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Abstract—Software reuse is deemed as an effective technique
for managing the growing software complexity of large systems.
Software complexity can also be reduced by partitioning the
system behavior into different modes. Such a multi-mode
system is able to dynamically change its behavior by switching
between different modes. When a multi-mode system is devel-
oped by reusable software components, a crucial issue is how
to achieve a seamless composition of multi-mode components
and handle mode switch properly. This is the motivation for
the Mode Switch Logic (MSL), supporting the development
of component-based multi-mode systems by providing mecha-
nisms for mode switch handling. In this paper, MSL is extended
and adapted to systems with emergency triggering of mode
switches that must be handled with minimal delay. We propose
an Immediate Handling with Buffering (IHB) approach to
enable the responsive handling of such an emergency event in
the presence of other concurrent non-emergency mode switch
events. We present a model checking based verification of IHB
and illustrate its benefits by an example.
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I. INTRODUCTION

Component-Based Software Engineering (CBSE) [1] is
a paradigm for reducing mainly design time complexity,
characterized by systems being composed of independently
developed reusable software components. Partitioning the
system behavior into different operational modes is a com-
plementary approach that targets reduction of both design
and run-time complexity. Such a multi-mode system usually
runs in one mode and can switch to another mode under
certain conditions. For instance, the control software of an
airplane could run in the modes taxi (the initial mode), taking
off, flight and landing.

Taking the advantage of both CBSE and multi-mode
systems, we aim at building multi-mode systems by reusing
multi-mode components. Fig. 1 illustrates a multi-mode
system built by multi-mode components. The system, i.e.
Component a, consists of components b, c and d. Component
c is composed by e and f. Among these components, b, d,
e, and f are primitive components directly implemented by
code, while a and c are composite components composed
by other components. The tree structure of the component
hierarchy implies a parent-and-children relationship between
each composite component and the components directly
composing it. For instance, a is the parent of b, c, d which in
turn are the subcomponents or children of a. Besides, a can
run in two modes: m1

a and m2
a. When a runs in mode m1

a,

d is deactivated (represented by the dimmed color); when a
runs in m2

a, d becomes activated and extra connections are
established within a. In addition, b exhibits different mode-
specific behaviors (distinguished by black and grey colors)
when a is running in different modes. Similar to a, the other
components may also support multiple modes.

Figure 1. A multi-mode system built by multi-mode components

The key challenge for such a system is its mode switch
handling in the sense that a system mode switch could corre-
spond to the mode switches of many different independently
developed components. For instance, a system mode switch
from m1

a to m2
a in Fig. 1 requires the activation of d, the

behavior change of b, and possibly the change of c, e and
f. The mode switches of different components must be well
synchronized and coordinated to guarantee a correct system
mode switch. We have developed the Mode Switch Logic
(MSL) [2] as the corresponding solution.

In MSL, a mode switch is triggered as an event by a single
component, e.g. when a sensor value exceeds a predefined
threshold. Such an event typically leads to a mode switch
scenario or simply scenario, i.e. a switch of the triggering
component from one mode to another mode, potentially
leading to the mode switches of some other components.
Hence, a scenario must be propagated to those components.
MSL allows the concurrent and independent triggering of
multiple scenarios by different components. However, MSL
currently treats all scenarios equally, without considering
their urgency. This makes MSL less suitable for use in
time-critical systems where a scenario may be related to an
emergency event that must be handled within a short time
period. The contribution of this paper is that it extends MSL
by an approach called Immediate Handling with Buffering
(IHB) that distinguishes an emergency scenario from a non-
emergency scenario and exerts itself to achieve a responsive
handling of an emergency scenario with minimum impact



on other (non-emergency) scenarios.
The remainder of the paper is structured as follows:

Section II gives a brief introduction of MSL. In Section III,
we elaborate on our IHB approach. In Section IV we
present the verification of IHB. Related work is reviewed
in Section V. Finally, Section VI concludes the paper and
discusses some future work.

II. THE MODE SWITCH LOGIC

The Mode Switch Logic (MSL) allows the hierarchical
composition of multi-mode components. Each component
has a unique configuration associated with each of its modes.
Its mode switch is performed by reconfiguration, i.e. by
changing its configuration in the current mode to the config-
uration in the new mode. A component is able to exchange
mode information with its parent and subcomponents via
dedicated ports. Each component handles a scenario by run-
ning a built-in mode switch run-time mechanism (MSRM).
We first present how the MSRM handles a single scenario,
without the interference of other scenarios. Then we further
explain the handling of multiple concurrent scenarios.

