
Adaptive Task Automata with

Earliest-Deadline-First Scheduling

Leo Hatvani∗1, Alexandre David†2, Cristina Seceleanu‡1, and Paul Pettersson§1

1Mälardalen University, Västerås, Sweden
2Aalborg University, Aalborg, Denmark

August 19, 2014

Abstract

Adjusting to resource changes, dynamic environmental conditions, or new usage modes
are some of the reasons why real-time embedded systems need to be adaptive. This
requires a rigorous framework for designing such systems, to ensure that the adaptivity
does not result in invalidating the system's real-time constraints.

To address this need, we have recently introduced adaptive task automata, a frame-
work for modeling, veri�cation, and schedulability analysis in adaptive, hard real-time
embedded systems, assuming a �xed-priority scheduler.

In this work, we extend the adaptive task automata framework to incorporate the
earliest-deadline-�rst scheduling policy, as well as enable implementation of any other
dynamic scheduling policy. To prove the decidability of our model, and at the same
time maintain a manageable degree of conciseness, we show an encoding of our model
as a network of timed automata with clock updates. To support this, we also show that
reachability in our class of timed automata with updates is decidable. Our contribution
helps to streamline the process of designing safety critical adaptive embedded systems.

1 Introduction

One way to enable real-time embedded systems to cope with environment, application, or
platform changes is to introduce adaptivity at the design phase of system development.
Adaptivity lets the system adjust to a new situation, but at the same time may introduce
new errors such as breached timing constraints or other extra-functional requirements.
Our goal is to propose a way to streamline modeling and veri�cation of adaptive embedded
systems (AES) in order to minimize the introduction of such errors at the design stage.

In the framework of adaptive task automata (ATA) that we have recently proposed [11],
we have started to address this need by providing formal support for modeling the AES
behavior, simulation of the system execution, and veri�cation of the schedulability. By
formally verifying the system's schedulability, we ensure that the system is going to meet
its hard real-time speci�cations as well as satisfy any other extra-functional properties.

∗leo.hatvani@mdh.se
†adavid@cs.aau.dk
‡cristina.seceleanu@mdh.se
§paul.pettersson@mdh.se

1

t1

t2

C D
t1 6 8
t2 3 3
t′2 2 2

t1

t′2

t1 t2
x ≥ 3

t1
t2x ≥ 3 ∧ sched(t1, t2)

t′2
x ≥ 3 ∧ ¬sched(t1, t2)

(a) (b)

x ≤ 3 x ≤ 3

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Figure 1: An adaptation example: (a) task automaton model, and (b) ATA model.

In our previous work on adaptive task automata, we have assumed �xed priority
scheduling (FPS) policy. In this work we are extending the framework to support dynamic
scheduling policies by incorporating the earliest-deadline-�rst (EDF) scheduling policy
into the framework. Hereinafter we will refer to the speci�c variant of ATA with the EDF
scheduling policy as ATAEDF.

The main contribution of this work is to �nd solutions to the challenges of verifying
the EDF schedulability of hard real-time tasks, in ATA. To tackle this, we show that
veri�cation of schedulability in ATAEDF, described in section 2, is decidable, by proposing
an encoding of the framework as a network of timed automata with (clock) updates
(section 3). We present a summary of the proof of bisimilarity between the model and
its encoding as well as decidability of reachability for our class of timed automata with
updates (section 4).

2 Adaptive Task Automata

The adaptive task automata framework builds on top of task automata [8] by providing
predicates that in�uence task release patterns based on the content of the ready queue.
The task automata framework, in turn, is based on timed automata [2] extended with:
tasks that can be released upon entering locations, a queue, and a scheduler to handle the
released tasks and simulate their execution. Since the current work elaborates on ATA
extensively, we refer the reader to the cited literature for more in-depth information.

In our model, we assume a uniprocessor system with independent, non-suspending
tasks. For each task, computation time and relative deadline are known and are speci�ed
as natural numbers. At any point in time, there can be at most one task instance (job)
per task in the queue and will be also referred to as task.

2.1 Introductory Example

As a simple example, consider the set of tasks in Figure 1. Each task is characterized by
its execution time C and a relative deadline D. Figure 1(a) models the release of the task
t1 at time 0 by annotating the initial location (double concentric circle) with the task.
Task t2 is released in the second location after 3 time units. The delay is modeled by
adding a zero-initialized clock (x) to the system, annotating the initial location with the
invariant x ≤ 3 that models that the location will be exited after at most 3 time units,
and adding a guard x ≥ 3 on the edge, denoting that the edge will not be taken until at
least 3 time units have passed.

If we schedule the model in Figure 1(a) using EDF, the deadline of the task t1 will
be reached before the task has a chance to complete. Assuming that we have t′2, a lower
quality alternative to task t2, having a lower computation time, we could release t′2 instead.
To be able to chose the variant of the task to be released, we have introduced the following
predicates in our previous work [11]:

2

• inqueue(ti) which is true i� the task ti is waiting in the ready queue or currently
executing.

• sched(ti) evaluates whether the task ti is going to complete its execution by the
deadline.

• sched(ti, tj), assuming that the task ti is already in the queue, evaluates whether it
will complete in time if the task tj is released into the queue.

By incorporating the predicate sched(ti, tj) into the model of Figure 1(a), we get the
model presented in Figure 1(b). Here, task t2 is released only if it will not disrupt task
t1, otherwise, task t

′
2 is released. With this modi�cation, which can be seen as adaptive

behavior, both tasks can successfully complete.

2.2 Overview of the Existing Framework

In ATA, the ready queue is a sequence of tasks ordered by the scheduling policy. Each
task ti in the ready queue is de�ned by two real values ci and di. They represent the
remaining execution time until completion (ci) and the time until the task reaches its
deadline (di).

Let us denote by T the set of tasks, and by P (T), ranged over by p, the set of various
Boolean combinations of the above predicates over the set of tasks. Utilizing this notation,
an adaptive task automaton can be de�ned as follows.

De�nition 1. [11] An adaptive task automaton over actions Act, clocks X, invariants
Φ(X), guard constraints B(X), tasks T , and predicates over tasks P (T) (De�nition 3)
is a tuple 〈Act,X,L, l0, E, I,M〉 where L is a �nite set of locations, l0 ∈ L is the initial
location, E ⊆ L × B(X) × P (T) × Act × 2X × L is the set of edges, I : L 7→ Φ(X) is a
function assigning each location an invariant, and M : L ↪→ T is a function annotating
locations with tasks.

Guard constraints B(X) are a set of conjunctions of atomic constraints of the type
x ∼ C or x − y ∼ C where x, y ∈ X are clocks, C is a natural number, and ∼∈ {<,≤
,=,≥, >}. Invariants Φ(X) are a set of conjunctions of atomic constraints of the type
x ∼ C where x ∈ X is a clock, C is a natural number, and ∼∈ {<,≤}.

