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Abstract—Hierarchical scheduling frameworks (HSFs) are a
means for composing complex real-time embedded systems from
independently developed and analyzed applications. To support
multiple modes in a two-level HSF, the multi-mode adaptive
hierarchical scheduling framework MMAHSF has recently been
presented. MMAHSF supports application specific mode-change
protocols by means of a generic mode-change protocol and a set
of mode-change mechanisms.

This report presents a formalization and verification of mode
changes in MMAHSF using the UPPAAL model checker. The UP-
PAAL models are presented for the generic protocol and specific
mode-change mechanisms. Using UPPAAL, essential properties
of the instantiation of the generic protocol with these mechanisms
are verified. In particular, the verification indicates that the
resulting mode-change protocols are deadlock-free and guarantee
correct mode changes in bounded time. We briefly discuss the
complexity of the UPPAAL models and their verification.

Index Terms—real-time systems; hierarchical scheduling
framework; mode change; formal verification; UPPAAL.

I. INTRODUCTION

REAL-TIME embedded systems are increasingly moving
towards multi-mode system [1], where each mode cor-

responds to a specific application scenario. Resource reser-
vation, and more general a hierarchical scheduling framework
(HSF) [2], [3], is a well-known means for developing multiple
applications in parallel, manifesting each application as a
separate subsystem, and supporting subsystems’ integration by
providing temporal isolation among applications. Moreover,
these means allow for timing analysis of an entire system,
as well as for subsystems in isolation, before they are inte-
grated. In addition, legacy applications can be integrated in a
reservation-based system, even if the timing characteristics of
the applications are not known in advance [4]. HSFs have been
extended with synchronization protocols for resource sharing
between dependent applications [5], [6], [7], [8]. In this report,
we consider an orthogonal extension of an HSF with mode-
change protocols. Various theoretical studies can be found on
adaptive reservation techniques for server-based multi-mode
systems, e.g. [9], [10]. A first implementation of a multi-mode
adaptive HSF (MMAHSF) has recently been described in [11],
[12].

MMAHSF supports application specific mode-change pro-
tocols by means of a generic mode-change protocol and a
set of mode-change mechanisms (e.g. the Abort, Suspend-
resume, and Complete mechanism). It is based on a two-
level HSF, using fixed-priority pre-emptive scheduling at both

levels, where applications are scheduled at the global level and
tasks of an application at the local level. MMAHSF is currently
described by means of an informal specification. This report
complements [11], [12] with a formalization and verification
of mode changes.

Different approaches used to check the correctness of such
multi-mode hierarchical systems are debugging, tracing, or
simulations. These techniques not only are time consuming
but also do not guarantee 100% correctness. Software veri-
fication [13] technique consolidates correctness of real-time
embedded systems by checking if a system model meets its
design specifications. Among existing verification techniques,
model checking [14] provides a solution to formal verification
of a system at an early design phase. The verification result
either yields a complete proof of correctness or spots the
problem by a counter example. Therefore, model checking
has a great potential to reduce development costs and time
to market. Recently, automata based approaches have been
used to model, verify, and synthesize code of the two-level
hierarchical scheduling framework [15], [16], however as
far as we know, no such work is done for mode changes
in hierarchical scheduling. In this report we complement
our existing work [11], [12] with formal description of the
MMAHSF mechanisms to enable formal verification using the
modeling checking tool UPPAAL [17]. David et al. [18] have
offered the UPPAAL modeling framework for basic scheduling
policies such as Earliest Deadline First (EDF) and Fixed
Priority Scheduling (FPS) [19]. However, to the best of our
knowledge, neither HSF nor multi-mode systems have ever
been modeled or verified using model checking. Our work
extends the UPPAAL models in [18] as the first attempt for
the formalization and verification of MMAHSF, including the
following contributions:

• We provide a formalization of mode changes in a two-
level hierarchical setup, with fixed-priority preemptive
scheduling at both levels and idling periodic servers for
applications. Our modeling framework not only allows us
to model a system with an arbitrary number of servers
and tasks, running in an arbitrary number of modes, but
is also amenable to different mode-change mechanisms.
To the best of our knowledge, this is the first UPPAAL
model of mode-changes in an hierarchical framework.