A. The handling of a single scenario

The component that triggers a scenario is called the Mode
Switch Source (MSS). After an MSS triggers a scenario, it
will assign a unique scenario ID k to this triggering of the
scenario, which is then propagated to the components which
need to switch mode due to k. We call such components Type
A components and components not affected by k are called
Type B components. For each component ci and a scenario
k, T k

ci = A or T k
ci = B denotes that ci is a Type A or Type

B component for k. Type A/B components are identified
by a mode mapping mechanism included in each composite
component. This mechanism relates the modes of the parent
to those of the children and vice versa. Since a component
only knows the information of itself and its subcomponents,
the propagation of a scenario must be stepwise, either one
step up to the parent or one step down to the subcomponents.
The MSRM of each component includes a Mode Switch
Propagation (MSP) protocol [2] for the propagation of a
scenario triggered by an MSS to all Type A components
without disturbing Type B components. In general, the MSP
protocol defines a number of primitives transmitted across
different components. A scenario leads to a mode switch
only if it is approved by a Mode Switch Decision Maker
(MSDM) (a component which is usually an ancestor of the
MSS) dynamically identified by the MSP protocol. The MSP
protocol is presented as follows:

Definition 1. The MSP protocol: Let ci be an MSS trigger-
ing a scenario k and cj be the MSDM of k. Component
ci triggers k by issuing an MSR (Mode Switch Request)
primitive (denoted as msrk) that is propagated to the parent
of ci and stepwise towards cj . Upon receiving the msrk, cj
checks if it is ready to switch mode. If not, cj will reject k

by issuing an MSD (Mode Switch Denial) primitive msdk

that is propagated back to ci via the same intermediate
components. Otherwise, cj will issue an MSQ (Mode Switch
Query) primitive msqk that is propagated downstream and
stepwise to all Type A components, asking if they are ready
to switch mode. Upon receiving the msqk, each component
replies with an MSOK primitive msokk if ready to switch
mode or with an MSNOK primitive msnokk otherwise. If all
Type A components are ready to switch mode, cj will trigger
the mode switch for k by issuing an MSI (Mode Switch
Instruction) primitive msik that follows the propagation
trace of the msqk. The propagation of k is completed when
all Type A components receive the msik. Otherwise, if at
least one Type A component replies with an msnokk, cj
will abort the propagation of k by issuing an msdk that
follows the propagation trace of the msqk.

The formal and complete description of the MSP protocol
can be found in [2]. Basically, the MSP protocol first
identifies the MSDM of a scenario which then triggers a
two-phase propagation. In the first phase, the MSDM asks
if all Type A components are ready for the mode switch. In
the second phase, the MSDM makes the final decision by
either triggering or not triggering the mode switch. Mode
switch is triggered when the MSDM issues an MSI.

After the propagation of an MSI, a Type A component will
start reconfiguration, following a mode switch dependency
rule which is part of its MSRM and guarantees that a mode
switch is always completed bottom-up: A primitive com-
ponent completes its mode switch after its reconfiguration
and sends an MSC (Mode Switch Completion) primitive
msck to its parent. A composite component ci completes
its mode switch after it completes its reconfiguration and
has received an msck from all its Type A subcomponents.
If ci is not the MSDM of k, ci will send an msck to its
parent. A system mode switch is completed when: (1) the
MSDM ci completes its mode switch for k (T k

ci = A); or
(2) the MSDM ci has received an msck from all its Type A
subcomponents (T k

ci = B).
To demonstrate the handling of a single scenario, suppose

e in the example in Fig. 1 triggers a scenario k as the
MSS, with a identified as the MSDM. Components b and
f are Type B components while the others are Type A
components. The handling of k is depicted in Fig. 2.
First, an msrk is propagated from e to its parent c, and
then to the MSDM a. In Phase 1, an msqk is propagated
stepwise to Type A components, all of which are ready to
switch mode. Therefore, in Phase 2, a issues an msik that
triggers the mode switches of Type A components, whose
reconfigurations are represented by the black bars in Fig.
2. Finally, an msck is propagated bottom-up to indicate
mode switch completion. The white bars in Fig. 2 mean
that the mode switch of a composite component cannot be
completed after its reconfiguration because it is still waiting



for an msck from at least one subcomponent. This complies
with the mode switch dependency rule.