In the case of (l, g, p, a, r, l′) ∈ E, we write l
g,p,a,r−→ l′, where g ∈ B(X) is a guard

constraint, a ∈ Act is an action, and r is the subset of clocks that will be reset on taking
the edge.

We can represent the state of an adaptive task automaton as a triple 〈l, u, q〉, where
l ∈ L is the current location, u 7→ R≥0 is a function mapping clocks to non-negative
real values, and q = [t0(c0, d0), . . . , tn(cn, dn)] is the current ready task queue. Sch(q) is
a function that returns the ready queue sorted according to the scheduling policy, and
RunSch(q, δ) is a function that returns the ready queue after it was executed for δ time
units.

De�nition 2. [11] Given an adaptive task automaton 〈Act,X,L, l0, E, I,M〉 with an
initial state 〈l0, u0, q0〉, and a scheduling strategy Sch, its semantics is a transition system
de�ned as:

〈l, u, q〉 a−→Sch 〈l′, r(u), Sch(M(l′) :: q)〉 if l g,p,a,r−→ l′ ∈ E, q |= p, and u |= g

〈l, u, q〉 δ−→Sch 〈l, u⊕ δ,RunSch(q, δ)〉 if (u⊕ δ) |= I(l)

where r(u) is 0 for all xi ∈ r and u(xi) otherwise, t :: q is the result of releasing t into
the queue q, and u ⊕ δ is the result of adding δ ∈ R≥0 to all clock values in u. If both
transitions are enabled, the choice is non-deterministic.

Intuitively, in the context of tasks, transitions are possibilities to release new tasks,
while delays in locations correspond to the execution of tasks.

3

De�nition 3. [11] Given a task automaton state 〈l, u, q〉, with q = [t0(c0, d0), . . . , tn(cn, dn)],
a scheduling policy Sch, and two distinct tasks, ti and tj, let P be the set of predicates
{inqueue(ti), sched(ti), sched(ti, tj)} satis�ed as follows:

〈l, u, q〉 |= inqueue(ti) if ti ∈ q
〈l, u, q〉 |= sched(ti) if inqueue(ti) ∧ (ci +

∑
j∈HP(ti)

cj) ≤ di∨
¬inqueue(ti) ∧ 〈l, u, Sch(ti ::q)〉 |= sched(ti)

〈l, u, q〉 |= sched(ti, tj) if inqueue(ti) ∧ 〈l, u, Sch(tj ::q)〉 |= sched(ti)

where HP(ti) is the set of all tasks that have higher priority than ti, and Sch(tj ::q) is the
queue ordered by the scheduling policy Sch after the release of the task tj.

Boolean combinations of the above predicates over a set of tasks T give us the set of
all possible combinations of predicates denoted by P (T).

3 Encoding of ATAEDF

In order to show the decidability of the ATAEDF framework, we have encoded the universal
ATAEDF model as a network of timed automata with (clock) updates (TAU). First we
present the framework of timed automata with updates. The framework was introduced
previously by Bouyer et al. [6], yet we use a variant whose decidability has to be proven for
our result to hold. Then the encoding itself is laid out in three steps. The �rst step shows
a way to encode task releases, the second provides the intuition behind the encoding of
the predicates used for adaptivity, and the third introduces the encoding of the scheduler.
After we have encoded the system as timed automata with updates, we provide a proof
that the reachability problem for our class of timed automata with updates is decidable
and that the encoding is bisimilar to the original model. The ATAEDF is more challenging
than ATA as the task priorities are decided online.

3.1 Timed Automata with Updates

The timed automata framework, as de�ned by Alur and Dill [3], has served as the basis
for several modeling variations proposed in order to �t speci�c design purposes [8, 6, 13].
Along the same line, our approach also relies on a variant of timed automata.

To concisely encode the scheduler model as timed automata, we need to allow for
�clock to clock� assignments. Although such clock assignments are already present in the
updatable timed automata framework [6], they are de�ned on models without invariants
on locations. Since our work depends on location invariants, let us de�ne the extension of
timed automata that supports clock to clock assignments as well as location invariants.

De�nition 4. A timed automaton with updates (TAU) over clocks X and actions Act
is a tuple 〈Act,X,L, l0, E, I〉, where L is a �nite set of locations, l0 is the initial location,

E ⊆ L × B(X) × Act × 2X × 2X
2 × L is the set of edges, and I : L → Φ(X) assigns

invariants to locations. In the set of edges E, B(X) is the set of guard constraints, 2X

represents the set of clock resets, and 2X
2

represents the set of clock assignments of the
form x := y, where x, y ∈ X.

The set of invariants Φ(X) is a set of conjunctions of atomic expressions of the type
x ∼ C where x ∈ X is a clock, C is a natural number, and ∼∈ {<,≤}. The set of guard
constraints B(X) can be de�ned as a set of Boolean combinations of atomic expressions
of the type x ∼ C or x− y ∼ C where x, y ∈ X are clocks, and ∼∈ {<,≤,=,≥, >}.

In the case of (l, g, a, r, s, l′) ∈ E, we write l
g,a,r,s−→ l′, where r is the subset of clocks

that will be reset on taking the edge, and s the set of clock assignments.

4

The semantics of TAU is de�ned in terms of a timed transition system over states of
the form (l, u), where l is a location, u 7→ R≥0 is an assignment of clocks to non-negative
real values, and the initial state is (l0, u0), where u0 assigns all clocks in X to 0.

De�nition 5. Given a timed automaton with updates 〈Act,X,L, l0, E, I〉 with an initial
state 〈l0, u0〉, its semantics is a transition system de�ned as:

• 〈l, u〉 a−→ 〈l′, r(s(u)))〉 if l g,a,r,s−→ l′ ∈ E and u |= g

• 〈l, u〉 δ−→ 〈l, u⊕ δ〉 if (u⊕ δ) |= I(l)

where s(u) performs the assignments xi := xj for every (xi, xj) ∈ s, r(u) is 0 for all
xi ∈ r and u(xi) otherwise, and u ⊕ δ is the result of adding δ ∈ R≥0 to all clock values
in u. If both transitions are enabled, the choice is non-deterministic.

A timed trace σ of a TAU, as is also the case with timed automata [3], is a sequence

of delay and action transitions σ = (l0, u0)
a1→ (l1, u1)

a2→ . . .
an→ (ln, un) where ai can be

either action (
a→) or delay (

δ→) transition, and a location l is said to be reachable if there
exists a timed trace ending in the state (l, u).

A network of TAU, A1|| . . . ||An overX and Act is de�ned as the parallel composition of
n TAU overX and Act. Semantically, a network of TAU again describes a timed transition
system obtained from those components, by requiring action transitions to synchronize
on complementary actions (i.e., a? is complementary to a!) [5].