• The correctness of our modeling framework is formally
verified using UPPAAL. A set of properties are proven to
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be satisfied such as deadlock-free, correct mode change
in bounded time, and no deadline miss.

Paper Outline: Section II presents the related work. Sec-
tion III provides an overview of MMAHSF and describes
the background on UPPAAL verifications. In Section IV we
formalize the generic mode-change protocol and the Abort
and Suspend-resume mode-change mechanisms. We verify the
formalizations for the instantiation of the generic protocol for
both mechanisms in Section V. In Section VI we discuss our
approach and conclude the report with a description of ongoing
work.

II. RELATED WORK

We describe some contemporary multi-mode systems fo-
cusing on the scheduling theory of simple and server-based
multi-mode systems, multi-mode system’s implementation and
formal verification in hierarchical scheduling framework.

The scheduling theory for multi-mode real-time systems has
been intensively investigated. Sha et al. [1] provides a simple
mode-change protocol for a prioritized preemptive scheduling
environment. A survey on mode-change protocols for fixed-
priority preemptive scheduling (FPPS) using a single processor
is presented in [20] along with proposed several new protocols.
Mode change problems for dynamic scheduling using Earliest
Deadline First (EDF) are considered in [21], [22]. Multi-mode
real-time schedulability analysis for different assumptions and
models is presented in [23], [24]. Hang et al. [25] provide the
mode change timing analysis for component-based systems.

Static resource reservations for servers [26], [27], [28]
are not suitable for multi-mode server-based systems where
resource reservations vary with the change of mode. Hence
reconfigurable (adaptive) servers are suggested for dynamic
reservations by Abeni et al. [29]. Dynamic reconfiguration
of servers for multi-mode systems is addressed in [9], [30].
Stoimenov et al. [30] provides guaranteed resource provision-
ing during mode changes by using TDMA servers. Kumar et
al. [31] develops an algorithm for adaptive resource reserva-
tion based on a CBS server. Santinelli et al. [9] addresses the
problem of timing analysis during the reconfiguration process.

A mode-change protocol is implemented for reallocating
the memory among tasks in [32]. An implementation of
reservation-based mode-change protocols in a two-level hier-
archical arrangement is described in [11], [12].

From a formal verification perspective, some work has been
done to verify the correctness of a two-level fixed priority
hierarchical framework using Times tool [33] and to synthesize
the C-code from model for the VxWorks kernel [15], [16].
However, to the best of our knowledge, no work has been done
with respect to the formalization and verification of multi-
mode systems using hierarchical scheduling.

III. BACKGROUND

This section presents an overview of the multi-mode adap-
tive hierarchical scheduling framework (MMAHSF) imple-
mentation in FreeRTOS, followed by an introduction to the
UPPAAL model checker.

A. Multi-mode HSF implementation

Multi-mode adaptive hierarchical scheduling framework
(MMAHSF) implementation [12] is based on a two-level HSF
for the FreeRTOS operating system [34] that follows the
periodic resource model [3]. It is based on idling periodic
servers, using fixed-priority preemptive scheduling at both
(global and local) levels of hierarchy. In a two-level HSF, the
CPU time is partitioned among many subsystems (or servers),
that are scheduled by a global (system-level) scheduler. Each
server contains its own internal set of tasks that are scheduled
by a local (subsystem-level) scheduler. In the rest of the report
we use the terms subsystem and server interchangeably.