Figure 2. A mode switch based on Scenario k

B. The handling of multiple concurrent scenarios
To handle concurrent scenarios, two FIFO queues, MSR

queue and MSQ queue, are introduced for each component.
A component stores incoming MSR/MSQ primitives in the
corresponding queues and handle them one at a time. Let
ci.Qmsr and ci.Qmsq denote the MSR/MSQ queue of a
component ci. We use Q[1] to denote the first element in
the queue Q, x ∈ Q to denote that x is one element in Q,
and Q = ∅ or Q 6= ∅ to denote that Q is empty or non-
empty. If ci receives multiple scenarios simultaneously, e.g.
msrk1 and msrk2 , then ci puts them in ci.Qmsr based on
their arrival order. When ci completely handles a scenario
k, if ci.Qmsr[1] = msrk, then ci will remove the msrk

from ci.Qmsr. Similarly, if ci.Qmsq[1] = msqk, then ci
will remove the msqk from ci.Qmsq .

Let PC and CC be the set of primitive components and
composite components of a system, respectively. For each ci,
let Pci be the parent of ci, SCci be the set of subcomponents
of ci, and SCA

ci(k) be the set of Type A subcomponents of
ci for Scenario k. Then ci completely handles k when (1) ci
completes a mode switch for k (T k

ci = A); (2) ci has received
an msck from all cj ∈ SCA

ci(k) (ci ∈ CC ∧ T k
ci = B); (3) ci

propagates an msdk to SCA
ci(k) (ci ∈ CC ∧ SCA

ci(k) 6= ∅);
(4) ci receives an msdk from Pci (ci ∈ PC∨SCA

ci(k) = ∅).
A scenario cannot interrupt the ongoing mode switch of a
component in a transition state:

Definition 2. A component ci is in a transition state within
the interval [t1, t2] for Scenario k, where t1 is the time when
(1) ci issues an msqk to SCA

ci(k) (when ci is the MSDM
of k); or (2) ci handles an msqk ∈ ci.Qmsq . And t2 is the
time when ci has completely handled k.

An MSR/MSQ queue checking rule is based on Def-
inition 2: If ci is not in any transition state, then if
ci.Qmsq 6= ∅, ci will immediately handle ci.Qmsq[1]; else
if ci.Qmsr 6= ∅ and ci.Qmsr[1] has not been propagated to
Pci , ci will immediately handle ci.Qmsr[1].

Note that the handling of one scenario of a component
may affect its handling of a subsequent scenario. For in-
stance, in Fig. 2, if a receives another msrk

′
from d right

after the reception of msrk from c, then a will handle k
first. Since T k

d = A, d will switch mode due to k. However,
d triggers k′ in the old mode, implying that msrk

′
becomes

invalid. Therefore, both a and d should remove the msrk
′

from their MSR queues after the mode switch for k. This
is achieved by an MSR/MSQ queue updating rule which is
referred to [2] due to limited space.

III. EMERGENCY MODE SWITCH HANDLING

In time-critical systems, a scenario may be triggered
by an emergency event which requires a responsive and
exclusive handling compared with non-emergency scenarios.
To support this, and as the contribution of this paper, we
extend the MSRM of each component by the Immediate
Handling with Buffering (IHB) approach while assuming:

1) A system has at most one emergency scenario, which
can be recognized by all components.

2) From each mode a direct switch to the emergency
mode is possible.

3) Primitives sent between components are received in
the same order they are sent.

4) Component reconfiguration cannot be interrupted.
Assumptions 1 and 2 can be statically checked at de-

sign time, and Assumption 3 can be assured by the inter-
component communication infrastructure. Assumption 4 is
a precondition for IHB.