3.2 Eearliest-Deadline-First Scheduling Policy

To encode the scheduler, we need to clearly de�ne the EDF policy in the context of this
paper. Since the strategy for choosing the next task between two or more tasks with
equal deadlines does not impact the optimality of the EDF algorithm [10], we can give
the following de�nition of EDF with deterministic tie resolution.

De�nition 6. According to the EDF scheduling policy with deterministic tie resolution,
the priority Pi of task ti is greater than the priority Pj of task tj if the time left until the
absolute deadline di of task ti is smaller than the time left until the absolute deadline dj
of task tj, or their absolute deadlines are equal and i > j holds. This can be expressed as

Pi > Pj ⇐⇒ di < dj ∨ (di = dj ∧ i > j)

where i and j represent strictly ordered task indices.

3.3 Task Releases

In ATA, tasks are released on changing to locations that are annotated with sets of tasks.
A straightforward method to realize instant task triggering upon entering a location is to
use synchronization channels on the edges of the corresponding TAU representation. This
is demonstrated in Figure 2.

l1

{t0}

x = 0

x = 5
l1

x = 0
release0!

x = 5

release0!

Idle Busy
release0?

(a) (b) (c)

Figure 2: (a) task automaton, (b) (a)'s encoding, (c) part of (b)'s scheduler

In Figure 2(a), we have a basic task automaton location with two disjunctive edges
leading to it. Location l1 is annotated with the task set {t0}. By entering the location
via any of the edges, the task t0 should be released and handled by the scheduler.

5

C D
t1 2 3
t2 1 1
t3 2 2
t4 1 2

t1

t2

t4

t3
r2

r3

r1

r4

c2

c3

c1 c4

t2 t3

t4t1
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Figure 3: Gantt chart and the encoding speci�c representation of tasks

Modeling this behavior in TAU requires annotating every edge entering the location
l1 with a synchronization channel that creates a network of timed automata between the
observed automaton presented in Figure 2(b) and the corresponding edges in the scheduler
automaton as seen in Figure 2(c). In some cases, additional committed locations [4] might
be needed to accomplish this.

3.4 Schedulability Predicates

The ATA model implements adaptivity via a set of scheduling predicates that may restrict
edge guards: sched(ti), sched(ti, tj), and inqueue(ti). All predicates are evaluated within
the context of the current ready queue.

To express the predicates in timed automata with updates, we need to de�ne an
adequate encoding of the relevant variables that describe tasks in ATA models. The task
automata model and consequently the adaptive task automata model de�ne the task ti
in terms of remaining computation time ci and time left until the deadline di. We encode
the remaining computation time as the di�erence between the response time ri and the
computation time ci: ci = ri − ci.

To illustrate this encoding, let us observe Figure 3. The left side of the �gure presents
a Gantt chart of task releases, while the right side presents a graph of the values of the
variables c and r for the same set of tasks. Note that, in the graph, the tasks t2 and t3,
as well as t1 and t4 are presented on the same level to conserve vertical space.

At time 0, task t1 is released. A higher priority task t2 preempts it at time 1. At
the moment of preemption, the response time r1 is increased by C2, the computation
time of t2, while the response time of task t2 is equal to its computation time. Both tasks
complete when their computation time becomes equal to their response time, respectively.

Two time units after task t1 completes, task t3 is released. It is already executing
when task t4 is released. Although task t4 has computation time of only 1 time unit, its
response time already accounts for t3. Due to the continuous nature of timed automata
clocks, we cannot extract information on how much of the computation time of task t3
has been already used, so we have to use the full response time of task t3 increased by the
response time of task t4. In order for this response time to be in context, we also need to
copy the clock value of c3 to c4, hence the clock c4 starts from 1.

The time until deadline is encoded by simply comparing an increasing clock to the
relative deadline, but it is not shown here.

3.5 Scheduler and Queue

Next, we encode the EDF scheduling policy together with the queue as a single automaton,
which we will hereafter refer to as the scheduler automaton.

Our scheduler is created assuming the encoding of predicates outlined in the previous
section and the EDF policy presented earlier. These two constraints, addressed at the
same time, have signi�cantly increased the complexity of the encoding. In Figure 4,

6

Idle

Busy

Error

crun ≤ rrun∧
∀tj∈q : dj ≤ Dj ∧ cj ≤ Cx

First task release Task trun done and q = ∅

High priority task release

Task trun done and q 6= ∅

Low priority task releaseDeadline miss

Maintain ci ≤ Cx

First task release

Sync releasei?
Update q := q ∪ {ti}; trun := ti; ri := Ci; ci := 0; di := 0;Pi := N

Task trun done and q = ∅
Guard crun = rrun ∧ drun ≤ Drun ∧ q = {trun}
Update q := q \ {trun}
Task trun done and q 6= ∅
Guard crun = rrun ∧ drun ≤ Drun ∧ ti ∈ q ∧ ti 6= trun ∧ Pi = Prun − 1
Update q := q \ {trun}; trun := ti; ∀tj ∈ q : Pj := Pj + 1

Maintain ci ≤ Cx

Guard ci = Cx ∧ ti ∈ q
Update ci := 0; ri := ri − Cx

Deadline miss

Guard ti ∈ q ∧ ci < ri ∧ di ≥ Di

Low priority task release

Guard tEDF
next

(ti) = tj ∧ crun < rrun
Sync releasei?
Update q := q ∪ {ti}; ∀k ∈ q|Pk < Pj : Pk := Pk − 1;Pi := Pj − 1; ri := rj ;

ci := cj ; di := 0;∀tk ∈ q|Pk < Pj : rk := rk + Ci

High priority task release

Guard tEDF
next

(ti) = ∅ ∧ crun < rrun
Sync releasei?
Update q := q ∪ {ti}; ci := 0; di := 0; ri := 0;∀tj ∈ q \ {ti} : Pj := Pj − 1;

Pi := N ; ∀tj ∈ q : rj := rj + Ci; trun := ti

Figure 4: Overview of the encoding E(Sch).

7

we show the entire scheduler model encoded as a timed automaton with updates, using
synchronization channels to release tasks.

To reduce the presentation complexity of the encoding and make it more accessible
to human readers, we have used a number of shorthands. For example, the queue is
encoded as the set q. Since this set is referenced in every location, we need to replicate
each location for every possible value of q. Since the number of tasks in the system (N) is
�nite and known in advance, this means that there will be 2N replications of every location
to re�ect the set q. Next, only those locations that imply values that satisfy the incoming
guards are connected by the edges to the originating location. The same approach can be
applied to all other integer variables and translate this representation into a pure TAU.
The exception to this approach is the function tEDFnext() that will be addressed later.

The scheduler consists of three locations: Idle, Busy, and Error. The edges are classes
of edges that are instantiated by iterating the variable ti over the set of tasks. Task
identi�ers such as ti and i are used interchangeably to reduce the maximum subscript
level.

