
Translating Timing Constraints during Vehicular
Distributed Embedded Systems Development

Saad Mubeen∗†, Mikael Sjödin∗, and Jukka Mäki-Turja∗†

∗Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Sweden
†Arcticus Systems AB, Järfälla, Sweden

{saad.mubeen, mikael.sjodin, jukka.maki-turja}@mdh.se

Abstract. The end-to-end response-time and delay analysis can verify
timing requirements specified on vehicular distributed embedded systems
without performing exhaustive testing. For this purpose, the timing re-
quirements and constraints should be unambiguously translated among
several models, methodologies and tools that are used at various abstrac-
tion levels and phases during the industrial development of these systems.
Within this context, we translate timing constraints that are specified at
higher abstraction levels using the Timing Augmented Description Lan-
guage (TADL2) to an industrial model the Rubus Component Model
(RCM). We also discuss corresponding extensions in RCM and perform
a case study to validate our approach.

Keywords: Distributed embedded systems; component-based develop-
ment; end-to-end timing analysis.

1 Introduction

With the recent advancement in computer controlled functionality, the software
has immensely increased in size and complexity in vehicular embedded systems.
For example, the embedded software in a modern premium car may consist of as
many as 100 million lines of code that may occupy up to 1 GB of memory. This
software may be realized by more than 2000 software functions. Moreover, it may
be distributed over 100 Electronic Control Units (ECUs) [1, 2]. The model- and
component-based development appears as a promising approach to deal with the
complexity of these systems [3, 4]. This approach uses the principles of Model-
Based Software Engineering (MBSE) and Component-Based Software Engineer-
ing (CBSE). It supports the use of models to describe functions, structures and
other design artifacts. It also supports the development of large software sys-
tems by reuse and integration of software components and their architectures.
Hence, it raises the level of abstraction for software development. The model- and
component-based development of software architectures for vehicular embedded
real-time systems has had a surge the last few years [5–8].

1.1 Objective and Paper Contribution

There are a number of models, methodologies and tools that are used at various
abstraction levels1 and phases during the development of vehicular distributed

1 An abstraction level provides a complete definition of the system for a given purpose.



Saad Mubeen∗†, Mikael Sjödin∗, and Jukka Mäki-Turja∗†

embedded systems. Intuitively, timing requirements and constraints can be spec-
ified using one modeling technology, whereas the detailed end-to-end timing
analysis can be performed using the tools accompanying another. The end-to-
end response-time and delay analyses [9–11] is one of the predominant techniques
used in the industry to provide guarantees that the distributed embedded system
is going to meet its deadlines when executed. In order to support the analysis, the
timing information should be unambiguously translated among several modeling
approaches, languages and tools.

Within this context, we consider TIMMO methodology [12] at higher abstrac-
tion levels and an existing industrial model the Rubus Component Model (RCM)
[13] at the lower level. The TIMMO methodology makes use of EAST-ADL [14]
for modeling of software architecture and Timing Augmented Description Lan-
guage (TADL2) [15] for annotation of timing constraints. TADL2 is intended
to provide AUTOSAR with a timing model. At the lower abstraction level, we
consider modeling and timing analysis support of RCM and accompanying tool
suite Rubus-ICE [16]. We provide translation of those timing constraints, from
TADL2 to RCM, that impose restrictions on end-to-end delays. We discuss cor-
responding extensions in RCM to carry out these translations. We also discuss
the semantics and viewpoint of analysis engines about these constraints. In order
to provide a proof of concept, we conduct a case study.

We choose RCM instead of AUTOSAR at the lower abstraction level because
AUTOSAR lacks a complete timing model, e.g., control flow is not specified un-
ambiguously. This work is first step towards a bigger goal, i.e., development of a
seamless tool-chain for model-based development of vehicular real-time systems;
and support for inter-operating various modeling and analysis tools [8].

2 Background and Related Works

There are several frameworks that support timing modeling such as AADL [17],
SCADE [18], MARTE [19], MAST [20], SysML, CHESS [21, 22]. However, the
focus in the vehicle industry today is on EAST-ADL and AUTOSAR; RCM is
also being used. In this work, we focus only on the vehicular domain.