A. The handling of an emergency scenario

An emergency scenario k can be propagated by an EMS
(Emergency Mode Switch) primitive emsk. Once the emsk

is triggered, it should never be rejected and a mode switch
must be performed in time. Let Top be the component at
the top of the component hierarchy. An emergency scenario
can be propagated by following the Emergency Mode Switch
Propagation (EMSP) protocol:

Definition 3. The EMSP protocol: Let ci be the MSS of an
emergency scenario k. Then, (1) If ci ∈ PC, it will send an
emsk to Pci ; (2) If ci ∈ CC \ {Top}, it will send an emsk

to Pci and SCA
ci(k); (3) If ci = Top, it will send an emsk

to SCA
ci(k).

For each cj that receives the emsk, (1) If cj ∈ PC, no
further propagation is needed; (2) If cj ∈ CC \ {Top}, it
propagates the emsk depending on the sender cn and T k

cj :
If cn = Pcj , cj will propagate the emsk to SCA

cj (k); if
cn ∈ SCcj and T k

cj = A, then cj will propagate the emsk

to {Pcj}∪SCA
cj (k) \ {cn}; if cn ∈ SCcj and T k

cj = B, then
cj will propagate the emsk to SCA

cj (k)\{cn} as the MSDM
of k; (3) If cj = Top, then cj will propagate the emsk to
SCA

ci(k) \ {cn}, where cn ∈ SCcj .



Unlike a non-emergency scenario, the immediate handling
of an emergency scenario is a critical issue that must be
guaranteed even at the sacrifice of enforcing a component
to switch mode. After the propagation of emsk, a Type
A component will start its reconfiguration following the
original mode switch dependency rule.

To demonstrate the EMSP protocol, k in Fig. 2 is handled
as an emergency scenario in Fig. 3. Compared with Fig. 2, it
is self-evident that the propagation of an emergency scenario
is faster than that of a non-emergency scenario.

Figure 3. Demonstration of the EMSP protocol

Since we assume that component reconfiguration cannot
be interrupted, an ongoing reconfiguration of a component
may delay its handling of an EMS. Hence we introduce
an EMS queue for each component to store an incoming
EMS. The EMS queue of ci is denoted as ci.Qems and is of
size 1, since we assume that only one emergency scenario
is specified for each system. When ci triggers or receives
an emsk, it will put the emsk in ci.Qems. Component ci
removes the emsk from ci.Qems when it completes the
handling of the emsk, i.e. when (1) ci has completed its
mode switch for k (T k

ci = A); or (2) ci has received an msck

from all cj ∈ SCA
ci(k) (T k

ci = B). During the handling of
the emsk, ci is in an Emergency Transition State (ETS):

Definition 4. A component ci is in an Emergency Transition
State (ETS) within the interval [t1, t2] for an emergency
scenario k, where t1 is the time when ci starts to handle the
emsk in ci.Qems and t2 is the time when ci has completed
the handling of k.

Hereafter we use Normal Transition State (NTS) to in-
dicate a transition state (Definition 2). An MSS should not
trigger a scenario in an NTS or ETS.

Reading from the EMS queue of a component has higher
priority than reading from its MSR and MSQ queues.
We replace the MSR/MSQ queue checking rule with the
following pending scenario checking rule:

Definition 5. The pending scenario checking rule: If
ci is not in an NTS or ETS, it periodically checks its
EMS/MSQ/MSR queues until it identifies a primitive x that
is immediately handled by ci, where
• If ci.Qems 6= ∅, then x = ci.Qems[1].
• If ci.Qems = ∅ ∧ ci.Qmsq 6= ∅, then x = ci.Qmsq[1].
• If ci.Qems = ∅ ∧ ci.Qmsq = ∅ ∧ ci.Qmsr 6= ∅ and

ci.Qmsr[1] has not been propagated to Pci , then x =
ci.Qmsr[1].

As ci leaves an ETS for k, it can apply the same
MSR/MSQ queue updating rule as in [2] to remove elements
in its MSQ/MSR queues which become invalid due to k.

B. Issues due to concurrent triggering of emergency and
non-emergency scenarios

A component ci may receive a downstream EMS from
the parent or an upstream EMS from a subcomponent. The
EMS triggered by ci is also considered as an upstream EMS
for ci. After a comprehensive analysis of all the possible
cases where an upstream/downstream emergency scenario
interleaves with a non-emergency scenario, we have identi-
fied three major issues related to the concurrent triggering
of both emergency and non-emergency scenarios.