MMAHSF provides a generic framework to incorporate
multiple mode-change protocols to change the system’s mode
by supporting different mode-change mechanisms. A mode
change is triggered as a Mode-Change Request (MCR) by
a task during its execution. The mode-change protocol is
performed by a Mode-Change Request Controller (MCRC).
Normally, a different piece of software is running for each
mode, i.e. a different task set, implementing different func-
tional and non-functional characteristics, is executed. As a
consequence of a changed task set execution within a server
for each mode, the server’s timing properties are modified for
each mode. Hence, to change the mode of the whole system,
the mode change has to be done at both global and local levels.
Therefore, a global MCRC (GMCRC) and a local MCRC
(LMCRC) are used, and together with the servers and tasks
they perform the generic mode-change protocol, as shown in
Fig. 2 which is further explained in Section IV-B.

In MMAHSF, a system consists of a set S of subsys-
tems and may be in different modes, described by a set of
modes M. Each subsystem Ss consists of a local scheduler
along with a set of tasks Ts and an LMCRC. For each
mode Mm, each Ss is specified by a different timing in-
terface Is,m = 〈Ps,m, Qs,m, ps,m〉 and a subset of tasks
Ts,m = {τ1,s,m, . . . , τns,m,s,m}, where Ps,m is the period of
Ss (Ps,m > 0), Qs,m is the capacity allocated periodically to
Ss (0 < Qs,m ≤ Ps,m), ps,m is the unique priority of Ss in
mode Mm, and Ts,m ⊆ Ts .

In this report we focus on two mode-change mechanisms:
Abort and Suspend-resume. For the Abort mechanism, an
incoming MCR immediately aborts the current execution of
a task/server and enforces its mode change without preserving
any state in the old mode. In the new mode the servers and
tasks are restarted. For the Suspend-resume mechanism, the
execution of servers and their tasks is suspended, the state
of servers (running, ready or suspended), the state of tasks
(running, ready, waiting, or suspended), and the structures of
servers and tasks (data, objects and resources, server control
block, and task control block) for the old mode (say M0)
are stored at the point of suspension. Later when the system
switches back to this mode M0, the servers and tasks are
resumed from their stored states at which they were previously
suspended in this mode. These mechanisms are described
in detail in [12]. The implementation has been tested and
experimental evaluations have been performed on a 32-bit
AVR-based micro-controller board EVK1100 [35].
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B. UPPAAL

UPPAAL [17] is a model checker for modeling and ver-
ifying real-time systems. The behavior of a system can be
formally specified as a set of UPPAAL models. Each UPPAAL
model is represented as a (timed) automaton with states and
transitions between these states. A state can be associated
with an invariant, i.e. a condition that must be satisfied for
the state. A transition can be associated with a guard, a
channel, an update and a selection. The transition can only
be fired when the guard is satisfied. A channel synchronizes
the state transitions of multiple UPPAAL models. For each
channel x, it is launched as x! by an automaton to initiate
the synchronization with the transition of at least another
automaton associated with the corresponding channel x?. A
selection can specify which models are synchronized. An
update can do some computations.

As an example, Fig. 1 illustrates the UPPAAL model of
a periodic task. It has five states denoted by circles, with
State Initial, distinguished by a double circle, as its initial
state. State transitions correspond to arrows. The release of a
task instance corresponds to transitions 1 and 2. If a release
offset is defined, it should wait in State WaitingOffset for the
offset. Otherwise, Transition 2 can be fired instantly. A task
is either being executed or preempted in State Ready. If the
task completes its execution before its relative deadline, it goes
to State PeriodDone by Transition 3 and finishes the current
period by Transition 4. If the task misses its deadline, it will
go to State Error by Transition 5.

Fig. 1. The UPPAAL model of a periodic task

UPPAAL uses clocks to express the notion of time. Timing
constraints can be specified as the invariant of a state or
the guard of a transition, enabling a transition to be taken
within a desired timing interval. For instance, the firing of
Transition 4 in Fig. 1 is restricted jointly by the invariant
exe[id]’==0 && time[id]<=Period() of State PeriodDone
and the guard time[id]>=Period() added to Transition 4.
exe[id] and time[id] are two clocks, with exe[id] being the
task execution time and time[id] being the time elapsed
within the current period. exe[id]’ represents the clock rate of
exe[id]. The default clock rate is 1. Clock exe[id] pauses when