Since a task can be in the queue or not, the queue is encoded as a set q. Tasks
themselves are represented via a number of variables: ti represents the i-th task, trun
keeps track of the currently running task, ci represents task computation clock explained
in subsection 3.4, ri contains the current response time of the task, and ci is compared
to ri to evaluate if the task has completed its execution; di is a clock that is reset when
a task is released, and is compared to the natural Di to check if the task's deadline has
passed, Pi is the current priority of the task. The priority N , equal to the number of tasks
in the system, is the highest priority and it corresponds to the currently executing task.

The scheduler starts in the location Idle. This location corresponds to an empty task
queue and it will be reentered on any occasion when there are no tasks left in the queue.

The edge going out of the location Idle is First task release. This edge is taken whenever
the encoding of the adaptive task automaton synchronizes on releasei channel without
any additional constraints. Consequently, the task ti is added to the queue, the currently
running task is set to ti, the response time is set to the computation time, the deadline
clock is reset, and the task is assigned the highest priority.

In Busy location, there are four edges looping in the state, one returning to Idle and
one leading to Error location. The invariant on Busy location, shown in dashed rectangle
in Figure 4, ensures that, in the Busy location, the currently running task will not execute
longer than its computation time, and that all of the tasks in the system have not missed
their deadlines.

In case that a deadline is missed, the edge Deadline miss is taken. The deadline is
considered missed when the task is in the queue, still has some execution left, and has
reached or exceeded its deadline. In such case, the system enters the Error location and
deadlocks.

To explain the looping edges on the Busy location, let us �rst de�ne the selector tEDFnext().

De�nition 7. The selector tEDFnext(ti) = tj selects the task tj that has the next higher
priority in the queue relative to the task ti, regardless of whether the task ti is in the
queue or not according to the deterministic EDF policy (De�nition 6).

The selector returns the empty set if it is invoked for the highest priority task in the
queue or any not-yet-released task that would become the highest priority task if it were
released.

Due to the nature of the EDF algorithm, a pure TAU implementation of this selector
requires replication of any edge annotated with this selector into several edges. For the
current permutation of tasks in the queue (implied by the current pure TAU location,
and expressed via Pi and q variables in the representation), edges are created to test
whether the new task will �t into any of the given possible positions in the queue. During

8

veri�cation, due to the determinism outlined in De�nition 7, only one of those edges will
be enabled at any time.

The edge High priority task release employs this selector to check if the newly released
task has higher priority than any of the tasks in the queue. The edge guard also checks
whether the currently running task is still running. This check ensures that whenever a
task completes it is removed from the queue before any further actions are taken. Since
the newly released task has a higher priority than any other task in the queue, its response
time is equal to its computation time. All of the other tasks' response times need to be
increased by the computation time of the newly released task. Priorities of other tasks
are reduced and the newly released task acquires the highest priority.

On the other hand, when the newly released task has lower priority than the currently
running task, it needs to be placed at the correct place in the queue via Low priority task

release edge. This is where the determinism of our EDF implementation via tEDFnext selector
comes into play. We need to ensure that the tasks added to the queue via this edge will be
executed in the same sequence as they are added to the queue. Otherwise, the computed
response times would be invalidated. As with the previous edge, we add the task to the
queue, but this time we need to copy the response time and computation clock from the
higher priority task. Then, we increase the response time of the new task, as well as any
of lower priority, with the computation time of the released task.

As the time passes in Busy state, tasks are executing and will be removed from the
queue when they complete, by one of the Task trun done edges. The edge Task trun done

and q 6= ∅ is taken if the task has completed its execution before the deadline and if the
next task is present in the queue. To switch the currently running task, the latter is taken
out of the queue, a new task is set to currently running task and all of the active tasks'
priorities are increased by one to keep priority values bound between 1 and N .

If the task is the last task in the queue, the edge Task trun done and q = ∅ is enabled
and removes the task from the queue while moving the automaton into the Idle location.

To keep all clocks and response times bound the edge Maintain ci ≤ Cx, resets the
clock ci to 0 every time an active clock reaches the maximum clock value Cx and the
corresponding response time is decreased by Cx. While this edge alters the value of
clocks, it does not in�uence the relevant di�erence ri − ci. This mechanism resolves the
potential unboundedness of the system caused by the inheritance of ci and ri values in
Low priority task release. Without it, any system that repeatedly releases tasks of lower
priority than the currently running task can become unbounded.

4 Decidability

The decidability of schedulability veri�cation for our model depends on two things: de-
cidability of reachability for our variant of timed automata with updates (subsection 4.1)
and that the encoding of ATAEDF model into timed automata with updates represents
the original model correctly (subsection 4.2).

4.1 Decidability of Timed Automata with Updates

Alur and Dill [3] observe that we can partition the state space of a timed automaton into
a �nite number of discrete regions that can be exhaustively explored in a �nite amount
of time. Hence, the location reachability problem is decidable.

Our re�ned region equivalence relation is based on the relation given in [3] and ex-
tended by the region equivalence relation for timed automata with diagonal constraints
presented by Bengtsson and Yi [5], and Fersman et al. [8].

De�nition 8. (Re�ned region equivalence ≈ [8, 3, 5]) For a clock x ∈ X, let Cx be a
natural number. For a positive real number t, let {t} denote the fractional part of t, and

9

btc its integer part. Let u, v ∈ V be two regions, G a �nite set of diagonal constraints in the
form x− y ./ Z≥0 where Z≥0 is the set of non-negative integers, and ./∈ {<,≤,=,≥, >}.

We de�ne u ≈ v, i.e. u and v are re�ned-region-equivalent i�

1. for each clock x, either bu(x)c = bv(x)c or u(x) > Cx and v(x) > Cx,
2. for each clock x, if u(x) ≤ Cx, then {u(x)} = 0 i� {v(x)} = 0,
3. for all clocks x, y, if u(x) ≤ Cx and u(y) ≤ Cx then
{u(x)} ≤ {u(y)} i� {v(x)} ≤ {v(y)}, and

4. u |= g i� v |= g for all g ∈ G.
Given De�nition 8 of re�ned region equivalence, we can postulate that operations over

regions will not disrupt the re�ned region equivalence relationship on TAU.

Lemma 1. Given a timed automaton with updates, let G denote the set of diagonal
constraints in the automaton and Cx be the maximum of Mx (the ceiling of x) and all
constants appearing in the guards and invariants of the automaton involving clock x. Let
u, v ∈ V and t, t′ ∈ RR≥0. Then u ≈ v implies

1. u+ t ≈ v + t′ for some real number t′ such that btc = bt′c,
2. u[x 7→ 0] ≈ v[x 7→ 0] for a clock x, and
3. u[x 7→ y] ≈ v[x 7→ y] for all pairs of clocks x and y.

Proof. We will start from two regions for which re�ned region equivalence relation holds.
Next, we will split the problem into several cases and prove that, for each case, the
implication of Lemma 1 holds.

