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Abstract. The service-oriented paradigm has been established to enable quicker
development of new applications from already existing services. Service nego-
tiation is a key technique to provide a way of deciding and choosing the most
suitable service, out of possibly many services delivering similar functionality
but having different response times, resource usages, prices, etc. In this paper, we
present a formal approach to the clients-providers negotiation of distributed en-
ergy management. The models are described in our recently introduced REMES

HDCL language, with timed automata semantics that allows us to apply UPPAAL-
based tools for model-checking various scenarios of service negotiation. Our tar-
get is to compute ways of reaching the price- and reliability-optimal values of the
utility function, at the end of the service negotiation.

1 Introduction

Service-oriented systems (SOS) represent a promising approach that accommodates
the necessary conceptual foundation to provide quicker application development out
of loosely coupled software entities, called services. The SOS paradigm also provides
a way to connect new systems and services with legacy systems. Service negotiation
is a key technique towards deciding and choosing the most suitable service, out of
possibly many services delivering similar functionality but having different response
times, resource usages, prices, etc.

The literature describes several rather theoretical results that tackle this topic [1–4]
but lack constructs for formal analysis. The benefit of attaching such support to a service
negotiation protocol is the capability of verifying if the negotiation design meets its
specified requirements. Also, formal verification allows one to compute various quality-
of-service (QoS)- optimal paths corresponding to different negotiation scenarios.

Motivated by the above, in this paper we describe the modeling and formal analysis
of a distributed energy management in an open energy market, similar to one described
by Mobach [5]. In an open energy market the traditional energy management does not
suffice anymore, since it is required to facilitate interactions between market partic-
ipants; this means that the management should be supported by a model that allows
energy providers to establish agreements with energy consumers w.r.t. the supply of
energy. The model of the energy market is described in Section 3.

Such a model involving customer-provider negotiation needs to be analyzed for var-
ious strategies that aim at reaching an agreement beneficial for both sides, against spec-
ified requirements. The goal of the analysis presented in this paper is also to validate
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our service-oriented modeling and analysis framework, that is briefly recalled in Sec-
tion 2. The framework consists of the resource-aware timed behavioral modeling lan-
guage REMES [6], reviewed in Section 2.1, and its underlying formal model described in
terms of timed automata (TA) networks [7,8] (see Section 2.2). The negotiation model is
obtained by composing REMES services, within a corresponding textual service compo-
sition language called Hierarchical Dynamic Composition Language (HDCL) (see Sec-
tion 4), via operators that have been defined formally in our previous work [9]. The salient
point of the approach is the fact that the obtained negotiation model can be analyzed
against safety, timing, and utility constraints, for all possible behaviors of the parties.
This can be achieved by transforming the negotiation model into a TA formal framework,
which has a precise underlying semantics that allows its analysis with UPPAAL tools, for
functional and extra-functional behaviors (timing and resource-wise behaviors) [10]. We
show how to compute the price- and reliability-optimal values of the utility function, at
the end of the service negotiation. The analysis of the energy negotiation process and its
results are described in Section 5. Last but not least, we present some relevant related
work in Section 6, before concluding the paper in Section 7.

2 Background

In this section we briefly overview the preliminaries on the REMES modeling language
and the timed automata formalism, needed to comprehend the rest of the paper.

2.1 REMES - a Language for Behavioral Modeling of SOS

To describe service behavior in SOS, we use the dense-time hierarchical modeling lan-
guage called REMES [6, 9]. The language is well-suited for abstract modeling, it is
hierarchical, has an input/ouput distinction, a well-defined formal semantics, and tool
support for SOS modeling and formal analysis 1 [10,11]. The formal analysis is accom-
plished by semantic transformation of REMES models into timed automata (TA) [7] or
priced timed automata (PTA) [12], depending on the analysis type [10].