exe[id]’==0. Period() is a function returning the period of the
task. The invariant time[id]<=Period() must be satisfied as the
task stays in State PeriodDone. When time[id]>=Period(),
the invariant does not hold any more whereas the guard
of Transition 4 is satisfied, thus forcing Transition 4 to be
fired. Apart from the guard, transitions 1-4 are all associated
with a channel and an update. For example, Transition 3 in
Fig. 1 has a channel finished[id]! which must be fired together
with at least another transition of a different model identified
with finished[id]?. In addition, the update of Transition 3
executes the function completed() and sets a boolean variable
started[id] to false.

Based on the UPPAAL models, the correctness of a system
can be verified by satisfying a set of properties. In UPPAAL, a
property is formulated in the UPPAAL query language which
is a subset of Timed Computation Tree Logic (TCTL). The
verification is passed when all the properties are satisfied.

IV. FORMALIZATION OF THE FRAMEWORK

In this section, the generic mode-change protocol and the
mode-change mechanisms of [12] are formally modeled and
verified by model checking using UPPAAL. We have pre-
viously provided three different mode-change mechanisms:
the Abort mechanism, the Suspend-resume mechanism, and
the Complete mechanism. Due to limited space, we only
present the UPPAAL modeling and verification of the Abort
mechanism and the Suspend-resume mechanism.

A. Assumptions of the implementation

The following assumptions are made for MMAHSF imple-
mentation, these are followed to build our UPPAAL models:

• The set of modes (M), the set of subsystems (S), and
the set of tasks Ts of each subsystem Ss are fixed in
the system. All subsystems remain active in all modes.
The interfaces of all servers for all modes are defined
statically.

• Tasks can be active or inactive in a mode.
• Only the currently executing task can trigger an MCR.
• Tasks do not share any resource.

B. Overview of UPPAAL models

In general, a mode change can (1) deactivate a task which
runs in the old mode but no longer runs in the new mode, (2)
activate a task which does not run in the old mode but runs
in the new mode, (3) change the timing parameters for those
tasks which run in both the old and new modes, and (4) change
the timing parameters for those servers which have different
timing parameters in the old and new modes.

The overview of our UPPAAL models is presented in
Fig. 2. The interactions between different models during a
mode change are modeled by channels and represented by
the edges in Fig. 2. A channel name and a sequence number
are added to each edge to indicate the interaction flow. Our
models include a GMCRC, k+1 LMCRCs (from LMCRC (0)
to LMCRC (k)), where k + 1 = |S|. Each server Ss is
associated with LMCRC (s), and schedules its local tasks. For
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instance, in Fig. 2, LMCRC (0) interacts with `+1 tasks while
LMCRC (k) interacts with n + 1 tasks, where `, n ∈ N. We
use S(i) to denote the (i + 1)th server where i = [0, k]. If
S(i) schedules `+ 1 tasks, T (j, i) denotes the (j + 1)th task
scheduled by S(i) where j = [0, `]. Moreover, our models
also include global and local schedulers. However, they are
related to the scheduling of servers and tasks. Since the models
of the scheduling of tasks (including fixed-priority scheduling
and EDF) have already been provided in [18], they will not
be presented in this report.