Issue 1: When a component ci switches mode due to an
upstream EMS (emsk2 ), ci may have already sent an MSR
(msrk1 ) to Pci , with k2 invalidating the msrk1 .

Issue 1 is illustrated by Fig. 4(a), where b receives an emsk2

(T k2

b = A) from d after sending an msrk1 to a. Since b is
not in the NTS for k1, according to Definition 5, b will
handle the emsk2 and switch to the new mode, making the
msrk1 previously sent to a invalid. Hence, b must abort the
handling of the msrk1 and notify a as well.

Issue 2: An upstream emergency scenario may make an MSQ
in the MSQ queue invalid.

Issue 2 is illustrated by Fig. 4(b) where b receives an msqk1

from a and an emsk2 from d at the same time. Scenario k1 is
triggered by e while k2 is triggered by d. Component b will
put the msqk1 in b.Qmsq and put the emsk2 in b.Qems.
According to Definition 5, b handles the emsk2 first. If
T k2

b = A, b will switch mode based on k2. However, a
sends the msqk1 to b assuming that b is in its old mode.
Therefore, k2 makes the msqk1 invalid.

Issue 3: When an emsk2 arrives at a component ci which
is in an NTS for k1, the handling of emsk2 could be
unnecessarily delayed by k1.

Issue 3 is illustrated by Fig. 4(c). Component b receives an
msqk1 from its parent a and then propagates the msqk1 to
its subcomponents c and d at t0. Meanwhile, c has sent an
emsk2 to b before c receives the msqk1 . Since b has entered
the NTS for k1 at t0, it will complete the handling of k1
before it can handle emsk2 . However, since no component
has started its reconfiguration for k1, it is possible to abort
the handling of k1 to facilitate the handling of k2.

C. Solutions to the identified issues

The issues pinpointed in Section III-B pose extra chal-
lenge to the handling of concurrent emergency and non-
emergency scenarios.



Figure 4. Issues due to the concurrent triggering of both emergency and
non-emergency scenarios

Concerning Issue 1, let’s first observe the behavior of the
MSS ci of an emergency scenario. Suppose ci just sends an
msrk1 to Pci at t1 and receives an msqk1 from Pci at t2.
Since ci is not in the NTS for k1 at the interval [t1, t2], ci
may trigger an emergency scenario k2 within this interval.
Before issuing an emsk2 , ci should realize that the msrk1

previously sent to Pci becomes invalid due to k2. Hence ci
should abort the handling of k1 and notify Pci and SCci . An
msdk1 can be sent from ci to cj ∈ SCci which aborts the
handling of k1. Similarly, we introduce an upstream MSA
(Mode Switch Abort) primitive so that Pci can abort the
handling of k1 while receiving an msak1 from ci.

Upon receiving an msak, a component can abort the
handling of k by applying the MSA handling rule:

Definition 6. The MSA handling rule: Let ci ∈ CC be a
component that receives an msak from cj ∈ SCci .
• If there is one msrk1

cj ∈ ci.Qmsr, then k = k1 and ci
will remove it from ci.Qmsr.

• If there are two MSR primitives1 from cj in ci.Qmsr, let
the first be msrk1

cj and the second be msrk2
cj (k1 6= k2).

Then k = k2. If ci is in the NTS for k1, then ci will
only remove msrk2

cj from ci.Qmsr. Otherwise, ci will
remove both msrk1

cj and msrk2
cj from ci.Qmsr.

If ci.Qmsr[1] = msrkcj that has been propagated to
Pci , then ci will propagate the msak further up to Pci . If
∃msqk ∈ ci.Qmsq , ci will remove the msqk from ci.Qmsq .

In addition, if ci has propagated an msqk to SCA
ci(k)

without receiving all the replies, then ci will leave the NTS
for k by sending an msdk to SCA

ci(k) \ {cj}.

The purpose of the rule above is to make all components,
which have received the propagation of k, abort the handling
of k. The MSA handling rule is demonstrated by Fig. 5. A
composite component b, with a as its parent and c and d
as its subcomponents, receives an msak from c at t0, right
after propagating an msqk to c and d. By Definition 6, b first
removes the msrk and msqk from ci.Qmsr and ci.Qmsq

respectively. Since b has sent an msrk to a, an msak is sent
from b to a, which will also apply the MSA handling rule.
Moreover, since b has propagated an msqk to c and d while
d still does not know that the msqk has become invalid, b

1In [3] we explain that at most two MSR primitives from the same
subcomponent can co-exist in ci.Qmsr .

also sends an msdk to d. Component c will ignore the msqk

from b after sending the msak to b.