A service in REMES can be described graphically (as a mode), or textually, by a list
of attributes (i.e., service type, capacity, time-to-serve, status, service precondition, and
postcondition) exposed at the interface of the REMES service. A REMES service can
be atomic, composite, but also employed in various types of compositions, resulting in
new, more complex services. In order to model the synchronized behavior of parallel
services we have previously introduced a special kind of REMES mode, called AND /
OR mode. By the semantics of the mode, in an AND or an OR mode, the services finish
their execution simultaneously, from an external observer’s point of view. However, if
the mode is employed as an AND mode, the subservices are entered at the same time,
and their incoming edges are not constrained by any boolean enabling condition, called
guard; in comparison, an OR mode assumes that one or all subservices are entered based
on the guards annotated on the incoming edges. Services that belong to this type of
REMES mode and that have to synchronize their behavior at the end of their execution
communicate via ‖SYNC-and (all services take their respective exit edges at the same time

1 More information available at http://www.idt.mdh.se/personal/eep/reseide/

http://www.idt.mdh.se/personal/eep/reseide/


76 A. Čaušević, C. Seceleanu, and P. Pettersson

and mode finishes its execution), or ‖SYNC-or (the mode finishes its execution as soon as
one service has taken an exit edge) operators, respectively (see our previous work [9]).

In order to manipulate services, REMES supports service creation, deletion, compo-
sition, and replacement via REMES interface operations. An example of a create service
operator is given in Eq. 1. Alongside the above operations, REMES is accompanied by a
hierarchical dynamic composition language ( HDCL) that facilitates modeling of nested
sequential, parallel or synchronized services and their compositions.

[pre] : service_name == NULL

create : Type× N × N × ′′passive′′ × (Σ → bool) × (Σ → bool) → service_name (1)

{post} : service_name �= NULL ∧ Type ∈ {web service, network service, embedded ∧
∧ capacity ≥ 0 ∧ time − to − serve ≥ 0 ∧ status =

′′
passive

′′

Our system is composed of REMES services that can be analyzed by transforming
them into a formal network of TA that have precise semantics and can be model-checked
against relevant properties (see the following section). In our recent work, we have in-
troduced an analyzable negotiation model into the REMES language [13], that is, an
analyzable high-level description of the negotiation between service clients and ser-
vice providers. The model has an implicit notion of time and supports annotations in
terms of price, quality, etc., all modeled by the REMES textual service composition lan-
guage HDCL. The crux of the model is that it has a formal TA semantics, which lets one
verify various model properties, for all possible executions. For a more thorough de-
scription of the REMES language, we refer the reader to our previous work [6,9,13,14].

2.2 Timed Automata

A timed automaton (TAn) [7, 8] is a finite-state machine enriched with a set of clocks.
All clocks are synchronized and assumed to be real-valued functions of time elapsed
between events. In this work we use TA, as defined in the UPPAAL model-checker,
which allows the use of data variables [15–17].

Let us assume a finite set of real-valued variables C ranging over x, y, etc., stand-
ing for clocks, V a finite set of all data (i.e., array, boolean, or integer), and a fi-
nite alphabet Σ ranging over a, b, etc., standing for actions. A clock constraint is
a conjunctive formula of atomic constraints of the form x ∼ n or x − y ∼ n for
x, y ∈ C,∼∈ {<,≤,=,≥, >} and n ∈ N . The elements of B(C) are called clock
constraints over C. Similarly, we use B(V ) to stand for the set of non-clock con-
straints that are conjunctive formulas of i ∼ j or i ∼ k, where i, j ∈ V , k ∈ Z

and ∼ ∈ {<,≤,=, �=,≥, >}. We use B(C, V ) to denote the set of formulas that are
conjunctions of clock constraints and non-clock constraints.