2.1 Abstraction Levels Considered by Various Methodologies

Various models and methodologies used for the development of vehicular dis-
tributed embedded systems [14, 15, 5, 23] consider four abstraction levels shown
in Fig. 1. At the vehicle level, features and requirements on the end-to-end func-
tionality of the vehicle are captured in an informal and solution-independent
way. At the analysis level, the requirements are formally captured in allocation-
independent way. Functionality of the system is defined based on the require-
ments and features without implementation details. A high-level analysis may
also be performed for functional verification. The artifacts at this level are devel-
oped in an implementation-independent way. These artifacts also contain mid-
dleware abstraction, hardware architecture and software functions to hardware
allocation. The implementation level contains software-based implementation of
the system functionality. The EAST-ADL methodology defines a system at this
level in terms of AUTOSAR elements. However, in this work, our focus is on
using RCM. Hence, the artifact at this level consists of software architecture of
the system defined in terms of Rubus components and their interactions. In this
work, we focus on the design and implementation levels.



Translating Timing Constraints during Vehicular Distributed Embedded

Implementation 
level

Design level

Analysis level

End-to-end 
level

Rubus-ICE

SE Tool

Vehicle or End-to-end level

Rubus Component Model 
and Rubus-ICE

EAST-ADL and TADL,
SE ToolAnalysis level

Design level

Implementation level

Vehicle or End-to-end level

RCM and 
Rubus-ICE

EAST-ADL,
TADL,

SE Tool
Analysis level

Design level

Implementation level

Vehicle or End-to-end level

AUTOSAR, RCM, 
Rubus-ICE

EA
ST

-A
D

L,
TI

M
M

O
, T

A
D

L

Analysis level

Design level

Implementation level

TA
D

L2
 T

im
in

g 
Sp

ec
.

Abstraction 
Levels

Methodologies, Models 
and Languages

Fig. 1. Abstraction levels considered during the development

2.2 Models and Methodologies in the Vehicular Domain

Rubus Component Model (RCM) and Rubus-ICE Rubus [24] is a col-
lection of methods and tools for model- and component-based development of
dependable embedded real-time systems. It is developed by Arcticus Systems 2 in
close collaboration with several industrial partners. Rubus is today mainly used
for the development of control functionality in vehicles by several international
companies, e.g., BAE Systems, Volvo Construction Equipment, Knorr-bremse,
Mecel and Hoerbiger. The Rubus concept is based around RCM and its develop-
ment environment Rubus-ICE which includes modeling tools, code generators,
analysis tools and run-time infrastructure. The overall goal of Rubus is to be
aggressively resource efficient and to provide means for developing predictable,
timing analyzable and synthesizable control functions in resource-constrained
embedded systems. The timing analysis supported by Rubus-ICE includes dis-
tributed end-to-end response-time and delay analyses [10]. Rubus methods and
tools mostly focus at the implementation level in Fig. 1. The lowest-level hier-
archical component in RCM is called Software Circuit (SWC). Its purpose is to
encapsulate basic functions. Fig. 2 shows an example of a software architecture
in RCM composed of SWCs; interconnections between SWCs; and their interac-
tions with external events and actuators with regard to data and triggering.

Critical Instant (tc)

3210 5 104 9876
t

1911 12 13 14 15 16 17 18 20

2 m1

3210 5 104 9876
t

1911 12 13 14 15 16 17 18

m1

20

m1
S m1

S

Data Port

Out Software Circuit (OSWC)

Signals to be sent in one Frame

τD

τC

0

0

τC

0

τB

τA

0

Clock
Input 

trigger port
Output 

trigger port

Input data port Output data portSoftware Circuit
Actuation 

signalSensor signal

Trigger 
terminator

Fig. 2. Example of software architecture of a system modeled in RCM.

AUTOSAR AUTOSAR [25] is an industrial initiative to provide standardized
software architecture for the development of embedded software. It is used at the
implementation level in Fig. 1. It describes software development at a higher level
of abstraction compared to RCM. The timing model in AUTOSAR is introduced
fairly recently compared to RCM. AUTOSAR is more focussed on the functional
and structural abstractions, hiding the implementation details about execution
and communication. AUTOSAR hides the details that RCM highlights.