Given two regions u, v ∈ V, let us assume that that they are re�ned region equivalent
u ≈ v. This implies that they are also region equivalent u ∼ v [8]. Also, let G be a �nite
set of diagonal constraints in the form x− y ./ Z≥0 where Z≥0 is the set of non-negative
integers, ./∈ {<,≤,=≥, >}, and Cx the largest integer among all constraints.

From the work by Larsen and Wang [14], we know that u ∼ v implies u+ t ∼ v+ t′ for
positive real numbers t and t′ such that btc = bt′c and u[x 7→ 0] ∼ v[x 7→ 0] for a clock x.
To extend these region equivalences ∼ to re�ned region equivalences ≈, we need to take
a look at whether the diagonal constraints have stayed consistent between regions after
the operations. Formally, u + t |= g ⇔ v + t′ |= g and u[x 7→ 0] |= g ⇔ v[x 7→ 0] |= g for
all g ∈ G, which was proven true by Fersman et al. [8].

Next, we need to prove that the re�ned region equivalence of u and v holds after a
clock is assigned the value of another clock u[x 7→ y] ≈ v[x 7→ y].

Let us consider several special cases of the expression u[x 7→ y] ≈ v[x 7→ y] while
assuming u ≈ v and considering De�nition 8.

Only one clock assignment. In the cases which involve only one clock assignment, the �rst
criterion of De�nition 8 for the modi�ed clock x, can be expressed as
bu[x 7→ y](x)c = bv[x 7→ y](x)c ∨ u[x 7→ y](x) > Cx ∧ v[x 7→ y](x) > Cx
This expression can be directly implied from the assumption u ≈ v for the clock y, i.e.

bu(y)c = bv(y)c ∨ u(y) > Cy ∧ v(y) > Cy. Since all other clocks are una�ected, the rest
of the criteria can be trivially proven in a similar manner. For example, for the fourth
criteria, any diagonal constraint that contained clock x will be evaluated as the already
existing diagonal constraint for y.

Multiple clock assignments. Second case covers the situations when there are multiple
clock assignments on a single edge. We will generalize it by assigning the value of the
clock z to w, while examining a third clock x which might or might not have been altered.
Assuming u′ ≡ u[z 7→ w] and v′ ≡ v[z 7→ w], from De�nition 8, we can write

1. for each clock x, either bu′(x)c = bv′(x)c or u′(x) > Cx ∧ v′(x) > Cx;

2. for each clock x, such that u′(x) ≤ Cx, {u′(x)} = 0 i� {v′(x)} = 0;

3. for all clocks x, y ∈ X if u′(x) ≤ Cx and u′(y) ≤ Cy, then
{u′(x)} ≤ {u′(y)} i� {v′(x)} ≤ {v′(y)};

10

4. u′ |= g i� v′ |= g for all g ∈ G.
Since they deal with single clocks, the �rst and second criteria reduce to the previous

case.
For the third criterium, we can observe that all clocks have the same relative ordering

established in both valuations if they are ≤ Cx. These orderings are inherited by clocks
that are being assigned new values which implies that, between valuations, the orderings
will still be equivalent.

Let us observe a speci�c guard from G from the fourth criterium.

u[z 7→ w] |= x− y < C i� v[z 7→ w] |= x− y < C

If z is not identical to x or y, the assignment does not a�ect the guard. The interesting
case is when x or y or both x and y are modi�ed. Since these cases are symmetrical, let
us observe z ≡ x case.

u[x 7→ w] |= x− y < C i� v[x 7→ w] |= x− y < C

If w ≡ y, the value of the guard for u and v valuation becomes exactly 0 and thus
satis�es the requirement. To analyze the case when w 6≡ y, we will split the clocks x, y,
and w into their fractional and integer parts.

u[x 7→ w] |= {x}+ bxc − ({y}+ byc) < C i�
v[x 7→ w] |= {x}+ bxc − ({y}+ byc) < C

We have previously shown that the integer parts of clocks are equal between valuations
in u′. So let us group them together.

u[x 7→ w] |= {x} − {y} < C − bxc+ byc i�
v[x 7→ w] |= {x} − {y} < C − bxc+ byc

From the De�nition 8, we can infer that {x}, {y} ∈ [0, 1), thus their di�erence satis�es
{x} − {y} ∈ (−1, 1). Because of this, if the right side of the inequality evaluates to 1
or greater, or less than −1, the statement will not depend on values of fractional parts
and integer parts are identical between valuations. It follows that the only case when the
fractional parts could a�ect the equivalence is when the integer side evaluates to 0.

u[x 7→ w] |= {x} − {y} < 0 i� v[x 7→ w] |= {x} − {y} < 0

De�nition 8 states that the relative ordering of clock valuations' fractional parts has to
be identical between the valuations u and v. We will observe the case when {x} ≤ {y} ≤
{w}. While the guard is true before the assignment, after the assignment, the guard
becomes false. But since the order has to be identical in both valuations, the equivalence
stays true.

All other cases can be trivially solved by repeated application of a similar procedure.

Lemma 2. (Bisimulation of TAU) Let us assume a timed automaton with updates, a
location l and clock assignments u and v. Then u ≈ v implies that:

1. when (l, u)→ (l′, u′) then (l, v)→ (l′, v′) for some v′ such that u′ ≈ v′, and
2. when (l, v)→ (l′, v′) then (l, u)→ (l′, u′) for some u′ such that u′ ≈ v′.

Proof Outline. The proof follows from Lemma 1. Assume a location l and clock assign-
ments u, and v, such that u ≈ v. The re�ned region equivalence relation ≈ de�nes that
the guards will evaluate in both u and v to the same truth values. Therefore, the set of
enabled transitions is equal in both valuations.

11

Lemma 3. (Location Reachability) The location reachability problem for timed automata
with updates and invariants is decidable if the bound Mx for each clock x is known.

Proof. Lemma 1 shows that for each location l of the automaton, there is a �nite number
of equivalence classes derived from the bisimulation relation ≈. Since the number of
locations is �nite, the entire state space of an automaton can be partitioned into a �nite
number of equivalence classes and these equivalence classes can be e�ectively generated
and searched.

4.2 Model Bisimulation

Once we have encoded the entire ATAEDF system as a network of TAU, we need to show
that there exists a bisimulation between the original model and the encoding.

Our main result is described by Lemma 4 below, for which we outline the proof. In
De�nition 9, we �rst introduce the concept of schedulability as reachability.

De�nition 9. (Schedulability) The adaptive task automaton A with initial state (l0, u0, q0)
and scheduling strategy Sch is not schedulable i� there exists a trace (l0, u0, q0)(−→Sch

)∗(l′, u′, q′) such that in the state (l′, u′, q′) there is a task ti with more than zero compu-
tation time left, ci > 0, and no more time to execute, that is di ≤ 0. The state (l′, u′, q′)
is marked as (l′, u′,Error).