Definition 1. A timed automaton A is a tuple (L, l0, C, V, I, Act, E) where: L is a finite
set of locations, l0 is the initial location, C is a finite set of clocks, V is a finite set of
data variables, I : L → B(C) assigns (clock) invariants to locations, Act = Σ ∪
{τ} is a finite set of actions, where τ �∈ Σ denotes internal or empty actions without
synchronization, E ⊆ L×B(C, V )×Act×R×L is the set of edges, where R denotes
the (clock) reset set. In the case of (l, g, a, r, l′) ∈ E, we write l

g,a,r→ l′, where l is the
source location, l′ is the target location, g is a guard, a boolean condition that must
hold in order for the edge to be taken, a is an action, and r is a simple clock reset.
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The semantics of TA is defined in terms of a labeled transition system. A state of a
TAn is a pair (l, u), where l is a location, and u : C → R+ is a clock valuation. The
initial state (l0, u0) is the starting state where all clocks are zero. There are two kinds
of transitions: delay transitions and discrete transitions.

Delay transitions are the result of time passage and do not cause a change of location.

More formally, we have (l, u)
d→ (l, u ⊕ d) if u ⊕ d′ |= I(l) for 0 ≤ d′ ≤ d. The

assignment u⊕ d is the result obtained by incrementing all clocks of the automata with
the delay d.

Discrete transitions are the result of following an enabled edge in a TAn. Conse-
quently, the destination location is changed from the source location to the new target
location, and clocks may be reset. More formally, a discrete transition (l, u)

a→ (l′, u′)
corresponds to taking an edge l

g,a,r→ l′ for which the guard g is satisfied by u. The clock
valuation u′ of the target state is obtained by modifying u according to updates r such
that u′ |= I(l′).

Reachability analysis is one of the most useful analysis to perform on a given TAn.
The reachability problem can be defined as follows: Given two states of the system,
is there an execution starting at one of them that reaches the other? The reachability
analysis can be used to check that an error state is never reached, or just to check the
sanity of the model. A network of TA, A1‖...‖An, over C and Act, is defined as the
parallel composition A1‖...‖An over C and Act. Semantically, a network describes a
timed transition system obtained from the components, by requiring synchrony on delay
transitions, and discrete transitions to synchronize on complementary actions (i.e., a?
(receive synchronization) is complementary to a! (send synchronization)).

Properties of TA can be specified in the Timed Computation Tree Logic (TCTL),
which is an extension of Computation Tree Logic (CTL) with clocks. CTL is a speci-
fication language for finite-state systems used to reason about sequence of events. Let
AP be a set of atomic propositions, p ∈ AP . In this paper, a CTL formula φ is defined
as follows:

φ ::= � | p | ¬φ | φ1 ∧ φ2 | φ1 → φ2 | EFφ | AFφ | AGφ

Each CTL well-defined formula is a pair of symbols. The first operator is a path
operator, either A (“for All paths”), or E (“there Exists a path”). The latter operator, a
temporal operator, is one of the following: F (“in a Future state”), or G (“Globally in
the future”). For example EFφ means that there exists a path such that φ is eventually
satisfied and it is called a reachability property. More details on CTL and TCTL can be
found in earlier work of Alur et al. [18,19]. In the next section we present the details of
the distributed energy management case study.

3 Energy Negotiation Model in REMES HDCL

The energy management system includes an energy consumer (i.e., client) that creates
a request and communicates with energy providers via a mediator. A request contains
information about requested amount of energy, required price per unit of energy, and
expected reliability for energy to be provided. The supply of energy is based on a nego-
tiation carried out between consumers and providers in possibly more than one round,
assuming a certain strategy. The negotiation relies on advertisements, where energy
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providers specify the type of energy to be sold (i.e. depending on the energy source,
diesel generators, wind turbine, etc.), available amount of energy, its reliability, and
price per unit of energy. In this paper’s negotiation model we assume an iterative form of
a Contract Net Protocol (CNP). In the CNP there exist the following roles: the client (an
energy consumer), the manager (a negotiation mediator), and the contractor (an energy
provider). The manager gets a request from a client and aims at finding an appropriate
contractor to fulfill the request via call for proposals (CFP). Based on the response from
contractors the manager decides which offers to present to a client. Depending on the
implemented strategy in each round both the contractors and clients aim to improve on
their previous proposals and request, in order to come closer to the consensus.