2 http://www.arcticus-systems.com



Saad Mubeen∗†, Mikael Sjödin∗, and Jukka Mäki-Turja∗†

EAST-ADL, MARTE, TIMMO, TIMMO-2-USE, TADL and TADL2
TIMMO [6] is an initiative to provide AUTOSAR with a timing model [26]. It is
based on a methodology and TADL [23] language which expresses timing require-
ments and constraints. It is inspired by MARTE [19] which is a UML profile for
model-driven development of real-time and embedded systems. TIMMO method-
ology uses EAST-ADL language [14] for structural modeling and AUTOSAR for
the implementation. TIMMO and EAST-ADL focus on the top three levels in
Fig. 1. In TIMMO-2-USE project [7], a major redefinition of TADL is done and
released in TADL2 specification [15]. TADL2 can specify timing information at
all the abstraction levels. Most of these initiatives lack the support on expressing
low-level details at the higher levels such as linking information in distributed
chains. These details are necessary to extract the end-to-end timing model from
the architecture. Furthermore, there is no support on how to extract this infor-
mation from the model or perform timing analysis. In our view, the end-to-end
timing model includes enough information from the systems to be able to per-
form certain type of timing analysis, e.g., end-to-end response-time analysis.

Previous Works In [27], we presented a method to automatically extract the
end-to-end timing models only at the implementation level. In [28], we extended
our previous method to raise the models extraction at the design level3. In [29],
we discussed the basic idea for translation of timing constraints.

3 Interpretation of TADL2 Timing Constraints in RCM

Timing requirements in TADL2 are modeled by means of timing constraints
specified on events and event chains. We discuss those timing constraints that
impose restrictions on the end-to-end delays, i.e., reaction and age constraints in
Subsections 3.1 and 3.2 respectively. In each subsection, first we discuss semantics
of the constraint according to TADL2 specification [15]. Then we provide its
translation in RCM and propose corresponding extensions in RCM. Finally, we
discuss it with the view point of analysis engines.

Definitions and Notations An event represents a distinct form of state change
in a running system. It is used to trigger an analysis- or design-level function.
When the function is triggered, input data is consumed followed by its processing,
transformation and finally production at the output. An event takes place at
distinct points in time which are called its occurrences. The occurrences of an
event are denoted, e.g., by attributes s and r. These attributes are basically
time points showing when instances of the event occur. They can be added,
subtracted and compared with each other. A constraint often puts limits on the
occurrences of events. These limits can be specified in terms of time distances
using minimum and maximum attributes. The occurrences of the events are
required to lie within these limits. We use object-oriented notation to define the
attributes of a constraint, e.g., TC.response refers to the response event on which
the timing constraint TC is specified. In multi-rate systems (see Fig. 3 and 4),
components in an event chain can be triggered with independent clocks. Hence,
there can be multiple response occurrences to a single occurrence of stimulus

3 This is an unpublished work and is provided as a technical report for referencing.



Translating Timing Constraints during Vehicular Distributed Embedded

in an event chain. In these chains, multiple response occurrences due to each
consecutive stimulus occurrence are differentiated by means of colors.

3.1 Reaction Constraint

TADL2 Description It constrains the occurrence of a response event after the
occurrence of a corresponding stimulus event in an event chain. It specifies “how
long after the occurrence of a stimulus a corresponding response must occur”
[15]. Both reaction and age constraints differ from the delay constraint in a way
that they can only be applied to event chains and not to individual events. In
order to satisfy the reaction constraint, the earliest occurrence of the response
with same color as that of stimulus must take place within the limits specified
by this constraint as shown in Fig. 3(a).

Semantics A system behavior satisfies the specified Reaction constraint de-
noted by ReaC if and only if for each occurrence s of the event ReaC.stimulus,
there is an occurrence r of the event ReaC.response such that

(r.color = s.color) and (r is minimal in ReaC.response with that color)
and

(minimum ≤ (r- s) ≤ maximum)

minimum

time 

re
sp

o
n
se

time 

st
im

u
lu

s

maximum

minimum

maximum

time 

re
sp

o
n
se

time 

st
im

u
lu

s

minimum

maximum

minimum

maximum

(a) (b)

Fig. 3. Graphical illustration of (a) Reaction constraint, (b) Age constraint

Interpretation in RCM We introduce a new modeling entity in RCM de-
noted by DataReaction (DR for short) to specify the reaction constraint. This
constraint can be specified on an event chain, event chain segment and dis-
tributed event chain (distributed over more than one node) by means of DR
Start and DR End objects as shown in Fig. 4. The DR End object supports the
specification of maximum” attribute by means of a deadline parameter associ-
ated to it. However, the minimum parameter is zero. In order to be consistent
with TADL2 Reaction constraint, we propose to associate a parameter with DR
End object to specify a non-zero minimum value of the constraint.