Lemma 4. Let A be an adaptive task automaton and Sch the EDF scheduling strategy
presented in De�nition 6 . Assume that (l0, u0, q0) and (〈l0, Idle〉, u0 ∪ v0) are the initial
states of A, and the product automaton E(A)||E(Sch), respectively, where l0 is the initial
location of A, u0 and v0 are clock assignments assigning all clocks with 0, and q0 is the
empty task queue. Then:
For all l and u: (l0, u0, q0)→∗ (l, u,Error) implies

(〈l0, Idle〉, u0 ∪ v0)→∗ (〈l,Error〉, u ∪ v) for some v.

For all l, u, and v: (〈l0, Idle〉, u0 ∪ v0)→∗ (〈l,Error〉, u ∪ v) implies
(l0, u0, q0)→∗ (l, u,Error).

Proof. In this proof, we will construct three sets of states that correspond to one or more
states in the automata A and E(A)||E(Sch). These new sets of states can be characterized
as no running tasks, a task is running, and a task has exceeded its deadline. Next, we will
establish a mapping between the new states and the states of the original two automata.
Then, by observing the transitions from each of the states, we will establish that the
mapping de�nes a bisimulation relation between the automata A and E(A)||E(Sch).

The states of A and E(A)||E(Sch) can be correlated and a bisimulation mapping
between these states can be shown. Let us begin by de�ning three tuples S1, S2, and S3

that capture the states of both automata.
There are no tasks in the queue:
S1 = { (l, u, q), (〈l, Idle〉, (u ∪ v)) }|q = ∅

There is at least one task in the queue:
S2 = { (l, u, q), (〈l,Run〉, (u ∪ v)) }|Cnd1 ∧ Cnd2 ∧ Cnd3 ∧ Cnd4

The system has been determined as unschedulable:
S3 = { (l, u,Error), (〈l,Error〉, (u ∪ v)) }|Cnd1 ∧ Cnd2 ∧ Cnd3 ∧ Cnd5

Where (l, u, q), and (l, u,Error) are states of A, an adaptive task automaton. (〈l, ∗〉, (u∪
v)) are states of E(A)||E(Sch), the product automaton. And Cnd1, ... are predicates. The
predicates of the states S2 and S3 are:

• Cnd1 : ∀ti ∈ q : di = Di − di,
where di is the incrementing clock of the task's deadline for the automaton E(A)||E(Sch)
and di is the decrementing value of the time left until the deadline in the automaton
A,

12

• Cnd2 : ∀ti ∈ q, tEDFnext(ti) 6= ∅ : ci = ri − ci − (rtEDF
next

(i) − ctEDF
next

(i)),

where by ti ∈ q, tEDFnext(ti) 6= ∅ we de�ne tasks in the queue that are not currently
executing,

• Cnd3 : ∀ti ∈ q, tEDFnext(ti) = ∅ : ci = ri − ci,
in our encoding, the currently executing task is the only task whose computation
time left ci is not dependant on any other task since it is not being preempted,

• Cnd4 : ∀ti ∈ q : di ≥ 0 ∧ ci ≥ 0,
speci�es that any task currently in the queue has a non-negative time left untile the
deadline is reached as well as leftover computation time,

• Cnd5 : ∃ti ∈ q : di ≤ 0 ∧ ci > 0,
there exists a task in the queue for which the amount of computation time left is
greater than zero and the deadline has passed.

The selector tEDFnext(ti) =def (εtj ∈ T |Tnxt1 ∨ Tnxt2), according to De�nition 7, selects
a task tj such that it has the next higher priority in the queue, compared to the task
ti. According to the current state of the queue, the selected task will �nish execution
just before the task ti. The selector is encoded as a disjunction of two predicates, Tnxt1,
Tnxt2:
∀ti, tj ∈ T : tEDFnext(ti) = tj ⇐⇒ Tnxt1 ∨ Tnxt2
Tnxt1 =def ti ∈ q ∧ tj ∈ q ∧

(∀tk ∈ q : (dk < di ∨ dk = di ∧ k > i)⇒ (dk > dj ∨ dk = dj ∧ k ≥ j))
Tnxt2 =def ti /∈ q ∧ tj ∈ q ∧

(∀tk ∈ q : (dk < Di ∨ dk = Di ∧ k > i)⇒ (dk > Dj ∨ dk = Dj ∧ k ≥ j))
The selector uses the task's index as a pre-established, unique, and strictly ordered

label assigned to each task instance.
Next, we establish that S = S1 ∪S2 ∪S3 is a bisimulation. In order to do this, we will

show that each of the components is a bisimulation.
(S1) Let us assume that the initial state is in S1: ((l, u, q), (〈l, Idle〉, (u∪ v))) ∈ S1 and

that we reach another state (l, u, q)
a−→ (l′, u′, q′) by an action transition l

g,p,a,r−→ l′. Then
the clock valuation u satis�es the set of clock guards u |= g, and the queue satis�es the
set of adaptivity predicates q |= p. Let the set of tasks released in the state l′ contain one
task ti, M(l′) = ti.

The product automaton can make the following transition.

(〈l, Idle〉, (u ∪ v))
a−→ (〈l′,Busy〉, (u′ ∪ v′))

The task ti is added to the queue and the corresponding variables are initialized: ci = Ci,
di = Di, ci = 0, di = 0, and ri = Ci. The variables in u are updated according to the
edge First task release of Figure Figure 4. At this point, ti is the currently running task
since it is the only task in the queue.

The conditions Cnd1, Cnd3, and Cnd4 are obviously satis�ed, while Cnd2 is not
applicable, and Cnd5 is not satis�ed. Therefore the new state is in the set S2.

((l′, u′, Sch(M(l′) :: q)), (〈l′,Busy〉, (u′ ∪ v′))) ∈ S2

For the delay transition of (l, u, q), assume (l, u, q)
t−→ (l, u + t,Run(q, t)), where the

invariants are still satis�ed after the delay, (u+ t) |= I(l). Then, the product automaton
can make the following delay transition.

(〈l, Idle〉, (u ∪ v))
t−→ (〈l, Idle〉, (u+ t ∪ v + t))

Since the state of the queue continues to be empty, the state stays in the set S1.

((l, u+ t,Run(q, t)), (〈l, Idle〉, (u+ t ∪ v + t))) ∈ S1

13

(S2) Let us assume that the state of the product automaton is in S2 and that we
are observing an action transition a from l to l′ that adds tasks from M(l′) to the task
queue. Also assume that by adding this task into the queue we will not make the system
unschedulable.