The energy consumer is assumed to have a varying energy demand that has to be sat-
isfied over a period of time (i.e., certain periods of the day have higher energy demand
than the others), while at the same time energy providers have varying energy capacity.
In this model, a single day is considered (see Fig. 1), with consumer requests coming
every two hours. Every two hours a new negotiation starts and should provide energy
for two subsequent hours. A consumer initiates the negotiation just before the moment
the energy is to be claimed and used. After a request is created, the mediator negotiates
with the available energy providers, on behalf of the consumer, creating competition
between energy providers. As a result of each request an agreement should be signed
covering the desired energy over a defined period of time. It might be the case that in-
volved parties do not reach a consensus and in that case no agreement is established,
meaning that the client might be out of energy for that period of time.

Fig. 1. An energy demand over a day

In our model, we have implemented three scenarios in which customers have en-
coded different behavior:

– Scenario 1: A customer has maximum bound on the price and the final acceptable
price cannot be more than 20 price units higher than the initial requested price;

– Scenario 2: A customer has no maximum price value, the negotiation can continue
until an agreement is conceived;

– Scenario 3: A customer adapts maximum price trying to get as close as possible to
the offered price, but at the same time not to pay more than double initial price. The
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idea behind this scenario is to get an agreement in the smallest possible number of
price negotiations.

During the negotiation process the provider is not aware which strategy the client uses.
In this paper, we provide a REMES - based description of the distributed energy man-
agement that is furthermore translated to the TA formal framework and analyzed against
safety, timing, and utility constraints (described as a weighted sum of negotiation pref-
erences). In the following section we will provide a REMES HDCL-based model of the
energy negotiation described above.

4 REMES HDCL - Based Energy Negotiation Model

To enable a systematic and analyzable way to model the energy negotiation process,
as described in Section 3, we provide the REMES HDCL description of the model. The
model is based on the set of REMES interface operations and the hierarchical textual
language HDCL [9].

Table 1. Service declaration

00 declare Service ::= < 22 create EP2 (web service, 2, 10, idle,

01 service type : {web service}, 23 (energy_amount == ea2 ∧
02 capacity : N, 24 min_ep2 ≤ ppue ≤ max_ep2 ∧
03 time_to_serve : N, 25 energy_reliability == r_ep2),

04 status : { passive, idle, active}, 26 (energy_amount == ea2-k ∧
05 precondition : predicate, 27 min_ep2 ≤ ppue ≤ max_ep2 ∧
06 postcondition : predicate > 28 energy_reliability == r_ep2)) : Service

07 create Mediator (web service, 2, 10, idle, 29 declare List ::= <[service_name0 : Service, . . .,

08 (reqclient == false, contract == false), 30 service_namen : Service]>

09 (reqclient == true, contract == true)) : Service 31 create list_request : List

10 create Client (web service, 5, 20, idle, 32 create list_offer : List

11 (energy_amount == 0 ∧ t == 0s 33 add Client list_request

12 ∧ min_c ≤ ppue ≤ max_c), 34 add Manager list_request

13 (energy_amount == k ∧ t ≤ 20s ∧) 35 add EP1 list_offer

14 min_c ≤ ppue ≤ max_c) : Service 36 add EP2 list_offer

15 create EP1 (web service, 5, 15, idle, 37 add Manager list_offer

16 (energy_amount == ea1 ∧
17 min_ep1 ≤ ppue ≤ max_ep1 ∧
18 energy_reliability == r_ep1),

19 (energy_amount == ea1-k ∧
20 min_ep1 ≤ ppue ≤ max_ep1∧
21 energy_reliability == r_ep1)) : Service

The model assumes that we first have to declare and instantiate all participating ser-
vices using REMES interface operations. We model one energy consumer, two energy
providers and one mediator that represents the interests of all negotiation participants as
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shown in Table 1 (lines 00-28). However, we have to point out that in case it would be
needed to model more than one energy consumer, and more than two energy providers,
the described model would be able to support it. For each negotiation participant we
have provided a list of service attributes, including their pre-, and postcondtions.

