal behavior of the component. The two types of flows should be clearly
and separately captured in the end-to-end timing model because the type of the
timing analysis depends upon it. For example, it is not meaningful to perform
end-to-end delay analysis on a trigger chain shown in Figure 10.35(a) [5].

Figure 10.35: Model of the SWC at (a) design level, (b) implementation level

In order to clearly identify the trigger and data paths at the design level, we
make some assumptions.

1. We assume a one-to-one mapping between each design- and implemen-
tation level component. Although, a design-level component can be
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mapped to more than one implementation-level components; our as-
sumption is based on common practice that is used in the industry, espe-
cially in the segment of construction-equipment vehicles domain.

2. If a timing constraint is specified on the flow port, we assume the com-
ponent is triggered independently. The type of triggering is judged by
the type of specified constraint.

3. If Age or Reaction constraint is specified on a chain; and no other con-
straint is specified, we assume that the first and last components in the
chain are triggered independently. This is because more than one in-
dependent trigger in a chain makes it either data or mixed chain. It is
meaningful to specify the Age and Reaction constraints only on data and
mixed chains.

4. We assume that a flow port is implicitly triggered at the arrival of data. If
there are more than one flow ports in a component, arrival of data at each
port produces a trigger. For example, the component in Figure 10.35(a)
may receive three individual triggers when data is separately received
at three input flow ports. The TrigSync object in RCM can be used
to deal with multiple implicit triggers (corresponding to multiple flow
ports) at the implementation level. This object gets the multiple trig-
gers at input, synchronizes them, and produces a single trigger that can
be used to trigger SWC (corresponding to the design-level component)
at the implementation level. Figure 10.36 shows implementation-level
equivalent of design-level component with three flow ports as shown in
Figure 10.35(a).

Figure 10.36: Implementation-level equivalent of design-level component in
Figure 10.35(a)
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10.4.2 Annotation and Extraction of Timing Parameters

The timing information expressed with the models and tools used at the design
level is not enough to extract the end-to-end timing model. For example, one
of the EAST-ADL based tools8 used at the design and higher levels is able
to specify only one timing parameter on components, i.e., the period of the
component. Clearly, this information is not enough to perform the end-to-end
timing analysis. TADL2 can specify timing constraints and properties at the
design level in EAST-ADL and AUTOSAR based development. However, it
lacks the expression of some timing parameters, e.g., priority and transmission
type which are needed to perform the end-to-end timing analysis. We already
discussed the interpretation of TADL2 timing constraints in RCM in the previ-
ous section.

We assume that the execution order of design-level components in a chain
is specified, otherwise, we make implicit assumption about it. That is, each
component is assumed to execute only after successful execution of preced-
ing component in the chain, unless specified otherwise. This means, a data
provider component is assumed to be always executed before the data receiver
component. Since, this assumption fixes the execution order, it is safe to as-
sume the priorities of the components are equal within the chain. If worst-,
best- and average-case execution times are not available at the design level,
they can be estimated at the implementation level either using estimations by
the experts or reusing from other projects.

10.4.3 Identification of Chain Types

Since, control and data flows are clearly separated at the implementation levels,
e.g., in RCM, the chain types can be easily identified as shown in Figure 10.34.
Due to no clear separation between these flows at the design level, virtually it is
not possible to identify the type of a chain. At the design level, a chain can be
interpreted as a trigger or data chain. Without any explicit trigger information,
the end-to-end timing analysis cannot be performed. This is because trigger
chains are analyzed using end-to-end response-time analysis, whereas, data
and mixed chains are analyzed using both end-to-end response-time and delay
analyses [5]. If there are no constraints specified on a chain, we assume it to
be a trigger chain. Otherwise, it can be considered as a data or a mixed chain
depending upon how the constraints are specified.

8For IP protection, the name of the tool is not specified.
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10.4.4 Information Duplication and Ambiguity
At the implementation level, for example, RCM does not allow illogical oper-
ations such as specifying more than one clock on the same component with-
out any synchronization or merge operation. However, these restrictions are
not present at the design level, e.g., more than one execution time or peri-
odic constraint can be specified on a single component in EAST-ADL using
TADL2. Similarly, if data age and reaction constraints are wrongly specified
then the development environment does not complain about it. As a result, the
extracted timing model may have redundant or erroneous information. Infor-
mation duplication can lead to inconsistency in the timing model. However,
at the implementation level, Rubus-ICE complains about these inconsistencies
and ambiguities. The analysis engines calculate delay and reaction constraints
only when they are specified on data and mixed chains.

10.4.5 Conclusion
There can be two different approaches to deal with these challenges. The first
approach is to extend and improve the design-level models, languages and tools
in such a way that the timing models can be completely and unambiguously
extracted. Moreover, the extracted models are general enough to be operated
by different models and tools. The only problem with this approach is that it
requires strong collaboration among a number of tool suppliers and stake hold-
ers. This, in turn, raises other types of challenges and limitations. The second
approach is to develop the execution-level modeling technology-dependent in-
terpretation of the design level. For example, developing Rubus interpretation
of EAST-ADL (this is an ongoing work). It is important to note that this inter-
pretation can be a subset of the full expressiveness of EAST-ADL. No doubt,
this may result in a number of these interpretations by several other model-
ing technologies. This can be a good solution as long as these interpretations
support unambiguous extraction of end-to-end timing models. We propose to
implement the second option.

10.5 Summary and Future Work
We extended our previous method to support the extraction of end-to-end tim-
ing models at a higher level of abstraction. The purpose is to support the end-
to-end timing analysis at a higher abstraction level and early phases during
the development of component-based vehicular distributed embedded systems.
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At the higher level, the method extracts timing information from models of
the systems that are developed with EAST-ADL and TADL2 languages using
TIMMO methodology. Whereas, at the lower level, it considers Rubus Com-
ponent Model (RCM) to extract the timing information that cannot be clearly
specified at the higher level. As part of this method, we provided an inter-
pretation of TADL2 timing constraints in RCM. We also proposed extensions
in RCM for unambiguous transformation of these constraints. Moreover, we
discussed the challenges and issues that are faced during the extraction of end-
to-end timing information at a higher abstraction level. Further, we presented
guidelines and solutions to deal with these challenges. These challenges and
corresponding solutions may be equally applicable for other modeling tech-
nologies suitable for these abstraction levels.

In the future we plan to conduct an industrial case study to provide a proof
of concept for the end-to-end timing model extraction method at various ab-
straction levels. In TADL2, time can be expressed in multiple time bases, e.g.,
chronometric time; angular time; revolution per minute; and time expressed in
distance or rotation of crank shaft. Furthermore, time can also be expressed
as algebraic expressions and parameterized expressions between different time
bases using the Symbolic Timing Expression [15]. It can be an interesting fu-
ture work to provide support for timing expressions based on these multiple
time bases in RCM.
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[32] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Extraction of end-
to-end timing model from component-based distributed real-time embed-
ded systems. In Time Analysis and Model-Based Design, from Functional
Models to Distributed Deployments (TiMoBD) workshop located at Em-
bedded Systems Week, pages 1–6. Springer, Oct. 2011.