((l, u, q), (〈l,Busy〉, (u ∪ v))) ∈ S2

(l, u, q)
a−→ (l′, u′, Sch(M(l′) :: q))

Also assume that this is caused by the transition l
g,p,a,r−→ l′ which implies that the

guards and ATA predicates are satis�ed, u |= g, and q |= p.
LetM(l′) = ti and the starting queue consist of two tasks q = [tm, tn] while tEDFnext(tm) =

∅ (i.e. trun = tm). The product automaton can make the transition:

(〈l,Busy〉, (u ∪ v))
a−→ (〈l′,Busy〉, (u′ ∪ v′))

ending up in one of the following queue states:

q = [ti, tm, tn], q = [tm, ti, tn], or q = [tm, tn, ti],

depending on the value of the selector tEDFnext(ti). Note that the queue always maintains
the relative ordering of the previously released tasks due to the characteristics of the EDF
scheduling policy.

In the �rst case, resulting in q = [ti, tm, tn], tEDFnext(ti) = ∅ holds. The scheduler au-
tomaton arrives into this state via High priority task release transition, and corresponding
updates are executed. The currently executing task trun becomes ti and all other response
times are increased by Ci. Since ti has just been released, Cnd3 holds. Cnd1 is unchanged
since there has been no delay. For Cnd2, the following holds:

c′m = r′m − c′m − (r′
tEDF
next

(m)
− c′

tEDF
next

(m)
)

= r′m − c′m − (r′i − c′i)
= rm + Ci − cm − (Ci − 0)
= rm − cm

which corresponds to the value of cm in the previous state in S2. A similar observation
can be applied to c′n. Cnd4 also holds since there was no delay and the newly released
task does not make the system unschedulable.

In the second case, the queue becomes q = [tm, ti, tn], when tEDFnext(ti) = tm holds. Here,
the edge Low priority task release is taken in the scheduler automaton. The task tm is not
modi�ed and tn is a�ected in the similar manner as in the �rst case. The condition Cnd1

obviously holds since the task is just released, Cnd3 is unchanged, and in Cnd2, we have:

ci = r′i − c′i − (r′m − c′m)
= rm + Ci − cm − (rm − cm)
= Ci

which is true for newly released tasks.
The third case can be observed as a variation of the second case.
Thus, in all three cases, the new state is in the set S2.

((l′, u′, Sch(M(l′) :: q)), (〈l′,Busy〉, (u′ ∪ v′))) ∈ S2

Let us observe the delay transition in S2. Assume that (l, u, q)
δ−→ (l, u+δ,Run(q, δ)).

Let there be a task ti for which δ ≥ di (i.e. δ ≥ Di − di) and ci > di hold. The scheduler
automaton can make any number of transitions in δ time corresponding to execution of
the tasks in the queue and task switching. Eventually, the scheduler automaton will make

14

a delay transition δ1 that will coincide with the remaining part of time until the deadline
of ti. After this delay, due to the invariant on the Busy state, no more delay transitions
can be taken. Eventually, the only available transition will be the transition leading to
the Error state. Thus the system will result in ((l′, u′,Error), (〈l′,Error〉, (u′ ∪ v′))) ∈ S3.

As long as all of the tasks in the queue have time left until the deadline (di > 0), the
following delay transitions can occur in the scheduler automaton:

(i) δ < crun - If the delay δ is shorter than the remaining computation time of
the currently executing task, then the scheduler automaton will take no actions
and ((l, u + t,Run(q, t)), (〈l,Busy〉, (u + t ∪ v + t))) ∈ S2. The condition Cnd1 is
satis�ed by assumption. In Cnd2, both c-s are increased by δ, thus not changing
the remaining computation times of currently non-executing tasks. The assumption
δ < crun implies that Cnd3 and Cnd4 will hold.

(ii) t = crun ∧Run(q, t) 6= ∅ - In case that the delay is equal to the computation time
of the currently executing task trun , and Run(q, t) does not result in an empty set,
the system will still satisfy conditions S2 in a similar manner to the previous case.
Also, the transition Task run done and q 6= ∅ will be enabled at the end of the delay
action. This transition will remove the completed task from the queue and replace
trun with the next highest priority task.

After taking the action transition, the condition Cnd1 is satis�ed by the assumption
about deadlines. Cnd2 is still satis�ed since one task is removed from the condition,
and for the rest, the delay of the clocks cancels itself out in a manner similar to
the previous case. For the Cnd3, assume that tEDFnext(ti) = trun , that is task ti is the
task with second highest priority in the queue. Then, just after the delay transition,
Cnd2 for task ti is c

′
i = r′i − c′i − (r′run − c′run), where r′run − c′run = 0 according to

the assumption on the delay transition. This is equal to the expected value for the
Cnd3, so the product automaton is still in S2.

(iii) t = crun ∧ Run(q, t) = ∅ - After the delay transition in this case, the product
automaton will have completed the last task in the current ready queue. At this
point the state is still S2, which can be proven in a similar manner to the previous
case. Unlike the previous case, the transition Task run done and q 6= ∅ is not enabled
since there is no task in the queue that is not the currently executing task. On the
other hand, the transition Task run done and q = ∅ is enabled and will move the
product automaton back to the Idle state. Since the only task in the queue is trun ,
removing it will result in an empty queue which is the condition for the state S1.

(S3) Once this state is reached, the system is considered unschedulable.

In the previous few paragraphs, we have sketched out one direction of the bisimulation
between A and E(A)||E(Sch). The other direction can be shown in a similar manner. Thus
we conclude our proof of Lemma 4.

Since we have proven that the reachability problem is decidable for TAU, stated by
Lemma 3, also that every ATAEDF can be translated into a bisimilar TAU, we can conclude
that the problem of checking schedulability of ATAEDF is decidable as well.

5 Related Work

Our work tries to unify schedulability analysis with modeling and analysis of adaptive
embedded systems. At the same time, a number of works address problems in those two
separate �elds, as well as non-modeling methods for analysis of schedulability in adaptive
contexts. While this is by no means an exhaustive list of the works in these areas, we will
try to list those that are closest to ours.

15

In the following works, veri�cation of adaptive embedded systems is done on a more
coarse scale than in our approach. Most of these approaches could be used in synergy
with ours to provide system level veri�cation, while ours provides task level granularity.
Adler et al. [1] use Kripke structures as the underlying presentation of the system and
specify the system's properties using LTL. Schneider et al. [17] have proposed a method
to describe and analyze adaptation behavior in embedded systems in which the data �ow
is augmented with quality descriptions used by con�guration rules to determine potential
adaptations. Goldsby et al. [9] provide the AMOEBA-RT model focused on run-time
veri�cation and monitoring.

In the area of adaptive scheduling, most work [12, 15] was done to achieve a lower
energy consumption by exploiting dynamic voltage scaling features of modern CPUs.
While such approaches can be used to analyze schedulability in some adaptive contexts,
our approach makes it possible to model and analyze more precisely task release patterns
of non-periodic tasks.

Finally, other works have approached veri�cation of schedulability by means of timed
automata for uniprocessors [7, 16], and multiprocessors [18] without explicit inclusion of
adaptive functionality.