Fig. 2. The UPPAAL model of a generic mode-change protocol

Upon a mode change, each LMCRC interacts with its
corresponding server and the local tasks within the server,
while the GMCRC interacts with all servers. An MCR is
triggered by a task during its execution (see task T (0, 0)
in Fig. 2). Such an MCR is first sent to its corresponding
LMCRC (LMCRC (0) in Fig. 2), which then propagates the
MCR to its server (S(0)) and all the other tasks scheduled by
S(0) other than T (0). The MCR is further forwarded by S(0)
to the GMCRC, which propagates it to all the servers other
than S(0). Upon receiving the MCR from the GMCRC, each
S(i) (i = [1, k]) sends the MCR to its LMCRC (i), which
propagates it further to all the tasks scheduled by S(i). All
tasks are obliged to send a confirmation to their LMCRCs
once they are ready for the new mode. Then each LMCRC
forwards the confirmation to its corresponding server. Finally,
a mode change is completed as the GMCRC receives the
confirmation from all servers. Note that our UPPAAL model
depicts a more generic view of the mode-change protocol.
However, to make the implementation more efficient, it is the
LMCRC that actually changes the modes of all tasks (not a
task itself) [12]. Given the current setup and mode-change
mechanisms, this may be viewed as a refinement, where tasks
delegate their responsibility to the LMCRC without causing a
non-conformance with the specification.

C. The LMCRC and GMCRC models

The models of each LMCRC and the GMCRC are inde-
pendent of the choice of mode-change mechanisms in the
sense that they only describe the interaction with tasks and

servers. Only the models of tasks and servers are affected by
the mode-change mechanism. Fig. 3 illustrates the model of
LMCRC (id), where id is a parameter that defines the ID
of this LMCRC. After receiving an MCR from the MCR
triggering task T (0) by Transition 1, LMCRC (0) notifies
S(0) by Transition 2. The state between transitions 1 and
2 with a ”C” in the circle is a committed state which is
usually used to model an atomic transaction, as an outgoing
transition must be immediately fired at a committed state
without being interrupted or delayed. Here TaskGN[id] is an
integer representing the number of local tasks scheduled by
S(id). The propagation of the MCR from LMCRC (id) to
the other tasks scheduled by S(0) is realized by transitions
4-7. As a special case, if T (0) is the only task scheduled by
S(0), then TaskGN[0]==1 and Transition 3 is fired without
notifying any other task. Meanwhile, LMCRC (i) (i = [1, k])
can receive the MCR from S(i) by Transition 10 and propagate
the MCR to all its local tasks through the loop constructed
by transitions 11 and 12. When the propagation is completed,
Transition 13 is fired. In State inMS, all LMCRCs wait for the
confirmation from their local tasks by Transition 8 and forward
the confirmation to the corresponding server by Transition 9.

Fig. 3. The model of a local MCRC

The model of the GMCRC is illustrated in Fig. 4. In this
model, the GMCRC first receives an MCR from the MCR-
triggering server S(0) by Transition 1. Then the GMCRC
propagates the MCR to all the other servers by transitions
2-5. After the GMCRC has received a confirmation from all
servers by Transition 6, it declares a mode change completion
by Transition 7. Then all the tasks and servers can run in the
new mode.

D. The task model for the Abort mechanism

Fig. 5 illustrates the UPPAAL model of task T (id). Ac-
tually, transitions 1-5 in Fig. 5 and the states between these
transitions are fundamentally the same as the task model in
Fig. 1. The rest is the extension with respect to the mode
change for the Abort mechanism. In the context of two-
level hierarchical scheduling, task execution and preemption
are repreented (in the UPPAAL model) by changing the
clock rate of exe[id]. In State Ready, the boolean function
isRunning() only evaluates to true when both of the following
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Fig. 4. The model of the global MCRC

two conditions are satisfied: (1) T (id) is at the head of the task
queue maintained by S(id) (i.e. T (id) has the highest priority
in a priority-based queue); and (2) S(id) is at the head of
the priority-based server ready-queue maintained by the global
scheduler. Therefore, T (id) is executed when exe[id]’==1 and
preempted when exe[id]’==0.

Fig. 5. The model of a task for the Abort mechanism

When T (0) triggers a mode change, Transition 6 is fired,
setting the global boolean variable switching to true which
indicates that a mode change has started. After T (0) triggers
a mode change, any other T (i) (i = [1, k]) should be able
to change mode from any possible state, by taking one of
the transitions 7-10. Since the Abort mechanism resets the
execution of all tasks, all tasks return to their initial states
after sending a confirmation to their corresponding LMCRCs
by Transition 11.