minimum

time 

re
sp

o
n
se

time 

st
im

u
lu

s

maximum

minimum

maximum

time 

re
sp

o
n
se

time 

st
im

u
lu

s

minimum

maximum

minimum

maximum

(a) (b)

Fig. 4. Modeling objects in RCM to specify Reaction and Age constraint



Saad Mubeen∗†, Mikael Sjödin∗, and Jukka Mäki-Turja∗†

Interpretation by the Analysis Engines The analysis engines provided by
Rubus-ICE support calculations for the corresponding Reaction delay. Consider
the example of an event chain in a multi-rate system in Fig. 4. Fig. 5 shows a
time line depicting the execution of this chain (assuming each SWC corresponds
to a task denoted by τ at run-time). τB is deliberately given an offset of 15 time
units to maximize the delays. This delay is equal to the time elapsed between the
previous non-overwritten release of task τA (input of the chain) and first response
of task τC (output of the chain) corresponding to the current non-overwritten
release of task τA. Assume that a new value of the input is available in the input
buffer of task τA “just after” the release of the second instance of task τA (at
time 8ms). Hence, the second instance of task τA “just misses” the read of the
new value from its input buffer. This new value has to wait for the next instance
of task τA to travel towards the output of the chain. Therefore, the new value is
read by the third and forth instances of task τA. The first output corresponding
to the new value (arriving just after 8ms) appears at the output of the chain at
34ms. This results in the delay of 26ms as shown in Fig. 5. This phenomenon
is more obvious in the case of distributed embedded systems where a task in
the receiving node may just miss to read fresh signals from a message that is
received from the network. The analysis engines calculate the Reaction delay as
shown in Fig. 5 and compare it with the specified constraint parameters. We
refer the reader to [10] for further details about the analysis.

5 10 15 20 250 30 40 45 5035

5 10 15 20 250 30 40 45 5035

5 10 15 20 25

τC
0 30 40 45 5035

Age delay = 22
Reaction delay = 26

τB

τA

Fig. 5. Demonstration of Reaction and Age delay calculations by analysis engines

3.2 Age Constraint

TADL2 Description It constrains the occurrence of a stimulus from the occur-
rence of corresponding response looking back through the event chain. Basically
it specifies “how long before each response a corresponding stimulus must have
occurred” [15]. In order to satisfy this constraint, the latest occurrence of the
stimulus with same color as that of the response must lie within the limits spec-
ified by this constraint as shown in Fig. 3(b).

Semantics A system behavior satisfies the specified Age constraint denoted by
AgeC if and only if for each occurrence r of the event AgeC.response, there is
an occurrence s of the event AgeC.stimulus such that

(s.color = r.color) and (s is maximal in AgeC.stimulus with that color)
and

(minimum ≤ (r- s) ≤ maximum)



Translating Timing Constraints during Vehicular Distributed Embedded

Interpretation in RCM We introduce a new modeling entity in RCM denoted
by DataAge. This constraint can be specified on an event chain, event chain
segment and distributed event chain by means of Age Start and Age End objects
as shown in Fig. 4. The Age End object supports the specification of “maximum”
attribute by means of a deadline parameter associated to it. In order to be
consistent with TADL2 Age constraint, we propose to associate a parameter
with Age End object to specify non-zero minimum value of the constraint.

Interpretation by the Analysis Engines The analysis engines support the
calculations for the corresponding Age delay. Consider the example of an event
chain in a multi-rate system shown in Fig. 4. Fig. 5 shows the time line when
this chain is executed. The analysis engines calculate the Age delay as shown in
Fig. 5 and compare it with the specified constraint parameters.

4 Automotive-application case study
In order to show the applicability of our approach, we conduct the Steer-By-
Wire (SBW) system case study. It is an automotive feature that substitutes
most of the mechanical and hydraulic components with electronic components
in the steering system of a vehicle. A partial architecture of the SBW system is
shown in Fig. 6(a). There are two ECUs (rest of the ECUs are not shown for
simplicity) that are connected to a single CAN network. The Steering Control
(SC) ECU receives inputs from steering angle, steering torque and vehicle speed
sensors. It also receives a CAN message from the Wheel Control (WC) ECU.
It sends two CAN messages: one caries steer angle and torque signals; while
the other carries feedback signals. Based on all the inputs, it calculates the
feedback steering torque and sends it to the feedback torque actuator which is
responsible for producing the turning effect of the steering. Similarly, the WC
ECU receives inputs from wheel angle and torque sensors. Depending upon these
signals and CAN messages received from the SC ECU, it calculates the wheel
torque and produces actuation signals for the wheel actuators. It also sends one
CAN message carrying wheel torque signal.