Figure 5. Demonstration of the MSA handling rule

The MSA handling rule only solves Issue 1 identified in
Section III-B. Concerning Issue 2, we propose a preliminary
EMS handling rule which is applied before each component
propagates an upstream EMS. This rule consists of two parts:

Definition 7. The preliminary EMS handling rule (Part
1): Suppose ci is about to handle an upstream emsk2 . Let
ci.Qmsr[1] = msrk1

cl
(cl ∈ SCci ∪ {ci}) if ci.Qmsr 6= ∅.

If ci 6= Top and msrk1
cl

has been propagated to Pci , then
ci will send an msak1 to Pci when one of the following
two conditions is satisfied: (1) T k2

cl
= A; (2) T k2

cl
= B and

T k2
ci = A. After sending the msak1 , if ∃msqk1 ∈ ci.Qmsq ,

then ci will remove the msqk1 from ci.Qmsq .

The purpose of Definition 7 is to check if ci has sent an
msrk1 to Pci which becomes invalid due to an upstream
emsk2 , where k1 and k2 come from different components.
If yes, ci should abort the handling of k1 and notifies Pci

further. Definition 7 is followed by Part 2 of this rule:

Definition 8. The preliminary EMS handling rule (Part
2): After ci applies Part 1,
• If ci = Top, then if ∃msqk1 ∈ ci.Qmsq and T k2

ci = A,
ci will remove the msqk1 from ci.Qmsq .

• If ci 6= Top, then if ∃msqk1 ∈ ci.Qmsq and T k2
ci = A,

ci will send an msnokk1 to Pci and waits for an msdk1

from Pci . After receiving the msdk1 , ci removes the
msqk1 from ci.Qmsq .

The purpose of Part 2 is for ci to abort the handling of
an msqk1 while k1 comes from ci itself or Pci . If k1 comes
from Pci , ci cannot send an msak1 to Pci in that the msak1

is only sent if ci has sent an msrk1 to Pci . Instead, ci can
abort the handling of k1 by sending an msnokk1 to Pci ,
according to the MSP protocol. However, the msnokk1 is
only sent when T k2

ci = A (i.e. when the emergency mode
switch of ci makes the msqk1 invalid).

The preliminary EMS handling rule is demonstrated by
Fig. 6 with the same example as in Fig. 5. In Fig. 6(a),
b has sent an msrk1 to its parent a and then receives an
upstream emsk2 from a subcomponent c. Since T k2

b = A, b
sends an msak1 to a following Part 1 before propagating the
emsk2 . In Fig. 6(b), b simultaneously receives an msqk1 and



an upstream emsk2 . Following Part 2, b sends an msnokk1

to a to abort the handling of k1 since T k2

b = A.

Figure 6. Demonstration of the preliminary EMS handling rule

Issue 3 can be resolved by making each composite com-
ponent apply the following EMS receiving rule as it puts an
EMS in the EMS queue:

Definition 9. The EMS receiving rule: Let ci ∈ CC be a
component that propagates an msqk1 to SCA

ci(k1) and then
receives an emsk2 from cj ∈ {Pci}∪SCci before ci receives
all the expected msokk1 or msnokk1 from SCA

ci(k1). As ci
puts the emsk2 in ci.Qems, ci will abort the handling of
k1 by propagating an msdk1 to SCA

ci(k1). If ci 6= Top,
T k1
ci = A and cj ∈ SCci , ci will send an msak1 to Pci .

Fig. 7 demonstrates the EMS receiving rule with the same
example in Fig. 6. Component b receives an emsk2 from c
right after propagating an msqk1 to SCA

b (k1) with T k1

b = A.
To abort the handling of k1, b sends an msak1 to a and sends
an msdk1 to c and d. Then b can immediately handle k2.