E. The server model for the Abort mechanism

Depicted in Fig. 6, the server S(id) is modeled in the
same way as a task without considering a mode. A server is

initially idle in State Initial. Since a server has no offset, State
WaitingOffset of the task model can be removed by the server
model. Similar to the task model, a clock usedB[id] is used
to represent the budget that has depleted within the current
period, while another clock s time[id] is used to represent the
time that has elapsed within the current period. In State Ready,
if S(id) is at the head of the priority-based server ready-queue
maintained by the global scheduler, it is under execution.
Otherwise, it can be preempted by the execution of a higher
priority server. Transitions 2-4 and the states between these
transitions highly resemble the task model in Fig. 5. However,
compared with the task model, the server model consists of
more additional states and transitions dedicated to a mode
change. There are two reasons for this: (1) A server can receive
an MCR from either the GMCRC or an LMCRC, while a task
can only receive an MCR from an LMCRC; (2) Upon a mode
change completion, a server needs to forward a confirmation
from an LMCRC to the GMCRC, while a task only needs to
send a confirmation to an LMCRC. For instance, S(0) receives
the MCR from LMCRC (0), as Transition 6 in Fig. 6 is fired.
Since only an executing task can trigger an MCR, S(0) must
be running, i.e. in State Ready, when it receives the MCR
from LMCRC (0). Then S(0) should propagate the MCR to
the GMCRC by Transition 8. In contrast, all the other servers
receive the MCR from the GMCRC, as one of transitions
11-13 is fired. Then each S(i) (i = [1, k]) is responsible
for propagating the MCR to LMCRC (i) by Transition 14.
After S(id) receives the confirmation from LMCRC (id) by
Transition 9, it will send a confirmation to the GMCRC by
Transition 10 and return to its initial state.

Fig. 6. The model of a server for the Abort mechanism

F. The task and server models for the Suspend-resume mech-
anism

The Suspend-resume mechanism also allows a mode change
to immediately abort the current execution of any task and
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server just like the Abort mechanism. However, the difference
is that a system which applies the Suspend-resume mechanism
must be able to save its current execution state before changing
mode so that it can resume its execution when it switches back
to that mode. The modeling of the Suspend-resume mechanism
does not alter the models of each LMCRC and the GMCRC.
Instead, the other models need to be revised and tailored to
each desired mode-change mechanism. The major revision
comes from the task and server models.

The key challenge of modeling the Suspend-resume mecha-
nism in UPPAAL is how to suspend and resume the execution
of each task and server. An ideal solution is to extract the cur-
rent execution time of each task and the capacity that has been
consumed of each server and store them somewhere such that
they can be retrieved for further resumption. Unfortunately, in
UPPAAL it is impossible to obtain the current value of a clock
in that time is treated symbolically. This forced us to propose
a less efficient but feasible solution: All variables and clocks
are duplicated for different modes. When a system is running
in a mode M and a mode change is triggered, each server and
task pauses the clocks that record its current execution state
in the current mode M . When the system switches back to
mode M , all these clocks continue to advance.

Fig. 7 depicts the UPPAAL model of a task for the Suspend-
resume mechanism. To simplify the presentation, the model
only considers two modes: the current mode (denoted by
currentM) and the target mode (denoted by targetM). It can
be observed that many clocks and variables defined for the
task model in Fig. 5 are extended to be aware of different
modes. For example, the clock exe[id], which is used to
represent the current execution time of a task T (id) for the
current period, is extended to exe[mode][id], where mode
is either currentM or targetM here. An additional timing
invariant exe[targetM][id]’==0 && time[targetM][id]’==0 is
added to all the non-committed states except State Error. This
guarantees that when the system is running in one mode, all the
clocks associated with the other mode are paused, and when
the system is changing mode, all the clocks associated with
both modes are paused. We managed to avoid using additional
non-committed states which are dedicated to mode change.
Hence, the new timing invariant is only added to states Initial,
Ready and PeriodDone. If the system can run in more than
two modes, the clocks associated with all modes must be taken
into account in this new invariant.