Next, to model the composition of services we need to create the lists (lines 29-32
in Table 1) and add the services to the appropriate lists (see Table 1 lines 33-37). In our
approach we model service negotiation as a service composition via the parallel with
synchronization protocol modeled by the operator ‖SYNC-and . Services that communicate
via ‖SYNC-and operator belong to the special type of REMES mode, called AND mode. By
the semantics of the AND mode, the services connected by this operator start and finish
their execution simultaneously.

Finally, our model of service negotiation is defined by the following:

bool contract := false;
clock h := 0;
DCL_req ::= (list_request, ‖SYNC-and, reqclient)
DCL_offer ::= (list_offer, ‖SYNC-and, reqprovider)
DO

p_offer := negotiation(paramp)
c_request := negotiation(paramc)

OD (c_request < p_offer) ∧ h ≤ 24)
contract := true;

Requirements reqclient and reqprovider are predicates that include both functional and
extra-functional properties of services. In our case, reqclient defines the client’s request
on amount of energy, price per unit of energy (ppue), and expected energy reliability
(eng_rel). On the other hand, reqprovider encompasses properties of the service that is
offered by a provider. Let us assume scenario 1, as described in Section 3 and a negoti-
ation that takes place at 18 o’clock of the day (h == 18). At this specific time reqclient is
described as: h == 18 ∧ energy_amount == 14 ∧ req_ppue == 15,7 ∧ eng_rel == 0,8. The
provider’s offer for a given request is: h == 18 ∧ energy_amount == 14 ∧ offered_ppue
== 20 ∧ eng_rel == 0,8. Generally, the content of the requirement might include dif-
ferent negotiable parameters (denoted by paramp for the provider, and paramc for the
client), such as price, or time at which a service should be available. As soon as the
requirements are known, the negotiation can start. The provider’s offer is calculated
via function negotiation (paramp) and stored in variable p_offer similar to the approach
presented by Kumpel et al. [20]. In case that the provided offer has not met the client’s
expectation, the request (c_request) can be updated using the same function negotiation
(paramc) but with a different parameter (here, we abstract from the function details). The
negotiation process may continue as long as the participants are interested into reaching
an agreement, or in case that the negotiation model is time constrained, as long as time
allows. In our case, the model is time constrained, and the negotiation will continue as
long as an energy supply over a day is not satisfied. The outcome of the negotiation
can either be a contract (c_ request ≥ p_offer) or no contract (c_ request < p_offer). In
our model, the contract will be signed only if the client agrees with the offered energy
amount, the price per unit of energy, and the provided energy reliability. In the example
presented above (scenario 1 and energy negotiation at 18 o’clock), one can notice that
the requested and offered price differ and that the negotiation is needed. If we assume
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the same example, then the negotiation successfully finishes with a contract signed and
the final agreement of the form: h == 18 ∧ energy_amount == 14 ∧ final_ppue == 16 ∧
eng_rel == 0,8.

The REMES language is accompanied with a tool support for constructing models
as one described above in a graphical form [21]. In the following section, we show a
formal analysis of the described REMES negotiation model in order to check whether
the available amount of energy suffices for the client’s needs and at what prices the
negotiation converges. Furthermore we analyze the utility-optimal functions w.r.t. the
price and the energy reliability (a weighted sum of the price and the energy reliability
as the negotiation preferences).

5 Formal Analysis of the Negotiation Model

5.1 The Analysis Goals

In this paper we consider a model that supports a competition between two energy
providers, available for negotiation via a mediator that acts as representative of all par-
ties involved in the negotiation process. We model the described negotiation model us-
ing out textual composition language HDCL, and then analyze the model against several
requirements, such as price, time, and reliability, in order to check whether the available
energy and given prices can satisfy the client’s needs. Also, it is interesting to see how
much time is needed for agreement to converge.

Additionally, we calculate the value of the optimal utility function as a weighted sum
of negotiation preferences w.r.t. the price and the energy reliability (modeled here by a
number), and model-check the trace (a sequence of actions (delays and transitions)) that
leads to such state. We calculate the value of the optimal utility function in order to find
points in time when the utility function is maximized. We assume the utility function
to be maximized for all participants, when the difference between their initial and their
final utility values either do not exist or is insignificant.