Figure 7. Demonstration of the EMS receiving rule

D. Summary of the IHB approach

As an increment of the MSRM of MSL, our IHB approach
brings the following new elements:

1) The EMSP protocol
2) The MSA handling rule
3) The preliminary EMS handling rule
4) The EMS receiving rule
In addition, IHB replaces the MSR/MSQ queue checking

rule introduced in [2] with the pending scenario checking

rule (Definition 5). The other elements of the MSRM, in-
cluding the MSP protocol, the mode switch dependency rule
and the MSR/MSQ queue updating rule, remain unchanged.

The workflow of IHB is depicted in Fig. 8, where its
essential elements are marked in red. The MSA handling
rule and the EMS receiving rule are not visible in the figure.
Instead, they can be implemented in a separate module
which is triggered when an MSA or EMS arrives.

Figure 8. The workflow of IHB

We have described the complete set of algorithms for IHB
by pseudocode which are excluded from this paper due to
space limitation but can be found in the technical report [3].

E. Improvement by IHB

We use an example to demonstrate how the handling of
an emergency scenario is improved by IHB. Depicted in Fig.
9, three scenarios: k0, k1 and k2 are concurrently triggered,
marked in different colors. For each scenario, the Type A
components are enclosed in the corresponding dotted loop.
Two mode switch processes are compared, one on the left
(when k2 triggered by e is a non-emergency scenario) and
the other on the right (when k2 is an emergency scenario).
Component b receives an msqk0 from a and an msrk1 from
d at the same time. After that, b receives either an msrk2 or
emsk2 from e. The handling of the msrk2 by b is delayed
first by k0 and then by k1, while b handles the emsk2

immediately. As b receives the emsk2 , it aborts the handling
of k0 by sending an msak0 to a and an msdk0 to c, driven by
the EMS receiving rule. After that, b immediately propagates
the emsk2 and starts its reconfiguration. Apparently, IHB
brings substantial improvement to the mode switch time of
the emergency scenario k2.

IV. VERIFICATION

The major concern of our verification is to prove that our
IHB approach satisfies the following two key properties:

1) Deadlock freeness: IHB is deadlock-free.
2) Completeness: a component completes the handling of

each scenario within bounded time.



Figure 9. Improvement by IHB when a non-emergency scenario k2 (diagram to the left) becomes an emergency scenario (diagram to the right)

We resort to model checking for the verification of IHB,
using the model checker UPPAAL [4]. However, since
model checking requires that a specific model instance is
provided, we divide our verification into two steps:

1) Building an abstract UPPAAL model that implements
IHB and satisfies the specified properties.

2) Proving that the UPPAAL model faithfully captures
the relevant behavior of an arbitrary complex finite
system of components.

A. Verification of the abstract model

Inspired by [5], we construct an abstract system model in
UPPAAL by using stubs. IHB is implemented on a single
target component while the rest of the system is simulated
by a parent stub and a number of child stubs. Illustrated in
Fig. 10, the modeled system consists of four components: a
target component b together with a parent stub a and two
child stubs c and d. Non-emergency scenarios can arrive at b
from all stubs, e.g. an msqk0 from a, an msrk1 from c, and
an msrk2 from d. Note that k0 here could be equal to k1
or k2 according to the MSP protocol. Besides, b can receive
either a downstream emsk3 from a or an upstream emsk3

from c. All scenarios can be recurrently triggered whenever
possible. We do not consider the case when b triggers a
scenario itself because this can be simulated by adding a
virtual child stub of b which triggers the scenario instead.

Figure 10. The modeling structure in UPPAAL

Our UPPAAL modeling includes three cases: (1) b = Top;
(2) b ∈ CC \ {Top}; and (3) b ∈ PC. The system
has no parent stub for Case (1) and has no child stubs

for Case (3). Case (2) yields the most complex UPPAAL
model, especially in the presence of an upstream emsk3 . To
reduce verification time, we assume that an upstream emsk3

is triggered only once for Case (2). Since an emergency
scenario is a rare event, even if it can be triggered multiple
times, the interval between two such events must be long
enough for a component to complete each emergency mode
switch. Then each triggering of the emsk3 is independent
and it is sufficient to trigger k3 only once in the model.