The interaction between a task and its corresponding LM-
CRC remains the same no matter which mode-change mech-
anism is applied. Yet extra attention must be paid for the
Suspend-resume mechanism when a mode change is com-
pleted, i.e. when Transition 9 in Fig. 7 is synchronized with
the GMCRC. Note that a task can be in any state when it is
about to abort its current execution to perform a mode change.
A task must record its current state before aborting an ongoing
execution in order to resume it correctly afterwards. For that
reason, an integer variable lastTState[mode][id] is introduced
to store the state of a task where it suspends its execution.
Depending on the state where a task suspends its execution,
the value of lastTState[currentM][id] can be 1 when the state
is Initial, 2 when the state is Ready, and 3 when the state is

PeriodDone. Apparently, transitions 10-12 lead a task to the
right state based on these three conditions.

Fig. 7. The model of a task for the Suspend-resume mechanism

Similarly, Fig. 8 depicts the UPPAAL model of a server for
the Suspend-resume mechanism. The execution status of each
server is now stored by separate clocks for different modes. A
server interacts with its LMCRC and the GMCRC in the same
manner as in Fig. 6. To reduce the number of non-committed
states, State Wait4ACK in Fig. 6 is merged into State Initial in
Fig. 8. The state where a server S(id) suspends its execution
due to a mode change from currentM to targetM is stored
in an integer variable lastSState[currentM][id]. The mapping
between the state and the value of lastSState[currentM][id]
follows the aforementioned mapping for the task model in
Fig. 7. When a mode change is completed, depending on the
value of lastSState[currentM][id], transitions 14-16 in Fig. 8
are fired to the state where the server can resume its execution.

The Suspend-resume mechanism also affects some other
models of the system. For instance, both local and global
schedulers should be able to store the status of their queues for
scheduling tasks and servers. These models will not be pre-
sented in the report. The complete UPPAAL models for both
the Abort mechanism and the Suspend-resume mechanism can
be found in [36].

V. VERIFICATION

In Section IV, we have formalized and modeled the generic
mode-change protocol and the Abort mechanism and the
Suspend-resume mechanism using UPPAAL. In this section,
the correctness of the models for both mode-change mecha-
nisms will be verified separately. Since UPPAAL verification
requires a specific system, we instantiate our models based on
a small example introduced in [12].



7

Fig. 8. The model of a server for the Suspend-resume mechanism

The system consists of two servers S(0) and S(1), each of
which schedules a single task T (i) (i = [0, 1]), with T (i) being
scheduled by S(i). The system can run in two modes: M0 and
M1, with M0 as the initial mode. A mode change between M0

and M1 leads to the value change of certain timing parameters
of both servers together with their scheduled tasks. The mode
change between M0 and M1 is triggered by T (0) during its
execution. To minimize the verification time, in our models
only a single round-trip mode change (i.e. from M0 to M1

and then from M1 back to M0) can be triggered. This is a
realistic assumption since multiple round-trip mode changes
are independent of each other and equivalent to the repetition
of a single round-trip mode change. The timing parameters
of all servers and tasks such as period, budget, and execution
times in both modes are provided in tables I and II.

Servers S(0) S(1)
Modes M0 M1 M0 M1

Priority 2 2 1 1
Period 34 34 30 30
Budget 15 14 8 9

TABLE I
TIMING PARAMETERS OF THE SERVERS IN BOTH MODES

Servers S(0) S(1)
Modes M0 M1 M0 M1

Tasks T (0) T (0) T (1) T (1)
Priority 1 1 2 2
Period 30 40 40 40

Exec. Time 9 3 2 2
TABLE II

TIMING PARAMETERS OF THE TASKS IN BOTH MODES

The correctness of our models can be guaranteed by veri-
fying a number of properties. Concerning the example given
above, we have formulated the following five main properties:

• P1: A[] not deadlock
• P2: (switching && targetM==M1)–>(!switching &&

currentM==M1)
• P3: (switching && targetM==M0)–>(!switching &&

currentM==M0)
• P4: A[] forall (i : t id) not Task(i).Error
• P5: A[] forall (i : t id) not Server(i).Error

P1 states that the system is deadlock-free. P2 and P3 can
be interpreted as: a mode change between M0 and M1 will
eventually be completed after it is triggered and the system
will run in the new mode after the mode change. P4 and P5
imply that all tasks and servers meet their deadlines in both
M0 and M1.