In order to ensure that our model has no deadlocks, we specify a safety UPPAAL

property as follows: AG not deadlock. The given property has been verified in UPPAAL

and our model satisfies it. All findings presented in the following are results of model-
checking the described model in UPPAAL.

5.2 A TA Semantic Translation of the REMES Model and Analysis Results

We have analyzed the REMES-based energy negotiation model, by semantically trans-
lating it into a network of TA models, in the UPPAAL 2 model-checker. The model con-
tains five TA connected in parallel: EnergyConsumer, EnergyProvider (used to create
two providers as instances of this TA), Mediator, EnergyProduction1, and EnergyPro-
duction2. Due to space limitation, we present here the TA models of EnergyConsumer,
EnergyProvider, and Mediator, shown in Fig. 2.

The TA of EnergyConsumer has six locations: Start, StartEC, sentReq, received-
Offer, negotiateEC, and checkOffer. A negotiation request is sent every 20 time units

2 See the web page www.uppaal.org for more information about the UPPAAL tool.
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Fig. 2. TA models of the negotiation participants
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Fig. 3. Utility function change over a day for scenario 2

(t == 20), corresponding to every two hours as described in the model. Sending a re-
quest for an offer to Mediator, and receiving an offer from Mediator is modeled with
channels req, and presentOffer, respectively. In case that participants need to negotiate
on the current request and offer, they communicate via the broadcast channel negotiate.
When an agreement is made a boolean variable contract is set to 1 and it is propagated
via channel agreement, while on the other hand, in cases when no agreement has been
reached (contract == 0) the channel end is used.

The TA of EnergyProvider consists of seven locations: StartEP, requiredOffer, make-
Offer, availableOffer, availableUpdatedOffer, negotiateEP, and reset. A request for an
offer is received from Mediator via channel askOffer. To create an offer and to further
on propagate it to Mediator channels, createOffer, and returnOffer are used, respectively.
In case that a request has been updated a counter offer is propagated via forwardCoffer
and cngPrice broadcast channels.

The TA of Mediator has nine locations: StartM, receivedReq, askForOffer, received-
Offer, returnedOffer, propagatedOffer, receivedCounterOffer, checkDeal, and negotiateM.
The automaton contains a clock variable tn, used to keep track of the time elapsed from
the moment a request is received to the moment an agreement or no agreement has been
signed.

In our analysis model, we encode the utility function for the consumer, and the
providers, respectively, as a weighted sum of negotiation preferences (i.e., price per
unit of energy and reliability given as a number and not probability), as follows:

utilityc = wc1 × req_ppue+ wc2 × eng_rel (2)

utilityp = wp1 × offered_ppue+ wp2 × eng_rel

The function is calculated for the energy consumer, both energy providers, taking
into consideration the starting request/offer and the final agreement given that they have
different priorities for different preferences. In case of the energy consumer reliability
gets higher priority (wc2), while in the case of the energy providers the energy price is
more important (wp1). In our case study, we consider the utility functions as described
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Fig. 4. Price per unit of energy for scenario 1

in Eq. 2, where wc1, wc2, and wp1, wp2 are client and provider’s preferences on price
and energy reliability, respectively. In the following, we present and discuss the results
of the model verification in UPPAAL model-checker.

Verification shows that in scenario 1, there exists a case in which no agreement has
been reached (8 o’clock), since the initially requested and offered prices were too far
from each other, and since the customer had an upper bound on the price. In the same
scenario, as shown in Fig. 4, in order to provide sufficient energy supply, the client is
forced to spend slightly more money that initially planed, but still within the maximum
price bound.