The verification of both properties (deadlock freeness and
completeness) was repeated for all cases. Property 1 is
always satisfied whereas Property 2 is not satisfied under
certain conditions. For instance, in Case (2), Property 2 is
not satisfied for the msrk1 from c and the msrk2 from d.
This result does not reflect any error of IHB or our model.
On the contrary, it is expected because a can send an msqk0

to b whenever possible. Since b.Qmsq has a higher priority
than b.Qmsr, b may never handle the MSR from c or d if
a keeps sending the msqk0 to b. We allow a to send the
msqk0 to b unlimited number of times, however, Property 2
is only guaranteed when the constant arrival of the msqk0

from a to b is bounded. Therefore, we duplicated our model
into two versions. In the second version, we slightly changed
the behavior of a such that for every two consecutive MSQ
primitives2(msqk and msqk

′
) from a, at least either k or

k′ is from c or d. This does not alter the nature of IHB,
yet satisfying Property 2. Actually, it is only theoretically
possible that b keeps receiving scenarios from a without
breaks since mode switch should not be a frequent event.

B. Generalization of the UPPAAL verification results

In order to generalize our UPPAAL verification results, we
need to prove that our UPPAAL model faithfully represents
an arbitrary complex finite system of components. This boils
down to proving the following three assertions:

2More generally, for every n consecutive MSQ primitives from a, there
must exist an msqk such that k originates from c or d. Here n = 2 for
simplifying reasons.



1) The parent stub faithfully represents an arbitrary finite
structure of components above the target component.

2) A child stub faithfully represents a subcomponent with
an arbitrary finite structure of enclosed components.

3) Two child stubs faithfully represent an arbitrary num-
ber of child stubs.

The detail description of our UPPAAL model, the com-
plete verification results, and the proof of these assertions
are omitted due to limited space, but provided in [3].

V. RELATED WORK

In extended MECHATRONICUML (EUML) [5] by Heinze-
mann et al., component reconfiguration can be propagated
and executed at different hierarchical levels. Reconfiguration
rules can be specified for each component at design time.
So far EUML has not provided any concrete solution to the
handling of concurrent multiple reconfiguration requests.

Pop et al. [6] abstract component behaviors into a global
property network. The value change of a property of one
component can be propagated throughout the property net-
work, potentially changing the values of some properties of
the other components. Mode switch is handled by a global
manager using a finite-state machine to guarantee predictable
update time of the property network. In contrast, the mode
switch handling of MSL is fully distributed.

Mode switch has been addressed in a number of compo-
nent models, e.g. SaveCCM [7], Koala [8], Rubus [9], and
MyCCM-HI [10]. In Koala and SaveCCM, a special switch
connector is introduced to achieve the structural diversity of
a component. Depending on the input data, switch can select
one of multiple outgoing connections. In Rubus, mode is
treated as a system property and a system-wide configuration
of components is defined for each mode. In MyCCM-HI,
each component has a mode automaton implementing its
mode switch mechanism. Mode switch is also addressed by
languages such as AADL [11], where a state machine is
used to represent the mode switch behavior of a component.
Compared with MSL, none of these works provide any
systematic strategy to coordinate the mode switches of
different components. To the best of our knowledge, no work
is found on emergency mode-switch handling.

VI. CONCLUSION AND FUTURE WORK

Software complexity can be effectively reduced and
managed by reusing software components and introducing
modes. We have proposed the Mode Switch Logic (MSL)
for developing multi-mode systems by multi-mode compo-
nents and handling their mode switch. In this paper, MSL
is extended with handling of both emergency and non-
emergency concurrently triggered mode switch scenarios.
we have proposed an Immediate Handling with Buffering
(IHB) approach that is able to handle an emergency scenario
swiftly in spite of triggering of concurrent non-emergency
scenarios. Using model checking based verification, IHB is

proven to satisfy the desired properties such as deadlock
freeness and completeness.

Future work includes to extend IHB by supporting the
triggering of multiple emergency scenarios with different
criticality levels. It is also our intention to provide the mode
switch timing analysis for IHB for calculating the worst-case
mode switch times of both emergency and non-emergency
scenarios. This can be achieved by extending our previous
analysis for a single non-emergency scenario [12]. Addition-
ally, IHB does not allow an emergency scenario to abort
an ongoing component reconfiguration, thus incurring an
unacceptable delay to the handling of an emergency scenario
if some component has extremely long reconfiguration time.
We shall investigate how an emergency scenario can be
immediately handled without delay, even at the sacrifice
of aborting an ongoing reconfiguration. We also plan to
evaluate IHB in a real-world system.
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