6 Conclusion

In this work, we have shown that the veri�cation of adaptive task automata with earliest-
deadline-�rst scheduling policy is decidable. To support our claim, we have encoded our
adaptive task automata model as timed automata with updates and presented that the
model and its encoding are bisimilar, as well as given a proof that reachability in our
variant of timed automata with updates is decidable.

Our main result is the proof of decidability of our ATA extensions. Using ATA, it is
possible to model the environment of an embedded system as well as behavior of functional
and extra-functional properties in response to internal or environmental changes. Thus
we verify the behavior of speci�ed properties throughout the execution of the system.

In this work, we have implemented the EDF scheduling policy. However, by replacing
the selector tEDFnext(), we can implement any other policy that is deterministic and does
not change relative task priorities after their release into the queue. A non-deterministic
selector would invalidate the schedulability testing predicates (sched()) since the response
times predicted when testing a task would not necessarily correspond to the actual re-
sponse times after the task is released.

During the encoding, we have faced a number of challenges. To support dynamic
scheduling policies and schedulability predicates, we have required dynamic construction
of task response times, which, in turn, have required a clock copying mechanism that had
to be added as an extension of timed automata.

As future work, we plan to further explore removal of the assumptions, speci�cally
extend the framework to support modeling of multi-core systems, smart handling of tasks
with variable execution time, shared resources, as well as create a set of templates that
correctly model the most commonly utilized task release patterns.

Acknowledgments

This research has been supported by the Swedish Research Council, which is gratefully
acknowledged.

16

References

[1] Rasmus Adler, Ina Schaefer, Tobias Schuele, and Eric Vecchié. From model-based
design to formal veri�cation of adaptive embedded systems. In Michael Butler,
MichaelG. Hinchey, and MaríaM. Larrondo-Petrie, editors, Formal Methods and Soft-
ware Engineering, volume 4789 of Lecture Notes in Computer Science, pages 76�95.
Springer Berlin Heidelberg, 2007.

[2] Rajeev Alur. Timed automata. In Nicolas Halbwachs and Doron Peled, editors,
Computer Aided Veri�cation, volume 1633 of Lecture Notes in Computer Science,
pages 8�22. Springer Berlin Heidelberg, 1999.

[3] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183�235, April 1994.

[4] Johan Bengtsson, W.O. David Gri�oen, Kåre J. Kristo�ersen, Kim G. Larsen,
Fredrik Larsson, Paul Pettersson, and Wang Yi. Automated veri�cation of an audio-
control protocol using uppaal. The Journal of Logic and Algebraic Programming, 52
� 53(0):163 � 181, 2002.

[5] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.
In Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Con-
currency and Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages
87�124. Springer Berlin Heidelberg, 2004.

[6] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Updat-
able timed automata. Theoretical Computer Science, 321(23):291 � 345, 2004.

[7] Alexandre David, Jacob Illum, Kim Larsen, and Arne Skou. Model-Based Frame-
work for Schedulability Analysis Using UPPAAL 4.1, pages 93�119. CRC Press,
2011/12/27 2009.

[8] Elena Fersman, Pavel Krcal, Paul Pettersson, and Wang Yi. Task automata: Schedu-
lability, decidability and undecidability. Information and Computation, 205(8):1149
� 1172, 2007.

[9] Heather J. Goldsby, Betty H.C. Cheng, and Ji Zhang. Amoeba-rt: Run-time veri�-
cation of adaptive software. In Holger Giese, editor, Models in Software Engineering,
volume 5002 of Lecture Notes in Computer Science, pages 212�224. Springer Berlin
Heidelberg, 2008.

[10] J. Goossens and R. Devillers. Feasibility intervals for the deadline driven scheduler
with arbitrary deadlines. In Real-Time Computing Systems and Applications, 1999.
RTCSA '99. Sixth International Conference on, pages 54 �61, 1999.

[11] Leo Hatvani, Paul Pettersson, and Cristina Seceleanu. Adaptive task automata:
A framework for verifying adaptive embedded systems. In Juan Lara and Andrea
Zisman, editors, Fundamental Approaches to Software Engineering, volume 7212 of
Lecture Notes in Computer Science, pages 115�129. Springer Berlin Heidelberg, 2012.

[12] Ravindra Jejurikar, Cristiano Pereira, and Rajesh Gupta. Leakage aware dynamic
voltage scaling for real-time embedded systems. In Proceedings of the 41st Annual
Design Automation Conference, DAC '04, pages 275�280, New York, NY, USA, 2004.
ACM.

[13] Kim Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas Hune, Paul
Pettersson, and Judi Romijn. As cheap as possible: E�cient cost-optimal reachability
for priced timed automata. In Gérard Berry, Hubert Comon, and Alain Finkel,
editors, Computer Aided Veri�cation, volume 2102 of Lecture Notes in Computer
Science, pages 493�505. Springer Berlin Heidelberg, 2001.

[14] Kim G. Larsen and Yi Wang. Time-abstracted bisimulation: Implicit speci�cations
and decidability. Information and Computation, 134(2):75 � 101, 1997.

17

[15] Y.-H. Lee, K.P. Reddy, and C.M. Krishna. Scheduling techniques for reducing leakage
power in hard real-time systems. In Real-Time Systems, 2003. Proceedings. 15th
Euromicro Conference on, pages 105�112, July 2003.

[16] Marius Miku£ionis, Kim Larsen, Jacob Rasmussen, Brian Nielsen, Arne Skou, Steen
Palm, Jan Pedersen, and Poul Hougaard. Schedulability analysis using uppaal:
Herschel-planck case study. In Tiziana Margaria and Bernhard Ste�en, editors, Lever-
aging Applications of Formal Methods, Veri�cation, and Validation, volume 6416 of
Lecture Notes in Computer Science, pages 175�190. Springer Berlin / Heidelberg,
2010.

[17] Klaus Schneider, Tobias Schuele, and Mario Trapp. Verifying the adaptation behavior
of embedded systems. In Proceedings of the 2006 international workshop on Self-
adaptation and self-managing systems, SEAMS '06, pages 16�22, New York, NY,
USA, 2006. ACM.

[18] Fei Yu, Guoqiang Li, and Naixue Xiong. Schedulability analysis of multi-processor
real-time systems using uppaal. In Information Science and Engineering (ICISE),
2010 2nd International Conference on, pages 1 �6, dec. 2010.

18

	Introduction
	Adaptive Task Automata
	Introductory Example
	Overview of the Existing Framework

	Encoding of ATA_EDF
	Timed Automata with Updates
	Eearliest-Deadline-First Scheduling Policy
	Task Releases
	Schedulability Predicates
	Scheduler and Queue

	Decidability
	Decidability of Timed Automata with Updates
	Model Bisimulation

	Related Work
	Conclusion