Fig. 3 depicts the utility function change over a day assuming scenario 2. Based on
the history of previous request, 18 o’clock is considered as the peak hour in consumer’s
energy consumption. At this point in time, the utility function is maximized for each
negotiation participant, respectively (the difference between initial and the final utility
value either does not exist or is insignificant), meaning that the energy market favors
them equally. Consequently, the consumer is prepared to request a reasonable price to
make sure that he gets a required amount of energy. On the other side, the provider’s
offered price depends on the amount of the available energy, that is, the more energy is
available the price is lower and vice versa. This means that the providers are ready for
the peak hour, and have stored greater amount of energy such that they are competitive
enough at the energy market. At 16 o’clock, the provider’s initial and the final utility
is similar, while the customer’s final utility value is slightly lower than the initial value
since the final price is lower than the one requested by the customer. At 20 o’clock the
same situation appears, but in favor of the energy provider.

In scenario 3 we have expected that in total the client would spend more money on
energy due to the fact that he was adapting his requests based on the offered prices.
However, the total price is relatively close to the expected one, probably due to the me-
diator selecting offers on behalf of the client, which leads to the client only receiving
the cheapest offers in the market, in each round. Also, the time spent to negotiate the
energy supply was expected to be lower than in the other two scenarios, but it shows
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Fig. 5. Time required for negotiation

that this scenario was the most time consuming, probably due to the fact that the con-
sumer has to adapt his acceptance threshold all over again, but still to keep within the
maximum available budget (see Fig. 5). At the same time, in each negotiation round,
the mediator has to check all available offers, in order to provide the client with the
cheapest and most fitting one.

It was very interesting to see who owns the market in which scenario. Based on
Fig. 4, in scenario 1 it is obvious that the market is own by the provider, and that even
with the introduced maximum price bound, the providers were able to force the prices
in their favor. Similarly, in the other two scenarios we have noticed that in scenario
3, the agreed prices are in favor of the consumer, while the final prices in scenario
2 are in favor of the energy provider. Overall, the total amount of money spent on
energy in all three scenarios is very close to the initial request, with an average increase
of less than 10% of the initially requested price. Before verifying the time needed in
negotiation, we expected that the participants would converge toward the agreement
the fastest in scenario 3. However, the results have shown the opposite, the slowest
negotiation process was recorded in this scenario, possibly due to the fact that the client
needed to recalculate new prices compared to the previous offers, and based on this the
mediator had to ask for the new offers, always from all providers. One can notice that
the least time is needed in scenario 1, while scenario 2 requires slightly more time.

6 Related Work

Mobach describes a negotiation framework based on the WS-Agreement specification [5],
deployed in domains of distributed agent middleware and distributed energy manage-
ment. The latter case has been simulated and evaluated through the different strategies in
which energy has been distributed to the clients, including negotiation and bidding for
a suitable energy source. The simulation has provided better insight in different nego-
tiation policies, however the model lacks constructs for the formal analysis and means
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to provide performance analysis results. Lapadula et al. provide a description of mod-
eling publication, discovery, negotiation, deployment, and execution of service-oriented
applications in COWS [22], a language that can be translated to CMC model-checker
for analysis purposes. In comparison to this approach, our framework includes analysis
that caters for more than one QoS attribute (performance and reliability), while assum-
ing time in the process too. Capodieci et al. propose an agent-based approach to model
and analyze deregulated energy market [23]. In their work they adapt minority game ap-
proach that enables better distribution of the available resources. The simulation of the
time flow and risk variations is done using stochastic game design. The resulting model
has been simulated using JADE platform. Compared to our work the presented approach
is equally fit for the modeling issues, but it lacks a possibility to exhaustively analyze the
given model that could uncover more information on the issues that they describe.

7 Conclusions

In this paper, we present a case study where our recently introduced approach for auto-
mated service negotiation in REMES has been applied to model and analyze distributed
energy management. The given study has been analyzed by semantically translating
the REMES-based models into a network of TA to enable model-checking in the UP-
PAAL tool. We have focused on three scenarios as described in Section 3 by calculating
the value of the optimal utility function w.r.t. the price and the energy reliability and
model-checked the model to compute the traces that lead to such states. The negotia-
tion model is time constrained, which lets one get an insight into the analysis of the
time needed to reach an agreement. As future work we plan to model an auction-based
energy management which would show the full potential of our negotiation model.
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