(a) (b)

Fig. 6. Partial architecture of the steer-by-wire system

The internal software architecture of the two ECUs is modeled with EAST-
ADL using EAST-ADLrubusDesigner4 as shown in Fig. 7. There are two timing
constraints namely age and reaction that are specified using TADL2. They put a
restriction of 50 ms on the time between the production of steer angle and torque
by Steer Controller component and their consumption by Wheel Controller com-
ponent. These constraints are internally referenced to the components on which
they are specified. For convenience, the start and end points for these constraints
are identified using the solid-line arrow as shown in Fig. 7.

4 http://www.arcticus-systems.com



Saad Mubeen∗†, Mikael Sjödin∗, and Jukka Mäki-Turja∗†

The top level model of the SBW system consisting of models of the two
ECUs, a CAN bus and CAN messages in RCM is shown in Fig. 6(b). Whereas,
the internal software component architectures of SC and WC ECUs translated
from the EAST-ADL model in Fig. 7 to RCM are shown in Fig. 8 and Fig. 9
respectively. The clocks corresponding to trigger flows are translated from the
periodic constraints in TADL2 that are specified on the software components
in Fig. 7. We use a one-to-one mapping between the software component (both
functional as well as sensor and actuator components) in EAST-ADL and soft-
ware circuit in RCM. The specified TADL2 timing constraints in Fig. 7 are also
translated to RCM timing constraints as shown in Fig. 8 and Fig. 9.

Age and Reaction ConstraintsSoftware 
component

Sensor 
component

Fig. 7. Software architecture of SBW system modeled with EAST-ADL and TADL2

The run-time allocation of the SBW system results in three distributed chains
(distributed over more than one node) and thirteen tasks. The analysis engines
calculate the age and reaction delays for the distributed chains on which the tim-
ing constraints are specified. The calculated age and reaction delays are 30320 µs
and 40320 µs respectively. A comparison between the specified constraints and
calculated delays shows the system satisfies the specified timing constraints.

Fig. 8. Translated software architecture of SC sub-system in RCM

5 Conclusion

We discussed translation of timing constraints that are specified at higher ab-
straction levels using the TADL2 language to an existing industrial component
model RCM. These translations along with our analysis engines enable the appli-
cation of end-to-end response-time and delay analysis at a higher level of abstrac-
tion and early phases during the development of vehicular distributed embedded
systems. In order to show the applicability of our approach, we conducted an
automotive-application case study. We modeled the software architecture using



Translating Timing Constraints during Vehicular Distributed Embedded

EAST-ADL and specified the age and reaction time constraints using TADL2.
The software architecture and specified timing constraints were translated into
the corresponding models in RCM. The analysis engines automatically analyzed
end-to-end delays for the chains on which timing constraints were specified. Cur-
rently the translations of timing constraints and corresponding timing analysis
is done automatically, however, the conversion of software architecture from the
design model (using EAST-ADL) to the implementation model (using RCM) is
done manually. In the future, we plan to support automatic conversion of the
design-level models to the implementation-level models. Moreover, we plan to
implement and validate automatic translations of other timing constraints from
TADL2 to RCM including synchronization, repetition and pattern constraints.

Fig. 9. Translated software architecture of WC sub-system in RCM

Acknowledgement

This work is supported by the Swedish Knowledge Foundation (KKS) and Swedish
Research Council (VR) within the project FEMMVA and SynthSoft. We thank
our industrial partners Arcticus Systems and Volvo CE, Sweden.

References

1. R. N. Charette, “This Car Runs on Code,” Spectrum, IEEE, vol. 46, no. 2, 2009,
http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code.

2. M. Broy, I. Kruger, A. Pretschner, and C. Salzmann, “Engineering automotive
software,” Proceedings of the IEEE, vol. 95, no. 2, pp. 356 –373, feb. 2007.

3. T. A. Henzinger and J. Sifakis, “The Embedded Systems Design Challenge,” in
Proceedings of the 14th International Symposium on Formal Methods (FM), Lecture
Notes in Computer Science. Springer, 2006, pp. 1–15.

4. I. Crnkovic and M. Larsson, Building Reliable Component-Based Software Systems.
Norwood, MA, USA: Artech House, Inc., 2002.