All the five properties were satisfied with short verification
time for the Abort mechanism. Nevertheless, an unexpected
obstruction emerged during the verification of the Suspend-
resume mechanism, as the verification time was so long that
the verification of P1 was not terminated even after 2000
seconds. To resolve such a problem, we made a specific as-
sumption for the modeling of the Suspend-resume mechanism:
The mode change from M1 back to M0 is only triggered
by the first instance of T (0). Since our focus is to check if
the system can correctly suspend and resume its execution
in one mode, i.e. M0 in our example, it does not matter
when a mode change is triggered from M1 to M0. Therefore,
this assumption does not compromise our verification goal,
while making the verification time acceptable. Since all the
five properties were satisfied in both cases, the generic mode-
change protocol and the Abort mechanism and the Suspend-
resume mechanism along with the hierarchical scheduling
framework are correct and sound. The verification results1 are
summarized in Table III. It is self-evident that the Suspend-
resume mechanism has a much longer verification time than
the Abort mechanism. There are two reasons for this: (1) The
Suspend-resume mechanism is relatively more complex; (2)
Due to limited support for clock operation, the modeling of
the Suspend-resume mechanism in UPPAAL becomes more
complex than it is supposed to be in the real implementation.

Properties Abort mechanism Suspend-resume mechanism
P1 3.197s 169.514s
P2 2.7s 129.709s
P3 2.78s 133.137s
P4 1.98s 135.366s
P5 1.979s 135.485s

TABLE III
VERIFICATION RESULTS

As a side effect of our formalization and verification,
our models can also be used to compute the best/worst-
case response time of each task and server in both modes.
By utilizing the Diagnostic Trace function provided by the
UPPAAL Simulator, we can even find when the best/worst-
case response time occurs, assuming a specific phasing in
which all servers and tasks start their execution at time 0.

1Verification was conducted on MacBook Pro, with 2.66GHz Intel Core 2
Duo CPU and 8GB 1067 MHz DDR3 memory. UPPAAL version: 4.1.3.
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VI. DISCUSSION AND CONCLUSIONS

In this report, we presented the first formalization and
verification for an implementation of a generic framework
for multi-mode adaptation of hierarchical scheduling. We have
modeled and verified the generic mode-change protocol and
its instantiation with two mode-change mechanisms for hierar-
chical scheduling, i.e. the Abort mechanism and the Suspend-
resume mechanism proposed in [12], using UPPAAL. Our
models for both mechanisms conservatively extend the models
of two-level hierarchical scheduling by adding new models,
states and transitions related to mode change. The verification
results indicate that both instantiations are deadlock-free and
guarantee correct mode changes in bounded time. Although
the verification was based on a small example, our models are
generic, supporting an arbitrary number of tasks, servers and
modes. Therefore, we could foresee that both mode-change
mechanisms should work well for all systems that conform to
the specification of our models.

It is worth to note that our models exhibit certain complex-
ity mainly due to the limitation of UPPAAL. For instance,
UPPAAL does not support hierarchical states, which would
potentially merge many transitions of the same type. Besides,
it is impossible to store and retrieve clock values in UPPAAL,
thus making it extremely difficult to model the Suspend-
resume mechanism in an efficient manner. Investigating other
formalization and verification techniques and comparing them
with UPPAAL is future work.

Other directions for future work are to formalize and verify
the complete mechanism [12]. We also plan to lift some of
the assumptions of MMAHSF in the future, like adding new
modes in the system dynamically, and providing resource
sharing among the tasks of different modes.
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