5. “AUTOSAR Techincal Overview, Release 4.1, Rev. 2, Ver. 1.1.0., The AUTOSAR
Consortium, Oct., 2013,” http://autosar.org.

6. “TIMMO Methodology, Ver. 2,” TIMMO (TIMing MOdel), Deliverable 7, Oct.
2009, The TIMMO Consortium.

7. “TIMMO-2-USE,” http://www.timmo-2-use.org/.



Saad Mubeen∗†, Mikael Sjödin∗, and Jukka Mäki-Turja∗†

8. CRYSTAL - CRitical sYSTem engineering AcceLeration, http://www.crystal-
artemis.eu, accessed May, 2014.

9. K. Tindell and J. Clark, “Holistic schedulability analysis for distributed hard real-
time systems,” Microprocess. Microprogram., vol. 40, pp. 117–134, Apr. 1994.

10. S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-to-end response-time
and delay analysis in the industrial tool suite: Issues, experiences and a case study,”
Computer Science and Information Systems, ISSN: 1361-1384, vol. 10, no. 1, 2013.

11. R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst, “System level
performance analysis - the symta/s approach,” Computers and Digital Techniques,
vol. 152, no. 2, pp. 148–166, March 2005.

12. TIMMO-2-USE Methodology Description, Ver. 2, Del. 13, Jul., 2012.
13. K. Hänninen et.al., “The Rubus Component Model for Resource Constrained Real-

Time Systems,” in 3rd IEEE International Symposium on Industrial Embedded
Systems, Jun. 2008.

14. “EAST-ADL Domain Model Specification, Deliverable D4.1.1,”
http://www.atesst.org/home/liblocal/docs/ATESST2 D4.1.1 EAST-ADL2-
Specification 2010-06-02.pdf.

15. Timing Augmented Description Language (TADL2) syntax, semantics, metamodel
Ver. 2, Deliverable 11, Aug. 2012.

16. “Rubus ICE-Integrated Development Environment,” http://www.arcticus-
systems.com.

17. P. Feiler, B. Lewis, S. Vestal, and E. Colbert, “An Overview of the SAE Archi-
tecture Analysis & Design Language (AADL) Standard: A Basis for Model-Based
Architecture-Driven Embedded Systems Engineering,” in Architecture Description
Languages, ser. The International Federation for Information Processing (IFIP).
Springer US, 2005, vol. 176, pp. 3–15.

18. SCADE Suite, http://www.esterel-technologies.com/products/scade-suite, ac-
cessed May, 2014.

19. “The UML Profile for MARTE: Modeling and Analysis of Real-Time and
Embedded Systems,” Jan. 2010. [Online]. Available: http://www.omgmarte.org/

20. “MAST–Modeling and Analysis Suite for Real-Time Applications,”
http://mast.unican.es/.

21. CHESS Project, CHESS consortium. Avialable at: http://www.chess-project.org,
accessed May, 2014.

22. A. Cicchetti, F. Ciccozzi, S. Mazzini, S. Puri, M. Panunzio, T. Vardanega, and
A. Zovi, “Chess: a model-driven engineering tool environment for aiding the de-
velopment of complex industrial systems,” in 27th International Conference on
Automated Software Engineering (ASE 2012), Sep. 2012.

23. TADL: Timing Augmented Description Language, Ver. 2, Deliverable 6, Oct., 2009.
24. “Rubus models, methods and tools,” http://www.arcticus-systems.com.
25. “AUTOSAR Techincal Overview, Version 2.2.2. AUTOSAR – AUTomotive Open

System ARchitecture, Release 3.1, The AUTOSAR Consortium, Aug., 2008,”
http://autosar.org.

26. Mastering Timing Information for Advanced Automotive Systems Engineer-
ing. In the TIMMO-2-USE Brochure, 2012. Available at: http://www.timmo-2-
use.org/pdf/T2UBrochure.pdf.

27. S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Communications-Oriented Develop-
ment of Component- Based Vehicular Distributed Real-Time Embedded Systems,”
Journal of Systems Architecture, 2013.

28. S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Component-based vehicular
distributed embedded systems: End-to-end timing models extraction at
various abstraction levels,” Tech. Rep., May 2014. [Online]. Available:
http://www.es.mdh.se/publications/3545-

29. S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Towards Translation of Timing Con-
straints during Vehicular Embedded Systems Development,” in CompArch Work-
in-progress Session, July 2014.


